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Abstract

Two hypotheses have been put forth to explain the magnitude and timing of diel stream-
flow oscillations during low flow conditions. The first suggests that delays between the
peaks and troughs of streamflow and daily evapotranspiration are due to processes
occurring in the soil as water moves toward the channels in the river network. The5

second posits that they are due to the propagation of the signal through the chan-
nels as water makes its way to the outlet of the basin. In this paper, we design and
implement a theoretical experiment to test these hypotheses. We impose a baseflow
signal entering the river network and use a linear transport equation to represent flow
along the network. We develop analytic streamflow solutions for two cases: uniform and10

nonuniform velocities in space over all river links. We then use our analytic solutions to
simulate streamflows along a self-similar river network for different flow velocities. Our
results show that the amplitude and time delay of the streamflow solution are heavily
influenced by transport in the river network. Moreover, our equations show that the
geomorphology and topology of the river network play important roles in determining15

how amplitude and signal delay are reflected in streamflow signals. Finally, our results
are consistent with empirical observations that delays are more significant as low flow
decreases.

1 Introduction

Many authors have observed daily fluctuations in streamflow during periods of little or20

no rain (e.g., Bond et al., 2002; Graham et al., 2013; Gribovszki et al., 2008; Wondzell
et al., 2007). These fluctuations have been attributed to various causes, especially to
those driven by temperature, which undergo a daily cycle. Temperature affects several
hydrological processes, including freeze/thaw rates, evaporation rates, viscosity of wa-
ter, and transpiration rates. Although many factors may contribute to the daily cycle of25

streamflow, evapotranspiration seems to be dominant (Gribovszki et al., 2010). Hydro-
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logic processes during periods of low flow are often overlooked in favor of investigating
high flow and subsequent flood conditions. In spite of this, the consequences of hydro-
logical processes during low flow remain critical in dictating land use and agricultural
types (Mul et al., 2011), indicating the extent of global climate change (Arnell, 1998),
and influencing the chemical makeup of water downstream (Stott and Burt, 1997) or the5

availability of water, which impacts fish populations and water treatment requirements
(Burn et al., 2008).

Graham et al. (2013) have compiled a collection of suggested explanations for the
behavior of oscillatory streamflow under dry conditions, including several hypotheses
that suggest that water moves differently through the subsurface as the hillslope drains.10

On the other hand, the authors of Wondzell et al. (2007) suggest that streamflow prop-
erties are the result of attenuation as flow propagates along the river link with de-
creasing velocity, which causes the flow to be increasingly “out of phase”. During dry
periods of low flow, the time between the maximum evapotranspiration and the mini-
mum streamflow values has been of particular interest because this time delay grows15

as the dry season progresses, indicating that the response of the streamflow to the
evapotranspiration forcing on water in the hillslope slows as more water is removed
from the system.

In this paper, we aim to design and implement an analytic experiment to test these
hypotheses through a theoretical approach. We start by assuming a particular baseflow20

pattern in each river link of a given river network (e.g., fluctuations with exponentially
decaying amplitude). Thus, the selected pattern exhibits attributes of observed base-
flow. Then, we work with simplified modeling conditions such as the linear transport
equation to develop an analytic solution for the flow at any given point along the river
network. By fixing the baseflow pattern, we remove the dependence of streamflow25

properties (e.g., amplitude and time delay) on soil processes. If the resulting stream-
flows along the river network exhibit oscillations with different time delays and ampli-
tudes, then we conclude that the effects described in Wondzell et al. (2007) can be
induced by different velocities in a river network, even in the absence of changes in-
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duced by groundwater processes. Importantly, our theoretical results include algorith-
mic calculations of the phase shifts caused by the river network and their relationship
to stream velocity. The latter can be used to make predictions about streamflow at any
point in the river network, in particular with respect to the time delay between maximum
evapotranspiration and minimum streamflow.5

The paper is structured in the following way: in Sect. 2, we consider a certain base-
flow pattern and a linear transport equation to represent flow along the river network.
In Sect. 2.1.1, we compute an analytic solution for the partial streamflow at the outlet of
a river network due to baseflow applied to one upstream hillslope. Then, in Sect. 2.1.2,
we assemble the complete solution at the outlet when all hillslopes in the network ex-10

perience the same baseflow and all links in the network have uniform properties. We
then describe the general case of nonuniform river networks in Sect. 2.2. Section 3.2
through Sect. 3.4 describe our experiment to test the effects of river network velocity
on streamflow attributes and support the claim that decreasing amplitude and increas-
ing time delay in the streamflow at the network outlet can be attributed to delays in15

the river network. Finally, Sect. 4 contains a short concluding discussion and ideas for
future work.

2 Developing an analytic solution for streamflow based on river network
geometry

Let us now assume that the total runoff from each hillslope into a river link in a given20

river basin is oscillatory and its amplitude undergoes exponential decay (as seen for
baseflow under dry conditions). Then, we define the runoff by the formula

R(t) = Be−At +Ce−At sin(2πνt), (1)

with A, B, C, and ν positive parameters and C<B to ensure that the baseflow takes
only positive values. In this paper, we apply the same baseflow pattern to all hillslopes25

on the river network beginning everywhere at an initial time t=0 (see the left panel
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http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/8175/2015/hessd-12-8175-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/8175/2015/hessd-12-8175-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 8175–8220, 2015

On the propagation
of diel signals in river

networks using
analytic solutions

M. Fonley et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

of Fig. 1). Note that in this setup, the runoff oscillations are supposed to be driven by
evapotranspiration, which is synchronized over all hillslopes at the catchment scale.
For this reason, synchronized timing of the forcing seems an acceptable hypothesis.

A sample baseflow pattern with parameter values A=0.003 [h−1], B=0.08 [L s−1],
C=0.008 [L s−1], and ν= 1

24 [h−1] is illustrated in the right panel of Fig. 1. We chose the5

value of ν so that the frequency of the oscillations corresponds to a period of 24 hours,
representing a diurnal signal. If we assume that the baseflow is linearly related to the
amount of water in the soil, then A corresponds to the linear rate of water movement
through the soil.

In this paper, the streamflow at the outlet of a river link is defined by the transport10

equation, which has been derived from the conservation of mass in the associated river
link

dqi (t)
dt

= K (qi ) (R(t)+qi1(t)+qi2(t)−qi (t)) . (2)

The input to the link comes from runoff in adjacent hillslopes and from the streamflow
of upstream tributary links. Therefore, the only method for water to exit the link is as15

streamflow at the link outlet. Here, qi1 and qi2 are the flows from the upstream tributary
links. If a link i has more than two tributaries at its upstream node, more terms can be
added in Eq. (2), accordingly. For our calculation, we assume the function K (qi ) to be
constant, K (qi )= vi/l , where vi is the velocity of link i and l is the length of the link,
which is assumed to be uniform over all links in the network (Mantilla et al., 2011). For20

simplicity, K (qi ) will be called ki .
To determine the streamflow at the river network outlet, we first consider the influ-

ence of runoff on a single hillslope and how that runoff signal propagates downstream;
see Sect. 2.1.1 and Fig. 2. Then, in Sect. 2.1.2, we will assemble the information de-
rived for all links of the river network into one comprehensive solution by applying the25

superposition principle. Until this point, our calculations will cover only the case involv-
ing uniform conditions on the links in the river network (assuming that all links share a
velocity and the same transport constant k). In Sect. 2.2 we generalize the solution for
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the construction of the analytic formulation for the nonuniform case (assuming different
values of ki for each link i in the network).

2.1 Uniform velocity

In the case of uniform velocities over the river network, the transport constant, ki , is
subsequently the same for all links in the network. In this subsection, it will be called k.5

2.1.1 Hillslope runoff signal propagation on river networks with uniform
velocity

As mentioned above, we first apply runoff R(t) to a given hillslope, denoted as “hills-
lope a”, with adjacent river link 1. Because the transport equation for each link is linear,
we can independently trace the runoff entering link 1 as it flows through the river net-10

work and then use superposition to combine the flows entering each river link. This
would not be possible if the transport equation contained a nonlinear component.

When the runoff entering link 1 has gone through one river link only (“Step 1” see
Fig. 2), the flow q1 at the outlet of link 1 is the solution to the differential equation

dq1(t)
dt

= k(Be−At +Ce−At sin(2πνt)−q1(t)) . (3)15

That is

q1 = (q1(0)−J1 +K1 sin(2πνθ))e−kt + (J1 +K1 sin(2πν(t−θ)))e−At, (4)

with q1(0) the initial condition (at t=0) of the flow in link 1, and K1, J1, and θ defined
by

K1 =
Ck√

(k −A)2 +4π2ν2
20

J1 =
Bk
k −A

(5)
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and

sin(2πνθ) =
2πν√

(k −A)2 +4π2ν2

cos(2πνθ) =
k −A√

(k −A)2 +4π2ν2
. (6)

Note that θ ∈ (0, 1
4ν ) is the resulting time delay for the fluctuating pattern q1(t) of fre-

quency ν compared to the input signal R(t).5

At Step 2, when the runoff has traversed two river links, we need to compute q2(t)
by taking into account the solution q1(t) from Step 1 (see Fig. 2, second panel). Since
we assumed for the moment that q1(t) has been transmitted downstream via the next
link (link 2), with no additional runoff, the streamflow at the end of link 2 is given by

q2 = [(q2(0)−J2 +K2 sin(2πνθ2))+kt (q1(0)−J1 +K1 sin(2πνθ1))]e−kt10

+ (J2 +K2 sin(2πν (t−θ2)))e−At

with θ1 =θ, θ2 =2θ, and

K2 =
Ck2

(k −A)2 +4π2ν2

J2 =
Bk2

(k −A)2
.

By mathematical induction, we then compute the solution qn(t), n≥1 of flow measured15

downstream at the exit from link n. This takes the form:

qn(t) = e
−At [Jn +Kn sin(2πν (t−θn))]+e−kt

n−1∑
j=0

Ln−j
(kt)j

j !
(7)
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with coefficients

Kn = C
n∏
j=1

k√
(k −A)2 +4π2ν2

= C

(
k√

(k −A)2 +4π2ν2

)n

, n ≥ 1

Jn = B
n∏
j=1

k
k −A

= B
(

k
k −A

)n
, n ≥ 1 (8)

θn =
n∑
i=1

θ = nθ, n ≥ 1

and5

Lj = qj (0)−Jj +Kj sin
(
2πνθj

)
, j = 1, 2, . . . n. (9)

Here, qj (0) represents the initial condition for the flow in link j . For clarity, we included
the details of this algorithmic proof in Appendix A.

2.1.2 Assembling the complete solution for streamflow at the outlet

The goal of this section is to determine the equation for the streamflow at a given point10

of calculation along the river network, in particular at the network outlet. We take the
parameters representing properties of each river link to be uniform over all links in the
network (i.e., same parameter k) so that the influence of two links that are equidistant
(topologically speaking) from the outlet will be the same. The solution determined in
Sect. 2.1.1, however, shows only the partial contribution of link i to the streamflow, as it15

propagates downstream without considering any additional runoff. Therefore, in order
to determine the complete streamflow solution, one must sum the overall contributions
from runoff on each upstream link. This can be done if the topological representation
of the river network is known or if the topological width function upstream of the outlet
is used. The width function for a given link i and distance n (denoted W (i )

n ) is an integer20
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representing the number of river links of topological distance n upstream of link i ,
where W (i )

1 =1 and corresponds to link i itself. For a fixed location in the river network,
the width function can be written as a vector whose length is the diameter (i.e., the
longest path) upstream of link i . The network depicted in Fig. 3 further illustrates this
process.5

First, we will focus on the outlet of link a (before the streamflow from a combines with
that of link b); see Fig. 3. We recognize one link upstream of this point: link a. Then,
the only contribution to the streamflow at this point is from the runoff to link a that has
traversed one link. The width function at this point has only one element and there is
only one link of distance 1, so the width function, a 1-dimensional vector, is given by10

W (a) = [1], and the streamflow is simply

qa = 1×q1 = q1 = L1e
−kt +e−At [J1 +K1 sin(2πν (t−θ1))] . (10)

On the other hand, if we compute streamflow at the outlet of link e (prior to joining
link f ; see Fig. 3), we have one link of topological distance 1 (link e) and two links of
topological distance 2 (links a and b). Then, the width function is given by the vector15

W (e) = [1 2]. This means that the runoff from link e has only traversed one link to get to
the outlet, but the runoff from either of the links a or b has traversed two links. The total
flow at the outlet of link e is

qe = 1×q1 +2×q2 = q1 +2q2. (11)

After applying the formulas for q1 and q2, similar terms can be collected in the following20

way

qe = L1e
−kt +e−At [J1 +K1 sin(2πν (t−θ1))]

+2[L2 +ktL1]e−kt +2[J2 +K2 sin(2πν (t−θ2))]e−At

= e−At (J1 +2J2 +K1 sin(2πν (t−θ1))+2K2 sin(2πν (t−θ2)))

+e−kt (L1 +2[L2 +ktL1]) . (12)25
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To complete this example, let us now consider the width function at the outlet of the
network in Fig. 3, which is W (i ) = [1 2 2 4]. The first element of W (i ) corresponds to
link i ; the second element (W (i )

2 =2) corresponds to links g and h; the third element

(W (i )
3 =2) corresponds to links e and f ; and the last component (W (i )

4 =4) corresponds

to links a–d . The diameter of this network is Di = length(W (i ))=4. Note that the total5

number of links in the network is also the sum of the elements of the width function,
since each link has a corresponding distance from the outlet. For this, we can use the

notation: |W (i )|=
Di∑
n=1

W (i )
n =9. For more details about the width function, see Mantilla et

al. (2011). The flow at the outlet of link i is

qi = 1×q1 +2×q2 +2×q3 +4×q4 =
Di∑
n=1

W (i )
n qn. (13)10

= e−At (J1 +2J2 +2J3 +4J4)

+e−At (K1 sin(2πν (t−θ1))+2K2 sin(2πν (t−θ2))+2K3 sin(2πν (t−θ3)

+ 4K4 sin(2πν (t−θ4)))

+e−kt (L1 +2[L2 +ktL1]

+ 2

[
L3 +ktL2 +

(kt)2L1

2!

]
+4

[
L4 +ktL3 +

(kt)2L2

2!
+

(kt)3L1

3!

])
. (14)15

For a general network whose width function is given by W (i ), the solution can be
rearranged as in Eqs. (12) and (14) to get the complete solution for streamflow at the
outlet i . Assuming that Di is the diameter of the network upstream of link i , the solution
at the outlet i is:

qi = e
−At

Di∑
n=1

W (i )
n [Jn +Kn sin(2πν (t−θn))]+e−kt

Di∑
n=1

W (i )
n

n−1∑
j=0

Ln−j
(kt)j

j !
. (15)20
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The first term in Eq. (15) represents the propagation of the runoff signal from each
hillslope while the second term is a result of the initial conditions coming from runoff
and flow in the network. This distinction is evidenced by the rate of decay of either
exponential function. The first term has a rate of decay depending upon A, and rep-
resents the decay of runoff entering the channel. The second term, conversely, has5

a decay rate dependent only upon k, which describes the rate of water movement
through each river link.

To thoroughly interpret the components of Eq. (15), we again contemplate the physi-
cal processes being represented and use the expected parameter values to discuss the
mathematical solution. First, k and A are both positive because they represent rates of10

water movement along the river link and through the soil, respectively. Since water will
move much more quickly along the river link, which offers less resistance than soil, A is
significantly less than k, so that k

k −A has a value slightly greater than 1. Then, Jj >B
for any value of j . Furthermore, the value of 2πν is fixed and is typically greater than
k, which means that k√

(k −A)2 + 4π2 ν2
<1 so that Kj <C for all j . This means that each15

component [Jn +Kn sin (2πν(t−θn))] of the solution at the outlet shows a decrease
in the amplitude of the fluctuations (Kn <C) while increasing its average value when
compared with the runoff function (Jn >B).

In the limiting case of A=0, the runoff at each hillslope would be a sinusoidal wave
of amplitude C and average value B taking the form R =B+C sin (2πνt). Then, the20

solution at the outlet becomes

qi =
Di∑
n=1

W (i )
n [Jn +Kn sin(2πν (t−θn))]+e−kt

Di∑
n=1

W (i )
n

n−1∑
j=0

Ln−j
(kt)j

j !
, (16)

where Kn, Jn, and θ are defined by Kj =C
∏j
i=1

k√
k2 + 4π2 ν2

, Jj =B, and

sin(2πνθ)= 2π ν√
k2 + 2π2 ν2

and cos(2πνθ)= k√
k2 + 2π2 ν2

.
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It is apparent that the second sum of Eq. (16) that includes exponential decay at the
rate of water movement through the river link is the transient term. The first sum of
Eq. (16) is the asymptotic solution and includes the sum of constant terms from each
hillslope and the sum of amplitudes of the sine waves from each hillslope. Following a
similar approach in the case of A>0 and using the fact that A�k, we again find that5

the second term in Eq. (15) decays much faster and, consequently, e−At
Di∑
n=1

W (i )
n [Jn +

Kn sin(2πν(t − θn))] can be interpreted as being the asymptotic solution of qi . Due to
interference from sinusoidal waves that can be in or out of phase, the amplitude of the
asymptotic solution in qi can change depending on the phase shift. We investigate this
dependence in Sect. 3.2.10

2.2 Analytic solution extended to nonuniform k in the river network

In order to apply this work to river networks of different scales, we must consider the
case in which each link is permitted to differ significantly from other links nearby or
along the same path to the network outlet. The physical properties that represent these
differences are the river link-length and stream velocity. River links of large magnitude15

tend to have higher velocities but can have a small link-length compared to river links
with small magnitudes (and subsequent low velocities). Certainly, the magnitudes along
any path are strictly increasing, so the velocity is expected to strictly increase as we
trace a path from any river link to the river network outlet.

The transport equation given by Eq. (2) contains the constant rate, kn, which is dif-20

ferent for each link. Using the given baseflow pattern from Eq. (1)–which has been
selected based on observed streamflow (Wondzell et al., 2007)–the transport equation
can be written as

dqn
dt

= kn
[
qin1

+qin2
+Be−At +Ce−At sin(2πνt)−qn

]
8186

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/8175/2015/hessd-12-8175-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/8175/2015/hessd-12-8175-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 8175–8220, 2015

On the propagation
of diel signals in river

networks using
analytic solutions

M. Fonley et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

or just

dqn
dt

= kn [fn(t)−qn] . (17)

Without loss of generality, we will seek to find the streamflow at the outlet of a given river
network. In order to determine the streamflow at any distinct location in a river network
(not limited to the outlet), one can simply consider the point of interest to be the outlet5

of a river network formed by all links upstream and follow the same procedure.
To compute the streamflow at the outlet of the river network, we will separately con-

sider the influence of the runoff on each hillslope in the river network, as we have done
in the uniform k case. We will trace this runoff downstream to the outlet for each hills-
lope in the network then take the sum over all links in the stream to determine the total10

flow at the river outlet.
Without uniform conditions, the complete solution for streamflow at the outlet cannot

be written in a way that includes the width function. For that reason, we will offer only
the partial solution derived from tracing runoff from one hillslope down a single path.
For the development of this solution, we implement the following steps:15

2.2.1 Solving the linear transport equation for the first link

The transport equation is a nonhomogeneous linear ordinary differential equation, but,
in this case, the linear rate k is different for each link so that the transport equation
for a given link is of the form Eq. (17). The solution at the outlet of the first link is
nearly identical to that in the uniform k case (see Appendix A) but will be arranged20

slightly differently to accommodate different links along the path. Based on Eq. (17),
the streamflow at the outlet of the first link is

q1(t) = q1(0)e−k1t +

t∫
0

k1f1(s)e−k1(t−s)ds (18)
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where f1(t)=Be−At +Ce−At sin (2πνt) is a representation of baseflow runoff at the hill-
slope scale. As in the uniform k case, Eq. (18) is solved using integration by parts, and
the resulting flow at the outlet of the first link is:

q1(t) =

q1(0)+
k1√

(k1 −A)2 +4π2ν2

Csin(2πνθ1)

e−k1t +k1B
e−At −e−k1t

k1 −A

+
k1√

(k1 −A)2 +4π2ν2

Csin(2πν (t−θ1))e−At.5

Each term above is well defined due to physical restrictions on each parameter. Since ν
represents the frequency of the daily cycle of evapotranspiration, this frequency is fixed
to correspond to a period of 24 h. The values of k1 and A represent the inverse of the
residence time in river link 1 and in the hillslope adjacent to link 1, respectively. Since
water moves significantly more slowly through the hillslope subsurface than along the10

stream, we expect the value of k1 to be significantly larger than A. This means that the
value of k1

k1 −A
is slightly greater than 1, while the value of k1√

(k1 −A)2 + 4π2 ν2
is smaller

than 1.
Let us now define the following quantities: Kn =C

∏n
j=1

kj√
(kj −A)2 + 4π2 ν2

,

Ln =qn(0)+Kn sin (2πνΦn), Φn =
n∑
j=1

θj with θj (j ≥1) defined by15

sin
(
2πνθj

)
=

2πν√(
kj −A

)2 +4π2ν2

cos
(
2πνθj

)
=

kj −A√
(kn −A)2 +4π2ν2

. (19)
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In addition, if we consider the runoff to be the “zero step” along the path, then the
“streamflow” there can be defined as q0(t)=Be−At +Ce−At sin (2πνt). Then, for q0,
we define K0, Φ0 and L0 by convention as: K0 =B, Φ0 =θ0 =0, and L0 =B, as well as
q0(0)=B, k0 =A. Then, the streamflows q0 and q1 can be rewritten as:

q0(t) =K0 sin(2πν (t−Φ0))e−At +L0e
−k0t (20)5

q1(t) =K1 sin(2πν (t−Φ1))e−At +L1e
−k1t −k1L0

e−k1t −e−k0t

k1 −k0
. (21)

The time delay and coefficients Kn can be defined recursively by formulas

Φn+1 =Φn +θn+1

Kn+1 =Kn
kn+1√

(kn+1 −A)2 +4π2ν2

.

2.2.2 Propagating oscillations through multiple river links10

To propagate the volume of water downstream, the streamflow q1 enters the second
link as upstream input with no additional input from runoff in link 2. Because the k
values are different for the two links, the resulting flow contains the distinct values k1
and k2, and the resulting streamflow solution after two links is

q2(t) =K2 sin(2πν (t−Φ2))e−At15

+L2e
−k2t

−k2L1

(
e−k2t −e−k1t

k2 −k1

)

+k1k2L0

(
e−k2t−e−k1t

k2−k1

)
−
(
e−k2t−e−k0t

k2−k0

)
k1 −k0

. (22)
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Notice the number of terms in the streamflow solution at each level. The preliminary
flow, q0(t), given in Eq. (20), contains two terms: one with an exponential function and
one with a sinusoidal wave multiplied by an exponential function. The flow after one link,
q1(t) from Eq. (21), contains a total of four terms: the exponentially decaying sinusoid
and the other 3 exponential terms. (We count each exponential function separately,5

e−k2t, e−k1t, and e−k0t.) Then, the streamflow after two links, q2, contains eight terms
total. Therefore, we expect this trend to continue so that the streamflow after n links
would contain 2n+1 terms.

To confirm this, let us calculate

q3(t) = q3(0)e−k3t +k3e
−k3t

t∫
0

q2(s)ek3sds,10

and obtain

q3(t) =K3 sin(2πν (t−Φ3))e−At +L3e
−k3t

−k3L2
e−k3t −e−k2t

k3 −k2

+
L1k2k3

k2 −k1

(
e−k3t −e−k2t

k3 −k2
− e

−k3t −e−k1t

k3 −k1

)

−
L0k1k2k3

k1 −k0

1
k2 −k1

(
ek3t −e−k2t

k3 −k2
− e

−k3t −e−k1t

k3 −k1

)
15

+
L0k1k2k3

k1 −k0

1
k2 −k0

(
e−k3t −e−k2t

k3 −k2
− e

−k3t −e−k0t

k3 −k0

)

which, indeed has sixteen terms and therefore confirms the pattern.
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By collecting like terms, an algorithmic description of the solution emerges:

q0(t) =K0 sin(2πν (t−Φ0))e−At +L0e
−k0t

q1(t) =K1 sin(2πν (t−Φ1))e−At +L1e
−k1t −k1L0

(
e−k1t −e−k0t

k1 −k0

)

q2(t) =K2 sin(2πν (t−Φ2))e−At +L2e
−k2t −k2L1

(
e−k2t −e−k1t

k2 −k1

)

+k2k1L0


(
e−k2t−e−k1t

k2−k1

)
−
(
e−k2t−e−k0t

k2−k0

)
k1 −k0

5

q3(t) =K3 sin(2πν (t−Φ3))e−At +L3e
−k3t −k3L2

(
e−k3t −e−k2t

k3 −k2

)

+k3k2L1


(
e−k3t−e−k2t

k3−k2

)
−
(
e−k3t−e−k1t

k3−k1

)
k2 −k1



−k3k2k1L0




(
e−k3t−e−k2t

k3−k2

)
−
(
e−k3t−e−k1t

k3−k1

)
k2−k1

−

(
e−k3t−e−k2t

k3−k2

)
−
(
e−k3t−e−k0t

k3−k0

)
k2−k0


k1 −k0


.

Based on the above observations, we are able to generalize and determine the nth term
in the solution-sequence, qn(t), which is defined by the contribution from a hillslope of10

topological distance n upstream. This is the streamflow
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qn(t) =Kn sin(2πν (t−Φn))e
−At +

n∑
j=0

PjnLjF(n−j ),n(t), n ≥ 1 (23)

with coefficients Kn, Φn, Lj , and Pjn defined accordingly by Eq. (19) and

Kn = C
n∏
j=1

kj√(
kj −A

)2 +4π2ν2

for j = 1, 2, . . ., n

Φn =
n∑
j=0

θj

Lj = qj (0)+Kj sin
(
2πνΦj

)
5

Pjn =
n∏

i=j+1

(−ki ) for j = 0, 1, . . ., n−1

as well as Pnn =1 and initial values k0 =A, K0 =C, L0 =B, and θ0 =0.

2.2.3 Assembling the streamflow solution using an algorithmic description

In order to fully describe solution (Eq. 23), we need to determine the values of Fjn(t),
which can be computed algorithmically based on the following “tree”-like structure:10

For given n≥1, we follow along the (n+1)-level tree starting with parents f0(t),
f1(t), . . . , fn(t) where fl (t)=e

−kl t (see Fig. 4 for n=4). Then, the values of Fjn are
recursively calculated at each stage by:

Fjn(t) := fn−j ,n−j+1, ..., n(t)
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where

For j = 0 : take l = 0,n and : fl (t) = e
−kl t

For j = 1 : take l = 0,n−1 and : fl ,n(t) =
e−kl t−e−knt
kl−kn

For j = 2 : take l = 0,n−2 and : fl ,n−1,n(t) =
fl ,n(t)−fn−1,n(t)

kl−kn−1

For j = 3 : take l = 0,n−3 and : fl ,n−2,n−1,n(t) =
fl ,n−1,n(t)−fn−2,n−1,n(t)

kl−kn−2

For j = 4 : take l = 0,n−4 and : fl ,n−3,n−2,n−1,n(t) =
fl ,n−2,n−1,n(t)−fn−3,n−2,n−1,n(t)

kl−kn−3
...

For j = n : l = 0 f0,1,2,...,n(t) =
f0,2,...,n−f1,2,...,n

k0−k1
.

Therefore, we can rewrite q0, q1, q2, and q3 as

q0 =K0 sin(2πν (t−Φ0))e−At +L0f0
q1 =K1 sin(2πν (t−Φ1))e−At +L1f1 −L0k1f015

q2 =K2 sin(2πν (t−Φ2))e−At +L2f2 −L1k2f12 +L0k1k2f012

q3 =K3 sin(2πν (t−Φ3))e−At +L3f3 −L2k3f23 +L1k2k3f123 −L0k1k2k3f0123.

Applying the algorithmic tree to our streamflow at link 4 (for example) at this point, we
recognize that

q4(t) =K4 sin(2πν (t−Φ4))e−At +L4f4 −L3k4f34 +L2k3k4f234 −L1k2k3k4f123410

+L0k1k2k3k4f01234.

While the algorithm may seem complicated to follow, it has a very easy coding imple-
mentation. In Appendix B, we include the Matlab code lines that describe the algorithm.
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3 Results

3.1 Experimental setup: testing the effects of velocity on streamflow amplitude
and time delay downstream

In order to test the competing hypotheses by Wondzell et al. (2007) and those pre-
sented in Graham et al. (2013), we will demonstrate the amplification and damping5

of the oscillatory streamflow signal that are caused by superposition. We consider a
sample network and compute the streamflow solution at different locations in the river
network when the velocity and its corresponding time delay are varied. We will consider
both the uniform (with vi = v for all links i ) and the variable velocity cases.

We compute the streamflow solution for the Mandelbrot-Viscek tree of magnitude 14,10

as shown in Fig. 5. The Mandelbrot-Vicsek tree is self-similar (Mandelbrot and Vic-
sek, 1989) and has been used to demonstrate hydrologic properties at different scales
(Mantilla et al., 2006; Peckham, 1995), for example. In this figure, the label next to
each link represents the magnitude of the link, which is determined by the sum of the
magnitudes of the two immediate upstream ‘parent’ links where external links have15

magnitude 1. The constant parameter values used in this example are A=1.2×10−4

[h−1], B=0.08 [L s−1], C=0.008 [L s−1], q0 =0.08 [L s−1], and ν= 1
24 [h−1] and are uni-

form over each link in the network. To test the effects of superposition on streamflow,
we will simulate streamflow for different transport constants k. Figure 6 shows the sim-
ulation runoff pattern (top) along with the sample streamflow solution at the outlet of20

the network in the uniform case (bottom). To distinguish among the different simula-
tions, we will narrow our view to a few oscillations, which are highlighted by a box in
the panels in Fig. 6.

3.2 Uniform velocity over the river network

In the case of uniform velocities, the streamflow at the outlet is given by the solution25

to Eq. (15). The time delay depends upon parameters that have physically-based val-
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ues (see Eq. 6), so a realistic range for the time delay and phase shift can be found.
These parameters, k and A, are incorporated in other parts of the solution (see Eq. 8).
Therefore, changing their values impacts the solution in more ways than just the su-
perposition of sinusoidal functions. The physical value represented by A is expected to
remain constant for a given region. On the other hand, k represents the inverse of the5

residence time in each river link and is not necessarily uniform or fixed.
Recall that k is given by v

l , where v is the stream velocity and l is the stream length.
The length of each river link in a real river network would be different, as would the
velocity. In addition, the velocity may change over time, since velocity increases with
flow. Consequently, the realistic value of k is expected to be different for each link in10

the network, and the uncertainty of k is a possible source for different time delays and
phase shifts.

While the effect of varying k is not limited to the time delay, the value of k also
affects Kn and Jn (see Eq. 8). Note that the coefficient Jn determines the average
value of the streamflow solutions, while the coefficient Kn determines the amplitude of15

the oscillation in each step of the streamflow solution (see Eq. 15 – first term). Changing
k, then, impacts the amplitude downstream more significantly than simply altering the
time delay and subsequent phase shift.

The results of simulating streamflow in the Madelbrot–Viscek tree using different val-
ues of k can be found in Fig. 7. The values of k used in simulations are [0.38, 0.7, 1.02,20

1.34, 1.66, 1.98, and 2.30] with resultant time delays of [2.30, 1.36, 0.95, 0.73, 0.59,
0.5, and 0.43] hours. The corresponding graph-solutions from Fig. 7 are drawn in the
following colors: black, blue, green, cyan, orange, red, and purple, respectively. Each
panel in Fig. 7 represents the solution at a different location along the network (refer to
Fig. 5 for sample locations). We chose the timing of the plots so that a cyclic pseudo-25

equilibrium has been reached and the effects of time delay can be distinguished. For
comparison among the different locations, we have normalized the flows about the av-
erage flow. The average flows at a link of each magnitude are plotted in Fig. 8 and, as
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expected, the values depend upon the number of links upstream, which is related to
the magnitude of the link.

From Fig. 7, we see that the magnitude of the oscillations can be significantly de-
creased as velocity and k decrease, because this represents a volume of water spend-
ing more time in any one link. This causes a greater time delay, which means that two5

links will combine their flows out of phase, and superposition dictates that the ampli-
tude of the resulting oscillations is decreased. Furthermore, a lower velocity leads to
significant attenuation of the streamflow along each link in the network. The greatest
amplitudes occur when the velocity is highest, which moves a volume of water very
quickly through each link and leads to very little loss of streamflow intensity. Notice10

also that the timing of the peak streamflow is increasingly delayed as velocity slows
(see Fig. 7 for k =0.38, 1.02, and 1.66, for example). This can explain the increasing
time delay that has been observed between maximum evapotranspiration and mini-
mum streamflow as the dry season progresses. These results also indicate that the
time delay increases continuously as the velocity decreases continuously over time so15

that the time delay can be predictable depending upon stream velocity.
At the link of magnitude 1, the phase shift has little influence on the amplitude and

only has an influence on the timing of the wave. At the outlet of a magnitude-2 link,
the two upstream links are “in phase”, meaning they have the same time delay as
each other since they are the same topological distance from the point at which we20

compute streamflow. Therefore, these two will exhibit constructive interference. When
they are combined with the downstream link, however, the different values of phase shift
can result in constructive or destructive interference, although they never completely
destroy the oscillations. The phase shift that produces the maximum streamflow is
zero because this represents the fact that all three streamflows that feed into this outlet25

are completely in phase.
As we examine the streamflows in links with greater magnitude, the shape of the net-

work (described by the width function) becomes important because the flows from all
links of a given distance will reach the outlet at the same time. Being out of phase with
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links of other distances can cause some reduction in the amplitude of the streamflow
oscillations, but the oscillations will not be completely destroyed.

3.3 Variable velocity over the river network

To illustrate our results, we will now apply the algorithm from Sect. 2.2.3 at the outlet
of the Mandelbrot-Viscek tree from Fig. 5 using the same values for A, B, C, and ν5

as in Sect. 3.2. However, we will assume that each link length is fixed but that the
velocity grows logarithmically with the magnitude of the river link. Another complication
is that in order to find the total streamflow at the outlet, we can no longer utilize the
width function because the strategy from Sect. 2 relied upon the assumption that the
partial streamflow from links of the same distance from the outlet are the same. In the10

nonuniform case not only the length of the path, but also the specific path are important.
Our strategy now is to trace the runoff from all upstream hillslopes.

qoutlet(t) =
∑

upstream links

Kn sin(2πν (t−Φn))e
−At +

n∑
j=0

PjnLjF(n−j ),n(t)

 (24)

In Eq. (24), the value of n changes for every link, which represents the length of the
path from that link to the outlet.15

Using Eq. (24), we compute the solution at the outlet of the Mandelbrot-Viscek tree
of magnitude 14 (Fig. 5) for different maximum velocities in the network. In each sim-
ulation, the velocity of a given link depends logarithmically upon the link’s magnitude,
as seen in Fig. 9. The resulting normalized flows at the outlet are shown in Fig. 10,
where the maximum velocities used in simulations are [0.016, 0.066, 0.12, 0.17, 0.22,20

0.27, and 0.32] [m s−1]. The corresponding k values are [0.11, 0.47, 0.84, 1.20, 1.56,
1.92, and 2.28] [h−1]. The corresponding graph-solutions from Fig. 10 are drawn in
the following colors: black, blue, green, cyan, orange, red, and purple, respectively. Al-
though k is no longer uniform over the river network, we again see the pattern in which
decreasing k lowers the magnitude of oscillations at the outlet and causes a greater25
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time delay in the peak values. Physically, these results mean that a decrease in each
distinct k value over the whole river network (as would happen under dry conditions
when the velocity decreases over time) leads to a greater time delay and smaller peak
values in the oscillation due to the superposition of streamflow oscillations from each
link. This supports the hypotheses of Wondzell et al. (2007) to describe streamflow5

patterns observed under dry conditions.

3.4 Propagation of the analytic solution on a real network

In this section, we apply the analytic streamflow solution for uniform conditions to a
more complex river network to see the effects of scale on streamflow amplitude and
timing. In the previous section, we also examined the flow at different scales (see Fig. 7)10

but with an emphasis on different k values. The time range in Fig. 7 has been de-
creased, and the flows have been normalized about their average value to exaggerate
the effects of changing the k value. Consider the blue line in all panels of Fig. 7 corre-
sponding to a k value of 0.7 h−1. Streamflow at a larger scale (magnitude) is influenced
by a greater number of upstream links. Then, superposition effects among those up-15

stream links are stronger and we see two resulting attributes in the streamflow proper-
ties: reduction in the streamflow amplitude and greater time delay to the peak. We now
consider a larger, more realistic river network and expect to see similar results.

The network we use for streamflow simulations is the Dry Creek watershed in Idaho,
which has an area of 169.25 km2 and can be seen in Fig. 11. To facilitate the large20

number of computations, we use the asynchronous solver introduced in Small (2013)
and used in Mantilla and Cunha (2012). The watershed contains river links at scales
of up to Horton order 7. For details regarding Horton order, see Rodriguez-Iturbe and
Rinaldo (2001). We simultaneously apply the runoff pattern described in Sect. 3 to
each hillslope in the network and examine the resulting streamflow at links of different25

orders.
In our theoretical examples, we assumed the length of each link to be uniform over

the river network, so that changes in velocity directly correspond to changes in the
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transport constant k. Realistic network parameters include variable link-length, so we
vary the velocity of each link accordingly in order to maintain a uniform k value and
apply the solution developed in Sect. 2.1. The runoff pattern and resulting streamflows
at links of different order along the river network can be found in Fig. 12. Note that these
flows are not normalized. For links of larger orders, superposition among the upstream5

links causes the amplitude of the streamflow oscillations to be so small that they are
nearly indistinguishable.

To emphasize the time delay at different orders, we have included a line highlighting
the time to a corresponding peak in each panel of Fig. 12. As shown in Fig. 12, while, in
practice we cannot say the highlighted peak is the same peak propagated downstream,10

in theory, these corresponding peaks are consistent with the analytic solution given in
Sect. 2.1, which describes a strictly increasing time delay.

4 Conclusions and future work

Observations of oscillatory streamflow during low flow conditions have highlighted the
magnitude and time delay caused by the diel signal that represents evapotranspiration.15

Several current hypotheses suggest that the properties of the oscillatory streamflow
signal can be attributed to different methods of water movement through the subsur-
face, although another hypothesis suggests that flow along the river determines the
timing and amplitude of oscillations. In this paper, we provide evidence to support the
latter argument.20

First, we select a mathematical function according to streamflow observations at the
catchment scale to represent baseflow patterns at the hillslope scale. The selected
baseflow pattern is applied as input to a linear transport equation for all links in a
river network that are assumed to have uniform properties and parameter values. For
this uniform situation, we develop an analytic solution to represent streamflow at any25

point in a river network. We compute the solution by separately determining the partial
streamflow at the outlet from each river link then taking the sum over all river links in the
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river network. In order to include the geomorphology of the river network, we use the
width function to compute the complete streamflow solution. We have also extended
the streamflow solution to include nonuniform links in the river network.

The solution for streamflow contains a collection of sine functions, each of which
exhibits a phase shift determined by the topological distance of the corresponding hill-5

slope from the outlet. We have shown that the physical parameters that determine
the phase shift have a great impact on the streamflow as it propagates downstream.
The streamflows computed using different physical parameters demonstrate that the
decreasing amplitude and increasing time delay in observed streamflows can be at-
tributed to the decreasing velocity in the river network during dry conditions, and they10

are not necessarily due to soil-water processes, as was previously thought, which sup-
ports the hypothesis of Wondzell et al. (2007). Furthermore, the structure of the ana-
lytic solution indicates that the time delay increases continuously as the river network
velocity continuously decreases, so that the time delay can be predictable depending
on stream velocity. The results are consistent in both the uniform and nonuniform pa-15

rameter cases. We also observe consistent results with the streamflow amplitude and
timing at links of different orders in a more complex and realistic network. Our results,
however, do not disprove the hypothesis that delays can come from subsurface flow
processes.

As a next step, we propose to test the analytic solutions herein on networks with20

different geomorphological structures in order to compare the resulting streamflow am-
plitudes and emphasize the dependence upon network geometry. We suggest sub-
sequently comparing our analytic solutions with the numerical results obtained using
nonlinear transport equations, which will demonstrate the relationship between link
propagation at the hillslope scale and streamflow at the catchment scale. Careful field25

experiments would be necessary to provide a definitive conclusion about the attribution
of time delays.
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Appendix A: Development of streamflow solution for uniform k value over all
links in the river network

In order to simplify our calculations below, we will use the notation ω=2πν.
We prove Eq. (7) from Sect. 2.1.1 by using the method of mathematical induction.

The isolated effects of runoff from link i on links downstream are found by applying the5

transport equation

dqi (t)
dt

= k(Be−At +Ce−At sin(ωt)−qi (t)) . (A1)

We did not include in Eq. (A1) any upstream links because we are trying to isolate the
effects on streamflow due to runoff from hillslope i . Therefore, we treat it as an external
link. Equation (A1) is a nonhomogeneous linear ordinary differential equation of the10

form

dqi
dt

= kfi (t)−kqi , (A2)

and has the solution

qi (t) = qi (0)e−kt +ke−kt
t∫

0

fi (s)eksds. (A3)

As we trace the runoff downstream, the function fi (t) is the input to the link, which can15

come from upstream sources or from runoff from the adjacent hillslope. Since link i is
arbitrary, we will consider it to be the first link in a path to the outlet, so it will be labeled
link 1 having flow q1, and the next link downstream will be labeled link 2, etc. Since
f1(t) consists only of baseflow, the solution q1 according to Eq. (A3) becomes
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q1(t) = q1(0)e−kt +ke−kt
t∫

0

[
Be(k−A)s +Ce(k−A)s sin(ωs)

]
ds

= q1(0)e−kt +Bke−kt
(
e(k−A)t

k −A
− 1
k −A

)
+Cke−kt

t∫
0

e(k−A)s sin(ωs)ds. (A4)

The solution to the latter integral is

t∫
0

e(k−A)s sin(ωs)ds =
e(k−A)t√

(k −A)2 +ω2
sin(ωt−ϕ)+

sin(ϕ)√
(k −A)2 +ω2

,

and ϕ is defined by its sine and cosine functions5

sin(ϕ) =
ω√

(k −A)2 +ω2

cos(ϕ) =
k −A√

(k −A)2 +ω2
.

Substituting this integral back into Eq. (A4), we obtain

q1(t) =

(
q1(0)− k

k −A
B+

k√
(k −A)2 +ω2

Csinϕ

)
e−kt

+

(
k

k −A
B+

k√
(k −A)2 +ω2

Csin(ωt−ϕ)

)
e−At. (A5)10
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To find an algorithmic method to compute the coefficients of the solution qn(t) for n≥1,
we define the following:

Kn := C
n∏
j=1

k√
(k −A)2 +ω2

n ≥ 1 (A6)

Jn := B
n∏
j=1

k
k −A

n ≥ 1 (A7)

Φn :=
n∑
j=1

ϕ n ≥ 1 (A8)5

Lj := qj (0)−Jj +Kj sin
(
Φj
)

j = 1, . . ., n. (A9)

Using these newly defined quantities from Eqs. (A6)–(A9), the flow at the outlet of
link 1 can be rewritten as

q1 = L1e
−kt +e−At [J1 +K1 sin(ωt−Φ1)] . (A10)

To find the solution for the next link downstream (link 2), the flow from link 1, given by10

Eq. (A10), is included as qin1
as the transport Eq. (2) is applied to link 2. Integration by

parts will again be used to find the solution to

dq2

dt
= k (q1 −q2) .
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Using Eq. (A3),

q2(t) = q2(0)e−kt +ke−kt
t∫

0

q1(s)eksds

= q2(0)e−kt +ke−ktL1t+ke
−ktJ1

(
e(k−A)t

k −A
− 1
k −A

)

+ke−ktK1

t∫
0

e(k−A)s sin(ωs−Φ1)ds. (A11)

The integral in Eq. (A11) is very similar to that in Eq. (A4), with the only differences5

being the argument of the sine function in the initial integral. After integration by parts,
the equation for streamflow q2(t) becomes

q2 = q2(0)e−kt +ke−ktL1t+ke
−ktJ1

(
e(k−A)t

k −A
− 1
k −A

)

+ke−ktK1

(
1√

(k −A)2 +ω2

(
e(k−A)t sin(ωt−Φ2)+ sin(Φ2)

))
or, equivalently,10

q2 = [L2 +ktL1]e−kt + [J2 +K2 sin(ωt−Φ2)]e−At. (A12)

By mathematical induction, using the same strategy for calculations along the path to
the river network outlet, we can compute the contribution of runoff from any river link
on flow at the outlet. For a given link that is at topological distance n from the outlet (or
an alternative location from which flow is observed), its contribution to the flow at the15

outlet is:
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qn(t) = e
−At [Jn +Kn sin(ωt−Φn)]+e

−kt
n−1∑
j=0

Ln−j
(kt)j

j !
. (A13)

Given that ω=2πν and using the notation ϕ=2πνθ, Eqs. (6)–(9) immediately will
result.

Appendix B: Matlab code to compute Fjn(t)

% In the following code, we use the convention: t is a column vector of p-time values5

% t=[t1, t2, ..., tp]T

% and kV is a row vector of (n+1) values [k0, k1, k2, ..., kn]
%%
% Create a matrix with p rows and (n+1) columns by repeating a copy of kV
% k=[ k0 k1 k2... kn10

% k0 k1 k2... kn
% ...
% k0 k1 k2... kn]
%
% and another matrix with p rows and (n+1) columns of time values by repeating a15

% copy of t
% time=[t1 t1 ... t1
% t2 t2 ... t2
% ...
% tp tp ... tp]20

% The resulting coefficient is the matrix with p rows and (n+1) columns given by:
% [F_nn(t1) F_(n-1)n(t1) ... F_0n(t1)
% F_nn(t2) F_(n-1)n(t2) ... F_0n(t2)
% ...
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% F_nn(tp) F_(n-1)n(tp) ... F_0n(tp)]

function coeffMatrix=computeF(t,kV)
coeffMatrix=[];
k=repmat(kV,length(t),1);5

time=repmat(t,1,length(kV));

f=exp(-time.*k);
fLast=f(:,end);
kLast=k(:,end);10

coeffMatrix=[fLast coeffMatrix];
while size(f,2)>=2
f=f(:,1:end-1);
k=k(:,1:end-1);
f=(f-repmat(fLast,1,size(f,2)))./(k-repmat(kLast,1,size(f,2)));15

fLast=f(:,end);
kLast=k(:,end);
coeffMatrix=[fLast coeffMatrix];
end

20
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Figure 1. The left panel shows how runoff enters the river network as lateral flow from each
hillslope to its adjacent link. The right panel shows a sample baseflow pattern given by Eq. (1)
using A=0.003 [h−1], B=0.08 [L s−1], C=0.008 [L s−1], and ν= 1

24 [h−1].
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Figure 2. To determine the solution at any point, we consider runoff on only one hillslope
(adjacent to link 1 in this case), and we trace the effects of that runoff downstream with no
additional runoff from any subsequent hillslopes.
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Figure 3. A small sample network to describe how total streamflow is computed.
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Figure 4. A visual representation of the computation of Fjn for the case n=4.
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Figure 5. The Mandelbrot-Viscek tree of magnitude 14. The magnitude of each link is written
next to the link. One link of each magnitude is distinguished by the dots along the network.
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Figure 6. Sample runoff pattern (top panel) and resulting streamflow solution at the outlet in
the uniform case (bottom panel) for k = v

l . To examine the oscillations more closely for different
velocities, we will focus on a small section of the solution (highlighted by a box in each panel).
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Figure 7. Flows at the outlet of each magnitude link using different k in each river simulation.
The k values (with units of [h−1]) are [0.38, 0.7, 1.02, 1.34, 1.66, 1.98, and 2.30] and are colored
[black, blue, green, cyan, orange, red, and purple], respectively. The flows are normalized about
the average flow.
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Figure 8. Average flows at different locations along the Mandelbrot–Viscek tree.
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Figure 9. The velocity of each river link depends logarithmically upon the magnitude of the link.
The maximum velocities applied are [0.016, 0.066, 0.12, 0.17, 0.22, 0.27, and 0.32] [m s−1] with
the corresponding colors [black, blue, green, cyan, orange, red, and purple].
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Figure 10. Flows at the outlet of each magnitude link using a different maximum velocity in the
river network. Each link of the network has a different velocity and, thus, a different k value. The
maximum velocity values are [0.016, 0.066, 0.12, 0.17, 0.22, 0.27, and 0.32], and they have
corresponding k values (with units of [h−1]) of [0.11, 0.47, 0.84, 1.20, 1.56, 1.92, and 2.28].
They are colored [black, blue, green, cyan, orange, red, and purple], respectively. The flows are
normalized about the average flow.

8218

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/8175/2015/hessd-12-8175-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/8175/2015/hessd-12-8175-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 8175–8220, 2015

On the propagation
of diel signals in river

networks using
analytic solutions

M. Fonley et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 11. The Dry Creek watershed in Idaho.
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Figure 12. Runoff (top panel) and subsequent flows exiting links of different orders along the
Dry Creek watershed. The vertical line in each panel highlights the time to a corresponding
peak.

8220

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/8175/2015/hessd-12-8175-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/8175/2015/hessd-12-8175-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Developing an analytic solution for streamflow based on river network geometry
	Uniform velocity
	Hillslope runoff signal propagation on river networks with uniform velocity
	Assembling the complete solution for streamflow at the outlet

	Analytic solution extended to nonuniform k in the river network
	Solving the linear transport equation for the first link
	Propagating oscillations through multiple river links
	Assembling the streamflow solution using an algorithmic description


	Results
	Experimental setup: testing the effects of velocity on streamflow amplitude and time delay downstream
	Uniform velocity over the river network
	Variable velocity over the river network
	Propagation of the analytic solution on a real network

	Conclusions and future work
	Appendix A: Development of streamflow solution for uniform k value over all links in the river network
	Appendix B: Matlab code to compute Fjn(t)

