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Abstract

The use of bias-aware Kalman filters for estimating and correcting observation bias
in groundwater head observations is evaluated using both synthetic and real observa-
tions. In the synthetic test, groundwater head observations with a constant bias and
unbiased stream discharge observations are assimilated in a catchment scale inte-5

grated hydrological model with the aim of updating stream discharge and groundwater
head, as well as several model parameters relating to both stream flow and groundwa-
ter modeling. The Colored Noise Kalman filter (ColKF) and the Separate bias Kalman
filter (SepKF) are tested and evaluated for correcting the observation biases. The study
found that both methods were able to estimate most of the biases and that using any10

of the two bias estimation methods resulted in significant improvements over using
a bias-unaware Kalman Filter. While the convergence of the ColKF was significantly
faster than the convergence of the SepKF, a much larger ensemble size was required
as the estimation of biases would otherwise fail. Real observations of groundwater
head and stream discharge were also assimilated, resulting in improved stream flow15

modeling in terms of an increased Nash-Sutcliffe coefficient while no clear improvement
in groundwater head modeling was observed. Both the ColKF and the SepKF tended
to underestimate the biases, which resulted in drifting model behavior and sub-optimal
parameter estimation, but both methods provided better state updating and parameter
estimation than using a bias-unaware filter.20

1 Introduction

Sequential assimilation of observations in models is a widely used method in several
fields, including meteorology and hydrology. The method has repeatedly been shown to
improve forecasting performance, reduce uncertainty, and optimize parameter values,
and is still a topic subject to on-going research.25
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Data assimilation in hydrological models has been studied in a number of settings,
from single process models, modelling only a limited part of the hydrological cycle
(e.g., Franssen et al., 2011; Albergel et al., 2008; Moradkhani and Sorooshian, 2005),
to integrated models incorporating all the relevant processes including precipitation,
evapotranspiration, recharge and streamflow (e.g., Camporese et al., 2009; Shi et al.,5

2014; Rasmussen et al., 2015). The latter presents a number of challenges that have
yet to be comprehensively addressed; particularly relating to the differences in process
time scales, e.g. between groundwater flow and surface runoff, and the coupling be-
tween these processes. An integrated approach to hydrological modeling is however
important in many applications due to the exchange of water between the hydrological10

components; thus it remains important to explore these aspects. In Camporese et al.
(2009) the Ensemble Kalman filter (EnKF) was applied to an integrated model of a syn-
thetic tilted v-catchment and both stream discharge and groundwater hydraulic head
observations were assimilated to update both groundwater and stream states. Shi et al.
(2014) applied the EnKF to an integrated land surface hydrological model of a small15

catchment and, using seven different observation types, successfully estimated six pa-
rameters and sequentially updated the model states. Rasmussen et al. (2015) used
the Ensemble Transform Kalman Filter to assimilate groundwater head and stream dis-
charge in a catchment scale integrated hydrological model for both state updating and
parameter estimation.20

Biases in both models and observations pose challenges to data assimilation in hy-
drology. Bias is found in all components of the hydrological cycle, and take a variety of
forms. Notable examples are model bias stemming from model structure or parameter
errors, and observation errors, which is due to the difference in scale between point
observations and gridded model variables. The latter is a significant source of bias in25

many groundwater models, as the horizontal discretization of the models is often large.
If one is to update the groundwater head in a hydrological model using sequential data
assimilation, this observation bias must be taken into account.
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While the EnKF, and any derivation thereof, implicitly accounts for both model- and
observation uncertainty in the form of zero-mean white noise, model and observa-
tion biases remains an issue that requires modifications to the filter. A few methods
have been developed that attempt to estimate biases online, and they have been ap-
plied successfully in many settings. With few exceptions, the bias aware filters can be5

grouped in two: Separate filter methods and augmented state methods. The Sepa-
rate bias Kalman Filter (e.g., Dee and da Silva, 1998; Pauwels et al., 2013; Drecourt
et al., 2006) uses a second Kalman filter for updating the biases. This second filter is
independent from the filter that updates the states, and the method can therefore not
account for correlation between states and biases. Alternatively, augmenting the state10

space with bias estimates (e.g., Derber and Wu, 1998; Dee, 2005; Drecourt et al., 2006;
Fertig et al., 2009) allows the filter to account for the correlation between states and
biases, and is therefore useful when the bias is dependent on the observed values.
While most implementations of bias estimation assumes that the model is unbiased
and that the observations are biased, or vice versa, Pauwels et al. (2013) presented15

a method for estimating both model bias and observation bias simultaneously using a
double Separate bias Kalman Filter.

This study uses both a synthetic test setup and real observations to test the appli-
cation of bias correction to a data assimilation framework that assimilates groundwater
head and stream discharge observations in an integrated hydrological model for joint20

state updating and parameter estimation. We discuss the challenges associated with
coupling two processes (groundwater and stream flow) in a single filter and the es-
timation of parameters in the presence of significant observation bias. Two existing
methods of estimating observation bias, the Separate bias Kalman Filter and the aug-
mented state vector approach, are tested and the results compared. The novelty of the25

study lies in the holistic approach to sequential hydrological data assimilation, which
accounts for parameter errors and uncertainty, different process time scales in both
model states and observations, and the presence of observation bias. While each of
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these aspects have previously been studied individually, the combination of the aspects
creates new challenges, which require particular attention.

2 Methods

2.1 Model

This study uses a transient, spatially distributed hydrological model based on the MIKE5

SHE code (Graham and Butts, 2005). This code considers all major components of the
land phase of the hydrological cycle and the code allows the hydrological components
to be dynamically coupled, meaning that feedback (i.e. exchange of water) between the
processes is possible at each time step. The feedback is of particular importance for
the groundwater-stream interaction in areas where these processes are closely linked,10

and it makes the model code particularly suited for investigation of data assimilation in
integrated hydrological modelling.

2.2 Study area

2.2.1 The Karup catchment

This study is based on the Karup catchment (Fig. 1), which is located in the northern15

part of the Danish Jutland peninsula. The catchment has an area of 440 km2 and agri-
culture is the dominant land use, while the geology is dominated by highly permeable
quaternary sand. It is a very flat catchment, with a gentle south-north slope ranging
from 93 m a.s.l. in the southern part to 22 m a.s.l. in the northern part. The Karup river
is the primary drainage feature and it springs in the southern part and exits in the20

northern edge of the catchment. Along its path, the Karup river is joined by seven
smaller tributaries. The flat topography and sandy sediments implies that the Karup
river is primarily groundwater fed, which emphasizes the importance of an integrated
approach to the hydrological modelling of the catchment, as the exchange between the
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groundwater and the river is a predominant process of the hydrological response of the
catchment.

2.2.2 Model setup

An integrated model, which includes groundwater flow, vadose zone flow, evapotran-
spiration, surface and streamflow is used in this study. Vertical groundwater flow com-5

ponents are neglected in the study and groundwater flow is simulated based on the
2-D Boussinesq equation. Each numerical element of the groundwater flow model is
coupled to a one dimensional model for vertical flow in the vadose zone. For numerical
and computational convenience capillary forces are neglected and only gravity driven
flow is considered, which is an option in the MIKE SHE code (Graham and Butts, 2005).10

Stream flow is simulated using the kinematic routing option. Evapotranspiration is mod-
elled using the Kristensen and Jensen (1975) model. A horizontal grid size of 1 km x 1
km is used, with a vertical discretization of the unsaturated zone gradually increasing
from 0.05 m at the top to 1 m below a depth of 10 m. Further details of the MIKE SHE
model application to the Karup catchment can be found in Rasmussen et al. (2015).15

2.2.3 Model parameterization

The geological model used in this study is a 3-D model, which contains one dominant
geological unit (meltwater sand) and five lenses (clay, quartz sand, mica clay/silt and
limestone), each with assigned parameters of hydraulic conductivity, specific yield and
specific storage. The geological model is in a preprocessing step converted into a 2-D20

model by interpolating the parameter values and gridding them to the computational
grid. The parameter values of the stream model are assumed uniform throughout the
model domanin. The drain level and the drain time constant control the drainage flow
to the river, while the leakage coefficient controls the river-groundwater interaction. For
more details of the model parameterization, reference is made to Rasmussen et al.25

(2015).
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2.3 Data assimilation

2.3.1 Ensemble transform Kalman Filter

The algorithm used for assimilating data in this study is the Ensemble Transform
Kalman Filter (ETKF) (Bishop and Hodyss, 2009), which is a square root formulation
of the EnKF. It is more computationally efficient than the EnKF, as it does not require5

a full error covariance matrix to be determined unlike the EnKF, which also requires a
computationally expensive inversion of the error covariance. While the ETKF was first
presented by Bishop and Hodyss (2009), the implementation used in this study is that
of Harlim and Hunt (2005). Vectors of the forecasted state variables of the ensemble
members are structured in an m×k matrix, Xf , where m is the number of states and k10

is the number of ensemble members:

Xf = [xf1, . . .,xfk ]. (1)

A s×k matrix Yf of model observations (s is the number of observations) is formed
by applying a linear operator H that maps the state space into observation space to
each column of Xf . This matrix is averaged over the columns to form a s×1 vector of15

mean model observations, y
f
, which is then columnwise subtracted from Yf to form the

s×k matrix of model observation anomalies, Yb. Next, Xf is averaged columnwise to
form the m×1 vector of mean model states x̄

f and this vector is subtracted from each
column of Xf to create an m×k matrix of model state anomalies Xb.

An k × s matrix, C, is computed as follows:20

C = (Yb) ·R−1 ·Pobs, (2)

where R is a s× s matrix of observation covariance, and Pobs is a s× s diagonal ma-
trix with the localization weights of each observation on the diagonal. The k ×k error
covariance matrix is computed by

P̃a = [(k −1) · I+CYb]−1, (3)25
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where I is a k ×k identity matrix. The k ×k matrix of analysis error covariance is com-
puted as

Wa = [(k −1)P̃a]1/2. (4)

The k ×1 vector w a is calculated as

w a = P̃aC · (y − ȳb), (5)5

where y is a s×1 vector of observations, and ȳ
b is a s×1 vector of the mean model

observations. w a is then added each column of Wa, forming the k×k matrix of updated
error covariance W. The m×k matrix is calculated:

Xc = XbW. (6)

Finally, the updated model ensemble, Xu, is calculated by adding x̄
b to each column10

of Xc.

2.3.2 Localization

Rasmussen et al. (2015) showed that the common distance-based localization meth-
ods do not suffice for localization in integrated hydrological models; instead an adaptive
localization method first developed by Miyoshi (2010) will be used. Rather than remov-15

ing correlation based on the physical distance from an observation, this localization
method is a combination of cross-validating the sample correlation (as estimated from
the ensemble) and raising the correlation coefficient to a power in an attempt to distin-
guish true correlation and spurious correlation.

For each state variable, the ensemble is split into two sub-ensembles of equal size.20

The sample correlation between the state variable and each observation state variable
is calculated for both sub-ensembles. These correlation coefficients are then combined
using the following expression:

pobs,a =
(

1−
|c1 −c2|

2

)a
, (7)
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where pobs,a is the localization weight, c1 and c2 are the correlation coefficients from
the first and second sub-ensembles, and “a” is a constant used for tuning the localiza-
tion.

Another localization weight, pobs,b, is determined using the sample correlation coef-
ficient for the entire ensemble, c, and another tuning constant, b, as follows:5

pobs,b = |c|b (8)

The final (applied) localization weight, pobs (Eq. 2), is calculated as the product of
pobs,a and pobs,b. Rasmussen et al. (2015) found that parameter values of a = 2 and
b = 2, produced the lowest root mean square error in the groundwater head in a similar
model, and these parameter values will also be used in this study.10

2.3.3 Parameter estimation with the ETKF

Parameters are in this study estimated sequentially using the augmented state vector
approach (Liu and Gupta, 2007; Rasmussen et al., 2015). The state vectors (Eq. 1) are
extended to also contain the parameters that are to be estimated:

Xf =

xf1 x
f
n

· · ·
Θf1 Θfn

 (9)15

where Θfi is the set of parameters used to propagate the i th ensemble member. The
mapping matrix H is extended accordingly.

2.3.4 Inflation

In order to compensate for the systematic underestimation of error variance that is en-
demic to ensemble based Kalman filtering, covariance inflation (Anderson and Ander-20

son, 1999) was applied to both the groundwater head states and the stream discharge
8139
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states. The inflation is applied by adding a percentage to the ensemble of forecast
anomalies:

Xf = (1+α)Xf , (10)

where α is the inflation factor. The inflation factor used in this study is 0.2, which is
based on tests of different inflation factors, and has been shown to help maintain a5

good spread of the ensemble of states.
The ensemble of parameter values is also inflated using Eq. (10) but instead of using

a constant inflation factor, the inflation factor for the ensemble of parameter values
is calculated at each update and for each parameter to match a target spread (as
described by the standard deviation):10

α =
σtarget

σforecast
, (11)

where σ is the standard deviation. σtarget denotes the desired spread of the ensemble
of parameter values and σforecast denotes the spread of the ensemble before updating.
This method is only applied if the forecast standard deviation of the ensemble of pa-
rameters is smaller than the target standard deviation, which in this study is set to 10 %15

of the initial standard deviation of the ensemble. This value has shown to produce the
best results, by maintaining a sufficient spread that does not create instabilities in any
of the ensemble members.

2.3.5 Damping

A simple damping mechanism is implemented in the modeling framework to reduce20

the magnitude of the state- and parameter updates and hereby reduce the shock in-
troduced to the system in the form of instantaneous changes of model states and
parameter values at the time of updating. Furthermore, damping has the same effect
as inflation, as it helps maintain an ensemble spread and thus combats the tendency
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for the ensemble to collapse. Damping of parameter updates is common, and has been
studied in Franssen and Kinzelbach (2008) and used in Rasmussen et al. (2015).

Damping is pragmatically applied post-updating as follows. For each ensemble mem-
ber, the magnitude of the update, U , is calculated as

Ui = xui −x
f
i . (12)5

The dampened update is subsequently calculated as

UDi =D ·Ui , (13)

where D is a user specified m×1 vector of damping coefficients. Note that the values
in D may vary depending on the variable type (i.e. hydraulic head, stream discharge or
water level) or parameter type.10

Finally, the post-damping and final state vector is calculated:

x
u,D
i = xfi +U

D
i . (14)

A damping coefficient of 0.1 was used for all parameters in all scenarios studied,
while different damping coefficients for the states have been analysed in the tests de-
scribed below.15

2.3.6 Bias estimation

This study compares two different methods for estimating observation bias: the Colored
noise Kalman filter (ColKF) and the Separate bias Kalman filter (SepKF).

The ColKF methodology for estimating bias follows that of Fertig et al. (2009), in
which the biases are estimated online by augmenting the state vector, in a similar20

way as for estimating parameters. That is, the augmented state vector, which contains
both states and parameter values is further augmented by an ensemble of observation
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biases as follows:

Xf =

x
f
1 x

f
n

Θf1 · · · Θfn
βf1 βfn,

 (15)

where βfi is the set of observation biases of the i th ensemble member. The linear
operator H is modified such that when it is applied to the columns of Xf , the bias is
added to the appropriate model observations. Note that a constant bias forecast model5

is used, meaning that

βf ,t+1
i = βu,t

i , (16)

where the super script “u” indicates an updated value, and “t” refers to the time step.
This study assumes no bias in discharge observations, meaning that the only bi-

ased observations are the groundwater head observations. In real world observations,10

discharge observations would usually also be biased, but this bias is generally small
compared to the random error of the observations and compared to biases in ground-
water head observations.

The method requires an initial bias estimate based on a priori information. Further-
more, as with estimation of parameters, a spread in bias estimates needs to be gener-15

ated. In this study, the initial estimate of bias in all observation points is zero and the
spread is generated by sampling from a normal distribution with a standard deviation
of 0.6 m and a mean of 0.

The implementation of the SepKF in this study is similar to the one derived and
presented in Drecourt et al. (2006) but modified to estimate observation bias rather20

than model bias and to be implemented for use in a square root formulation of the filter.
The bias filter is a discrete filter that is coupled to the ensemble based filter used for
updating the states and the parameters as follows. The forecasted model observation
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error covariance, P is estimated from the ensemble of anomalies:

P =
1

n−1
Yb · (Yb)T . (17)

The bias error covariance is estimated as being proportional to the ensemble model
observation forecast error covariance, P, through a parameter γ(0 ≤ γ ≤ 1):

Pb = γP, (18)5

where γ is a tuning parameter that controls the fraction of information from the obser-
vations that is used to bias and states respectively. Tests using different values of γ
revealed that this parameter had little impact on the final estimated bias, but a value of
0.1 was chosen for this study, as it performed slightly better than other values tested.
The bias error covariance is furthermore conditioned to the assumption of no bias in10

discharge observations.
The Kalman gain for the bias filter is then calculated as:

Kb = Pb(HPbHT +HPHT +R)−1. (19)

The bias Kalman gain is localized as follows:

Kb,local = Kb(H ·L), (20)15

where L is a s×smatrix containing the localization weights for each state as determined
by the adaptive localization algorithm. The updated biases are calculated as:

βu = βf −Kb(y −Hx̄b). (21)

Finally, the updated states are calculated using the following modification of Eq. (5):

w a = P̃aC · [(y −βu)− ȳb]. (22)20
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The augmented state method has the advantage that it can take any interaction
between the bias and the states into account, as the full forecast covariance matrix is
used. On the other hand, the SepKF filter ignores any cross-correlation between bias
and states.

While ignoring the correlation between state error and bias error may be problematic5

where such correlation exists, the price of using the augmented state method is the
increase in the state-space that needs to be spanned by the ensemble. To describe
the uncertainty of the augmented state, an (m+p+s)× (m+p+s) (states, parameters
and observations) covariance matrix is necessary, while an (m+p)×(m+p) plus a (s×s)
matrix is necessary for the SepKF. This is likely to increase the required ensemble size10

when using the augmented state method and thus increase computational demands.

2.3.7 Asynchronous assimilation

Due to the differences in frequency between the two observation types, this study uses
asynchronous assimilation (Sakov et al., 2010). This way, the more frequent stream dis-
charge observations can be assimilated along with the less frequent groundwater head15

observations, without the states having to be updated each time a discharge observa-
tion is available. The method has been previously successfully used in Rasmussen
et al. (2015). The observations available between two updates, as well as their corre-
sponding model observations, are collected and assimilated at the time of the update.
So, given a set of j observations at times t1, . . .,tj collected, the model observations is20

formulated as follows:

HXf = [(Hxf )T1 , . . ., (Hxf )Tj ]. (23)

Similarly, the observation vector is extended to correspond to the ensemble obser-
vations. While the asynchronous observations and model observations are saved and
used in the filter at the time of updating, they are afterwards discarded and no retro-25

spective updating of states is performed.
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2.4 Filter setup

2.4.1 State variables

In this study, groundwater hydraulic head, stream discharge, and stream water level
are updated at each updating time step. The states are updated every 4 weeks, when
groundwater head observations are available. The daily discharge observations avail-5

able in between updates are included as asynchronous observations while the dis-
charge observations available at the time of updating are assimilated normally.

2.4.2 Estimated parameters

The horizontal hydraulic conductivities of meltwater sand (HK_mws) and quaternary
sand (HK_qs) are estimated, with the vertical conductivities tied to them at a ratio of10

10 : 1. Furthermore, the two parameters that control drainage, the drain level and the
drain time constant, are estimated, and so is the leakage coefficient, which controls the
groundwater-stream flow interaction. These parameters were selected based on their
scaled sensitivities as determined by using the AUTOCAL software (Madsen, 2003),
with HK_mws being by far the most sensitive towards both stream flow and groundwa-15

ter head. For a full list of sensitivity coefficients, the reader is referred to Rasmussen
et al. (2015). HK_mws, HK_qs, the drain time constant and the leakage coefficient were
transformed logarithmically, as their uncertainty is expected to span several decades.

3 Inverse modelling

In order to evaluate the performance of the data assimilation algorithm for parameter20

estimation using real observations, the model is also calibrated using AutoCal. A multi-
objective calibration approach is used, in which both groundwater head observations
and stream discharge observations are aggregated and optimized. The setup of pa-
rameters is similar to the one used in the data assimilation approach (see Sect. 2.4.2),
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with the same variable- and dependent parameters and initial values, in order to make
the results of the inverse modelling and the data assimilation directly comparable.

Root mean square error is used as objective function of both groundwater head
observations and stream discharge observations, and the two are aggregated using
transformation to a common distance scale (Madsen, 2003). Both objective functions5

are weighted equally in the aggregation, to ensure an equal importance on optimizing
both the stream flow and the groundwater head of the model.

3.1 Data availability

The Karup catchment was between 1970 and 1990 the subject of an extensive mon-
itoring campaign in which stream discharge and groundwater head were rigorously10

measured. As a result, groundwater head observations are available in 35 locations
(Fig. 1) with a frequency of 14 days−1, and daily stream discharge observations are
available in four locations in the stream network.

3.1.1 Synthetic test observations

A twin test approach is used in the first part of this study, meaning that a “true” model15

is defined, and that the observations to be assimilated are generated from the results
of this true model. The same model, but with perturbed parameter values, denoted
the base model, forms the basis of the ensemble that is used for data assimilation.
The setup is identical to that of Rasmussen et al. (2015), and the reader is referred
thereto for a detailed description and a list of parameter values. Groundwater obser-20

vations are made available at 24 locations that form a subset of the 35 locations in
which real observations are available (Fig. 1). The reason for omitting some of the ob-
servation locations is that they are located too close to the stream network, and act as
exchange between the groundwater model and the stream model. It was found that the
groundwater head of these grid cells are very sensitive to the stream flow simulation,25

and small changes in the head lead to significant changes in the stream flow. As such,
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they are not suitable for assimilation and were used only as validation observations.
Furthermore, one observation did not reflect the dynamics of the model due to its prox-
imity to the model boundary and was therefore omitted. In the twin test experiment the
groundwater observations are generated with a frequency of 28 days−1 and are added
a time-varying, normally distributed white noise with a standard deviation of 0.05 m5

and each are added a randomly generated (normally distributed) constant bias with a
standard deviation of 0.5 m.

Four stream discharge observations that coincide with the locations of real obser-
vations are included. The discharge observations are made available on a daily basis,
and are added a normally distributed white noise that is proportional to the observed10

value using a standard deviation of 5 % of the observed discharge, which is a common
error observed in real world observations of discharge (Herschy, 1999).

The states and parameters are updated every time groundwater head observations
are available, i.e. every 28 days, and the daily discharge observations available in be-
tween updates are assimilated asynchronously. Tests have shown that the length of the15

assimilation window is of little importance and therefore no other assimilation window
was tested.

3.1.2 Real observations

Like in the synthetic test, the same 24 groundwater head observation locations are
chosen for assimilation, while the remaining locations are used for validation. The real20

groundwater head observations are available with a frequency of 14 days−1, but to
avoid updating the states and parameters too often every other observation is assimi-
lated asynchronously, allowing an assimilation window of 28 days like in the synthetic
test. All four discharge observation locations are used for assimilation and are assimi-
lated asynchronously.25
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3.2 Model noise

Model noise is added to the ensemble through the forcings, i.e. precipitation and refer-
ence evapotranspiration, and the parameters. Noise on forcings is added as a Gaus-
sian noise with a standard deviation of 20 % of the observed value, while no spatial
correlation of the noise is considered.5

Noise is added in the form of a Gaussian zero mean distribution to a large number
of model parameters relating to all model processes and not just to the estimated
parameters. In total noise is added to 66 parameters, only five of which are estimated.
Adding noise to parameters that are not estimated helps maintain the spread of the
ensemble even as the spread of the estimated parameters is reduced. Note that the10

zero mean of parameter noise means that if the filter successfully estimates all of the
five included parameters, the ensemble of models is unbiased except for any bias there
may have been introduced through the sampling of parameter- and forcing noise.

3.3 Test scenarios

For studying the performance of the data assimilation using synthetic observations, the15

study includes the five scenarios listed in Table 1. All scenarios include bias estima-
tion, joint state updating and parameter estimation and simultaneous assimilation of
groundwater head and stream discharge observations.

When assimilating real observations, three scenarios are studied: ColFil and SepFil
and NoBiasEst (Table 2). The ColFil uses the ColKF, a damping factor of 0.1 and an20

ensemble size of 200, making it a combination of the Ens200 and Hdampen scenarios
studied in the synthetic test. The SepFil uses the SepKF and an ensemble size of 100.
The increase in ensemble size used when using real observations is due to the more
complex nature of the model and observation error caused by differing dynamics of
the observations and the model. For comparison, the NoBiasEst scenario uses no bias25

estimation.
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3.4 Performance indicators

The model simulation period is from 1 January 1968 to 31 December 1973, and is
divided into the following periods:

– 1969: Warm-up, in which the ensemble is propagated without being updated in
order to allow a spread in the ensemble of states to develop.5

– 1970: Preliminary assimilation of observations, which allows the filter to constrain
the states and parameters. The results of this period are not included in the per-
formance evaluation.

– 1971–1972: Assimilation of observations for evaluation. The results of this period
are included in the performance evaluation as an indicator for how well the filter10

performs. In the remainder of the report described as the “Assimilation period”.

– 1973–1974: Validation period, in which the ensemble is propagated but not up-
dated. It is used to assess the improvement in long term forecasting due to the
filter update.

3.4.1 Synthetic test performance indicators15

The performance of the filter when using synthetic observations is measured using
three indicators:

– The mean estimated bias error (“Mean Bias Error”), calculated as the average
difference (in all observation points) between the actual bias used to generate the
biased observation and the mean of the ensemble of estimated biases at the end20

of the assimilation period.

– The average root mean square error of the groundwater head (“Head RMSE”) in
all calculation points of the groundwater model domain for the assimilation period.
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– The Nash-Sutcliffe coefficient of the stream discharge at the outlet of the catch-
ment (“NS”) for the assimilation period.

3.4.2 Real data performance indicators

The performance of the filter when using real observations is measured using two
indicators:5

– The mean RMSE of all 35 groundwater head observation points for

a. The assimilation period

b. The validation period

– The Nash-Sutcliffe coefficient for stream discharge in the outlet of the catchment
for10

a. The assimilation period

b. The validation period

Furthermore, a deterministic model with the optimal parameter set (as determined
by the data assimilation algorithm) is used to evaluate the estimated parameters. This
model is designated “optimal model” and is evaluated using the above indicators. For15

comparison, the results of the optimized model using AUTOCAL is included (hereafter
designated “AutoCal model”).
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4 Results and discussion

4.1 Synthetic tests

4.1.1 Bias correction using the Colored noise Filter

The filter setup that is considered the baseline setup is ColFilEns50 in which the en-
semble size is 50 and the parameter updates are dampened by a factor of 0.1, while no5

damping of the state updating is performed. The baseline setup is adopted from Ras-
mussen et al. (2015) as this setup performed satisfactorily for the same catchment and
similar number of observations. However, Rasmussen et al. (2015) did not consider
bias correction.

The ColFilEns50 performed poorly in all three performance indicators as seen in10

Fig. 2. The average error in estimated bias is 0.47 m; worse than the average abso-
lute bias of the observations (0.38 m), and the filter often estimates a bias that is in
the wrong direction. This suggests that better, or at least similar poor results, could be
obtained by not correcting the bias. Furthermore, the updating of groundwater head is
often erroneous, as evident from the spikes in groundwater head RMSE (Fig. 3) that15

occur at the time of updating. This wrong updating may be explained by two issues: the
wrongly estimated bias, which compels the filter to update the states wrongly as it does
not know the unbiased observations, or the appearance of spurious correlation. Ras-
mussen et al. (2015) observed the same spikes in head RMSE when using unbiased
observations and concluded that they are caused by spurious correlation.20

The poor performance of the ColFilEns50 is unexpected, as an almost identical setup
was successfully used in Rasmussen et al. (2015), albeit using unbiased observations.
However, adding bias correction to the filter increases the state space that must be
spanned by the ensemble, thus potentially requiring a larger ensemble size.

Doubling or quadrupling the ensemble size to 100 and 200 respectively25

(ColFilEns100 and ColFilEns200 scenarios) resulted in major improvements in almost
all indicators (Fig. 2). In terms of estimating bias, the error is reduced by approximately
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50 % to 0.24 and 0.22 m respectively, and the head RMSE is reduced by 26 and 31 %.
However, as visible in Fig. 3, incorrect state updates still occur even with an ensemble
size of 200, and these result in the same peaks in stream discharge as observed when
using the baseline setup. As a result, the Nash-Sutcliffe coefficient is reduced when
using an ensemble size of 100, but increased with an ensemble size of 200.5

The increased performance, and the reduction in the spikes in head RMSE, supports
the hypothesis that the poor performance of the ColFilEns50 setup is caused primarily
by spurious correlation.

Dampening the update of groundwater head (ColFilHdamp scenario) had a profound
effect on all the performance indicators (Fig. 2). The mean bias error is reduced by 63 %10

compared to the baseline setup, and the NS is nearly doubled. Finally, the head RMSE
is reduced by 28 % to 0.32 m, which is higher than what is obtained by increasing the
ensemble size or retuning the localization algorithm, but still a significant improvement.

Dampening reduces the instant change in groundwater head, and as such reduces
the problems that arise due to the non-linear relationship between states as well as15

reducing spurious correlation. Furthermore, it reduces the numerical effects that come
from changing model states and parameters, in which the model attempts to regain
equilibrium. However, dampening the state updates causes a slower reduction in head
RMSE (Fig. 3), the value approximately converges to the RMSE of Ens100 and Ens200
within one year of assimilation.20

4.1.2 Bias correction using the SepKF

Using the SepKF (scenario SepFil) resulted in significant improvements over the
ColFilEns50 setup in all performance indicators compared to the ColKF setup with
the same number of ensemble members (ColFilEns50) (Fig. 2). The mean bias error is
reduced to 0.20 m, which is comparable to ColFilEns200 and ColFilHdamp setups and25

little drifting behavior is observed in the model (Fig. 5). NS is increased to 0.75, and
head RMSE is reduced to 0.34.
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4.1.3 Excluding discharge observations

When excluding the discharge observations (scenario SepFilNoQ), the filter performs
worse in all three indicators. Compared to the SepFil scenario, both the mean bias
error and the head RMSE is increased by 58 %, and the NS is reduced to −0.74. The
reduction in NS is explained by a bias in the estimated drain constant and drain level5

(Fig. 4) and by a poorer description of the groundwater head level as indicated by the
head RMSE. Rasmussen et al. (2015) showed that discharge observations are par-
ticularly valuable for estimating parameters and updating stream discharge, but less
valuable for groundwater head updating. They found that excluding discharge obser-
vation resulted in an improvement in groundwater head description when the spatial10

coverage of groundwater head observations is good, as there is a trade-off between
optimizing the stream flow and the groundwater head. However, the current results
suggest that discharge observations also helps improve the estimation of groundwater
head observation bias and consequently of the groundwater heads.

4.1.4 Bias-unaware filter15

Excluding bias estimation from the filter (NoBiasEst scenario) results, as expected, in
significant reductions in filter performance (Fig. 2). This scenario may be considered as
having an estimated bias of zero, and as such has a mean bias error of 0.44 m (i.e. the
average absolute bias used to generate the observations), which lead to an increase in
head RMSE of 6 % over the already poorly performing ColFilEns50 scenario and 50 %20

over the SepFil scenario. Furthermore, the NS was reduced to zero due to erroneous
updates of the groundwater head and poorly estimated parameters; in particular the
drain level and the drain constant (see Fig. 4). The omission of bias estimation also
resulted in significant (and expected) gradual deviation from the updated level (i.e.
drifting) as seen in Fig. 5.25

It is clear that omitting bias estimation when biases are present has a negative impact
on both state updating and parameter estimation. Updating the groundwater head to a
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biased observation level causes the head to return to an unbiased level when model
propagation is resumed and the model behavior becomes unnatural in the sense that it
is not controlled primarily by the input forcings, but rather by the model trying to retain
equilibrium. This results in deteriorated estimation of parameters and updates of model
states not only in the observation points but in the entire model domain.5

4.1.5 Comparison of the ColKF, the SepKF and the bias-unaware filter

The time varying estimated biases using the ColKF and the SepKF for each observa-
tion location are shown in Fig. 6. The figure compares the ColFilEns200 and the SepFil
scenarios, as they are the most easily comparable in terms of setup and performance.
Both scenarios have comparable mean bias error (0.22 and 0.20 m for ColFilEns20010

and SepFil respectively), but as Fig. 6 shows, there are significant differences in the
estimation of bias in most observation locations. The ColKF converges significantly
faster than the SepKF to the true value in most locations where the bias estimation is
successful, due to the inclusion of bias-state correlation in the ColKF. The SepKF also
underestimates the bias in some locations, most likely due to the simplifications and15

assumptions, notably the assumption that the bias error covariance is proportional to
the state error covariance.

Both methods reduce the bias error in most locations except in wells 39, 54 and 63.
The erroneous bias estimation may be because of the estimated parameter values.
Visual inspections of the groundwater head as a function of time (Fig. 5) reveals that20

there is no significant systematic deviation from the updated level (i.e. drifting) in the
ColFilEns200 and SepFil and therefore no update of the observation bias in the filter.
The lack of model drifting despite erroneous bias estimation is caused by the wrongly
estimated parameters, and as such this is an equifinality issue: the filter has been able
to produce non-drifting behavior of the model despite biased states, by using a biased25

parameter set. On the other hand, the NoBiasEst displays significant drifting in wells
8, 39 and 63, even when the updated states are unbiased (well 39) but as the filter is
unaware of bias, this is not corrected.
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The improvements gained from using the SepKF filter rather than the ColKF stem
from the reduction in uncertainty needed to be described by the ensemble, and thus
a smaller ensemble size is required. Ignoring the correlation between the bias and the
state reduces the complexity of the system, and if that correlation is negligible, as in
this case, there is little advantage in using the ColKF over the SepKF.5

The two bias correction methods were also compared in Drecourt et al. (2006) using
a simple one-dimensional groundwater model. While they did not consider the issue
of ensemble size, they too found that both the ColKF and the SepKF can success-
fully estimate biases and improve model forecasting abilities. They also noted that the
convergence of the SepKF is slower than the convergence of the ColKF, but the perfor-10

mances of the two methods were otherwise comparable.

4.2 Real data tests

The Nash-Sutcliffe coefficient for stream discharge and the mean RMSE of groundwa-
ter head can be seen in Fig. 7. When comparing to the base values data assimilation
with the separate bias filter (scenario SepFil), the colored noise filter (scenario ColFil)15

and the bias-unaware filter (scenario NoBiasEst) all result in increased Nash-Sutcliffe
coefficients and reduced mean head RMSE in the assimilation period.

In the NoBiasEst scenario, the model states are forced to match the observations as
any bias is ignored, which results in a lower mean head RMSE in both the assimilation
and the validation period (Fig. 7). However, the assumption of unbiased head obser-20

vations results in the NoBiasEst scenario having the lowest Nash-Sutcliffe coefficients
of the three scenarios due to a trade-off between stream discharge observations and
groundwater head observations, and it results in the drifting model behavior apparent
in Fig. 8, in which the model deviates strongly from the observed level in between up-
dates. In SepFil, bias estimation is included using the SepKF, which results in a higher25

Nash-Sutcliffe coefficient and a comparable head RMSE to that of the NoBiasEst sce-
nario. The effect of the bias estimation can be seen in Fig. 8 as the filter does not update
the groundwater head to the level of the observation but acknowledges a bias, which
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results in less drifting between updates compared to the NoBiasEst scenario. However,
the deviation is still significant, which indicates that the bias is underestimated for this
observation point. This is in line with the synthetic tests, where it was observed that the
SepFil tends to underestimate large biases.

In SepFil, bias estimation is included using the SepKF, which results in a higher5

Nash-Sutcliffe coefficient and a comparable head RMSE to that of the NoBiasEst sce-
nario. The effect of the bias estimation can be seen in Fig. 8 as the filter does not update
the groundwater head to the level of the observation but acknowledges a bias, which
results in less drifting between updates compared to the NoBiasEst scenario. However,
the deviation is still significant, which indicates that the bias is underestimated for this10

observation point. This is in line with the synthetic tests, where it was observed that the
SepFil tends to underestimate large biases.

The ColFil scenario results in higher mean head RMSE and slightly lower Nash-
Sutcliffe coefficient than the SepFil, but the ColFil optimal model (i.e. the deterministic
model using the parameter set estimated by the filter) performs better than the SepFil15

optimal model with respect to most indicators.
The ColFil scenario estimates significantly larger biases in most observation points

(Fig. 9), with an average absolute estimated bias of 0.63 m, compared to 0.19 m in the
SepFil scenario. With few exceptions, SepFil estimates a smaller bias than the ColFil,
though in most cases in the same direction. Different bias directions are estimated by20

the two filters in two of the 24 observation locations, as illustrated in Fig. 9, which may
be caused by significant differences in the estimated parameter values (see Fig. 10),
as is also seen in the synthetic test.

A bias of approximately zero is estimated in seven observation locations, while bi-
ases of up to 1.8 m are estimated in others. In most locations however, the bias appears25

underestimated, as exemplified by Fig. 8. This underestimation is observed as drifting
and is likely caused by two factors. For the SepKF, the update of bias is constrained by
the γ parameter, meaning that a too low value of γ may limit the update too much and
thereby make the filter unable to estimate the correct bias, while a too high γ value is
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likely to yield unstable bias estimates. A test was made using a γ value of 0.3 (the value
used in SepFil is 0.1), which resulted in increases in the estimated biases, but also re-
sulted in unstable bias estimates that changed significantly with each time step as the
filter did not properly distinguish biases, random error and model dynamics. Further-
more, as more and more observations are assimilated and the spread of the ensemble5

of states is reduced, the update of the biases is smaller as the bias error covariance
is assumed proportional to the state error covariance. If the ensemble spread of states
is reduced too much, or even collapses, before correct biases are estimated, the bias
estimation effectively stops. A similar consideration is applicable to the ColKF, as the
ColKF operates with an ensemble of biases, and the spread of the ensemble of biases10

(and thereby the bias error covariance) is independent of the ensemble of states. If the
spread of the ensemble of biases is too small, bias estimation effectively stops.

Comparing the optimal models of the ColFil, the SepFil and the NoBiasEst with the
base model and the AutoCal model reveals a clear difference between the assimilation
period and the validation period. While the optimal models produce lower NS for the15

assimilation time than both the base model and the AutoCal model, there is a clear
improvement in the NS in the validation period over both the AutoCalModel and the
base model. This suggests that AutoCal has produced a biased parameter set, which is
not the case using any of the three Kalman Filters. However, the value of bias correction
for parameter estimation is unclear, as there is no significant difference in the validation20

NS of the bias-aware Kalman filters and the bias-unaware Kalman Filter.
This tendency is not present in head RMSE, where the optimal models perform more

poorly in terms of head RMSE than the base model and the AutoCal model. While it is
to be expected that the AutoCal model would produce lower head RMSE than both the
ColKF and the SepKF since the AutoCal model has been optimized specifically based25

on the head RMSE, it was expected that the optimal models of the ColKF and SepKF
would produce improvements over the base model. However, it should be noted that
the evaluation of model performance is based on the possibly biased observed values,
and that the estimated biases have not been taken into account in the head RMSE
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calculations. The lack of clear improvement in the optimal models may be explained
by the fact that there is little room for improvement with the current model structure
as underlined by the relatively small improvements between the AutoCal model and
the base model. It may also in part be explained by the underestimation of the biases
in both the ColFil and SepFil scenarios. Improving the model structure and the filter5

setups may improve the potential of estimating parameters, but with the current results
the value of data assimilation for parameter estimation is not clear.

5 Conclusions

Observation bias is a notable challenge in integrated hydrological modelling and needs
to be addressed when applying data assimilation to the models. Updating the states10

of a model to match strongly biased observations will decrease filter performance and
may even cause numerical instability. The two methods for correcting observation bias
presented in this study can help reduce the bias issue in data assimilation and im-
prove filter performance. Both methods improved the groundwater head and stream
discharge of the model, and with varying degrees of success estimated the observa-15

tion bias when using synthetic observations. When using real observations, both bias
estimation methods resulted in improved stream flow modelling, but little improvement
was seen in groundwater heads.

The main difference in the bias correction methods analysed is the interaction be-
tween the bias and the states. While the ColKF takes advantage of the full covariance20

matrix, the SepKF only takes into account the interaction that is present from the state
to the bias and not the other way around. While this is a limitation of the SepKF, it results
in a lower requirement for ensemble members, meaning that for smaller ensembles, the
SepKF outperforms the ColKF. To obtain similar results to those of the SepKF when
using the ColKF, the ensemble size needed to be doubled or even quadrupled, or the25

updates of the states needed to be dampened in an attempt to reduce the spurious
correlations.
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Most of the model parameters were successfully estimated in the synthetic tests, but
biased observations introduces issues with equifinality. A biased parameter set may
produce unbiased model behavior (i.e. without drifting) in one or more observations
even if the estimated bias is incorrect. As a result, the filter does not update the bias
of the observation, and the erroneous parameter set is not corrected. This resulted5

in significantly different parameter sets estimated by the different filters for both the
synthetic tests and the tests using real data.
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Table 1. Overview of setups studied in the synthetic tests.

Setup ColFil ColFil ColFil ColFil SepFil SepFil NoBias
Ens50 Ens100 Ens200 Hdamp NoQEst

Ensemble size 50 100 200 50 50 50 50
H damping factor 1 1 1 0.1 1 1 1
Q damping factor 1 1 1 1 1 1 1
Parameter damping factor 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Head observation SD (m) 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Discharge observation SD (–) 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Observation types assimilated * Q, H Q, H Q, H Q, H Q,H H Q, H
States updated ∗ Q, h, H Q, h, H Q, h, H Q, h, H Q, h, H Q, h, H Q, h, H
Bias correction method ColKF ColKF ColKF ColKF SepKF SepKF –

∗ Q: stream discharge, h: stream water level, H : groundwater head
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Table 2. Scenarios studied in the real data tests.

Setup ColFil SepFil NoBias Est

Ensemble size 200 100 100
H damping factor 0.1 1 1
Q damping factor 1 1 1
Parameter damping factor 0.1 0.1 0.1
Head observation SD (m) 0.05 0.05 0.05
Discharge observation SD (–) 0.05 0.05 0.05
Observation types assimilated Q, H Q, H Q, H
States updated Q, h, H Q, h, H Q, h, H
Bias correction method ColKF SepKF –
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Figure 1. The Karup catchment with locations of discharge and hydraulic head observations.
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Figure 2. Mean bias error, NS and H RMSE for the years 1971-1972 in the synthetic test.
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Figure 3. The temporal variation of Head RMSE in the synthetic test.
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Figure 4. Spread of estimated parameters at the final update (Synthetic test). Thin blue lines
show the total spread of the ensemble and thick blue lines show the 25th and 75th percentile.
Dots show the mean of the ensemble. The horizontal lines show the true parameter value (black
line) and the base parameter value (magenta line).
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Figure 5. Groundwater head as a function of time in four selected observation locations for the
year 1972 (Synthetic test).
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Figure 6. Estimated bias in the ColFilEns200 and SepFil scenarios as a function of time in the
synthetic tests, compared to the true bias value used to generate the biased observations.
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Figure 7. Nash-Sutcliffe coefficient for stream discharge (left) and mean RMSE of groundwater
head observations (right) in the assimilation and validation periods respectively (real data).
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Figure 8. Groundwater head as a function of time in head observation location well 64 (real
data).
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Figure 9. Estimated bias in the ColFilEns200 and SepFil scenarios as a function of time in the
synthetic tests, compared to the true bias value used to generate the biased observations.
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Figure 10. Spread of estimated parameters at the final update (real data). Thin blue lines show
the total spread of the ensemble and thick blue lines show the 25th and 75th percentile. Dots
show the mean of the ensemble. The horizontal lines show the AutoCal parameter value (black
line) and the base parameter value (magenta line).
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