
Anonymous Referee #1 

Thank you for your comments. We have here tried to answer these point-by-point. 

Comment: The introduction does not have enough depth. Significantly more work has been done on bias 

estimation through data assimilation in hydrology, and hardly any of this work has been discussed. At least a good 

effort is needed to improve this.  

Changes: We have added more references to parameter estimation in data assimilation as well as bias estimation 

and have hereby placed our work in a broader perspective.  

 

Comment: A number of issues regarding the data assimilation algorithm are very unclear. On page 8137, the 

authors state that a linear operator H is used when assimilating data. But the authors assimilate discharge, and the 

relationship between discharge and ground water levels and soil moisture is nonlinear. We need more detail on 

how the data assimilation system is set up. Clearly define which variables are in the state vector, and which in the 

observation vector. 

Reply: A linear operator is used as stream discharge is observed directly and so is groundwater head. The state 

vector contains both of these variables plus stream water level, all of which are model states. As such, there is no 

need for a nonlinear operator. However, we agree that the state vector is not clearly defined. 

Changes: In section 2.4.1 (State variables), the following is inserted: “In this study, the state vector contains 

groundwater head, stream discharge and stream water level, all of which are updated at each updating time step.” 

 

Comment: Also on page 8137, what is the "observation covariance"? Is this the observation error covariance?  

Reply: Yes. 

Changes: Changed. 

 

Comment: On page 8139, it is explained how the localization weight is calculated. But it is still not clear to me how 

exactly this is used. Please provide some more explanation.  

Reply: We have expanded on the description, and refer the reader to Rasmussen et al. (2015). 

Changes: Inserted into section 2.3.2 (Localization): “As each state vector member is analyzed in the ETKF, the 

ensemble of model observations (i.e. the ensemble of model states at the observation locations) is generated, and 

the sample correlation coefficient between each of the model observations and the state member is determined. 

The localization weights of the observations to the state member being analyzed are then calculated from the 

correlation coefficients as follows.” 

 

Comment: Also on page 8139, make it more clear how H is extended. It is stated that H is extended accordingly, 

but that is not enough detail. Please also see my earlier comment on the linearity of H.  

Reply: We agree that the description is not adequate.  

Changes: The sentence is changed to “The mapping matrix H is extended according to equation 10”, with equation 

10 showing the relationship between the extended state vector and the vector of model observations. 



 

Comment: I have a serious problem with using covariance inflation. A number of papers have shown that when the 

ensemble is adequately generated, this is not necessary. More-over, this inflation will make the algorithm 

inconsistent with its theoretical derivation, and therefore will make it work suboptimal. This needs to be at least 

mentioned and discussed.  

Reply: We agree that the use of covariance inflation is unfortunate. However, the issue has been widely 

researched and is commonly used in a multitude of data assimilation applications. As the reviewer remarked, 

covariance inflation is unnecessary if the ensemble is adequately generated, but this is not likely to be the case in 

this study, as the uncertainty of different aspects of the physical system is unknown.  

Changes: The issue with using covariance inflation as described by the reviewer has been noted in the paper: 

“Using covariance inflation is, like using localization, inconsistent with the derivation of the filter and only necessary 

due to inadequate or incorrect noise description and ensemble generation. However, due to the complex nature of 

the model, generating an ensemble that perfectly represents the uncertainty of the model is difficult and 

particularly in the test using real data outside the scope of this paper.”  References to applications of covariance 

inflation have been added to the first paragraph of the section. 

 

Comment: I also have a question with using damping (page 8140). This is (the way I understand it) not consistent 

with covariance inflation. First, this inflation is applied to make sure the updates are sufficiently large, but then the 

damping is applied to reduce the updates. This needs a much stronger justification. Again, this is inconsistent with 

the theoretical derivation of the filter, and will thus make the results suboptimal. And I really think that both these 

tricks (inflation and damping) could be avoided through a better ensemble generation.  

Reply: Damping, like inflation and localization, does indeed make the filter suboptimal. However, with the 

complexity of the physical system, the model, and the state vector structure, we found that “tricks” such as these 

are necessary, and that mathematical optimality is not feasible with the current knowledgebase. This also seems 

to be the general opinion in the scientific community, as witnessed by the multitude of data application research in 

which inflation, localization and damping is used without much discussion. Damping does reduce the updates, but 

it does not cancel out the inflation; not partly nor completely. After the update of states and parameters, damping 

actually helps to maintain the spread of the ensemble, as the update is likely to reduce the spread of the ensemble 

to a near collapse.  

Changes: None. 

 

Comment: Below equation 15, please again provide more details on the augmentation of H.  

Changes: The equation showing the relationship between the unbiased model observation and the biased model 

state has been included. 

 

Comment: Equation 21: The updated bias is calculated as the old one minus the gain multiplied by the innovation. 

I have a question about this minus. In all papers on observation bias estimation there is a plus here. Assume that 

there is a large bias between observations and results. From equation 21 this bias will reduce. Plugging this 

reduced bias into equation 22 the unbiased states will increase while they shouldn’t. Perhaps it is a typing error but 

please double check this. If it is correct, I would suggest to explain why the minus is there, as opposed to the other 

papers on observation bias estimation. 

Reply: Correct; the minus is a simple typing error.  



Changes: Corrected. 

 

Comment: Section 2.3.7.: why not update the states each time a discharge observation is available? This would or 

at least should lead to better results.  

Reply: Updating the states every time observations are available is very time consuming and more importantly was 

found to induce numerical instability in the model after the update. Updating causes certain spin-up effects, in 

which the groundwater part of the model attempts to return to stable state, and updating the states before the 

equilibrium has occurred led to increasingly erroneous updates and eventual numerical instability. Furthermore, 

the slow dynamics of groundwater means that little or no change in groundwater head occurs in one day, and 

updating would be unnecessary. Any “Stand-alone” updating of stream discharge (without updating the 

groundwater head) would quickly be cancelled out by the groundwater-stream interaction.    

 

Comment: Section 2.4.1.: This is a mistake that is made in a large number of papers in hydrology on discharge 

assimilation. Discharge is NOT a state variable, it is a diagnostic variable. State variables have to be seen as initial 

conditions, to which you apply the model equations, and then you get the results that you update with the Kalman 

filter. Discharge is simply NOT a state variable, it is a model output. If you enter the discharge in the state vector, 

and you check the requirements of observability and controllability, they would not be fulfilled. If one wants to 

assimilate discharge into a hydrologic model, the discharge has to be entered in the observation vector, and the 

soil moisture and water table levels in the state vector. The observation system is in this case NONLINEAR. There 

are a number of papers on this, that the authors really should read. Please note that this is the same principle as 

for example assimilating radar backscatter values or surface brightness temperatures into a hydrologic model. 

Reply: It is correct that for typical lumped, conceptual rainfall-runoff models discharge is not a state variable. In this 

case the state typically consists of the water content in different conceptual reservoirs. However, since the model 

is predicting the discharge (i.e. the model includes the inverse observation operator), one can include discharge in 

the state vector and thereby obtain a linear observation operator (see e.g. Clark et al., 2008). With the MIKE SHE 

model the state description is different. The MIKE SHE model includes the MIKE 11 river model, which uses an 

alternating calculation scheme, where calculations of discharge and water levels are performed in every other 

calculation point, and both variables are required to be updated and used as initial conditions. Both stream 

discharge and stream water level are therefore included in the state vector and updated simultaneously with the 

groundwater head. The observation operator is in this case linear, as both discharge and groundwater head are 

observed directly. 

 

Comment: The last sentence before section 3.1.2. is a little bizarre: "Test have shown that the length of the 

assimilation window is of little importance and therefore no other assimilation window was tested." Doesn’t this 

sound a bit contradictional?  

Reply: Agree. 

Changes: Changed to “Precursive tests have shown that the length of the assimilation window is of little 

importance and therefore no other assimilation window lengths were evaluated in this study.” 

 

Comment: Section 3.1.2.: I do not agree with the statement that updating every observation is too often, I actually 

think the opposite is true. This may be the result of issues in the setup of the filter, as I explained in my earlier 

comments.  

Reply: See earlier reply. 



 

Comment: Last sentence before section 3.3.: If you plug an ensemble of forcings and parameters into a nonlinear 

model, and even if these ensembles are unbiased, it is very likely that the resulting ensemble of model results will 

be biased, because of the nonlinearity. Please add this explanation. 

Changes: Added: “Note that due to the nonlinearity of the model, the noise, while unbiased, is likely to cause some 

bias in the ensemble of model results.” 

 

Comment: Just a detail: section 3.4.: why are data this old being used? 

Changes: Added to section 2.2.1 (The Karup catchment): The catchment was the subject of an extensive 

monitoring campaign between 1970 and 1990, and the large amount of observations available makes the 

catchment an excellent subject for the study of hydrological data assimilation. 

 

Comment: Section 3.4.2.: are the RMSEs biased or unbiased?  

Reply: The RMSEs are biased, but are still (with reservations) an expression of the ability of the model to recreate 

the dynamics of the process as observed in the observations. 

Changes: None. 

 

Comment: Page 8155: It is true that both methods were tested in Drecourt et al, but they looked at model biases, 

not observation biases. This should be clarified.  

Changes: Clarification inserted: “[is similar to the one derived and presented in Drecourt et al (2006)] but modified 

to estimate observation bias rather than model bias” 

 

Comment: End of page 8156 and top of page 8157: you could actually calibrate this gamma parameter. Why not 

try this?  

Reply: Calibrating the gamma-parameter is a good idea, but we feel that it falls outside the scope of the current 

study. It is however something that we will consider in follow-up studies. 

Changes: None. 

 

  



Anonymous Referee #2 

Thank you for your comments. We have here tried to answer these point-by-point. 

Comment: Page 8131, Lines 12-20. There have been other data assimilation studies that have focused on 

updating system state variables and system parameters in an integrated hydrological (groundwater-surface water) 

framework. These probably should be mentioned. They include: 

 

Kurtz, W., H.-J. Hendricks Franssen, P. Brunner, and H. Vereecken (2013), Is High-Resolution Inverse 

Characterization of Heterogeneous River Bed Hydraulic Conduc-tivities Needed and Possible? Hydrol. Earth Syst. 

Sci. 17 (10): 3795–3813. doi:10.5194/hess-17-3795-2013. 

 

Bailey, R.T., and Baù, D. (2012), Estimating geostatistical parameters and spatially-variable hydraulic conductivity 

within a catchment system using an ensemble smoother. Hydrology and Earth System Sciences, 16, 287-304. 

Changes: The above references have been added to the paragraph. 

 

Comment: Section 2.2.2 – what is the discretization of the stream network? Is it the same that is used for the 

aquifer? Are the groundwater and surface water processes coupled, or just linked? (linked = no iteration during the 

time step, just passing values between the stream model and the aquifer flow model)? 

Changes: The following has been inserted into the section “The stream model network is set up using an 

alternating calculation scheme in which discharge and water level is calculated respectively in alternating points, 

and is independent from the groundwater model discretization Exchanges of water between the two processes is 

taken place in the groundwater model grid cells where a river branch is present.. The exchange takes place at 

every groundwater model time step.”. 

 

Comment: Section 2.2.3 – spatial variability of streambed parameters (i.e. “leakage coefficient controls”) has been 

a focus of research during the past few years, particularly in integrated hydrological modeling. How does using 

spatially-uniform stream model parameters influence the model results? Could this have an impact on the data 

assimilation results, particularly since some of the observation wells are close to the stream network and hence 

could be influenced by spatially-variable groundwater-surface water interactions? 

Reply: The use of a spatially variable leakage coefficient would without a doubt have improved model performance 

and would have been preferable, but we believe it not to be feasible at the current scale and especially at the 

current discretization of the groundwater model. Furthermore, we believe that the current discretization is a much 

bigger source of error in the groundwater-stream flow interaction than the uniform parameterization of the leakage 

coefficient. Partly due to the errors in the groundwater-stream flow interaction, the observation points closest to the 

stream network was omitted from the assimilation as described in section 3.1.1. 

Changes: None 

 

Comment: Page 8142, Line 18. Why choose a standard deviation of 0.6 m? Is this based on field data? Were 

other values tested? 



Reply: The chosen value is based on the multitudes of tests and experiments that were performed before the 

results shown in this paper. The impact of the parameter was not deliberately tested, as the parameter did not 

appear to be particularly important to the estimation of bias. 

Changes: The following is inserted in to the section: “The standard deviation vas chosen based on precursive 

testing in the synthetic test environment, that showed that this value generally led to the best estimates of bias.” 

 

Comment: Page 8145, Lines 20-21. I am confused by this. Isn’t the point of the DA methodology to estimate the 

parameters? (i.e. “calibrate” the model?) So then why is the model calibrated using AutoCal? I am not sure how 

this fits into the general aims of the study. 

Reply: We believe there has been a misunderstanding. The calibrated model is only used as a reference point to 

compare the parameter estimation of the data assimilation algorithm. 

Changes: The sentence is extended for clarification: “[the model is also calibrated using AutoCal] in order to be 

able to compare the parameter estimation through data assimilation with parameter estimation through more 

common method, such as inverse modelling” 

 

Comment: Section 2.4.2 – Is Hydraulic conductivity spatially-uniform throughout the catchment? Is this realistic? It 

seems that K should be specified as spatially-variable (ac-cording to geostatistics), and the K field should be 

updated using the system-response measurements. 

Reply: As described in section 2.2.3, the parameterization of the groundwater model, including K, is based on a 3D 

geological model. The parameters are assigned to each unit of the geological model, and this parameterization is 

mapped to the 2D computational grid in a preprocessing step (built into the model code), that follows each 

parameter update.  

Changes: Added to section 2.4.2: “Note that the estimated hydraulic conductivities are those of the geological 

units, that are gridded to the computational grid before further propagation of the ensemble (see section 2.2.3)”. 

 

Comment: Section 2.3.7 - Please provide more information regarding the “Asynchronous assimilation”. Are the 

daily discharge measurements averaged over the 28 days, and then the average discharge is assimilated at the 

update time? 

Reply: The method does not average discharge, but involves saving the individual asynchronous observations and 

model results, and thus improving the update at the time of updating through correlation in time. 

Changes: Added to the section: “The state vector is extended with model results for asynchronous observation 

times and the observation vector is extended with the asynchronous observations. After that, the asynchronous 

observations and model results are simply treated as normal model states.” 

 

Comment: Page 8140, Line 21. Change “hereby” to “thereby” 

Changes: Changed. 

 



Comment: Section 3.4. A 1-year warm-up period does not seem long enough to provide a significant spread in the 

ensemble, given the slow travel time of groundwater. Could you please quantify the spread of the ensemble at the 

end of 1969, to demonstrate that enough spread occurred? 

Reply: The catchment is geologically dominated by sand, and thus highly permeable. An ensemble spread 

therefore builds up very fast. 

Changes: Added to section 3.4: “At the end of the year 1969, the spread of the ensemble of groundwater head is 

between 0.8 and 2.1 m (depending on the location in the catchment), which is considered sufficient for assimilation 

to commence.” 

 

Comment: In the Results section, please provide a 1:1 plot (simulated vs. observed) of groundwater head for some 

of the scenarios. Perhaps show a “before” and “after” plot (without and with data assimilation) to demonstrate the 

improvement of the hydrologic system when DA is used. Also, a plot to compare the results of the different 

scenarios, with the ensemble mean used for the simulated results. 

Reply: 

Changes: 1:1 plots of groundwater head in selected observations in selected observation locations has been 

added, including a comparison of the base model (i.e. no DA) and SepFil and ColFil_ens200 scenarios. Plots 

comparing the results of different scenarios (mean of the ensemble) are already present in the paper, namely 

figures 5 and 8 showing head as a function of time in the synthetic test and real data tests respectively. 

 

Comment: Section 5: please provide conclusions, rather than just a summary of the study and discussion of 

results. What are the implications of the results? How can results be used in future studies, particularly in 

applications to real-world watershed systems? 

Changes: Added to the end of the conclusion: “The study has shown that hydrological observational bias can be 

corrected in a data assimilation scheme and that it can improve state updating and parameter estimation. With 

both model- and observational bias being significant sources of error in hydrological modelling which will have a 

negative impact on the performance of data assimilation in hydrological models, the results provide an important 

advancement of application of hydrological data assimilation in large scale, integrated hydrological models.” 

  



Anonymous Referee #3 

Thank you for your comments. We have here tried to answer these point-by-point. 

Comment: The first issue is that, despite the authors’ claim that they “discuss the challenges associated with 

coupling two processes (groundwater and stream flow) in a single filter”, the discussion is strongly biased towards 

the performance of the filters, little attempt is made to relate the results to the physical processes occur-ring within 

the catchment, and model results are never showed in terms of stream discharge. The scarcity of information 

given about the model itself does not help in this respect. I understand the model is not new and has been used in 

many studies before, but I think a more detailed description is warranted, especially concerning the coupling 

between the various hydrological components. 

Reply: We agree that the wording cited in the comment is not representative of the paper’s content and focus. 

However, the focus on the filter performance rather than the specific physical processes modelled in this study, 

which is reflected in the content and structure of the paper, is intended. The previous paper, Rasmussen et al. 

(2015), has a broader focus in which the two processes are evaluated separately and compared. 

Changes: The sentences cited have been replaced by the following: “We discuss the challenges associated with 

observational bias in hydrological data assimilation for both state updating and parameter estimation. Two existing 

methods of estimating observation bias, the separate bias Kalman Filter and the augmented state vector 

approach, are tested and the results compared. The novelty of the study lies in the focus on data assimilation bias 

estimation in a complex, integrated hydrological model as well as the impact of bias on parameter estimation using 

both synthetic tests and real world observations.” Furthermore, more information has been added on the model 

coupling in section 2.2.2. 

 

Comment: Another main issue of this paper is that it refers extensively to another (companion?) paper from the 

same authors, also submitted (and very recently published) to HESS. As far as I understand, the only difference 

between this paper and the other is that here bias correction is considered, while all the remaining contents of the 

present manuscript (methods, model, study area) have been already included in the previous paper. In other 

words, the results of this study provide only a marginal contribution to the literature. It is not for me to decide 

whether the contents of this manuscript alone warrant publication in HESS, but I honestly think that the results 

presented here could (and should) have been included in the previously published paper as additional sections. 

Reply: It is true that the model, study area and part of the method are similar to that of the previous paper, which is 

why it is referenced so extensively. The added information of this paper is indeed bias estimation, but also the 

assimilation of real observations, which is still not common at this scale – particularly in conjunction with bias 

estimation. As such, we believe that the new findings presented in this paper can stand alone and that the findings 

are novel and thus warrant a separate paper. However, as stated in the comment above, we agree that the 

objective of the paper, as described in the introduction, does not convey this, and it has therefore been changed.   

Changes: Same as in the above comment. 

 

Comment: Page 8136: most of Section 2.2.2 is a model description, not setup. I suggest merging it with Section 

2.1. 

Changes: The section has been merged into section 2.1.  

 

Comment: Also, more details about the model are needed, especially as regards the coupling. E.g., what are the 

parameters “drain level” and “drain time constant” and what is their physical meaning? Are they relevant for the 

coupling of surface and subsurface flow? 



Changes: A description of the parameters has been added to section 2.2.3 (Model parameterization): “The drain 

level and drain time constant parameters control the amount of groundwater drained to the nearest stream once 

the groundwater table exceeds the drain level, and are as such linking the groundwater module and the stream 

flow module of the model. The drain simulation represents the subsurface tile drain systems installed under most 

farmlands as well as the natural lateral flow processes that often occur in the topsoil. The leakage coefficient is 

another coupling parameter, which represents the hydraulic properties of the thin layer of the sediments at the 

bottom of the stream. This parameter is of particular importance with regard to river base flow.”. Also, the following 

has been added regarding the coupling between the processes: “The stream network model is set up using an 

alternating calculation scheme in which discharge and water level is calculated respectively in alternating points, 

and is independent from the groundwater model in discretization, but exchanges of water between the two 

processes is made available in model grids of the two processes that physically overlap.”. 

 

Comment: Regarding the setup, what are the initial and boundary conditions used in this study? 

Changes: The following is added to section 2.1 (Model): “The groundwater model initial conditions is based on an 

extended warm-up of the model, in which a quasi-steady state develops, while the stream flow initial conditions 

was calculated assuming a steady state condition.” 

 

Comment: Page 8137, lines 5-7: as far as I know, even a standard EnKF does not require the full covariance 

matrix, as the product HP(PH)T can be assembled directly. Please rephrase the sentence. 

Changes: The sentence has been changed to: “It is computationally more efficient than the EnKF and is 

furthermore deterministic, meaning that the observations in the filter are not perturbed, which reduces the impacts 

introduced by sampling uncertainty”. 

 

Comment: Page 8141: Eqs (12), (13), and (14) can be merged into a single equation. 

Changes: The equations have been merged into a single equation. 

 

Comment: Page 8142, lines 9-13: in my experience, discharge observations in natural rivers can be as biased (if 

not more) than groundwater head observations, due to the need of a rating curve that is often accurate only for low 

flow rates and extrapolated for high flow rates. This statement should be relaxed, or at least appropriate 

references should be provided to justify it. 

Reply: We agree that bias on discharge observations can be as significant as groundwater head bias and that the 

sentence should be relaxed.  

Changes: The sentence has been changed to: “This study assumes no bias in discharge observations, meaning 
that the only biased observations are the groundwater head observations.  In real world observations, discharge 
observations would usually also be biased, but this bias is not considered in this paper in order to simplify the 
problem.” 

 

Comment: Page 8142, lines 14-18: this is not clear. Either the initial bias is zero in all the locations or it is 

generated from a distribution with 0.6 m standard deviation and 0 mean. Please clarify. 

Reply: We agree that the sentence is unclear. 



Changes: The sentence has been changed to “In this study, the initial estimate of bias in all observation points is 

generated by sampling from a normal distribution with a standard deviation of 0.6 m and a mean of 0.” 

 

Comment: Page 8148, line 16: I can see seven scenarios in Table 1, not five. 

Changes: Corrected. 

 

Comment: Page 8152, lines 2-5: this explanation for the reduction of NS coefficient when passing from an 

ensemble size of 50 to 100 and increase when passing from 100 to 200 is not convincing. Definitely more details 

are needed here to explain the model behavior. For instance, I suggest adding to Figure 3 (in another panel) some 

comparison between the true discharge and the discharge in the assimilation scenarios. Also, why don’t you show 

in Figure 3 the results of the other scenarios (SepFil, SepFil NoQEst, and NoBias)? Finally, the open loop results 

(simulations without data assimilation) should be added as well, to evaluate the real benefits of data assimilation in 

this series of simulations. 

Reply: The same issue with stream discharge (i.e. the peaks caused by spurious correlation) was observed and 

discussed repeatedly in Rasmussen (2015). The peaks in stream discharge from spurious correlation dominate 

the performance indicator, which makes comparison between scenarios difficult due to the random nature of 

spurious correlations. We do however agree that this point is not sufficiently well described in the paper. 

Changes: The following is inserted into the section: “As shown by Rasmussen et al. (2015), these spurious 

correlations are likely to result in increased drainage to the stream model, resulting in large errors in stream flow. 

The errors from spurious correlations in the stream flow model dominate the performance indicator and are, due to 

the nature of spurious correlation, random. [As a result, the Nash-Sutcliffe coefficient is reduced when using an 

ensemble size of 100, but increased with an ensemble size of 200.]” 

 

Comment: Page 8152, line 26: the reference to Figure 5 is given before any reference to Figure 4.  

Changes: The sequence of figures has been corrected (i.e. figures 4 and 5 have been switched). 

 

Comment: Also, I would expect more detailed comments about Fig. 5 other than “little drifting behavior is observed 

in the model”. 

Reply: The figure is referenced for the drifting behavior for each scenario (three) and finally referenced, described 

and discussed in depth in the section in which the scenarios are compared.  

Changes: The following is added to the discussion of the figure: “Figure 5 shows that the drifting behavior is 

generally most pronounced in the NoBiasEst scenario and least pronounced in the ColFIlEns200 scenario, with 

the drifting behavior of the SepFil scenario falling in between these two scenarios.” 

 

Comment: Page 8153, lines 4-7: I don’t see many differences in the drain level bias between SepFil and SepFil 

NoQEst, only in the drain time constant. Also, if these parameters are so important, they must be defined and 

discussed in more detail in the model description. 

Reply: Correct; the bias in estimated drain level is not significant.   



Changes: The sentence has been changed to: “The reduction in NS is explained by a bias in the estimated drain 

constant (Figure 4) and by a poorer description of the groundwater head level as indicated by the head RMSE”. 

Furthermore the parameters have been discussed in more detail (se previous comment) 

 

Comment: Page 8153, line 26 to page 8154, line 5: is this comment based on results showed in some figures? 

Reply: The statement is based on experience with the model and the data assimilation framework. But we agree 

that the sentence does not convey this, and should be changed. 

Changes: The sentence is changed to: “It is observed that updating the groundwater head to a biased observation 

level causes the head to return to an unbiased level when model propagation is resumed (i.e. it is drifting as seen 

in Figure 5). The model behavior becomes unnatural in the sense that it is not controlled primarily by the input 

forcings, but rather by the model trying to retain equilibrium. This can result in deteriorated estimation of 

parameters and updates of model states not only in the observation points but in the entire model domain.” 

 

Comment: Page 8155, Section 4.2: is the “base” model an open loop simulation? Please clarify.  

Reply: The base model is described in section 3.1.1 (Synthetic test observations) as a deterministic model. 

However, we agree that this needs clarification. 

Changes: Added to section 3.1.1: “Note that both the true model and the base model are deterministic models, 

that is, single, propagated models without any noise added.” 

 

Comment: Also, as for the synthetic tests, I suggest adding and discussing a figure showing the model results in 

terms of stream discharge. In my opinion, as the subject is an integrated hydrological model, it is important to 

investigate the model behavior with respect to all its hydrological components. 

Reply: As the model is integrated, we agree that it is important to evaluate both groundwater head and stream 

discharge, which is why we use the stream discharge Nash-Sutcliffe coefficient as one of the three indicators of 

performance. It is our belief that this indicator serves the purpose of evaluating the modelled stream flow, and that 

graphical representation of the stream flow would not add significant information to the paper.  

Changes: None. 

 

Technical corrections 

 

Comment: Page 8156, lines 5-12: this paragraph is repeated twice, please delete.  

Changes: Deleted 

 

Comment: Figures 4 and 10: please add units to the parameters. 

Changes: Units added. 

 



Comment: Figure 9: correct the caption. This figure does not refer to the synthetic tests. 

Changes: Corrected. 
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Abstract. The use of bias-aware Kalman filters for estimating and correcting observation bias in

groundwater head observations is evaluated using both synthetic and real observations. In the syn-

thetic test, groundwater head observations with a constant bias and unbiased stream discharge obser-

vations are assimilated in a catchment scale integrated hydrological model with the aim of updating

stream discharge and groundwater head, as well as several model parameters relating to both stream5

flow and groundwater modeling. The Colored Noise Kalman filter (ColKF) and the Separate bias

Kalman filter (SepKF) are tested and evaluated for correcting the observation biases. The study

found that both methods were able to estimate most of the biases and that using any of the two bias

estimation methods resulted in significant improvements over using a bias-unaware Kalman Filter.

While the convergence of the ColKF was significantly faster than the convergence of the SepKF, a10

much larger ensemble size was required as the estimation of biases would otherwise fail. Real ob-

servations of groundwater head and stream discharge were also assimilated, resulting in improved

stream flow modeling in terms of an increased Nash-Sutcliffe coefficient while no clear improvement

in groundwater head modeling was observed. Both the ColKF and the SepKF tended to underesti-

mate the biases, which resulted in drifting model behavior and sub-optimal parameter estimation,15

but both methods provided better state updating and parameter estimation than using a bias-unaware

filter.

1 Introduction

Sequential assimilation of observations in models is a widely used method in several fields, including

meteorology and hydrology. The method has repeatedly been shown to improve forecasting perfor-20

mance, reduce uncertainty, and optimize parameter values, and is still a topic subject to on-going

research.
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Data assimilation in hydrological models has been studied in a number of settings, from single

process models, modelling only a limited part of the hydrological cycle (e.g., Franssen et al., 2011;

Albergel et al., 2008; Moradkhani and Sorooshian, 2005), to integrated models incorporating all the25

relevant processes including precipitation, evapotranspiration, recharge and streamflow (e.g., Cam-

porese et al., 2009; Shi et al., 2014; Rasmussen et al., 2015). The latter presents a number of chal-

lenges that have yet to be comprehensively addressed; particularly relating to the differences in pro-

cess time scales, e.g. between groundwater flow and surface runoff, and the coupling between these

processes. An integrated approach to hydrological modeling is however important in many applica-30

tions due to the exchange of water between the hydrological components; thus it remains important

to explore these aspects. In Camporese et al. (2009) the Ensemble Kalman filter (EnKF) was applied

to an integrated model of a synthetic tilted v-catchment and both stream discharge and groundwa-

ter hydraulic head observations were assimilated to update both groundwater and stream states. Shi

et al. (2014) applied the EnKF to an integrated land surface hydrological model of a small catchment35

and, using seven different observation types, successfully estimated six parameters and sequentially

updated the model states. Rasmussen et al. (2015) used the Ensemble Transform Kalman Filter to as-

similate groundwater head and stream discharge in a catchment scale integrated hydrological model

for both state updating and parameter estimation.
:::::
Other

::::::
studies

:::
that

:::::
focus

:::
on

::::
joint

::::
state

:::::::
updating

::::
and

::::::::
parameter

:::::::::
estimation

::
in

::::::::
integrated

:::::::::::
hydrological

:::::::::
modelling

::::::
include

:::::::::::::::::::
Bailey and Baù (2012),

::
in

::::::
which40

:
a
::::::::
smoother

:::
was

::::
used

::
to

:::::::
calibrate

::::::::
hydraulic

:::::::::::
conductivity

::::
using

::::::
stream

::::
flow

:::
and

::::
head

:::::::::::
observations,

::::
and

:::::::::::::::
Kurtz et al. (2013),

::::::
which

::::
used

::::
head

:::::::::::
observations

::
to

:::::::
calibrate

:::::::::::
heterogenous

::::
river

::::
bed

::::::::::::
conductivities.

Biases in both models and observations pose challenges to data assimilation in hydrology,
::::
and

::::
have

::::::::
previously

::::::
partly

::::
been

::::::
studied

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Dee and da Silva, 1998; Dee, 2005; Reichle et al., 2004; Lannoy et al., 2007; Bosilovich et al., 2007).45

Bias is found in all components of the hydrological cycle, and take a variety of forms. Notable ex-

amples are model bias stemming from model structure or parameter errors, and observation errors,

which is due to the difference in scale between point observations and gridded model variables. The

latter is a significant source of bias in many groundwater models, as the horizontal discretization of

the models is often large. If one is to update the groundwater head in a hydrological model using50

sequential data assimilation, this observation bias must be taken into account.

While the EnKF, and any derivation thereof, implicitly accounts for both model- and observation

uncertainty in the form of zero-mean white noise, model and observation biases remains an issue

that requires modifications to the filter. A few methods have been developed that attempt to estimate

biases online, and they have been applied successfully in many settings. With few exceptions, the55

bias aware filters can be grouped in two: Separate filter methods and augmented state methods. The

Separate bias Kalman Filter (e.g., Dee and da Silva, 1998; Pauwels et al., 2013; Drecourt et al., 2006)

uses a second Kalman filter for updating the biases. This second filter is independent from the filter

that updates the states, and the method can therefore not account for correlation between states and

2



biases. Alternatively, augmenting the state space with bias estimates (e.g., Derber and Wu, 1998;60

Dee, 2005; Drecourt et al., 2006; Fertig et al., 2009) allows the filter to account for the correlation

between states and biases, and is therefore useful when the bias is dependent on the observed values.

While most implementations of bias estimation assumes that the model is unbiased and that the

observations are biased, or vice versa, Pauwels et al. (2013) presented a method for estimating both

model bias and observation bias simultaneously using a double Separate bias Kalman Filter.65

This study uses both a synthetic test setup and real observations to test the application of bias cor-

rection to a data assimilation framework that assimilates groundwater head and stream discharge

observations in an integrated hydrological model for joint state updating and parameter estima-

tion. We discuss the challenges associated with coupling two processes (groundwater and stream

flow) in a single filter and the estimationof parameters in the presence of significant observation70

bias
:::::::::::
observational

::::
bias

:
in
:::::::::::
hydrological

::::
data

::::::::::
assimilation

::
for

::::
both

::::
state

::::::::
updating

:::
and

::::::::
parameter

:::::::::
estimation.

Two existing methods of estimating observation bias, the Separate bias Kalman Filter and the aug-

mented state vector approach, are tested and the results compared. The novelty of the study lies in the

holistic approach to sequential hydrological data assimilation , which accounts for parameter errors

and uncertainty, different process time scales in both model states and observations, and the presence75

of observation bias
:::::
focus

::
on

::::
data

::::::::::
assimilation

::::
bias

:::::::::
estimation

::
in

::
a

:::::::
complex,

:::::::::
integrated

:::::::::::
hydrological

:::::
model

::
as

::::
well

:::
as

:::
the

::::::
impact

::
of

::::
bias

:::
on

:::::::::
parameter

:::::::::
estimation

::
in

::::
both

::::::::
synthetic

:::
test

::::
and

:::::
using

::::
real

:::::
world

::::::::::
observations. While each of these aspects have previously been studied individually , the

combination of the aspects creates new challenges, which require particular attention.
::::
This

:::::
paper

:::::
shares

::::::
several

:::::::::
similarities

::::
with

:::
the

:::::::::
preceeding

::::::::::::::::::::
Rasmussen et al. (2015),

:::::::
notably

:::
the

:::::
model

:::::::::
catchment80

:::
and

:::::
setup,

::::
but

::::::
differs

::
in

:::
the

:::::
focus

:::
on

::::
bias

:::
and

::::
the

:::::::::
application

:::
of

::::
data

::::::::::
assimilation

:::
to

:::
real

::::::
world

:::::::::::
observations.

:::::::::::::::::::::::::::
Rasmussen et al. (2015) presents

:
a
::::::::
synthetic

:::::
study

::
of

::::
data

:::::::::::
assimilation

::
in

:::::::::
integrated

::::::::::
hydrological

:::::::::
modelling

::
in

:::::
which

:::
the

::::
filter

:::::::::::
performance

::
as

:
a
:::::::
function

::
of

::::::::
ensemble

::::
size

::
is

::::::::::
investigated

:::
and

:::
the

::::::
current

:::::
paper

:::::::
expands

::
on

:::
this

::::
and

::::
adds

:::
the

:::::::::
complexity

::
of

::::
bias

:::::::::
estimation

:::
and

:::
real

:::::
world

:::::
data.

85

2 Methods

2.1 Model

This study uses a transient, spatially distributed hydrological model based on the MIKE SHE code

(Graham and Butts, 2005). This code considers all major components of the land phase of the hydro-

logical cycle and the code allows the hydrological components to be dynamically coupled, meaning90

that feedback (i.e. exchange of water) between the processes is possible at each time step. The

feedback is of particular importance for the groundwater-stream interaction in areas where these

processes are closely linked, and it makes the model code particularly suited for investigation of

data assimilation in integrated hydrological modelling.
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2.2 Study area95

2.1.1 The Karup catchment

This study is based on the Karup catchment (Figure 1), which is located in the northern part of the

Danish Jutland peninsula. The catchment has an area of 440 km2 and agriculture is
:::
The

::::::::
coupling

:::::::
between

:::
the

::::::::::
unsaturated

::::
and

::::::::::
groundwater

::::::
zones

::
in

::::::
MIKE

::::
SHE

:::
is

:::::::::::
complicated,

::
as

:::
the

:::::::::
processes

::
in

:::
the

:::
two

::::::
zones

:::
are

:::::::::::::
interdependent.

::::::
When

:::::
water

::
is

:::::::::
exchanged

:::::
from

:::
the

::::::::::
unsaturated

::::
zone

::
to
::::

the100

:::::::::::
groundwater, the dominant land use, while the geology is dominated by highly permeable quaternary

sand. It is a very flat catchment, with a gentle south-north slope ranging from 93 m.a.s.l. in the

southern part to 22 m. a.s.l. in the northern part. The Karup river is the primary drainage feature and

it springs in the southern part and exits in the northern edge of the catchment. Along its path, the

Karup river is joined by seven smaller tributaries. The flat topography and sandy sediments implies105

that the Karup river is primarily groundwater fed, which emphasizes the importance of an integrated

approach to the hydrological modelling of the catchment, as the exchange between the groundwater

and the river is a predominant process of the hydrological response of the catchment
::::::::::
groundwater

::::
table

:::::
rises,

:::::::
thereby

::::::::
changing

:::
the

::::
flow

:::
of

:::
the

::::::::::
unsaturated

::::::
zone.

::::
This

::::::::
complex

::::::::::::::
interdependence

::
is

::
in

::::::
MIKE

::::
SHE

::::::::::
simplified,

::
as

:::
the

::::
two

:::::::::
processes

::::
only

:::::::::
exchange

:::::
water

::
at

:::::
every

:::::
time

::::
step

::
of

::::
the110

::::::::::
groundwater

::::::
model.

:::
As

:::
the

::::
time

::::
step

::
of

:::
the

:::::::::::
groundwater

:::::
model

::
is
:::::
often

:::::
much

::::::
longer

::::
than

:::
the

::::
time

:::
step

::
of

:::
the

::::::::::
unsaturated

::::
zone

::::::
model,

:::
the

::::::::::
groundwater

:::::
table

:
is
::::
kept

:::::::
constant

::::::
during

::::::
several

::::::::::
unsaturated

::::
zone

::::
time

:::::
steps.

::::
This

:::::
may

::::
lead

::
to

:::::
water

:::::::
balance

::::::
errors,

:::
and

::
in
:::

an
:::::::
attempt

::
to

::::::
reduce

:::::
these

::::::
errors,

:::::
MIKE

::::
SHE

:::
has

::
a

:::::::
coupling

::::::
control

::::
that

:::::
adjusts

:::
the

:::::::::::
groundwater

::::
table

:::
and

::::::::::
recalculates

:::
the

::::::::::
unsaturated

::::
zone

:::::
states

:
if
:::
the

:::::
water

:::::::
balance

::::
error

::
is
:::::
above

::
a
:::::::::::
user-specified

::::::::
threshold.115

The Karup catchment with locations of discharge and hydraulic head observations.

2.1.1 Model setup

An integrated model, which includes groundwater flow, vadose zone flow, evapotranspiration, sur-

face and streamflow is used in this study. Vertical groundwater flow components are neglected in the

study and groundwater flow is simulated based on the 2D Boussinesq equation. Each numerical el-120

ement of the groundwater flow model is coupled to a one dimensional model for vertical flow in the

vadose zone. For numerical and computational convenience capillary forces are neglected and only

gravity driven flow is considered, which is an option in the MIKE SHE code (Graham and Butts,

2005). Stream flow is simulated using the kinematic routing option.
:::
The

:::::::
stream

:::::::
network

::::::
model

:
is
:::
set

:::
up

:::::
using

::
an

::::::::::
alternating

:::::::::
calculation

:::::::
scheme

::
in

::::::
which

::::::::
discharge

:::
and

:::::
water

:::::
level

::
is

:::::::::
calculated125

::::::::::
respectively

::
in

:::::::::
alternating

::::::
points,

:::
and

::
is

::::::::::
independent

:::::
from

:::
the

::::::::::
groundwater

::::::
model

::
in

::::::::::::
discretization,

:::
but

:::::::::
exchanges

::
of

:::::
water

::::::::
between

:::
the

::::
two

::::::::
processes

::
is
:::::

made
::::::::

available
:::

in
:::::
model

:::::
grids

:::
of

:::
the

::::
two

::::::::
processes

:::
that

:::::::::
physically

:::::::
overlap.

::::
The

::::::::
exchange

::::
takes

:::::
place

::
at

:::::
every

:::::::::::
groundwater

:::::
model

::::
time

:::::
step.

Evapotranspiration is modelled using the Kristensen and Jensen (1975) model.
:::
The

:::::::::::
groundwater
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:::::
model

:::::
initial

:::::::::
conditions

::
is
:::::
based

:::
on

::
an

::::::::
extended

::::::::
warm-up

::
of

:::
the

::::::
model,

::::
win

::::::
which

:
a
:::::::::::
quasi-steady130

::::
state

::::::::
develops,

:::::
while

:::
the

::::::
stream

:::::
flow

:::::
initial

:::::::::
conditions

::::
was

:::::::::
calculated

::::::::::::
automatically

::::::::
assuming

::
a

:::::
steady

::::
state

:::::::::
condition.

A horizontal grid size of 1 km x 1 km is used, with a vertical discretization of the unsaturated

zone gradually increasing from 0.05 m at the top to 1 m below a depth of 10 m. Further details of

the MIKE SHE model application to the Karup catchment can be found in Rasmussen et al. (2015).135

2.2
:::::
Study

::::
area

2.2.1
:::
The

:::::::
Karup

:::::::::
catchment

::::
This

::::
study

::
is
:::::
based

:::
on

:::
the

::::::
Karup

::::::::
catchment

:::::::
(Figure

:::
1),

:::::
which

::
is

::::::
located

::
in
:::
the

::::::::
northern

:::
part

:::
of

:::
the

::::::
Danish

::::::
Jutland

:::::::::
peninsula.

::::
The

:::::::::
catchment

:::
has

::
an

::::
area

:::
of

:::
440

:::::
km2

:::
and

:::::::::
agriculture

::
is
:::

the
:::::::::

dominant

:::
land

::::
use,

::::::
while

:::
the

:::::::
geology

::
is

:::::::::
dominated

:::
by

::::::
highly

:::::::::
permeable

:::::::::
quaternary

:::::
sand.

::
It
::

is
::

a
::::
very

::::
flat140

:::::::::
catchment,

::::
with

:
a
:::::
gentle

::::::::::
south-north

:::::
slope

::::::
ranging

:::::
from

::
93

::::::
m.a.s.l.

::
in

:::
the

:::::::
southern

::::
part

::
to

::
22

:::::::
m.a.s.l.

::
in

:::
the

:::::::
northern

::::
part.

::::
The

::::::
Karup

::::
river

::
is

:::
the

:::::::
primary

:::::::
drainage

::::::
feature

::::
and

::
it

::::::
springs

::
in

:::
the

::::::::
southern

:::
part

::::
and

::::
exits

::
in

:::
the

::::::::
northern

::::
edge

:::
of

:::
the

:::::::::
catchment.

::::::
Along

::
its

:::::
path,

:::
the

::::::
Karup

::::
river

::
is
::::::
joined

:::
by

::::
seven

:::::::
smaller

::::::::::
tributaries.

:::
The

::::
flat

::::::::::
topography

:::
and

::::::
sandy

:::::::::
sediments

::::::
implies

::::
that

:::
the

::::::
Karup

:::::
river

:
is
::::::::

primarily
:::::::::::

groundwater
::::

fed,
::::::
which

::::::::::
emphasizes

:::
the

::::::::::
importance

::
of

::
an

:::::::::
integrated

::::::::
approach

:::
to

:::
the145

::::::::::
hydrological

:::::::::
modelling

::
of

:::
the

:::::::::
catchment,

::
as

:::
the

::::::::
exchange

::::::::
between

:::
the

::::::::::
groundwater

::::
and

:::
the

::::
river

::
is

:
a
::::::::::
predominant

:::::::
process

::
of

:::
the

:::::::::::
hydrological

:::::::
response

::
of

:::
the

::::::::::
catchment.

Figure 1.
:::
The

:::::
Karup

::::::::
catchment

::::
with

:::::::
locations

:
of
::::::::

discharge
:::
and

:::::::
hydraulic

::::
head

::::::::::
observations.
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2.2.2 Model parameterization

The geological model used in this study is a 3D model, which contains one dominant geological unit

(meltwater sand) and five lenses (clay, quartz sand, mica clay/silt and limestone), each with assigned150

parameters of hydraulic conductivity, specific yield and specific storage. The geological model is in

a preprocessing step converted into a 2D model by interpolating the parameter values and gridding

them to the computational grid,
::::::::
resulting

::
in

:
a
::::::::
spatially

:::::::
variable

::::
field

::
of

::::::::
hydraulic

:::::::::::
conductivity. The

parameter values of the stream model are assumed uniform throughout the model domanin
::::::
domain.

The drain level and the drain time constant control the drainage flow to the river, while the leakage155

coefficient controls the river-groundwater interaction.
:::::::::
parameters

::::::
control

:::
the

::::::
amount

::
of

:::::::::::
groundwater

::::::
drained

::
to

:::
the

:::::::
nearest

::::::
stream

::::
once

:::
the

:::::::::::
groundwater

:::::
table

::::::
exceeds

::::
the

::::
drain

:::::
level,

::::
and

:::
are

::
as

:::::
such

::::::
linking

:::
the

::::::::::
groundwater

:::::::
module

:::
and

:::
the

::::::
stream

::::
flow

::::::
module

::
of

:::
the

::::::
model.

::::
This

:::::::
models

:::
the

:::::::
artificial

::::
drain

:::::::
systems

::::::::
installed

:::::
under

::::
most

:::::::::
farmlands

::
as

:::::
well

::
as

:::
the

::::::
natural

::::::::
drainage

::::::::
processes

::::
that

:::::
often

::::
occur

:::
in

:::
the

::::::
topsoil,

::::
and

:::
the

::::::::::
parameters

:::
are

::::::::
therefore

::::::::::
particularly

::::::::
important

:::
for

:::
the

:::::
drain

::::
flow

:::
of160

::
the

:::::
river.

::::
The

:::::::
leakage

:::::::::
coefficient

:::
is

::::::
another

::::::::
coupling

:::::::::
parameter,

::::::
which

:::::::::
represents

:::
the

:::::::::
hydraulic

::::::::
properties

:::
of

:::
the

::::
thin

:::::
layer

::
of

:::
the

:::::::::
sediments

::
at
::::

the
::::::
bottom

:::
of

:::
the

:::::::
stream.

::::
This

:::::::::
parameter

::
is
:::

of

::::::::
particular

:::::::::
importance

:::::
with

:::::
regard

:::
to

::::
river

::::
base

:::::
flow. For more details of the model parameteriza-

tion, reference is made to Rasmussen et al. (2015).

2.3 Data Assimilation165

2.3.1 Ensemble Transform Kalman Filter

The algorithm used for assimilating data in this study is the Ensemble Transform Kalman Filter

(ETKF) (Bishop and Hodyss, 2009), which is a square root formulation of the EnKF. It is more

computationally efficient than the EnKF , as it does not require a full error covariance matrix to

be determined unlike the EnKF, which also requires a computationally expensive inversion of the170

error covariance
:::
and

::
is

::::::::::
furthermore

:::::::::::
deterministic,

::::::::
meaning

:::
that

:::
the

:::::::::::
observations

:::
are

::
in

:::
the

:::::
filter

:::
not

::::::::
perturbed,

::::::
which

::::::
reduces

:::
the

:::::
issues

:::::::::
introduced

:::
by

::::::::
sampling. While the ETKF was first presented by

Bishop and Hodyss (2009), the implementation used in this study is that of harlim and Hunt (2005).

Vectors of the forecasted state variables of the ensemble members are structured in an m x k matrix,

Xf , where m is the number of states and k is the number of ensemble members:175

Xf = [xf1 , ...,x
f
k ] (1)

A s x k matrix Y f of model observations (s is the number of observations) is formed by applying

a linear operator H that maps the state space into observation space to each column of Xf . This

matrix is averaged over the columns to form a s x 1 vector of mean model observations, ȳf , which is

then columnwise subtracted from Y f to form the s x k matrix of model observation anomalies, Y b.180
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Next, Xf is averaged columnwise to form the m x 1 vector of mean model states x̄f and this vector

is subtracted from each column of Xf to create an m x k matrix of model state anomalies Xb.

An k x s matrix, C, is computed as follows:

C = (Y b) ·R−1 · pobs (2)

whereR is a s x smatrix of observation
::::
error

:
covariance, and Pobs is a s x s diagonal matrix with185

the localization weights of each observation on the diagonal. The k x k error covariance matrix is

computed by

P̃ a = [(k− 1) · I +CY b]−1 (3)

where I is a k x k identity matrix. The k x k matrix of analysis error covariance is computed as

W a = [(k− 1)P̃ a]1/2 (4)190

The k x 1 vector wa is calculated as

wa = P̃ aC · (y− ȳb) (5)

where y is a s x 1 vector of observations, and ȳb is a s x 1 vector of the mean model observations.

wa is then added each column of W a, forming the k x k matrix of updated error covariance W . The

m x k matrix is calculated:195

Xc =XbW (6)

Finally, the updated model ensemble, Xu, is calculated by adding x̄b to each column of Xc.

2.3.2 Localization

Rasmussen et al. (2015) showed that the common distance-based localization methods do not suf-

fice for localization in integrated hydrological models; instead an adaptive localization method first200

developed by Miyoshi (2010) will be used. Rather than removing correlation based on the physical

distance from an observation, this localization method is a combination of cross-validating the sam-

ple correlation (as estimated from the ensemble) and raising the correlation coefficient to a power in

an attempt to distinguish true correlation and spurious correlation.
::
As

:::::
each

::::
state

::::::
vector

:::::::
member

::
is

:::::::
analyzed

::
in

:::
the

::::::
ETKF,

:::
the

::::::::
ensemble

::
of

::::::
model

::::::::::
observations

::::
(i.e.

:::
the

::::::::
ensemble

::
of

::::::
model

:::::
states

::
in

:::
the205

:::::::::
observation

:::::::::
locations)

::
is

:::::::::
generated,

:::
and

:::
the

::::::
sample

::::::::::
correlation

:::::::::
coefficient

:::::::
between

:::
the

::::
each

:::
of

:::
the

7



:::::
model

::::::::::
observations

::::
and

:::
the

::::
state

:::::::
member

:
is
::::::::::
determined.

::::
The

::::::::::
localization

::::::
weights

::
of

:::
the

:::::::::::
observations

::
to

:::
the

:::::
state

:::::::
member

:::::
being

:::::::
analyzed

:::
are

::::
then

:::::::::
calculated

::::
from

:::
the

:::::::::
correlation

::::::::::
coefficients

::
as

:::::::
follows.

:

For each state variable, the ensemble is split into two sub-ensembles of equal size. The sample

correlation between the state variable and each observation state variable is calculated for both sub-210

ensembles. These correlation coefficients are then combined using the following expression:

pobs,a =

(
1− |c1− c2|

2

)a

(7)

where pobs,a is the localization weight, c1 and c2 are the correlation coefficients from the first and

second sub-ensembles, and a is a constant used for tuning the localization.

Another localization weight, pobs,b, is determined using the sample correlation coefficient for the215

entire ensemble, c, and another tuning constant, b, as follows:

pobs,b = |c|b (8)

The final (applied) localization weight, pobs (equation 2), is calculated as the product of pobs,a and

pobs,b. Rasmussen et al. (2015) found that parameter values of a= 2 and b= 2, produced the lowest

root mean square error in the groundwater head in a similar model, and these parameter values will220

also be used in this study.

2.3.3 Parameter estimation with the ETKF

Parameters are in this study estimated sequentially using the augmented state vector approach (Liu

and Gupta, 2007; Rasmussen et al., 2015). The state vectors (equation 1) are extended to also contain

the parameters that are to be estimated:225

Xf =


xf1 xfn

· · ·
Θf

1 Θf
n

 (9)

where Θf
i is the set of parameters used to propagate the i’th ensemble member. The mapping

matrix H is extended accordingly
::::::::
according

::
to

:::::::
equation

:::
10.

x=H ·

xf1
Θf

n


:::::::::::

(10)

2.3.4 Inflation230

In order to compensate for the systematic underestimation of error variance that is endemic to ensem-

ble based Kalman filtering, covariance inflation (Anderson and Anderson, 1999)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Anderson and Anderson, 1999; Whitaker and Hamill, 2012; Shi et al., 2014) was
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applied to both the groundwater head states and the stream discharge states. The inflation is applied

by adding a percentage to the ensemble of forecast anomalies:

Xf = (1 +α)Xf (11)235

where α is the inflation factor. The inflation factor used in this study is 0.2, which is based on tests

of different inflation factors, and has been shown to help maintain a good spread of the ensemble of

states.

The ensemble of parameter values is also inflated using equation 11 but instead of using a constant

inflation factor, the inflation factor for the ensemble of parameter values is calculated at each update240

and for each parameter to match a target spread (as described by the standard deviation):

α=
σtarget
σforecast

(12)

where σ is the standard deviation. σtarget denotes the desired spread of the ensemble of parameter

values and σforecast denotes the spread of the ensemble before updating. This method is only applied

if the forecast standard deviation of the ensemble of parameters is smaller than the target standard245

deviation, which in this study is set to 10% of the initial standard deviation of the ensemble. This

value has shown to produce the best results, by maintaining a sufficient spread that does not create

instabilities in any of the ensemble members.

:::::
Using

:::::::::
covariance

::::::::
inflation

::
is,

::::
like

::::::
using

::::::::::
localization,

:::::::::::
inconsistent

::::
with

:::
the

::::::::::
deriviation

::
of

::::
the

::::
filter

:::
and

::::
only

:::::::::
necessary

:::
due

::
to

:::::::::
inadequate

:::
or

:::::::
incorrect

:::::
noise

::::::::::
description

:::
and

::::::::
ensemble

::::::::::
generation.250

::::::::
However,

:::
due

::
to

:::
the

:::::::
complex

::::::
nature

::
of

:::
the

::::::
model,

:::::::::
Generating

:::
an

::::::::
ensemble

:::
that

::::::::
perfectly

:::::::::
represents

::
the

::::::::::
uncertainty

::
of

:::
the

::::::
model

::
is

::::::
difficult

::::
and

::::::::::
particularly

::
in

:::
the

:::
test

:::::
using

:::
real

::::
data

:::::::
outside

:::
the

:::::
scope

::
of

:::
this

:::::
paper.

:

2.3.5 Damping

A simple damping mechanism is implemented in the modeling framework to reduce the magnitude255

of the state- and parameter updates and hereby
::::::
thereby reduce the shock introduced to the system

in the form of instantaneous changes of model states and parameter values at the time of updating.

Furthermore, damping has the same effect as inflation, as it helps maintain an ensemble spread and

thus combats the tendency for the ensemble to collapse. Damping of parameter updates is common,

and has been studied in Franssen and Kinzelbach (2008) and used in Rasmussen et al. (2015).260

Damping is pragmatically applied post-updating as follows. For each ensemble member, the

magnitude of the update, U ,
:::::::::::
post-damping

:::
and

::::
final

:::::
state

:::::
vector

:
is calculated as

Ux
:i

u,D
::

= xi
f +D · (xi
::::::::

u−xfi ) (13)

9



The dampened update is subsequently calculated as

UD
i =D ·Ui265

where D is a user specified m x 1 vector of damping coefficients. Note that the values in D

may vary depending on the variable type (i.e. hydraulic head, stream discharge or water level) or

parameter type.

Finally, the post-damping and final state vector is calculated:

xu,Di = xfi +UD
i270

A damping coefficient of 0.1 was used for all parameters in all scenarios studied, while different

damping coefficients for the states have been analysed in the tests described below.

2.3.6 Bias estimation

This study compares two different methods for estimating observation bias: the Colored noise Kalman

filter (ColKF) and the Separate bias Kalman filter (SepKF).275

The ColKF methodology for estimating bias follows that of Fertig et al. (2009), in which the

biases are estimated online by augmenting the state vector, in a similar way as for estimating param-

eters. That is, the augmented state vector, which contains both states and parameter values is further

augmented by an ensemble of observation biases as follows:

Xf =


xf1 xfn

Θf
1 · · · Θf

n

βf
1 βf

n

 (14)280

where βf
i is the set of observation biases of the i’th ensemble member The linear operator H is

modified such that when it is applied to the columns of Xf , the bias is added to the appropriate

model observations:
:

ˆ
xfi = xfi +βf

i
:::::::::::

(15)

:::::
where

::̂
x

:
is
:::
the

::::
i′th

::::::::
unbiased

:::::
model

::::::::::
observation. Note that a constant bias forecast model is used,285

meaning that

βf,t+1
i = βu,t

i (16)
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where the super script u indicates an updated value, and t refers to the time step.

This study assumes no bias in discharge observations, meaning that the only biased observations

are the groundwater head observations. In real world observations, discharge observations would290

usually also be biased, but this bias is generally small compared to the random error of the observa-

tions and compared to biases in groundwater head observations.

The method requires an initial bias estimate based on á priori information. Furthermore, as with

estimation of parameters, a spread in bias estimates needs to be generated. In this study, the initial

estimate of bias in all observation points is zero and the spread is generated by sampling from a295

normal distribution with a standard deviation of 0.6 m and a mean of 0.
:::
The

::::::::
standard

::::::::
deviation

:::
vas

::::::
chosen

:::::
based

:::
on

:::::::::
precursive

::::::
testing

::
in

:::
the

::::::::
synthetic

::::
test

:::::::::::
environment,

::::
that

::::::
showed

::::
that

::::
this

:::::
value

:::::::
generally

:::
led

::
to
:::
the

::::
best

::::::::
estimates

::
of

::::
bias.

:

The implementation of the SepKF in this study is similar to the one derived and presented in

Drecourt et al. (2006) but modified to estimate observation bias rather than model bias and to be300

implemented for use in a square root formulation of the filter. The bias filter is a discrete filter that is

coupled to the ensemble based filter used for updating the states and the parameters as follows. The

forecasted model observation error covariance, P is estimated from the ensemble of anomalies:

P =
1

n− 1
Y b · (Y b)T (17)

The bias error covariance is estimated as being proportional to the ensemble model observation305

forecast error covariance, P , through a parameter γ (0≤ γ ≤ 1):

Pb = γP (18)

where γ is a tuning parameter that controls the fraction of information from the observations that is

used to bias and states respectively. Tests using different values of γ revealed that this parameter had

little impact on the final estimated bias, but a value of 0.1 was chosen for this study, as it performed310

slightly better than other values tested. The bias error covariance is furthermore conditioned to the

assumption of no bias in discharge observations.

The Kalman gain for the bias filter is then calculated as:

Kb = Pb(HPbH
T +HPHT +R)−1 (19)

The bias Kalman gain is localized as follows:315

Kb,local =Kb(H ·L) (20)
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where L is a s x s matrix containing the localization weights for each state as determined by the

adaptive localization algorithm. The updated biases are calculated as:

βu = βf−+
:
Kb(y−Hx̄b) (21)

Finally, the updated states are calculated using the following modification of equation 5:320

wa = P̃ aC · [(y−βu)− ȳb] (22)

The augmented state method has the advantage that it can take any interaction between the bias

and the states into account, as the full forecast covariance matrix is used. On the other hand, the

SepKF filter ignores any cross-correlation between bias and states.

While ignoring the correlation between state error and bias error may be problematic where such325

correlation exists, the price of using the augmented state method is the increase in the state-space

that needs to be spanned by the ensemble. To describe the uncertainty of the augmented state, an

(m+p+s) x (m+p+s) (states, parameters and observations) covariance matrix is necessary, while

an (m+ p) x (m+ p) plus a (s x s) matrix is necessary for the SepKF. This is likely to increase

the required ensemble size when using the augmented state method and thus increase computational330

demands.

2.3.7 Asynchronous assimilation

Due to the differences in frequency between the two observation types, this study uses asynchronous

assimilation (Sakov et al., 2010). This way, the more frequent stream discharge observations can

be assimilated along with the less frequent groundwater head observations, without the states hav-335

ing to be updated each time a discharge observation is available. The method has been previously

successfully used in Rasmussen et al. (2015). The observationsavailable between two updates, as

well as their corresponding model observations, are collected and assimilated
::::
state

:::::
vector

::
is

::::::::
extended

::::
with

:::::
model

::::::
results

:::
for

:::::::::::
asynchronous

::::::::::
observation

:::::
times

::::
and

:::
the

:::::::::
observation

::::::
vector

::
is

::::::::
extended

::::
with

::
the

::::::::::::
asynchronous

::::::::::::
observations.

:::::
After

::::
that,

:::
the

::::::::::::
asynchronous

:::::::::::
observations

::::
and

:::::
model

::::::
results

::::
are340

:::::
simply

:::::::
treated

::
as

::::::
normal

::::::
model

:::::
states.

::::
The

::::::::::
information

:::::::::
contained

::
in

:::
the

:::::::::
extensions

:::
are

::::
then

:::::
used

::
to

:::::::
improve

:::
the

::::::
update

:
at the time of the update

::::::::
updating.

::::
This

::
is

:::::
done

:::
by

::::::
saving

:::
the

:::::::::
individual

::::::::::
observations

::::
and

:::
the

::::::
model

::::::
results

:::
for

::::
the

::::
time

:::::
steps

::
in
::::::

which
:::::::::::

observations
:::
are

:::::::::
available,

::::
and

:::::::::
calculating

:::
the

::::::::
ensemble

:::::
error

::
as

::
if

:::
the

:::::
model

::::::
results

:::
for

:::
the

::::::::
different

::::
time

::::
steps

:::
are

::::::
model

:::::
states.

So, given a set of j observations at times t1, ..., tj collected, the model observations is formulated as345

follows:

HXf = [(Hxf )T1 , ...,(Hx
f )Tj ] (23)
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Similarly, the observation vector is extended to correspond to the ensemble observations. While

the asynchronous observations and model observations are saved and used in the filter at the time of

updating, they are afterwards discarded and no retrospective updating of states is performed.350

2.4 Filter setup

2.4.1 State variables

In this study, groundwater hydraulic
::
the

::::
state

::::::
vector

:::::::
contains

:::::::::::
groundwater head, stream discharge ,

and stream water level
:
,
::
all

::
of

::::::
which are updated at each updating time step. The states are updated

every 4 weeks, when groundwater head observations are available. The daily discharge observa-355

tions available in between updates are included as asynchronous observations while the discharge

observations available at the time of updating are assimilated normally.

2.4.2 Estimated parameters

The horizontal hydraulic conductivities of meltwater sand (HK_mws) and quaternary sand (HK_qs)

are estimated, with the vertical conductivities tied to them at a ratio of 10:1.
::::
Note

::::
that

::
the

:::::::::
estimated360

::::::::
hydraulic

:::::::::::
conductivities

:::
are

:::::
those

::
of

:::
the

:::::::::
geological

:::::
units,

:::
that

:::
are

:::::::
gridded

::
to

:::
the

::::::::::::
computational

::::
grid

:::::
before

::::::
further

::::::::::
propagation

::
of

:::
the

::::::::
ensemble

::::
(see

::::::
section

::::::
2.2.2). Furthermore, the two parameters that

control drainage, the drain level and the drain time constant, are estimated, and so is the leakage

coefficient, which controls the groundwater-stream flow interaction. These parameters were selected

based on their scaled sensitivities as determined by using the AUTOCAL software (Madsen, 2003),365

with HK_mws being by far the most sensitive towards both stream flow and groundwater head.

For a full list of sensitivity coefficients, the reader is referred to Rasmussen et al. (2015). HK_mws,

HK_qs, the drain time constant and the leakage coefficient were transformed logarithmically, as their

uncertainty is expected to span several decades.

3 Inverse modelling370

In order to evaluate the performance of the data assimilation algorithm for parameter estimation

using real observations, the model is also calibrated using AutoCal
::
in

::::
order

:::
to

::
be

::::
able

::
to

::::::::
compare

::
the

:::::::::
parameter

:::::::::
estimation

::::::
through

::::
data

::::::::::
assimilation

::::
with

::::::::
parameter

:::::::::
estimation

:::::::
through

::::
more

::::::::
common

:::::::
method,

:::::
such

::
as

::::::
inverse

:::::::::
modelling. A multi-objective calibration approach is used, in which both

groundwater head observations and stream discharge observations are aggregated and optimized.375

The setup of parameters is similar to the one used in the data assimilation approach (see section

2.4.2), with the same variable- and dependent parameters and initial values, in order to make the

results of the inverse modelling and the data assimilation directly comparable.

Root mean square error is used as objective function of both groundwater head observations and

stream discharge observations, and the two are aggregated using transformation to a common dis-380
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tance scale (Madsen, 2003). Both objective functions are weighted equally in the aggregation, to

ensure an equal importance on optimizing both the stream flow and the groundwater head of the

model.

3.1 Data availability

The Karup catchment was between 1970 and 1990 the subject of an extensive monitoring campaign385

in which stream discharge and groundwater head were rigorously measured. As a result, groundwater

head observations are available in 35 locations (Figure 1) with a frequency of 14 days−1, and daily

stream discharge observations are available in four locations in the stream network.

3.1.1 Synthetic test observations

A twin test approach is used in the first part of this study, meaning that a "true" model is defined, and390

that the observations to be assimilated are generated from the results of this true model. The same

model, but with perturbed parameter values, denoted the base model, forms the basis of the ensemble

that is used for data assimilation.
::::
Note

:::
that

::::
both

:::
the

::::
true

:::::
model

:::
and

:::
the

::::
base

::::::
model

:::
are

:::::::::::
deterministic

::::::
models,

::::
that

::
is,

::::::
single,

::::::::::
propagated

::::::
models

:::::::
without

::::
any

:::::
noise

::::::
added. The setup is identical to that

of Rasmussen et al. (2015), and the reader is referred thereto for a detailed description and a list of395

parameter values. Groundwater observations are made available at 24 locations that form a subset of

the 35 locations in which real observations are available (Figure 1). The reason for omitting some of

the observation locations is that they are located too close to the stream network, and act as exchange

between the groundwater model and the stream model. It was found that the groundwater head of

these grid cells are very sensitive to the stream flow simulation, and small changes in the head lead400

to significant changes in the stream flow. As such, they are not suitable for assimilation and were

used only as validation observations. Furthermore, one observation did not reflect the dynamics

of the model due to its proximity to the model boundary and was therefore omitted. In the twin test

experiment the groundwater observations are generated with a frequency of 28 days−1 and are added

a time-varying, normally distributed white noise with a standard deviation of 0.05 m and each are405

added a randomly generated (normally distributed) constant bias with a standard deviation of 0.5 m.

Four stream discharge observations that coincide with the locations of real observations are in-

cluded. The discharge observations are made available on a daily basis, and are added a normally

distributed white noise that is proportional to the observed value using a standard deviation of 5% of

the observed discharge, which is a common error observed in real world observations of discharge410

(Herschy, 1999).

The states and parameters are updated every time groundwater head observations are available,

i.e. every 28 days, and the daily discharge observations available in between updates are assimilated

asynchronously. Tests have shown that the length of the assimilation window is of little importance

and therefore no other assimilation window was tested.415
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3.1.2 Real observations

Like in the synthetic test, the same 24 groundwater head observation locations are chosen for assimi-

lation, while the remaining locations are used for validation. The real groundwater head observations

are available with a frequency of 14 days−1, but to avoid updating the states and parameters too often

every other observation is assimilated asynchronously, allowing an assimilation window of 28 days420

like in the synthetic test. All four discharge observation locations are used for assimilation and are

assimilated asynchronously.

3.2 Model noise

Model noise is added to the ensemble through the forcings, i.e. precipitation and reference evapo-

transpiration, and the parameters. Noise on forcings is added as a Gaussian noise with a standard425

deviation of 20% of the observed value, while no spatial correlation of the noise is considered.

Noise is added in the form of a Gaussian zero mean distribution to a large number of model

parameters relating to all model processes and not just to the estimated parameters. In total noise is

added to 66 parameters, only five of which are estimated. Adding noise to parameters that are not

estimated helps maintain the spread of the ensemble even as the spread of the estimated parameters430

is reduced. Note that the zero mean of parameter noise means that if the filter successfully estimates

all of the five included parameters, the ensemble of models is unbiased except for any bias there may

have been introduced through the sampling of parameter- and forcing noise.

3.3 Test scenarios

For studying the performance of the data assimilation using synthetic observations, the study in-435

cludes the five
::::
seven

:
scenarios listed in Table 1. All scenarios include bias estimation, joint state

updating and parameter estimation and simultaneous assimilation of groundwater head and stream

discharge observations.

When assimilating real observations, three scenarios are studied: ColFil and SepFil and NoBi-

asEst (Table 2). The ColFil uses the ColKF, a damping factor of 0.1 and an ensemble size of 200,440

making it a combination of the Ens200 and Hdampen scenarios studied in the synthetic test. The

SepFil uses the SepKF and an ensemble size of 100. The increase in ensemble size used when using

real observations is due to the more complex nature of the model and observation error caused by

differing dynamics of the observations and the model. For comparison, the NoBiasEst scenario uses

no bias estimation.445

3.4 Performance indicators

The model simulation period is from January 1st 1968 to December 31st 1973, and is divided into

the following periods:
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Table 1. Overview of setups studied in the synthetic tests.

Setup
ColFil

Ens50

ColFil

Ens100

ColFil

Ens200

ColFil

Hdamp
SepFil

SepFil

NoQ

NoBias

Est

Ensemble size 50 100 200 50 50 50 50

H damping factor 1 1 1 0.1 1 1 1

Q damping factor 1 1 1 1 1 1 1

Parameter damping factor 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Head observation stdv. (m) 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Discharge observation stdv. (-) 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Observation types assimilated * Q, H Q, H Q, H Q, H Q,H H Q, H

States updated * Q, h,H Q, h,H Q, h,H Q, h,H Q, h, H Q,h,H Q, h,H

Bias correction method ColKF ColKF ColKF ColKF SepKF SepKF -

* Q: stream discharge, h: stream water level, H: groundwater head

Table 2. Scenarios studied in the real data tests.

Setup ColFil SepFil
NoBias

Est

Ensemble size 200 100 100

H damping factor 0.1 1 1

Q damping factor 1 1 1

Parameter damping 0.1 0.1 0.1

factor

Head observation 0.05 0.05 0.05

stdv. (m)

Discharge observation 0.05 0.05 0.05

stdv. (-)

Observation types Q, H Q, H Q, H

assimilated

States updated Q, h,H Q, h,H Q, h,H

Bias correction ColKF SepKF -

method

- 1969: Warm-up, in which the ensemble is propagated without being updated in order to allow

a spread in the ensemble of states to develop.
::
At

::::
the

:::
end

::
of

:::
the

::::
year

:::::
1969,

::::
the

:::::
spread

:::
of

:::
the450

::::::::
ensemble

::
of

::::::::::
groundwater

:::::
head

::
is

:::::::
between

:::
2.1

::
m

:::
and

:::
0.7

:::
m

:::::::::
(depending

:::
on

:::
the

:::::::
location

::
in

:::
the

:::::::::
catchment),

::::::
which

::
is

:::::::::
considered

::::::::
sufficeint

::
for

:::::::::::
assimilation

::
to

:::::::::
commence.

:

- 1970: Preliminary assimilation of observations, which allows the filter to constrain the states

and parameters. The results of this period are not included in the performance evaluation.
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- 1971-1972: Assimilation of observations for evaluation. The results of this period are included455

in the performance evaluation as an indicator for how well the filter performs. In the remainder

of the report described as the "Assimilation period".

- 1973-1974: Validation period, in which the ensemble is propagated but not updated. It is used

to assess the improvement in long term forecasting due to the filter update.

3.4.1 Synthetic test performance indicators460

The performance of the filter when using synthetic observations is measured using three indicators:

- The mean estimated bias error ("Mean Bias Error"), calculated as the average difference (in

all observation points) between the actual bias used to generate the biased observation and the

mean of the ensemble of estimated biases at the end of the assimilation period.

- The average root mean square error of the groundwater head ("Head RMSE") in all calculation465

points of the groundwater model domain for the assimilation period.

- The Nash-Sutcliffe coefficient of the stream discharge at the outlet of the catchment ("NS")

for the assimilation period.

3.4.2 Real data performance indicators

The performance of the filter when using real observations is measured using two indicators:470

- The mean RMSE of all 35 groundwater head observation points for

1. The assimilation period

2. The validation period

- The Nash-Sutcliffe coefficient for stream discharge in the outlet of the catchment for

1. The assimilation period475

2. The validation period

Furthermore, a deterministic model with the optimal parameter set (as determined by the data

assimilation algorithm) is used to evaluate the estimated parameters. This model is designated "opti-

mal model" and is evaluated using the above indicators. For comparison, the results of the optimized

model using AUTOCAL is included (hereafter designated "AutoCal model").480
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4 Results and discussion

4.1 Synthetic tests

4.1.1 Bias correction using the Colored noise Filter

The filter setup that is considered the baseline setup is ColFilEns50 in which the ensemble size is 50

and the parameter updates are dampened by a factor of 0.1, while no damping of the state updating485

is performed. The baseline setup is adopted from Rasmussen et al. (2015) as this setup performed

satisfactorily for the same catchment and similar number of observations. However, Rasmussen et al.

(2015) did not consider bias correction.

The ColFilEns50 performed poorly in all three performance indicators as seen in Figure 2. The

average error in estimated bias is 0.47 m; worse than the average absolute bias of the observations490

(0.38 m), and the filter often estimates a bias that is in the wrong direction. This suggests that better,

or at least similar poor results, could be obtained by not correcting the bias. Furthermore, the updat-

ing of groundwater head is often erroneous, as evident from the spikes in groundwater head RMSE

(Figure 3) that occur at the time of updating. This wrong updating may be explained by two issues:

The wrongly estimated bias, which compels the filter to update the states wrongly as it does not495

know the unbiased observations, or the appearance of spurious correlation. Rasmussen et al. (2015)

observed the same spikes in head RMSE when using unbiased observations and concluded that they

are caused by spurious correlation.

Figure 2. Mean bias error, NS and H RMSE for the years 1971-1972 in the synthetic test.

The poor performance of the ColFilEns50 is unexpected, as an almost identical setup was suc-

cessfully used in Rasmussen et al. (2015), albeit using unbiased observations. However, adding bias500

correction to the filter increases the state space that must be spanned by the ensemble, thus poten-

tially requiring a larger ensemble size.
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Doubling or quadrupling the ensemble size to 100 and 200 respectively (ColFilEns100 and ColFilEns200

scenarios) resulted in major improvements in almost all indicators (Figure 2). In terms of estimat-

ing bias, the error is reduced by approximately 50% to 0.24 m and 0.22 m respectively, and the head505

RMSE is reduced by 26% and 31%. However, as visible in Figure 3, incorrect state updates still occur

even with an ensemble size of 200, and these result in the same peaks in stream discharge as observed

when using the baseline setup
:::
200.

:::
As

:::::
shown

:::
by

::::::::::::::::::::
Rasmussen et al. (2015),

:::::
these

:::::::
spurious

::::::::::
correlations

::
are

::::::
likely

::
to

:::::
result

::
in

::::::::
increased

::::::::
drainage

::
to

:::
the

::::::
stream

::::::
model,

:::::::
resulting

:::::
large

:::::
errors

::
in

::::::
stream

:::::
flow.

:::
The

:::::
errors

:::::
from

:::::::
spurious

::::::::::
correlations

::
in

:::
the

::::::
stream

::::
flow

:::::
model

::::::::
dominate

:::
the

:::::::::::
performance

::::::::
indicator510

:::
and

:::
are,

::::
due

::
to

:::
the

:::::
nature

::
of

::::::::
spurious

:::::::::
correlation,

:::::::
random. As a result, the Nash-Sutcliffe coefficient

is reduced when using an ensemble size of 100, but increased with an ensemble size of 200.

Figure 3. The temporal variation of Head RMSE in the synthetic test.

The increased performance, and the reduction in the spikes in head RMSE, supports the hypothesis

that the poor performance of the ColFilEns50 setup is caused primarily by spurious correlation.

Dampening the update of groundwater head (ColFilHdamp scenario) had a profound effect on515

all the performance indicators (Figure 2). The mean bias error is reduced by 63% compared to the

baseline setup, and the NS is nearly doubled. Finally, the head RMSE is reduced by 28% to 0.32 m,

which is higher than what is obtained by increasing the ensemble size or retuning the localization

algorithm, but still a significant improvement.

Dampening reduces the instant change in groundwater head, and as such reduces the problems520

that arise due to the non-linear relationship between states as well as reducing spurious correlation.

Furthermore, it reduces the numerical effects that come from changing model states and parameters,

in which the model attempts to regain equilibrium. However, dampening the state updates causes

a slower reduction in head RMSE (Figure 3), the value approximately converges to the RMSE of

Ens100 and Ens200 within one year of assimilation.525

4.1.2 Bias correction using the SepKF

Using the SepKF (scenario SepFil) resulted in significant improvements over the ColFilEns50 setup

in all performance indicators compared to the ColKF setup with the same number of ensemble

members (ColFilEns50) (Figure 2). The mean bias error is reduced to 0.20 m, which is comparable to
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ColFilEns200 and ColFilHdamp setups and little drifting behavior is observed in the model (Figure530

4). NS is increased to 0.75, and head RMSE is reduced to 0.34.

Spread of estimated parameters at the final update (Synthetic test). Thin blue lines show the total

spread of the ensemble and thick blue lines show the 25th and 75th percentile. Dots show the mean of

the ensemble. The horizontal lines show the true parameter value (black line) and the base parameter

value (magenta line).535

Figure 4. Groundwater head as a function of time in four selected observation locations for the year 1972

(Synthetic test).

4.1.3 Excluding discharge observations

When excluding the discharge observations (scenario SepFilNoQ), the filter performs worse in all

three indicators. Compared to the SepFil scenario, both the mean bias error and the head RMSE is

increased by 58%, and the NS is reduced to -0.74. The reduction in NS is explained by a bias in the

estimated drain constant and drain level (Figure 5) and by a poorer description of the groundwater540

head level as indicated by the head RMSE.

Rasmussen et al. (2015) showed that discharge observations are particularly valuable for esti-

mating parameters and updating stream discharge, but less valuable for groundwater head updating.

They found that excluding discharge observation resulted in an improvement in groundwater head

description when the spatial coverage of groundwater head observations is good, as there is a trade-545
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Figure 5.
:::::
Spread

::
of

:::::::
estimated

:::::::::
parameters

::
at

:::
the

:::
final

::::::
update

::::::::
(Synthetic

::::
test).

::::
Thin

::::
blue

::::
lines

::::
show

:::
the

::::
total

:::::
spread

::
of

:::
the

:::::::
ensemble

:::
and

:::::
thick

:::
blue

::::
lines

:::::
show

:::
the

::::
25th

:::
and

::::
75th

::::::::
percentile.

::::
Dots

::::
show

:::
the

:::::
mean

::
of

:::
the

:::::::
ensemble.

:::
The

::::::::
horizontal

::::
lines

::::
show

::
the

::::
true

:::::::
parameter

::::
value

:::::
(black

::::
line)

:::
and

::
the

::::
base

:::::::
parameter

:::::
value

:::::::
(magenta

::::
line).

off between optimizing the stream flow and the groundwater head. However, the current results sug-

gest that discharge observations also helps improve the estimation of groundwater head observation

bias and consequently of the groundwater heads.

4.1.4 Bias-unaware filter

Excluding bias estimation from the filter (NoBiasEst scenario) results, as expected, in significant550

reductions in filter performance (Figure 2). This scenario may be considered as having an estimated
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bias of zero, and as such has a mean bias error of 0.44 m (i.e. the average absolute bias used to

generate the observations), which lead to an increase in head RMSE of 6% over the already poorly

performing ColFilEns50 scenario and 50% over the SepFil scenario. Furthermore, the NS was re-

duced to zero due to erroneous updates of the groundwater head and poorly estimated parameters;555

in particular the drain level and the drain constant (see Figure 5). The omission of bias estimation

also resulted in significant (and expected) gradual deviation from the updated level (i.e. drifting) as

seen in Figure 4.
::::
When

::::::::::
considering

:::
the

:::::::::
predictive

:::::
power

::
of

:::
the

::::::
model,

:::
the

:::::::::::
bias-unaware

::::
filter

::
is

::::
also

::::
more

:::::
likely

::
to
:::::::

esimate
::::::
biased

:::::::::::
groundwater

:::::
heads

::::::
(Figure

:::
6).

::::
This

:::::
figure

::::::::
indicates

::::
that

::::::::::
particularly

::
in

::
the

::::::::::
observation

:::::
point

:::::
"Well

:::
8",

:::
the

:::::::::::
bias-unaware

:::
will

::::::::::
consistently

:::::::
forecast

::
a

:::
too

:::
low

:::::::::::
groundwater560

::::
head,

::::
and,

::
as

::::
seen

::
in
::::::
Figure

::
4,

::::
this

:
is
::
to
::
a
::::
great

::::::
extent

::::::
casued

::
by

:::
the

::::::
biased

::::
filter

:::::::
updates.

:

Figure 6.
:::::
Model

::::::::::
observations

:::::
versus

:::::::
synthetic

:::::::::
observations

::
in

::::::
selected

:::::::::
observation

::::::::
locations.

:::
The

:::::
dashed

::::
line

::::::
indicates

:::
the

:::
1:1

::::
line

::::
when

:::::::
corrected

:::
for

:::
the

::::::
applied

::::
bias.

::::
Note

::::
that

::
the

::::::
plotted

:::::
model

::::::::::
observations

:::
are

:::
the

:::::::
forecasted

:::::
model

::::::::::
observations,

:::
i.e.

:::::
before

:::
the

::::
states

:::
are

::::::
updated

::
in

::
the

:::::
filter.

It is clear that omitting bias estimation when biases are present has a negative impact on both state

updating and parameter estimation. Updating
:
It

::
is

:::::::
observed

::::
that

:::::::
updating

:
the groundwater head to a

biased observation level causes the head to return to an unbiased level when model propagation is
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resumed and the
::::
(i.e.

:
it
::
is

::::::
drifting

:::
as

::::
seen

::
in

:::::
Figure

:::
4).

:::
The

:
model behavior becomes unnatural in the565

sense that it is not controlled primarily by the input forcings, but rather by the model trying to retain

equilibrium. This results
::
can

:::::
result

:
in deteriorated estimation of parameters and updates of model

states not only in the observation points but in the entire model domain.

4.1.5 Comparison of the ColKF, the SepKF and the bias-unaware filter

The time varying estimated biases using the ColKF and the SepKF for each observation location are570

shown in Figure 7. The figure compares the ColFilEns200 and the SepFil scenarios, as they are the

most easily comparable in terms of setup and performance. Both scenarios have comparable mean

bias error (0.22 m and 0.20 m for ColFilEns200 and SepFil respectively), but as Figure 7 shows,

there are significant differences in the estimation of bias in most observation locations. The ColKF

converges significantly faster than the SepKF to the true value in most locations where the bias575

estimation is successful, due to the inclusion of bias-state correlation in the ColKF. The SepKF also

underestimates the bias in some locations, most likely due to the simplifications and assumptions,

notably the assumption that the bias error covariance is proportional to the state error covariance.

Both methods
::::::
Figure

:
4
::::::

shows
::::

that
:::

the
:::::::

drifting
::::::::

behavior
::

i
::::::::
generally

:::::
most

::::::::::
pronounced

::
in
::::

the

:::::::::
NoBiasEst

:::::::
scenario

:::
and

:::::
least

::::::::::
pronounced

::
in

:::
the

::::::::::::
ColFIlEns200

:::::::
scenario,

::::
with

::::
the

::::::
drifting

::::::::
behavior580

::
of

:::
the

:::::
SepFil

::::::::
scenario

:::::
falling

::
in
::::::::

between
:::
the

:::
two

::::::
former

:::::::::
scenarios.

::::
Both

:::
the

::::::
ColKF

::::
and

:::
the

::::::
SepKF

reduce the bias error in most locations except in wells 39, 54 and 63. The erroneous bias estimation

may be because of the estimated parameter values. Visual inspections of the groundwater head as a

function of time (Figure 4) reveals that there is no significant systematic deviation from the updated

level (i.e. drifting) in the ColFilEns200 and SepFil and therefore no update of the observation bias585

in the filter. The lack of model drifting despite erroneous bias estimation is caused by the wrongly

estimated parameters, and as such this is an equifinality issue: The filter has been able to produce

non-drifting behavior of the model despite biased states, by using a biased parameter set. On the

other hand, the NoBiasEst displays significant drifting in wells 8, 39 and 63, even when the updated

states are unbiased (well 39) but as the filter is unaware of bias, this is not corrected.590

The improvements gained from using the SepKF filter rather than the ColKF stem from the re-

duction in uncertainty needed to be described by the ensemble, and thus a smaller ensemble size is

required. Ignoring the correlation between the bias and the state reduces the complexity of the sys-

tem, and if that correlation is negligible, as in this case, there is little advantage in using the ColKF

over the SepKF.595

The two bias correction methods were also compared in Drecourt et al. (2006) using a simple one-

dimensional groundwater model. While they did not consider the issue of ensemble size, they too

found that both the ColKF and the SepKF can successfully estimate biases and improve model fore-

casting abilities. They also noted that the convergence of the SepKF is slower than the convergence

of the ColKF, but the performances of the two methods were otherwise comparable.600
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Figure 7. Estimated bias in the ColFilEns200 and SepFil scenarios as a function of time in the synthetic tests,

compared to the true bias value used to generate the biased observations.
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4.2 Real data tests

The Nash-Sutcliffe coefficient for stream discharge and the mean RMSE of groundwater head can be

seen in Figure 8. When comparing to the base values data assimilation with the separate bias filter

(scenario SepFil), the colored noise filter (scenario ColFil) and the bias-unaware filter (scenario

NoBiasEst) all result in increased Nash-Sutcliffe coefficients and reduced mean head RMSE in the605

assimilation period.

Figure 8. Nash-Sutcliffe coefficient for stream discharge (left) and mean RMSE of groundwater head observa-

tions (right) in the assimilation and validation periods respectively (real data).

In the NoBiasEst scenario, the model states are forced to match the observations as any bias is

ignored, which results in a lower mean head RMSE in both the assimilation and the validation pe-

riod (Figure 8). However, the assumption of unbiased head observations results in the NoBiasEst

scenario having the lowest Nash-Sutcliffe coefficients of the three scenarios due to a trade-off be-610

tween stream discharge observations and groundwater head observations, and it results in the drifting

model behavior apparent in Figure 9, in which the model deviates strongly from the observed level

in between updates. In SepFil, bias estimation is included using the SepKF, which results in a higher

Nash-Sutcliffe coefficient and a comparable head RMSE to that of the NoBiasEst scenario. The ef-

fect of the bias estimation can be seen in Figure 9 as the filter does not update the groundwater head615

to the level of the observation but acknowledges a bias, which results in less drifting between updates

compared to the NoBiasEst scenario. However, the deviation is still significant, which indicates that

the bias is underestimated for this observation point. This is in line with the synthetic tests, where it

was observed that the SepFil tends to underestimate large biases.

In SepFil, bias estimation is included using the SepKF, which results in a higher Nash-Sutcliffe620

coefficient and a comparable head RMSE to that of the NoBiasEst scenario. The effect of the bias
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Figure 9. Groundwater head as a function of time in head observation location well 64 (real data).

estimation can be seen in Figure 9 as the filter does not update the groundwater head to the level of

the observation but acknowledges a bias, which results in less drifting between updates compared

to the NoBiasEst scenario. However, the deviation is still significant, which indicates that the bias

is underestimated for this observation point. This is in line with the synthetic tests, where it was625

observed that the SepFil tends to underestimate large biases.

The ColFil scenario results in higher mean head RMSE and slightly lower Nash-Sutcliffe coeffi-

cient than the SepFil, but the ColFil optimal model (i.e. the deterministic model using the parameter

set estimated by the filter) performs better than the SepFil optimal model with respect to most indi-

cators.630

The ColFil scenario estimates significantly larger biases in most observation points (Figure 10),

with an average absolute estimated bias of 0.63 m, compared to 0.19 m in the SepFil scenario. With

few exceptions, SepFil estimates a smaller bias than the ColFil, though in most cases in the same

direction. Different bias directions are estimated by the two filters in two of the 24 observation

locations, as illustrated in Figure 9, which may be caused by significant differences in the estimated635

parameter values (see Figure 11), as is also seen in the synthetic test.

A bias of approximately zero is estimated in seven observation locations, while biases of up to 1.8

m are estimated in others. In most locations however, the bias appears underestimated, as exemplified

by Figure 9. This underestimation is observed as drifting and is likely caused by two factors. For the

SepKF, the update of bias is constrained by the γ parameter, meaning that a too low value of γ640

may limit the update too much and thereby make the filter unable to estimate the correct bias, while

a too high γ value is likely to yield unstable bias estimates. A test was made using a γ value of

0.3 (the value used in SepFil is 0.1), which resulted in increases in the estimated biases, but also

resulted in unstable bias estimates that changed significantly with each time step as the filter did

not properly distinguish biases, random error and model dynamics. Furthermore, as more and more645
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Figure 10. Estimated bias in the ColFilEns200 and SepFil scenarios as a function of time in the synthetic tests,

compared to the true
:::
(real

:::::
data).

:::
The

::::
black

:::
line

:::::::
indicates

:::
zero

:
biasvalue used to generate the biased observations.
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observations are assimilated and the spread of the ensemble of states is reduced, the update of the

biases is smaller as the bias error covariance is assumed proportional to the state error covariance.

If the ensemble spread of states is reduced too much, or even collapses, before correct biases are

estimated, the bias estimation effectively stops. A similar consideration is applicable to the ColKF,

as the ColKF operates with an ensemble of biases, and the spread of the ensemble of biases (and650

thereby the bias error covariance) is independent of the ensemble of states. If the spread of the

ensemble of biases is too small, bias estimation effectively stops.

Comparing the optimal models of the ColFil, the SepFil and the NoBiasEst with the base model

and the AutoCal model reveals a clear difference between the assimilation period and the validation

period. While the optimal models produce lower NS for the assimilation time than both the base655

model and the AutoCal model, there is a clear improvement in the NS in the validation period

over both the AutoCalModel and the base model. This suggests that AutoCal has produced a biased

parameter set, which is not the case using any of the three Kalman Filters. However, the value of bias

correction for parameter estimation is unclear, as there is no significant difference in the validation

NS of the bias-aware Kalman filters and the bias-unaware Kalman Filter.660

This tendency is not present in head RMSE, where the optimal models perform more poorly in

terms of head RMSE than the base model and the AutoCal model. While it is to be expected that

the AutoCal model would produce lower head RMSE than both the ColKF and the SepKF since

the AutoCal model has been optimized specifically based on the head RMSE, it was expected that

the optimal models of the ColKF and SepKF would produce improvements over the base model.665

However, it should be noted that the evaluation of model performance is based on the possibly

biased observed values, and that the estimated biases have not been taken into account in the head

RMSE calculations. The lack of clear improvement in the optimal models may be explained by the

fact that there is little room for improvement with the current model structure as underlined by the

relatively small improvements between the AutoCal model and the base model. It may also in part670

be explained by the underestimation of the biases in both the ColFil and SepFil scenarios. Improving

the model structure and the filter setups may improve the potential of estimating parameters, but with

the current results the value of data assimilation for parameter estimation is not clear.

5 Conclusions

Observation bias is a notable challenge in integrated hydrological modelling and needs to be ad-675

dressed when applying data assimilation to the models. Updating the states of a model to match

strongly biased observations will decrease filter performance and may even cause numerical insta-

bility. The two methods for correcting observation bias presented in this study can help reduce the

bias issue in data assimilation and improve filter performance. Both methods improved the ground-

water head and stream discharge of the model, and with varying degrees of success estimated the680
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Figure 11. Spread of estimated parameters at the final update (real data). Thin blue lines show the total spread

of the ensemble and thick blue lines show the 25th and 75th percentile. Dots show the mean of the ensemble.

The horizontal lines show the AutoCal parameter value (black line) and the base parameter value (magenta

line).
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observation bias when using synthetic observations. When using real observations, both bias esti-

mation methods resulted in improved stream flow modelling, but little improvement was seen in

groundwater heads.

The main difference in the bias correction methods analysed is the interaction between the bias and

the states. While the ColKF takes advantage of the full covariance matrix, the SepKF only takes into685

account the interaction that is present from the state to the bias and not the other way around. While

this is a limitation of the SepKF, it results in a lower requirement for ensemble members, meaning

that for smaller ensembles, the SepKF outperforms the ColKF. To obtain similar results to those of

the SepKF when using the ColKF, the ensemble size needed to be doubled or even quadrupled, or

the updates of the states needed to be dampened in an attempt to reduce the spurious correlations.690

Most of the model parameters were successfully estimated in the synthetic tests, but biased ob-

servations introduces issues with equifinality. A biased parameter set may produce unbiased model

behavior (i.e. without drifting) in one or more observations even if the estimated bias is incorrect.

As a result, the filter does not update the bias of the observation, and the erroneous parameter set is

not corrected. This resulted in significantly different parameter sets estimated by the different filters695

for both the synthetic tests and the tests using real data.

:::
The

:::::
study

:::
has

::::::
shown

::::
that

::::::::::
hydrological

:::::::::::
observational

::::
bias

::::
can

::
be

::::::::
corrected

::
in

::
a

:::
data

:::::::::::
assimilation

::::::
scheme

::::
and

:::
that

::
it
::::

can
:::::::
improve

:::::
state

:::::::
updating

::::
and

:::::::::
parameter

::::::::::
estimation.

::::
With

:::::
both

::::::
model-

::::
and

:::::::::::
observational

:::
bias

:::::
being

:::::::::
significant

:::::::
sources

::
of

::::
error

:::
in

::::::::::
hydrological

:::::::::
modelling

:::
that

::::
may

:::::::
function

:::
as

:
a
::::
road

:::::
block

:::
for

:::
the

::::::::::
application

::
of

::::
data

::::::::::
assimilation

::
to
:::::::::::

hydrological
:::::::
models,

:::::
these

::::::
results

::::
may

:::
act700

::
as

:
a
:::::::
stepping

:::::
stone

:::
for

:::
the

:::::::::::
advancement

:::
of

::::::::::
hydrological

::::
data

::::::::::
assimilation

:::
in

::::
large

:::::
scale,

:::::::::
integrated

::::::::::
hydrological

:::::::
models.
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