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Abstract. Several authors have reported diel oscillations in streamflow records and have hypothe-

sized that these oscillations are linked to evapotranspiration cycles in the watershed. The timing of

oscillations in rivers, however, lags behind those of temperature and evapotranspiration in hillslopes.

Two hypotheses have been put forth to explain the magnitude and timing of diel streamflow oscil-

lations during low flow conditions. The first suggests that delays between the peaks and troughs of5

streamflow and daily evapotranspiration are due to processes occurring in the soil as water moves

toward the channels in the river network. The second posits that they are due to the propagation of

the signal through the channels as water makes its way to the outlet of the basin. In this paper, we

design and implement a theoretical model to test these hypotheses. We impose a baseflow signal

entering the river network and use a linear transport equation to represent flow along the network.10

We develop analytic streamflow solutions for the case of uniform velocities in space over all river

links. We then use our analytic solution to simulate streamflows along a self-similar river network

for different flow velocities. Our results show that the amplitude and time delay of the streamflow

solution are heavily influenced by transport in the river network. Moreover, our equations show that

the geomorphology and topology of the river network play important roles in determining how am-15

plitude and signal delay are reflected in streamflow signals. Finally, we have tested our theoretical

formulation in the Dry Creek Experimental Watershed where oscillations are clearly observed in

streamflow records. We find that our solution produces streamflow values and fluctuations that are

similar to those observed in the summer of 2011.
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1 Introduction20

Several authors have observed daily fluctuations in streamflow during periods of little or no rain

(e.g. Bond et al. , 2002; Graham et al. , 2013; Gribovszki et al. , 2008; Wondzell et al. , 2007). These

fluctuations have been attributed to various causes, especially to those driven by temperature, which

undergo a daily cycle. Temperature affects several hydrological processes, including freeze/thaw

rates, evaporation rates, viscosity of water, and transpiration rates. Although many factors may con-25

tribute to the daily cycle of streamflow, evapotranspiration seems to be dominant (Gribovszki et al.

, 2010). Hydrologic processes during periods of low flow are often overlooked in favor of investi-

gating high flow and subsequent flood conditions. In spite of this, the consequences of hydrological

processes during low flow remain critical in dictating land use and agricultural types (Mul et al. ,

2011), indicating the extent of global climate change (Arnell , 1998), and influencing the chemical30

makeup of water downstream (Stott and Burt , 1997) or the availability of water, which impacts fish

populations and water treatment requirements (Burn et al. , 2008). Therefore, establishing a clear

theoretical link between daily oscillations in streamflow and daily temperature cycles becomes a

fundamental research endevor.

Graham et al. (2013) have compiled a collection of suggested explanations for the behavior of35

oscillatory streamflow under dry conditions, including several hypotheses that suggest that water

moves differently through the subsurface as the hillslope drains. On the other hand, the authors

of Wondzell et al. (2007) suggest that streamflow properties are the result of attenuation as flow

propagates along the river link with decreasing velocity, which causes the flow to be increasingly

‘out of phase.’ During dry periods of low flow, the time between the maximum evapotranspiration40

and the minimum streamflow values has been of particular interest because this time delay grows as

the dry season progresses, indicating that the response of the streamflow to the evapotranspiration

forcing on water in the hillslope slows as more water is removed from the system. Sorting out

which of these hypothesis is correct, or which processes are more dominant in determining daily

streamflow oscillations is a crucial step towards sorting out the connection between hydrological45

processes occurring in the basin.

While observing streamflow at the outlet of the Dry Creek Experimental Watershed in Idaho

during July of 2011 (described in Sect. 2), we recognized the oscillatory pattern described by Graham

et al. (2013), Wondzell et al. (2007), and others. We used information from the nearby weather

station to plot outlet flow with temperature, and discovered that the two are phase-locked. They are50

not in phase, which would imply synchronization of the two signals, but are instead offset from

each other by an almost constant value during the month. The phase offset depicts the delays that

occur through various means as described in Graham et al. (2013). Additionally we have examined

the streamflows at several other locations in the Dry Creek Experimental Watershed (see Sect. 2),

and see that they, too, are phase-locked with each other, but again are not perfectly in phase. This55

has led us to investigate more closely how streamflows in the river network combine and create the
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oscillatory patterns which have different phases at different locations, although they are undergoing

the same forcing.

In this paper, we aim to design and implement a theoretical model to test the hypotheses that

attribute time delays to flows in the river network. We start by assuming a particular baseflow pattern60

in each river link of a given river network. Then, we work with simplified routing equations that

assume constant velocity and give rise to a linear transport equation that allows us to develop analytic

solution for the flow at any given point along the river network. By fixing the baseflow pattern, we

remove the dependence of streamflow properties (e.g., amplitude and time delay) on soil processes.

If the resulting streamflows along the river network exhibit oscillations with different time delays and65

amplitudes, then we conclude that the effects described in (Wondzell et al. , 2007) can be induced

by different velocities in a river network, even in the absence of changes induced by groundwater

processes. Importantly, our theoretical results include algorithmic calculations of the phase shifts

caused by the river network and their relationship to stream velocity. The latter can be used to make

predictions about streamflow at any point in the river network, in particular with respect to the time70

delay between maximum evapotranspiration and minimum streamflow.

The paper is structured in the following way: In Sect. 2 we describe the data that motivates this

work. In Sect. 3, we describe the baseflow pattern and linear mass transport equation to represent

flow along the river network. In Sect. 3.1, we compute the analytic solution for partial streamflow

at the outlet of a river network due to baseflow applied to one upstream hillslope. Then, in Sect.75

3.2, we assemble the complete solution at the outlet when all hillslopes in the network experience

the same baseflow and all links in the network have uniform properties. Section 4.2 through Sect.

4.3 describe multiple scenarios to test the effects of river network velocity on streamflow attributes

and support the claim that decreasing amplitude and increasing time delay in the streamflow at the

network outlet can be attributed to delays in the river network. Finally, Sect. 5 contains a short80

concluding discussion and ideas for future work.

2 Motivation

The Dry Creek Experimental Watershed in Idaho is a 28 km2 watershed where streamflow, soil mois-

ture, and weather conditions are monitored at multiple locations (McNamara (2012)). At the outlet

of the watershed (labeled the Lower Gauge), diel signals can be seen in the streamflow during several85

of the years of observation during which dry conditions occurred. We have focused our observations

on the summer of 2011. The watershed includes seven stream gauging stations. One such station

(Treeline) reported no streamflow for the duration of our observations. The reporting gauges are

named Bogus South (BS), Con1West (C1W), Con1East (C1E), Con2East (C2E), Con2Main (C2M),

and Lower Gauge (LG). They drain upstream areas of 0.63, 3.85, 8.70, 7.54, 24.15, and 27.12, km290

respectively.
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The left panel of Fig. 1 shows the Dry Creek watershed and the location of the stremflow gauges

that were used in this study. The right panel shows temperature (top)–which is assumed to drive the

diel signal in the streamflow via evapotranspiration–along with the streamflows at the gauges C2E

(second) and C2M (third) which are near the center of the watershed, and streamflow at LG, (bottom)95

at the outlet of the watershed. Although all streamflow signals oscillate with the same period, they

are each offset from temperature by a particular constant phase so that they are phase-locked with

temperature and, subsequently, with each other. For example, temperature has a peak at hour 42. The

next streamflow peak in C2E is at hour 54, while C2M has a peak at hour 56, and LG has a peak

at hour 55. These different peak times imply that the flow along the river network causes sufficient100

delay in the streamflow signal to be noteworthy, supporting the hypothesis of Wondzell et al. (2007).

To create more decisive support for the hypothesis, and to investigate the nature of the delays, we

have developed a theoretical experiment described and implemented in the next several sections.

3 Developing an analytic solution for streamflow based on river network geometry

Let us now assume that the total subsurface runoff from each hillslope into a river link in a given105

river basin is oscillatory and its amplitude undergoes exponential decay (as seen for baseflow under

dry conditions). Then, we define the runoff by the formula

R(t) =Be−At +Ce−At sin(2πν(t−φ)), (1)

with A, B, C, and ν positive parameters and C <B to ensure that the baseflow takes only positive

values. The phase shift φ represents an initial delay in observations due to water moving through110

the hillslope. In this paper, we apply the same baseflow pattern to all hillslopes on the river network

beginning everywhere at an initial time t= 0 (see the left panel of Fig. 2). Note that in this setup,

the runoff oscillations are supposed to be driven by evapotranspiration, which is synchronized over

all hillslopes at the catchment scale. For this reason, synchronized timing of the forcing seems an

acceptable hypothesis.115

A sample baseflow pattern with parameter values A= 0.003 [hr−1], B = 0.08 [liter · sec−1], C =

0.008 [liter · sec−1], and ν = 1
24 [hr−1] is illustrated in the right panel of Fig. 2. We chose the value

of ν so that the frequency of the oscillations corresponds to a period of 24 hours, representing a

diurnal signal. If we assume that the baseflow is linearly related to the amount of water in the soil,

then A corresponds to the linear rate of water movement through the soil.120

In this paper, the streamflow at the outlet of a river link is defined as the solution to the system of

ordinary differential equations, which has been derived from the mass conservation equation in the

river links of the network given by,

dqi(t)

dt
=K(qi)(R(t) + qi1(t) + qi2(t)− qi(t)). (2)
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The inputs to the link come from runoff in adjacent hillslopes and from the streamflow of upstream125

tributary links. Therefore, the only method for water to exit the watershed is as streamflow at the

outlet link. In the equaiton, qi1 and qi2 are the flows from the upstream tributary links. If a link i has

more than two tributaries at its upstream node, more terms can be added in Eq. (2), accordingly. For

our calculation, we assume the function K(qi) to be constant, K(qi) = vi/l, where vi is the velocity

of link i and l is the length of the link, which is assumed to be uniform over all links in the network130

(Mantilla et al. , 2011). For simplicity, K(qi) will be called ki.

To determine the streamflow at the river network outlet, we first consider the influence of runoff

from a single hillslope and how that runoff signal propagates downstream; see Sect. 3.1 and Fig. 3.

Then, in Sect. 3.2, we will assemble the information derived for all links of the river network into

one comprehensive solution by applying the superposition principle.135

3.1 Propagation of hillslope runoff signal on river networks with uniform velocity

As mentioned above, we first apply runoff R(t) to a given hillslope, denoted as "hillslope a," with

adjacent river link 1. Because the transport equation for each link is linear, we can independently

trace the runoff entering link 1 as it flows through the river network and then use superposition to

combine the flows entering each river link. This would not be possible if the transport equation con-140

tained a nonlinear component. In the case of uniform velocities over the river network, the transport

constant, ki, is subsequently the same for all links in the network. In this subsection, it will be called

k.

When the runoff entering link 1 has gone through one river link only ("Step 1" see Fig. 3), the

flow q1 at the outlet of link 1 is the solution to the differential equation145

dq1(t)

dt
= k(Be−At +Ce−At sin(2πν(t−φ))− q1(t)). (3)

That is

q1 = (q1(0)−J1 +K1 sin(2πν(φ+ θ))e−kt + (J1 +K1 sin(2πν(t−φ− θ)))e−At, (4)

with q1(0) the initial condition (at t= 0) of the flow in link 1, and K1, J1, and θ defined by

K1 =
Ck√

(k−A)2 + 4π2ν2
150

J1 =
Bk

k−A
(5)

and

sin(2πνθ) =
2πν√

(k−A)2 + 4π2ν2

cos(2πνθ) =
k−A√

(k−A)2 + 4π2ν2
. (6)
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Note that θ ∈ (0, 1
4ν ) is the resulting time delay for the fluctuating pattern q1(t) of frequency ν155

compared to the input signal R(t).

At Step 2, when the runoff has traversed two river links, we need to compute q2(t) by taking into

account the solution q1(t) from Step 1 (see Fig 3, second panel). Since we assumed for the moment

that q1(t) has been transmitted downstream via the next link (link 2), with no additional runoff, the

streamflow at the end of link 2 is given by160

q2 =[(q2(0)−J2 +K2 sin(2πνθ2)) + kt(q1(0)−J1 +K1 sin(2πνθ1))]e−kt+

(J2 +K2 sin(2πν(t− θ2)))e−At

with θ1 = φ+ θ, θ2 = φ+ 2θ, and

K2 =
Ck2

(k−A)2 + 4π2ν2

J2 =
Bk2

(k−A)2
.165

By mathematical induction, we then compute the solution qn(t),n≥ 1 of flow measured downstream

at the exit from link n. This takes the form:

qn(t) = e−At[Jn +Kn sin(2πν(t− θn))] + e−kt
n−1∑
j=0

Ln−j
(kt)j

j!
(7)

with coefficients

Kn = C

n∏
j=1

k√
(k−A)2 + 4π2ν2

= C

(
k√

(k−A)2 + 4π2ν2

)n
, n≥ 1170

Jn =B

n∏
j=1

k

k−A
=B

(
k

k−A

)n
, n≥ 1 (8)

θn = φ+

n∑
i=1

θ = nθ, n≥ 1

and

Lj = qj(0)−Jj +Kj sin(2πνθj) , j = 1,2, ...n (9)

Here, qj(0) represents the initial condition for the flow in link j. For clarity, we included the details175

of this algorithmic proof in Appendix A.

3.2 Assembling the complete solution for streamflow at the outlet

The goal of this section is to determine the equation for the streamflow at a given point of calculation

along the river network, in particular at the network outlet. We take the parameters representing

properties of each river link to be uniform over all links in the network (i.e., same parameter k) so180

that the influence of two links that are equidistant (topologically speaking) from the outlet will be the
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same. The solution determined in Sect. 3.1, however, shows only the partial contribution of link i to

the streamflow, as it propagates downstream without considering any additional runoff. Therefore, in

order to determine the complete streamflow solution, one must sum the over-all contributions from

runoff on each upstream link. This can be done if the topological representation of the river network185

is known or if the topological width function upstream of the outlet is used. The width function for

a given link i and distance n (denoted W (i)
n ) is an integer representing the number of river links

of topological distance n upstream of link i, where W (i)
1 = 1 and corresponds to link i itself. For a

fixed location in the river network, the width function can be written as a vector whose length is the

diameter (i.e. the longest path) upstream of link i. The network depicted in Fig. 4 further illustrates190

this process.

First, we will focus on the outlet of link a (before the streamflow from a combines with that of

link b); see Fig. 4. We recognize one link upstream of this point: link a. Then, the only contribution

to the streamflow at this point is from the runoff to link a that has traversed one link. The width

function at this point has only one element and there is only one link of distance 1, so the width195

function, a 1-dimensional vector, is given by W (a) = [1], and the streamflow is simply

qa = 1× q1 = q1 = L1e
−kt + e−At[J1 +K1 sin(2πν(t− θ1))]. (10)

On the other hand, if we compute streamflow at the outlet of link e (prior to joining link f ; see Fig.

4), we have one link of topological distance 1 (link e) and two links of topological distance 2 (links

a and b). Then, the width function is given by the vector W (e) = [1 2]. This means that the runoff200

from link e has only traversed one link to get to the outlet, but the runoff from either of the links a

or b has traversed two links. The total flow at the outlet of link e is

qe = 1× q1 + 2× q2 = q1 + 2q2. (11)

After applying the formulas for q1 and q2, similar terms can be collected in the following way

qe =L1e
−kt + e−At[J1 +K1 sin(2πν(t− θ1))]205

+ 2[L2 + ktL1]e−kt + 2[J2 +K2 sin(2πν(t− θ2))]e−At

=e−At(J1 + 2J2 +K1 sin(2πν(t− θ1)) + 2K2 sin(2πν(t− θ2))) + e−kt(L1 + 2[L2 + ktL1]).

(12)

To complete this example, let us now consider the width function at the outlet of the network in Fig.

4, which is W (i) = [1 2 2 4]. The first element of W (i) corresponds to link i; the second element

(W (i)
2 = 2) corresponds to links g and h; the third element (W (i)

3 = 2) corresponds to links e and f ;210

and the last component (W (i)
4 = 4) corresponds to links a, b, c, and d. The diameter of this network

is Di = length(W (i)) = 4. Note that the total number of links in the network is also the sum of the

elements of the width function, since each link has a corresponding distance from the outlet. For

this, we can use the notation:
∣∣W (i)

∣∣=

Di∑
n=1

W (i)
n = 9. For more details about the width function, see
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(Mantilla et al. , 2011). The flow at the outlet of link i is215

qi =1× q1 + 2× q2 + 2× q3 + 4× q4 =

Di∑
n=1

W (i)
n qn. (13)

=e−At(J1 + 2J2 + 2J3 + 4J4)

+ e−At (K1 sin(2πν(t− θ1)) + 2K2 sin(2πν(t− θ2)) + 2K3 sin(2πν(t− θ3)

+ 4K4 sin(2πν(t− θ4)))

+ e−kt (L1 + 2[L2 + ktL1]220

+ 2

[
L3 + ktL2 +

(kt)2L1

2!

]
+ 4

[
L4 + ktL3 +

(kt)2L2

2!
+

(kt)3L1

3!

])
. (14)

For a general network whose width function is given by W (i), the solution can be rearranged as

in Eqs. (12) and (14) to get the complete solution for streamflow at the outlet i. Assuming that Di is

the diameter of the network upstream of link i, the solution at the outlet i is:

qi =e−At
Di∑
n=1

W (i)
n [Jn +Kn sin(2πν(t− θn))] + e−kt

Di∑
n=1

W (i)
n

n−1∑
j=0

Ln−j
(kt)j

j!
. (15)225

The first term in Eq. (15) represents the propagation of the runoff signal from each hillslope while

the second term is a result of the initial conditions coming from runoff and flow in the network. This

distinction is evidenced by the rate of decay of either exponential function. The first term has a rate of

decay depending upon A, and represents the decay of runoff entering the channel. The second term,

conversely, has a decay rate dependent only upon k, which describes the rate of water movement230

through each river link.

To thoroughly interpret the components of Eq. (15), we again contemplate the physical processes

being represented and use the expected parameter values to discuss the mathematical solution. First,

k and A are both positive because they represent rates of water movement along the river link and

through the soil, respectively. Since water will move much more quickly along the river link, which235

offers less resistance than soil, A is significantly less than k, so that k
k−A has a value slightly greater

than 1. Then, Jj >B for any value of j. Furthermore, the value of 2πν is fixed and is typically

greater than k, which means that k√
(k−A)2+4π2ν2

< 1 so that Kj <C for all j. This means that

each component [Jn +Kn sin(2πν(t− θn))] of the solution at the outlet shows a decrease in the

amplitude of the fluctuations (Kn <C) while increasing its average value when compared with the240

runoff function (Jn >B).

In the limiting case ofA= 0, the runoff at each hillslope would be a sinusoidal wave of amplitude

C and average value B taking the formR=B+C sin(2πνt). Then, the solution at the outlet becomes

qi =

Di∑
n=1

W (i)
n [Jn +Kn sin(2πν(t− θn))] + e−kt

Di∑
n=1

W (i)
n

n−1∑
j=0

Ln−j
(kt)j

j!
, (16)245
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whereKn,Jn, and θ are defined byKn = C

n∏
i=1

k√
k2 + 4π2ν2

,Jn =B, and sin(2πνθ) = 2πν√
k2+2π2ν2

and cos(2πνθ) = k√
k2+2π2ν2

.

It is apparent that the second sum of Eq. (16) that includes exponential decay at the rate of water

movement through the river link is the transient term. The first sum of Eq. (16) is the asymptotic

solution and includes the sum of constant terms from each hillslope and the sum of amplitudes of the250

sine waves from each hillslope. Following a similar approach in the case of A> 0 and using the fact

that A<< k, we again find that the second term in Eq. (15) decays much faster and, consequently,

e−At
Di∑
n=1

W (i)
n [Jn +Kn sin(2πν(t− θn))] can be interpreted as being the asymptotic solution of

qi. Due to interference from sinusoidal waves that can be in or out of phase, the amplitude of the

asymptotic solution in qi can change depending on the phase shift. We investigate this dependence255

in Sect. 4.

4 Results

4.1 Testing Design: Examining the effects of velocity on streamflow amplitude and time delay

downstream

In order to test the competing hypotheses by (Wondzell et al. , 2007) and those presented in (Graham260

et al. , 2013), we will demonstrate the amplification and damping of the oscillatory streamflow signal

that are caused by superposition. We consider a sample network and compute the streamflow solution

at different locations in the river network when the velocity and itscorresponding time delay are

varied. We will consider both the uniform (with vi = v for all links i) and the variable velocity cases.

We compute the streamflow solution for the Mandelbrot-Viscek tree of magnitude 14, as shown in265

Fig. 5. The Mandelbrot-Vicsek tree is self-similar (Mandelbrot and Vicsek , 1989) and has been used

to demonstrate hydrologic properties at different scales–(Mantilla et al. , 2006; Peckham , 1995),

for example. In this figure, the label next to each link represents the magnitude of the link, which

describes the scale of the link and is determined by the sum of the magnitudes of the two immediate

upstream ‘parent’ links where external links have magnitude 1. The constant parameter values used270

in this example areA= 1.2×10−4 [hr−1],B = 0.08 [liter sec−1],C = 0.008 [liter sec−1], q0 = 0.08

[liter sec−1], and ν = 1
24 [hr−1] and are uniform over each link in the network. To test the effects of

superposition on streamflow, we will simulate streamflow for different transport constants k. Figure

6 shows the simulation runoff pattern (top) along with the sample streamflow solution at the outlet

of the network in the uniform case (bottom). To distinguish among the different simulations, we will275

narrow our view to a few oscillations, which are highlighted by a box in the panels in Figure 6.
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4.2 Uniform velocity over the river network

In the case of uniform velocities, the streamflow at the outlet is given by the solution to Eq. (15). The

time delay depends upon parameters that have physically-based values (see Eq. (6)), so a realistic

range for the time delay and phase shift can be found. These parameters, k and A, are incorporated280

in other parts of the solution, (see Eqs. (8)). Therefore, changing their values impacts the solution in

more ways than just the superposition of sinusoidal functions. The physical value represented by A

is expected to remain constant for a given region. On the other hand, k represents the inverse of the

residence time in each river link and is not necessarily uniform or fixed.

Recall that k is given by v
l , where v is the stream velocity and l is the stream length. The length285

of each river link in a real river network would be different, as would the velocity. In addition, the

velocity may change over time, since velocity increases with flow. Consequently, the realistic value

of k is expected to be different for each link in the network, and the uncertainty of k is a possible

source for different time delays and phase shifts.

While the effect of varying k is not limited to the time delay, the value of k also affects Kn290

and Jn (see Eq. (8)). Note that the coefficient Jn determines the average value of the streamflow

solutions, while the coefficient Kn determines the amplitude of the oscillation in each step of the

streamflow solution (see Eq. (15)-first term). Changing k, then, impacts the amplitude downstream

more significantly than simply altering the time delay and subsequent phase shift.

The results of simulating streamflow in the Madelbrot-Viscek tree using different values of k can295

be found in Fig. 7. The values of k used in simulations are [0.38, 0.7, 1.02, 1.34, 1.66, 1.98, and 2.30]

with resultant time delays of [2.30, 1.36, 0.95, 0.73, 0.59, 0.5, and 0.43] hours. The corresponding

graph-solutions from Fig. 7 are drawn in the following colors: black, blue, green, cyan, orange,

red, and purple, respectively. Each panel in Fig. 7 represents the solution at a different location

along the network (refer to Fig 5 for sample locations). We chose the timing of the plots so that a300

cyclic pseudo-equilibrium has been reached and the effects of time delay can be distinguished. For

comparison among the different locations, we have normalized the flows about the average flow. The

average flows at a link of each magnitude are plotted in Fig. 8 and, as expected, the values depend

upon the number of links upstream, which is related to the magnitude of the link.

From Fig. 7, we see that the magnitude of the oscillations can be significantly decreased as velocity305

and k decrease, because this represents a volume of water spending more time in any one link. This

causes a greater time delay, which means that two links will combine their flows out of phase, and

superposition dictates that the amplitude of the resulting oscillations is decreased. Furthermore, a

lower velocity leads to significant attenuation of the streamflow along each link in the network. The

greatest amplitudes occur when the velocity is highest, which moves a volume of water very quickly310

through each link and leads to very little loss of streamflow intensity. Notice also that the timing of

the peak streamflow is increasingly delayed as velocity slows (see Fig. 7 for k=0.38, 1.02, and 1.66,

for example). This can explain the increasing time delay that has been observed between maximum
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evapotranspiration and minimum streamflow as the dry season progresses. These results also indicate

that the time delay increases continuously as the velocity decreases continuously over time so that315

the time delay can be predictable depending upon stream velocity.

At the link of magnitude 1, the phase shift has little influence on the amplitude and only has an

influence on the timing of the wave. At the outlet of a magnitude-2 link, the two upstream links are

‘in phase,’ meaning they have the same time delay as each other since they are the same topological

distance from the point at which we compute streamflow. Therefore, these two will exhibit construc-320

tive interference. When they are combined with the downstream link, however, the different values

of phase shift can result in constructive or destructive interference, although they never completely

destroy the oscillations. The phase shift that produces the maximum streamflow is zero because this

represents the face that all three streamflows that feed into this outlet are completely in phase.

As we examine the streamflows in links with greater magnitude, the shape of the network (de-325

scribed by the width function) becomes important because the flows from all links of a given dis-

tance will reach the outlet at the same time. Being out of phase with links of other distances can

cause some reduction in the amplitude of the streamflow oscillations, but the oscillations will not be

completely destroyed.

4.3 Propagation of oscillations on a real network330

In this section, we apply the analytic streamflow solution for uniform conditions to the river network

of the Dry Creek river basin to study the effects of scale on streamflow amplitude and timing. In the

previous section, we also examined the flow at different scales (see Fig. 7) but with an emphasis on

different k values. The time range in Fig. 7 has been decreased, and the flows have been normalized

about their average value to exaggerate the effects of changing the k value. Consider the blue line in335

all panels of Fig. 7 corresponding to a k value of 0.7 hr−1. Streamflow at a larger scale (magnitude) is

influenced by a greater number of upstream links. Then, superposition effects among those upstream

links are stronger and we see two resulting attributes in the streamflow properties: reduction in the

streamflow amplitude and greater time delay to the peak. We now consider a larger, more realistic

river network and expect to see similar results.340

In our theoretical examples, we assumed the length of each link to be uniform over the river net-

work, so that changes in velocity directly correspond to changes in the transport constant k. Realistic

network parameters include variable link-length, so we vary the velocity of each link accordingly in

order to maintain a uniform k value and apply the solution developed in Sect. 3.

For a comparison with available data, we revisit information from the Dry Creek Experimen-345

tal Watershed in Idaho. Using streamflow data from LG, the gauge nearest the watershed outlet

along with topological data retrieved using the program CUENCAS proposed in Mantilla and Gupta

(2005), we can compare the diel flows observed in 2011 with the solution method used in Sect. 3.

Specifically, the solution to describe streamflow at the outlet, given in Eq. (16) can be fitted to the
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observed streamflow to find parameter values A, B, and C that uniquely describe baseflow exiting350

each hillslope. The assumption inherent in this solution is that the river links are all uniform, which

is an unrealistic but necessary simplification to develop this explicit solution. The top, left panel of

Fig. 9 depicts the observed streamflow from July of 2011 along with our approximated solution that

was found by fitting the data to Eq. (16) using MATLAB. The resulting parameter values are

A= 1.85× 10−3 [hr−1]

B = 0.239 [liter · sec−1]

C = 3.27× 10−2 [liter · sec−1]

φ= 3.97 [hr]

k = 5.61 [hr−1]

355

For perspective, this k value corresponds to an average stream velocity of 0.38 m
sec .

Using the observed streamflow time series at several upstream gauges in the Dry Creek watershed,

we can test our analytic solution with the parameters determined above. If we treat these locations as

the outlets of smaller embedded watersheds, we can again apply Eq. (16) using the same parameter

values which will yield our solution at points along the river network. The center and lower panels360

of Fig.9 depict the observed streamflows and the streamflows computed using Eq. (16) at gauges

C2M and C2E, respectively.

Although the predicted streamflow given by our solution does not fit the data as well for C2E as it

does for C2M, we can see that the magnitude of our predicted streamflow is very close to observed

streamflow at either location. Furthermore, the timing of the oscillations is nearly identical for both365

C2M and C2E. In the presence of heterogeneity in the hillslope and along the river network, we

must be flexible about the amount of data we can reasonably expect to fit well. For example, we

show in Appendix B that the data is more noisy at other gauges in the Dry Creek watershed where

we compare observed steamflow data to our streamflow solution.

Because our solution fits the data reasonably well at several locations along the river network370

where runoff is uniformly enforced, we can be assured of the internal validity of using a solution

such as that given in Eq. (16). Furthermore, because our solution describes superposition among

all the oscillating runoff signals entering the network, and the simulation results are close to those

observed, we can conclude that streamflow relies heavily on superposition from upstream in the river

network as suggested in Wondzell et al. (2007).375

5 Conclusions and future work

Observations of oscillatory streamflow during low flow conditions have highlighted the magnitude

and time delay caused by the diel signal that represents evapotranspiration. Several current hypothe-

ses suggest that the properties of the oscillatory streamflow signal can be attributed to different meth-

ods of water movement through the subsurface, although another hypothesis suggests that flow along380
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the river determines the timing and amplitude of oscillations. In this paper, we provide evidence to

support the latter argument.

First, we select a mathematical function according to streamflow observations at the catchment

scale to represent baseflow patterns at the hillslope scale. The selected baseflow pattern is applied

as input to a linear transport equation for all links in a river network that are assumed to have385

uniform properties and parameter values. For this uniform situation, we develop an analytic solution

to represent streamflow at any point in a river network. We compute the solution by separately

determining the partial streamflow at the outlet from each river link then taking the sum over all

river links in the river network. In order to include the geomorphology of the river network, we

use the width function to compute the complete streamflow solution. We have also extended the390

streamflow solution to include nonuniform links in the river network.

The solution for streamflow contains a collection of sine functions, each of which exhibits a phase

shift determined by the topological distance of the corresponding hillslope from the outlet. We have

shown that these phase shifts alone can cause constructive or destructive interference along the river

link but that the physical parameters that determine the phase shift have a greater impact on the395

streamflow as it propagates downstream. The streamflows computed using different physical param-

eters demonstrate that the decreasing amplitude and increasing time delay in observed streamflows

can be attributed to the decreasing velocity in the river network during dry conditions, and they are

not necessarily due to soil-water processes, as was previously thought, which supports the hypoth-

esis of (Wondzell et al. , 2007). Furthermore, the structure of the analytic solution indicates that400

the time delay increases continuously as the river network velocity continuously decreases, so that

the time delay can be predictable depending on stream velocity. We apply the resulting solution to

several locations in the Dry Creek Experimental Watershed using parameters determined by stream-

flow at the outlet. We then compare the streamflows resulting from our solution with observations.

Our solution offers a good approximation for the streamflow at locations with larger upstream area405

(e.g. LG, C2M, and C2E), matching the magnitude of the streamflow and the amplitude and timing

of the oscillations. Our results, however do not disprove the hypothesis that delays can come from

subsurface flow processes.

As a next step, we propose to test the analytic solutions herein on networks with different geo-

morphological structures in order to compare the resulting streamflow amplitudes and emphasize410

the dependence upon network geometry. We suggest subsequently comparing our analytic solutions

with the numerical results obtained using nonlinear transport equations, which will demonstrate the

relationship between link propagation at the hillslope scale and streamflow at the catchment scale.

Careful field experiments would be necessary to provide a definitive conclusion about the attribution

of time delays.415
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Appendix A: Development of streamflow solution for uniform k value over all links in the

river network

In order to simplify our calculations below, we will use the notation ω = 2πν and ψ = 2πνφ.

We prove Eq. 7 from Sect. 3.1 by using the method of mathematical induction. The isolated effects

of runoff from link i on links downstream are found by applying the transport equation420

dqi(t)

dt
= k(Be−At +Ce−At sin(ωt−ψ)− qi(t)) (A1)

We did not include in Eq. (A1) any upstream links because we are trying to isolate the effects on

streamflow due to runoff from hillslope i. Therefore, we treat it as an external link. Equation (A1) is

a nonhomogeneous linear ordinary differential equation of the form

dqi
dt

= kfi(t)− kqi, (A2)425

and has the solution

qi(t) = qi(0)e−kt + ke−kt
t∫

0

fi(s)e
ksds. (A3)

As we trace the runoff downstream, the function fi(t) is the input to the link, which can come from

upstream sources or from runoff from the adjacent hillslope. Since link i is arbitrary, we will consider

it to be the first link in a path to the outlet, so it will be labeled link 1 having flow q1, and the next430

link downstream will be labeled link 2, etc. Since f1(t) consists only of baseflow, the solution q1

according to Eq. (A3) becomes

q1(t) =q1(0)e−kt + ke−kt
t∫

0

[Be(k−A)s +Ce(k−A)s sin(ωs−ψ)]ds

=q1(0)e−kt +Bke−kt
(
e(k−A)t

k−A
− 1

k−A

)
+Cke−kt

t∫
0

e(k−A)s sin(ωs−ψ)ds. (A4)

The solution to the latter integral is435

t∫
0

e(k−A)s sin(ωs−ψ)ds=
e(k−A)t√

(k−A)2 +ω2
sin(ωt−ψ−ϕ) +

sin(ψ+ϕ)√
(k−A)2 +ω2

,

and ϕ is defined by its sine and cosine functions

sin(ϕ) =
ω√

(k−A)2 +ω2

cos(ϕ) =
k−A√

(k−A)2 +ω2
.
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Substituting this integral back into Eq. (A4), we obtain440

q1(t) =

(
q1(0)− k

k−A
B+

k√
(k−A)2 +ω2

C sin(ψ+ϕ)

)
e−kt

+

(
k

k−A
B+

k√
(k−A)2 +ω2

C sin(ωt−ψ−ϕ)

)
e−At. (A5)

To find an algorithmic method to compute the coefficients of the solution qn(t) for n≥ 1, we define

the following:

Kn :=C

n∏
j=1

k√
(k−A)2 +ω2

n≥ 1 (A6)445

Jn :=B

n∏
j=1

k

k−A
n≥ 1 (A7)

Φn :=ψ+

n∑
j=1

ϕ n≥ 1 (A8)

Lj :=qj(0)−Jj +Kj sin(Φj) j = 1, ...,n. (A9)

Using these newly defined quantities from Equations (A6), (A7), (A8), and (A9), the flow at the

outlet of link 1 can be rewritten as450

q1 = L1e
−kt + e−At [J1 +K1 sin(ωt−Φ1)] . (A10)

To find the solution for the next link downstream (link 2), the flow from link 1, given by Eq. (A10),

is included as qin1 as the transport Eq. (2) is applied to link 2. Integration by parts will again be used

to find the solution to

dq2
dt

= k(q1− q2).455

Using Eq. (A3),

q2(t) =q2(0)e−kt + ke−kt
t∫

0

q1(s)eksds

=q2(0)e−kt + ke−ktL1t+ ke−ktJ1
(
e(k−A)t

k−A
− 1

k−A

)
+ ke−ktK1

t∫
0

e(k−A)s sin(ωs−Φ1)ds.

(A11)

The integral in Eq. (A11) is very similar to that in Eq. (A4), with the only differences being the

argument of the sine function in the initial integral. After integration by parts, the equation for460

streamflow q2(t) becomes

q2 =q2(0)e−kt + ke−ktL1t+ ke−ktJ1
(
e(k−A)t

k−A
− 1

k−A

)
+ ke−ktK1

(
1√

(k−A)2 +ω2

(
e(k−A)t sin(ωt−Φ2) + sin(Φ2)

))
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or, equivalently,

q2 = [L2 + ktL1]e−kt + [J2 +K2 sin(ωt−Φ2)]e−At. (A12)465

By mathematical induction, using the same strategy for calculations along the path to the river net-

work outlet, we can compute the contribution of runoff from any river link on flow at the outlet. For

a given link that is at topological distance n from the outlet (or an alternative location from which

flow is observed), its contribution to the flow at the outlet is:

qn(t) = e−At [Jn +Kn sin(ωt−Φn)] + e−kt
n−1∑
j=0

Ln−j
(kt)j

j!
. (A13)470

Given that ω = 2πν and using the notation ϕ= 2πνθ, Eqs. (6), (7), (8), and (9) immediately will

result.

Appendix B: Locations excluded from the analysis

Because the Dry Creek Experimental Watershed includes stream gauges at seven different locations,

we sought to compare our solution at all of these locations. One such gauge (called Treeline) did475

not experience streamflow during the duration of our observations. Three other gauges–Con1East,

Con1West, and Bogus South (labeled C1E, C1W, and Bogus, respectively)–recorded streamflows

which can be found in Fig. 10 along with our solution given by Eq. (16) at those locations.

As can be seen in Fig. 10, our solution does not offer a good fit to observed data in these three

locations. Both C1E and Bogus supply noisy signals, which do not have the obvious daily oscillations480

characteristic of the streamflows further downstream. The magnitude of the observed streamflow

at Bogus is particularly interesting, because the area upstream of the gauge is 0.634km2, and the

average streamflow is around 18 L
sec . The streamflow at C1W is similar, with a magnitude of the

average streamflow of about 13 L
sec , but the area upstream of C1W is 3.85km2, so we should expect

a significant difference between the streamflows at these two locations, and C1W should certainly485

experience larger values than Bogus. Because of this, we believe the observed streamflow at the

Bogus site is unreliable.

The observed and predicted streamflow at the location C1E can be found in the left panel of Fig.

10. Again, the observations are especially noisy and have no apparent daily oscillations. However,

our solution for streamflow has magnitude very close to observed values. We cannot conclude from490

this that our solution is incorrect, but it relied upon the assumption of smooth oscillatory runoff even

at the hillslope scale. These noisy signals imply that the assumption is incorrect at some locations.

The center panel of Fig. 10 shows the observed and predicted streamflows at C1W. Our solution is

not offering a good fit to the data here in either the amplitude of the oscillations, or the exact values

of the streamflow. The values are of the same order of magnitude, however, and are reasonable for495

both C1E and C1W.
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Figure 1. The left panel shows the Dry Creek watershed in Idaho. The right panel shows temperature (top),

streamflow at gauge C2E near the center of the watershed (second), streamflow at gauge C2M (third), and

streamflow at the outlet of the watershed (bottom). To demonstrate the delay in phases, a vertical line at the
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Figure 2. The left panel shows how runoff enters the river network as lateral flow from each hillslope to its

adjacent link. The right panel shows a sample baseflow pattern given by Eq. (1) using A= 0.003 [hr−1],

B = 0.08 [liter · sec−1], C = 0.008 [liter · sec−1], ν = 1
24

[hr−1], and φ= 0[hr].

Figure 3. To determine the solution at any point, we consider runoff on only one hillslope (adjacent to link 1

in this case), and we trace the effects of that runoff downstream with no additional runoff from any subsequent

hillslopes.
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Figure 4. A small sample network to describe how total streamflow is computed

Figure 5. The Mandelbrot-Viscek tree of magnitude 14. The magnitude of each link is written next to the link.

One link of each magnitude is distinguished by the dots along the network.
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Figure 6. Sample runoff pattern (top) and resulting streamflow solution at the outlet in the uniform case (bottom)

for k = v
l

To examine the oscillations more closely for different velocities, we will focus on a small section of

the solution (highlighted by a box in each panel).
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Figure 7. Flows at the outlet of each magnitude link using different k in each river simulation. The k values

(with units of [hr−1]) are [0.38, 0.7, 1.02, 1.34, 1.66, 1.98, and 2.30] and are colored [black, blue, green, cyan,

orange, red, and purple], respectively. The flows are normalized about the average flow.
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Figure 8. Average flows at different locations along the Mandelbrot-Viscek tree.
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Figure 9. Observed streamflow and streamflow fitted using Eq.16 at the outlet of the Dry Creek Experimen-

tal Watershed (top) and at two stream gauges upstream in the watershed: Con2Main (center), and Con2East

(bottom).
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Figure 10. Observed streamflow and streamflow fitted using Eq.16 at three upstream gauges in the Dry Creek

Experimental Watershed: Con1East (left) Con1West (center), and Bogus South (right).
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