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Abstract. The use of bias-aware Kalman filters for estimating and correcting observation bias in
groundwater head observations is evaluated using both synthetic and real observations. In the syn-
thetic test, groundwater head observations with a constant bias and unbiased stream discharge obser-
vations are assimilated in a catchment scale integrated hydrological model with the aim of updating
stream discharge and groundwater head, as well as several model parameters relating to both stream
flow and groundwater modeling. The Colored Noise Kalman filter (ColKF) and the Separate bias
Kalman filter (SepKF) are tested and evaluated for correcting the observation biases. The study
found that both methods were able to estimate most of the biases and that using any of the two bias
estimation methods resulted in significant improvements over using a bias-unaware Kalman Filter.
While the convergence of the ColKF was significantly faster than the convergence of the SepKF, a
much larger ensemble size was required as the estimation of biases would otherwise fail. Real ob-
servations of groundwater head and stream discharge were also assimilated, resulting in improved
stream flow modeling in terms of an increased Nash-Sutcliffe coefficient while no clear improvement
in groundwater head modeling was observed. Both the ColKF and the SepKF tended to underesti-
mate the biases, which resulted in drifting model behavior and sub-optimal parameter estimation,
but both methods provided better state updating and parameter estimation than using a bias-unaware

filter.

1 Introduction

Sequential assimilation of observations in models is a widely used method in several fields, including
meteorology and hydrology. The method has repeatedly been shown to improve forecasting perfor-
mance, reduce uncertainty, and optimize parameter values, and is still a topic subject to on-going

research.
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Data assimilation in hydrological models has been studied in a number of settings, from sin-
gle process models, modelling only a limited part of the hydrological cycle (e.g., Franssen et al.|
2011} |Albergel et al.l 2008} [Moradkhani and Sorooshian, 2005)), to integrated models incorporating
all the relevant processes including precipitation, evapotranspiration, recharge and streamflow (e.g.,
Camporese et al., 2009; |Shi et al., 2014} Rasmussen et al., [2015)). The latter presents a number of
challenges that have yet to be comprehensively addressed; particularly relating to the differences in
process time scales, e.g. between groundwater flow and surface runoff, and the coupling between
these processes. An integrated approach to hydrological modeling is however important in many
applications due to the exchange of water between the hydrological components; thus it remains
important to explore these aspects. In |(Camporese et al.| (2009) the Ensemble Kalman filter (EnKF)
was applied to an integrated model of a synthetic tilted v-catchment and both stream discharge and
groundwater hydraulic head observations were assimilated to update both groundwater and stream
states. Shi et al| (2014) applied the EnKF to an integrated land surface hydrological model of a
small catchment and, using seven different observation types, successfully estimated six parameters
and sequentially updated the model states. Rasmussen et al.| (2015) used the Ensemble Transform
Kalman Filter to assimilate groundwater head and stream discharge in a catchment scale integrated
hydrological model for both state updating and parameter estimation. Other studies that focus on
joint state updating and parameter estimation in integrated hydrological modelling include Bailey
and Bau|(2012), in which a smoother was used to calibrate hydraulic conductivity using stream flow
and head observations, and |Kurtz et al.|(2013)), which used head observations to calibrate heteroge-
nous river bed conductivities.

Biases in both models and observations pose challenges to data assimilation in hydrology, and
have previously partly been studied (e.g., Dee and da Silval, |1998; Dee} |2005; |Reichle et al.| [2004;
Lannoy et al., 2007} Bosilovich et al.| [2007). Bias is found in all components of the hydrological
cycle, and take a variety of forms. Notable examples are model bias stemming from model structure
or parameter errors, and observation errors, which is due to the difference in scale between point
observations and gridded model variables. The latter is a significant source of bias in many ground-
water models, as the horizontal discretization of the models is often large. If one is to update the
groundwater head in a hydrological model using sequential data assimilation, this observation bias
must be taken into account.

While the EnKF, and any derivation thereof, implicitly accounts for both model- and observation
uncertainty in the form of zero-mean white noise, model and observation biases remains an issue
that requires modifications to the filter. A few methods have been developed that attempt to estimate
biases online, and they have been applied successfully in many settings. With few exceptions, the
bias aware filters can be grouped in two: Separate filter methods and augmented state methods. The
Separate bias Kalman Filter (e.g.,[Dee and da Silval |1998; |[Pauwels et al.,[2013}; Drecourt et al., 2006)

uses a second Kalman filter for updating the biases. This second filter is independent from the filter
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that updates the states, and the method can therefore not account for correlation between states and
biases. Alternatively, augmenting the state space with bias estimates (e.g., [Derber and Wul |1998;
Dee} |2005; [Drecourt et al., [2006; [Fertig et al., |2009) allows the filter to account for the correlation
between states and biases, and is therefore useful when the bias is dependent on the observed values.
While most implementations of bias estimation assumes that the model is unbiased and that the
observations are biased, or vice versa, [Pauwels et al.|(2013)) presented a method for estimating both
model bias and observation bias simultaneously using a double Separate bias Kalman Filter.

This study uses both a synthetic test setup and real observations to test the application of bias
correction to a data assimilation framework that assimilates groundwater head and stream discharge
observations in an integrated hydrological model for joint state updating and parameter estimation.
We discuss the challenges associated with observational bias in hydrological data assimilation for
both state updating and parameter estimation. Two existing methods of estimating observation bias,
the Separate bias Kalman Filter and the augmented state vector approach, are tested and the results
compared. The novelty of the study lies in the focus on data assimilation bias estimation in a com-
plex, integrated hydrological model as well as the impact of bias on parameter estimation in both
synthetic test and using real world observations. While each of these aspects have previously been
studied individually the combination of the aspects creates new challenges, which require partic-
ular attention. This paper shares several similarities with the preceeding [Rasmussen et al| (2015),
notably the model catchment and setup, but differs in the focus on bias and the application of data
assimilation to real world observations. Rasmussen et al.[(2015) presents a synthetic study of data
assimilation in integrated hydrological modelling in which the filter performance as a function of
ensemble size is investigated and the current paper expands on this and adds the complexity of bias

estimation and real world data.

2 Methods
2.1 Model

This study uses a transient, spatially distributed hydrological model based on the MIKE SHE code
(Graham and Butts|,|2005)). This code considers all major components of the land phase of the hydro-
logical cycle and the code allows the hydrological components to be dynamically coupled, meaning
that feedback (i.e. exchange of water) between the processes is possible at each time step. The
feedback is of particular importance for the groundwater-stream interaction in areas where these
processes are closely linked, and it makes the model code particularly suited for investigation of
data assimilation in integrated hydrological modelling. The coupling between the unsaturated and
groundwater zones in MIKE SHE is complicated, as the processes in the two zones are interdepen-
dent. When water is exchanged from the unsaturated zone to the groundwater, the groundwater table

rises, thereby changing the flow of the unsaturated zone. This complex interdependence is in MIKE
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SHE simplified, as the two processes only exchange water at every time step of the groundwater
model. As the time step of the groundwater model is often much longer than the time step of the
unsaturated zone model, the groundwater table is kept constant during several unsaturated zone time
steps. This may lead to water balance errors, and in an attempt to reduce these errors, MIKE SHE
has a coupling control that adjusts the groundwater table and recalculates the unsaturated zone states
if the water balance error is above a user-specified threshold.

An integrated model, which includes groundwater flow, vadose zone flow, evapotranspiration,
surface and streamflow is used in this study. Vertical groundwater flow components are neglected in
the study and groundwater flow is simulated based on the 2D Boussinesq equation. Each numerical
element of the groundwater flow model is coupled to a one dimensional model for vertical flow in the
vadose zone. For numerical and computational convenience capillary forces are neglected and only
gravity driven flow is considered, which is an option in the MIKE SHE code (Graham and Butts,
2005). Stream flow is simulated using the kinematic routing option. The stream network model
is set up using an alternating calculation scheme in which discharge and water level is calculated
respectively in alternating points, and is independent from the groundwater model in discretization,
but exchanges of water between the two processes is made available in model grids of the two
processes that physically overlap. The exchange takes place at every groundwater model time step.
Evapotranspiration is modelled using the Kristensen and Jensen| (1975) model. The groundwater
model initial conditions is based on an extended warm-up of the model, win which a quasi-steady
state develops, while the stream flow initial conditions was calculated automatically assuming a
steady state condition.

A horizontal grid size of 1 km x 1 km is used, with a vertical discretization of the unsaturated
zone gradually increasing from 0.05 m at the top to 1 m below a depth of 10 m. Further details of

the MIKE SHE model application to the Karup catchment can be found in|Rasmussen et al.[(2015).
2.2 Study area
2.2.1 The Karup catchment

This study is based on the Karup catchment (Figure [I)), which is located in the northern part of the
Danish Jutland peninsula. The catchment has an area of 440 km? and agriculture is the dominant
land use, while the geology is dominated by highly permeable quaternary sand. It is a very flat
catchment, with a gentle south-north slope ranging from 93 m.a.s.1. in the southern part to 22 m.a.s.1.
in the northern part. The Karup river is the primary drainage feature and it springs in the southern
part and exits in the northern edge of the catchment. Along its path, the Karup river is joined by
seven smaller tributaries. The flat topography and sandy sediments implies that the Karup river

is primarily groundwater fed, which emphasizes the importance of an integrated approach to the



hydrological modelling of the catchment, as the exchange between the groundwater and the river is

130 a predominant process of the hydrological response of the catchment.
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Figure 1. The Karup catchment with locations of discharge and hydraulic head observations.

2.2.2 Model parameterization

The geological model used in this study is a 3D model, which contains one dominant geological unit
(meltwater sand) and five lenses (clay, quartz sand, mica clay/silt and limestone), each with assigned
parameters of hydraulic conductivity, specific yield and specific storage. The geological model is in

135 a preprocessing step converted into a 2D model by interpolating the parameter values and gridding
them to the computational grid, resulting in a spatially variable field of hydraulic conductivity. The
parameter values of the stream model are assumed uniform throughout the model domain. The drain
level and drain time constant parameters control the amount of groundwater drained to the nearest
stream once the groundwater table exceeds the drain level, and are as such linking the groundwater

140 module and the stream flow module of the model. This models the artificial drain systems installed
under most farmlands as well as the natural drainage processes that often occur in the topsoil, and the
parameters are therefore particularly important for the drain flow of the river. The leakage coefficient
is another coupling parameter, which represents the hydraulic properties of the thin layer of the
sediments at the bottom of the stream. This parameter is of particular importance with regard to river

145 base flow. For more details of the model parameterization, reference is made to |Rasmussen et al.
(2015).
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2.3 Data Assimilation
2.3.1 Ensemble Transform Kalman Filter

The algorithm used for assimilating data in this study is the Ensemble Transform Kalman Filter
(ETKF) (Bishop and Hodyss, 2009), which is a square root formulation of the EnKF. It is more
computationally efficient than the EnKF and is furthermore deterministic, meaning that the obser-
vations are in the filter not perturbed, which reduces the issues introduced by sampling. While the
ETKF was first presented by [Bishop and Hodyss| (2009), the implementation used in this study is
that of lharlim and Hunt (2005)). Vectors of the forecasted state variables of the ensemble members
are structured in an m x k matrix, X/ , where m is the number of states and k is the number of

ensemble members:

X! =[z],...,a]] (1)

A sz k matrix Y/ of model observations (s is the number of observations) is formed by applying
a linear operator H that maps the state space into observation space to each column of X/. This
matrix is averaged over the columns to form a s = 1 vector of mean model observations, gjf , which is
then columnwise subtracted from Y/ to form the s 2 k matrix of model observation anomalies, Y.
Next, X/ is averaged columnwise to form the m x 1 vector of mean model states z/ and this vector
is subtracted from each column of X/ to create an m z k matrix of model state anomalies X°.

An k = s matrix, C, is computed as follows:

C= (YR poys )

where R is a s © s matrix of observation error covariance, and P, is a s « s diagonal matrix with
the localization weights of each observation on the diagonal. The k& x k error covariance matrix is

computed by

Pt =[(k—1)-T+CY"’! 3)

where [ is a k x k identity matrix. The k£ x k matrix of analysis error covariance is computed as

We=[(k—1)P)'/? )

The k£ x 1 vector w® is calculated as

wt = PO (y— ) 5)
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where y is a s - 1 vector of observations, and 3/ is a s = 1 vector of the mean model observations.
w*® is then added each column of W, forming the k£ = k matrix of updated error covariance . The

m x k matrix is calculated:

X°¢=XW (6)
Finally, the updated model ensemble, X", is calculated by adding Z° to each column of X°©.
2.3.2 Localization

Rasmussen et al.| (2015) showed that the common distance-based localization methods do not suf-
fice for localization in integrated hydrological models; instead an adaptive localization method first
developed by Miyoshi| (2010) will be used. Rather than removing correlation based on the physical
distance from an observation, this localization method is a combination of cross-validating the sam-
ple correlation (as estimated from the ensemble) and raising the correlation coefficient to a power in
an attempt to distinguish true correlation and spurious correlation. As each state vector member is
analyzed in the ETKEF, the ensemble of model observations (i.e. the ensemble of model states in the
observation locations) is generated, and the sample correlation coefficient between the each of the
model observations and the state member is determined. The localization weights of the observations
to the state member being analyzed are then calculated from the correlation coefficients as follows.
For each state variable, the ensemble is split into two sub-ensembles of equal size. The sample
correlation between the state variable and each observation state variable is calculated for both sub-

ensembles. These correlation coefficients are then combined using the following expression:

C1 —C @
Pobs,a = <1 - 122|> @)

where Py, 1s the localization weight, ¢ and ¢, are the correlation coefficients from the first and
second sub-ensembles, and a is a constant used for tuning the localization.
Another localization weight, poys b, is determined using the sample correlation coefficient for the

entire ensemble, ¢, and another tuning constant, b, as follows:

Pobs,b = ‘c|b (8)

The final (applied) localization weight, p,;s (equation E]) is calculated as the product of pys, and
Dobs,b-|[Rasmussen et al.|(2015) found that parameter values of @ = 2 and b = 2, produced the lowest
root mean square error in the groundwater head in a similar model, and these parameter values will

also be used in this study.
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2.3.3 Parameter estimation with the ETKF

Parameters are in this study estimated sequentially using the augmented state vector approach (Liu
and Guptal [2007; Rasmussen et al.,|20135)). The state vectors (equation are extended to also contain

the parameters that are to be estimated:

x/ = )
of e/

n

where @Zf is the set of parameters used to propagate the ¢’th ensemble member. The mapping

matrix H is extended according to equation[I0]

10)

2.3.4 Inflation

In order to compensate for the systematic underestimation of error variance that is endemic to en-
semble based Kalman filtering, covariance inflation (Anderson and Anderson, 1999; |Whitaker and
Hamilll 2012} |Shi et al.l 2014) was applied to both the groundwater head states and the stream dis-

charge states. The inflation is applied by adding a percentage to the ensemble of forecast anomalies:

X' =(1+a)X’ a1

where « is the inflation factor. The inflation factor used in this study is 0.2, which is based on tests
of different inflation factors, and has been shown to help maintain a good spread of the ensemble of
states.

The ensemble of parameter values is also inflated using equation|IT|but instead of using a constant
inflation factor, the inflation factor for the ensemble of parameter values is calculated at each update

and for each parameter to match a target spread (as described by the standard deviation):

o= Otarget (]2)

O forecast
where o is the standard deviation. 04,4t denotes the desired spread of the ensemble of parameter
values and 0 f,,¢cqst denotes the spread of the ensemble before updating. This method is only applied
if the forecast standard deviation of the ensemble of parameters is smaller than the target standard

deviation, which in this study is set to 10% of the initial standard deviation of the ensemble. This
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value has shown to produce the best results, by maintaining a sufficient spread that does not create
instabilities in any of the ensemble members.

Using covariance inflation is, like using localization, inconsistent with the deriviation of the filter
and only necessary due to inadequate or incorrect noise description and ensemble generation. How-
ever, due to the complex nature of the model, Generating an ensemble that perfectly represents the
uncertainty of the model is difficult and particularly in the test using real data outside the scope of

this paper.
2.3.5 Damping

A simple damping mechanism is implemented in the modeling framework to reduce the magnitude
of the state- and parameter updates and thereby reduce the shock introduced to the system in the form
of instantaneous changes of model states and parameter values at the time of updating. Furthermore,
damping has the same effect as inflation, as it helps maintain an ensemble spread and thus combats
the tendency for the ensemble to collapse. Damping of parameter updates is common, and has been
studied in |Franssen and Kinzelbach| (2008) and used in Rasmussen et al.|(2015)).

Damping is pragmatically applied post-updating as follows. For each ensemble member, the post-

damping and final state vector is calculated as

u,D

2P =2l 4+ D (2¥ —2f) (13)

where D is a user specified m x 1 vector of damping coefficients. Note that the values in D
may vary depending on the variable type (i.e. hydraulic head, stream discharge or water level) or
parameter type. A damping coefficient of 0.1 was used for all parameters in all scenarios studied,

while different damping coefficients for the states have been analysed in the tests described below.
2.3.6 Bias estimation

This study compares two different methods for estimating observation bias: the Colored noise Kalman
filter (ColKF) and the Separate bias Kalman filter (SepKF).

The ColKF methodology for estimating bias follows that of [Fertig et al.| (2009), in which the
biases are estimated online by augmenting the state vector, in a similar way as for estimating param-
eters. That is, the augmented state vector, which contains both states and parameter values is further

augmented by an ensemble of observation biases as follows:

] «,
xr=lef ... of (14)
o
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where ﬂf " is the set of observation biases of the i’th ensemble member The linear operator H is
modified such that when it is applied to the columns of X7, the bias is added to the appropriate

model observations:

of =af 1+ pf (15)

where 7 is the ¢'th unbiased model observation. Note that a constant bias forecast model is used,

meaning that

gttt = gwt (16)

3 (2

where the super script » indicates an updated value, and ¢ refers to the time step.

This study assumes no bias in discharge observations, meaning that the only biased observations
are the groundwater head observations. In real world observations, discharge observations would
usually also be biased, but this bias is generally small compared to the random error of the observa-
tions and compared to biases in groundwater head observations.

The method requires an initial bias estimate based on 4 priori information. Furthermore, as with
estimation of parameters, a spread in bias estimates needs to be generated. In this study, the initial
estimate of bias in all observation points is generated by sampling from a normal distribution with
a standard deviation of 0.6 m and a mean of 0. The standard deviation vas chosen based on precur-
sive testing in the synthetic test environment, that showed that this value generally led to the best
estimates of bias.

The implementation of the SepKF in this study is similar to the one derived and presented in
Drecourt et al.| (2006) but modified to estimate observation bias rather than model bias and to be
implemented for use in a square root formulation of the filter. The bias filter is a discrete filter that is
coupled to the ensemble based filter used for updating the states and the parameters as follows. The

forecasted model observation error covariance, P is estimated from the ensemble of anomalies:

1
P= 7yb A Yb T 17
) a7
The bias error covariance is estimated as being proportional to the ensemble model observation

forecast error covariance, P, through a parameter v (0 < v < 1):

Py=~P (18)

where - is a tuning parameter that controls the fraction of information from the observations that is

used to bias and states respectively. Tests using different values of  revealed that this parameter had

10
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little impact on the final estimated bias, but a value of 0.1 was chosen for this study, as it performed
slightly better than other values tested. The bias error covariance is furthermore conditioned to the
assumption of no bias in discharge observations.

The Kalman gain for the bias filter is then calculated as:

K, =Py (HP,H" + HPHT + R)™! 19

The bias Kalman gain is localized as follows:

Kb,local = Kb(H ! L) (20)

where L is a s s matrix containing the localization weights for each state as determined by the

adaptive localization algorithm. The updated biases are calculated as:

B =Bl + Ky (y — Hz") 21)

Finally, the updated states are calculated using the following modification of equation [5}

w* =P*C-[(y—B*) =" (22)

The augmented state method has the advantage that it can take any interaction between the bias
and the states into account, as the full forecast covariance matrix is used. On the other hand, the
SepKeF filter ignores any cross-correlation between bias and states.

While ignoring the correlation between state error and bias error may be problematic where such
correlation exists, the price of using the augmented state method is the increase in the state-space
that needs to be spanned by the ensemble. To describe the uncertainty of the augmented state, an
(m+p+s) x (m+p+s) (states, parameters and observations) covariance matrix is necessary, while
an (m+p)  (m+p) plus a (s = s) matrix is necessary for the SepKF. This is likely to increase
the required ensemble size when using the augmented state method and thus increase computational

demands.
2.3.7 Asynchronous assimilation

Due to the differences in frequency between the two observation types, this study uses asynchronous
assimilation (Sakov et al.l 2010). This way, the more frequent stream discharge observations can
be assimilated along with the less frequent groundwater head observations, without the states hav-
ing to be updated each time a discharge observation is available. The state vector is extended with

model results for asynchronous observation times and the observation vector is extended with the

11
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asynchronous observations. After that, the asynchronous observations and model results are simply
treated as normal model states. The information contained in the extensions are then used to improve
the update at the time of updating. This is done by saving the individual observations and the model
results for the time steps in which observations are available, and calculating the ensemble error as
if the model results for the different time steps are model states. So, given a set of j observations at

times #1,...,t; collected, the model observations is formulated as follows:

HXf = [(fo)’_ll"’ s (fo)f] >

Similarly, the observation vector is extended to correspond to the ensemble observations. While
the asynchronous observations and model observations are saved and used in the filter at the time of

updating, they are afterwards discarded and no retrospective updating of states is performed.
2.4 Filter setup
2.4.1 State variables

In this study, the state vector contains groundwater head, stream discharge and stream water level,
all of which are updated at each updating time step. The states are updated every 4 weeks, when
groundwater head observations are available. The daily discharge observations available in between
updates are included as asynchronous observations while the discharge observations available at the

time of updating are assimilated normally.
2.4.2 Estimated parameters

The horizontal hydraulic conductivities of meltwater sand (HK_mws) and quaternary sand (HK_qs)
are estimated, with the vertical conductivities tied to them at a ratio of 10:1. Note that the estimated
hydraulic conductivities are those of the geological units, that are gridded to the computational grid
before further propagation of the ensemble (see section [2.2.2). Furthermore, the two parameters that
control drainage, the drain level and the drain time constant, are estimated, and so is the leakage
coefficient, which controls the groundwater-stream flow interaction. These parameters were selected
based on their scaled sensitivities as determined by using the AUTOCAL software (Madsen, 2003)),
with HK_mws being by far the most sensitive towards both stream flow and groundwater head.
For a full list of sensitivity coefficients, the reader is referred to Rasmussen et al.|(2015). HK_mws,
HK_gs, the drain time constant and the leakage coefficient were transformed logarithmically, as their

uncertainty is expected to span several decades.

12
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3 Inverse modelling

In order to evaluate the performance of the data assimilation algorithm for parameter estimation
using real observations, the model is also calibrated using AutoCal in order to be able to compare
the parameter estimation through data assimilation with parameter estimation through more common
method, such as inverse modelling. A multi-objective calibration approach is used, in which both
groundwater head observations and stream discharge observations are aggregated and optimized.
The setup of parameters is similar to the one used in the data assimilation approach (see section
@]), with the same variable- and dependent parameters and initial values, in order to make the
results of the inverse modelling and the data assimilation directly comparable.

Root mean square error is used as objective function of both groundwater head observations and
stream discharge observations, and the two are aggregated using transformation to a common dis-
tance scale (Madsen, |2003). Both objective functions are weighted equally in the aggregation, to
ensure an equal importance on optimizing both the stream flow and the groundwater head of the

model.
3.1 Data availability

The Karup catchment was between 1970 and 1990 the subject of an extensive monitoring campaign
in which stream discharge and groundwater head were rigorously measured. As a result, groundwater
head observations are available in 35 locations (Figure [1)) with a frequency of 14 days—*, and daily

stream discharge observations are available in four locations in the stream network.
3.1.1 Synthetic test observations

A twin test approach is used in the first part of this study, meaning that a "true" model is defined, and
that the observations to be assimilated are generated from the results of this true model. The same
model, but with perturbed parameter values, denoted the base model, forms the basis of the ensemble
that is used for data assimilation. Note that both the true model and the base model are deterministic
models, that is, single, propagated models without any noise added. The setup is identical to that
of [Rasmussen et al.| (2015), and the reader is referred thereto for a detailed description and a list of
parameter values. Groundwater observations are made available at 24 locations that form a subset of
the 35 locations in which real observations are available (Figure[I)). The reason for omitting some of
the observation locations is that they are located too close to the stream network, and act as exchange
between the groundwater model and the stream model. It was found that the groundwater head of
these grid cells are very sensitive to the stream flow simulation, and small changes in the head lead
to significant changes in the stream flow. As such, they are not suitable for assimilation and were
used only as validation observations. Furthermore, one observation did not reflect the dynamics

of the model due to its proximity to the model boundary and was therefore omitted. In the twin test

13
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experiment the groundwater observations are generated with a frequency of 28 days—* and are added
a time-varying, normally distributed white noise with a standard deviation of 0.05 m and each are
added a randomly generated (normally distributed) constant bias with a standard deviation of 0.5 m.

Four stream discharge observations that coincide with the locations of real observations are in-
cluded. The discharge observations are made available on a daily basis, and are added a normally
distributed white noise that is proportional to the observed value using a standard deviation of 5% of
the observed discharge, which is a common error observed in real world observations of discharge
(Herschyl, [1999).

The states and parameters are updated every time groundwater head observations are available,
i.e. every 28 days, and the daily discharge observations available in between updates are assimilated
asynchronously. Tests have shown that the length of the assimilation window is of little importance

and therefore no other assimilation window was tested.
3.1.2 Real observations

Like in the synthetic test, the same 24 groundwater head observation locations are chosen for assimi-
lation, while the remaining locations are used for validation. The real groundwater head observations
are available with a frequency of 14 days ™!, but to avoid updating the states and parameters too often
every other observation is assimilated asynchronously, allowing an assimilation window of 28 days
like in the synthetic test. All four discharge observation locations are used for assimilation and are

assimilated asynchronously.
3.2 Model noise

Model noise is added to the ensemble through the forcings, i.e. precipitation and reference evapo-
transpiration, and the parameters. Noise on forcings is added as a Gaussian noise with a standard
deviation of 20% of the observed value, while no spatial correlation of the noise is considered.
Noise is added in the form of a Gaussian zero mean distribution to a large number of model
parameters relating to all model processes and not just to the estimated parameters. In total noise is
added to 66 parameters, only five of which are estimated. Adding noise to parameters that are not
estimated helps maintain the spread of the ensemble even as the spread of the estimated parameters
is reduced. Note that the zero mean of parameter noise means that if the filter successfully estimates
all of the five included parameters, the ensemble of models is unbiased except for any bias there may

have been introduced through the sampling of parameter- and forcing noise.
3.3 Test scenarios

For studying the performance of the data assimilation using synthetic observations, the study in-

cludes the seven scenarios listed in Table[I] All scenarios include bias estimation, joint state updating
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410 and parameter estimation and simultaneous assimilation of groundwater head and stream discharge

observations.

Table 1. Overview of setups studied in the synthetic tests.

Setup ColFil  ColFil ColFil  ColFil SepFil SepFil  NoBias
Ens50 Ens100 Ens200 Hdamp NoQ Est
Ensemble size 50 100 200 50 50 50 50
H damping factor 1 1 1 0.1 1 1 1
Q damping factor 1 1 1 1 1 1 1
Parameter damping factor 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Head observation stdv. (m) 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Discharge observation stdv. (-) 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Observation types assimilated * Q. H Q. H Q. H Q. H QH H Q. H
States updated * QhH QhH QhH QhH QhH QhH QhH
Bias correction method ColKF  ColKF  ColKF ColKF SepKF SepKF -

* Q: stream discharge, h: stream water level, H: groundwater head

When assimilating real observations, three scenarios are studied: ColFil and SepFil and NoBi-

asEst (Table EI) The ColFil uses the ColKF, a damping factor of 0.1 and an ensemble size of 200,
making it a combination of the Ens200 and Hdampen scenarios studied in the synthetic test. The

415  SepFil uses the SepKF and an ensemble size of 100. The increase in ensemble size used when using
real observations is due to the more complex nature of the model and observation error caused by
differing dynamics of the observations and the model. For comparison, the NoBiasEst scenario uses

no bias estimation.
3.4 Performance indicators

420 The model simulation period is from January Ist 1968 to December 31st 1973, and is divided into

the following periods:

- 1969: Warm-up, in which the ensemble is propagated without being updated in order to allow
a spread in the ensemble of states to develop. At the end of the year 1969, the spread of the
ensemble of groundwater head is between 2.1 m and 0.7 m (depending on the location in the

425 catchment), which is considered sufficeint for assimilation to commence.

- 1970: Preliminary assimilation of observations, which allows the filter to constrain the states

and parameters. The results of this period are not included in the performance evaluation.

- 1971-1972: Assimilation of observations for evaluation. The results of this period are included
in the performance evaluation as an indicator for how well the filter performs. In the remainder

430 of the report described as the "Assimilation period".
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Table 2. Scenarios studied in the real data tests.

Setup ColFil  SepFil NoBias
Est

Ensemble size 200 100 100

H damping factor 0.1 1 1

Q damping factor 1 1 1

Parameter damping 0.1 0.1 0.1

factor

Head observation 0.05 0.05 0.05

stdv. (m)

Discharge observation 0.05 0.05 0.05

stdv. (-)

Observation types QH Q,H Q,H

assimilated

States updated Q.hH Q,hH Q,hH

Bias correction ColKF  SepKF -

method

- 1973-1974: Validation period, in which the ensemble is propagated but not updated. It is used

to assess the improvement in long term forecasting due to the filter update.

3.4.1 Synthetic test performance indicators

The performance of the filter when using synthetic observations is measured using three indicators:

435 - The mean estimated bias error ("Mean Bias Error"), calculated as the average difference (in

all observation points) between the actual bias used to generate the biased observation and the

mean of the ensemble of estimated biases at the end of the assimilation period.

- The average root mean square error of the groundwater head ("Head RMSE") in all calculation

points of the groundwater model domain for the assimilation period.

440 - The Nash-Sutcliffe coefficient of the stream discharge at the outlet of the catchment ("NS")

for the assimilation period.

3.4.2 Real data performance indicators

The performance of the filter when using real observations is measured using two indicators:

- The mean RMSE of all 35 groundwater head observation points for

445 1. The assimilation period
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2. The validation period
- The Nash-Sutcliffe coefficient for stream discharge in the outlet of the catchment for

1. The assimilation period

2. The validation period

450 Furthermore, a deterministic model with the optimal parameter set (as determined by the data
assimilation algorithm) is used to evaluate the estimated parameters. This model is designated "opti-
mal model" and is evaluated using the above indicators. For comparison, the results of the optimized

model using AUTOCAL is included (hereafter designated "AutoCal model").

4 Results and discussion
455 4.1 Synthetic tests
4.1.1 Bias correction using the Colored noise Filter

The filter setup that is considered the baseline setup is ColFilEns50 in which the ensemble size is 50
and the parameter updates are dampened by a factor of 0.1, while no damping of the state updating
is performed. The baseline setup is adopted from [Rasmussen et al.| (2015) as this setup performed

460 satisfactorily for the same catchment and similar number of observations. However, Rasmussen et al.
(2015)) did not consider bias correction.

The ColFilEns50 performed poorly in all three performance indicators as seen in Figure [2] The
average error in estimated bias is 0.47 m; worse than the average absolute bias of the observations
(0.38 m), and the filter often estimates a bias that is in the wrong direction. This suggests that better,

465 or at least similar poor results, could be obtained by not correcting the bias. Furthermore, the updat-
ing of groundwater head is often erroneous, as evident from the spikes in groundwater head RMSE
(Figure [3) that occur at the time of updating. This wrong updating may be explained by two issues:
The wrongly estimated bias, which compels the filter to update the states wrongly as it does not
know the unbiased observations, or the appearance of spurious correlation. Rasmussen et al. (2015)

470 observed the same spikes in head RMSE when using unbiased observations and concluded that they
are caused by spurious correlation.

The poor performance of the ColFilEns50 is unexpected, as an almost identical setup was suc-
cessfully used inRasmussen et al.[(2015), albeit using unbiased observations. However, adding bias
correction to the filter increases the state space that must be spanned by the ensemble, thus poten-

475 tially requiring a larger ensemble size.

Doubling or quadrupling the ensemble size to 100 and 200 respectively (ColFilEns100 and ColFilEns200

scenarios) resulted in major improvements in almost all indicators (Figure[2)). In terms of estimating

bias, the error is reduced by approximately 50% to 0.24 m and 0.22 m respectively, and the head
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Figure 2. Mean bias error, NS and H RMSE for the years 1971-1972 in the synthetic test.

RMSE is reduced by 26% and 31%. However, as visible in Figure [3] incorrect state updates still
occur even with an ensemble size of 200. As shown by [Rasmussen et al|| (2015)), these spurious cor-

relations are likely to result in increased drainage to the stream model, resulting large errors in stream

flow. The errors from spurious correlations in the stream flow model dominate the performance in-
dicator and are, due to the nature of spurious correlation, random. As a result, the Nash-Sutcliffe
coefficient is reduced when using an ensemble size of 100, but increased with an ensemble size of
200.

ColFilEns50

ColFilEns 100
06 ColFilEns200
ColFilHdamp

0.55
|

Mean Square Error (m)
°
2 o
& &

o
s

1970 1971 1972 1973

Figure 3. The temporal variation of Head RMSE in the synthetic test.

The increased performance, and the reduction in the spikes in head RMSE, supports the hypothesis
that the poor performance of the ColFilEns50 setup is caused primarily by spurious correlation.

Dampening the update of groundwater head (ColFilHdamp scenario) had a profound effect on
all the performance indicators (Figure 2). The mean bias error is reduced by 63% compared to the
baseline setup, and the NS is nearly doubled. Finally, the head RMSE is reduced by 28% to 0.32 m,
which is higher than what is obtained by increasing the ensemble size or retuning the localization
algorithm, but still a significant improvement.

Dampening reduces the instant change in groundwater head, and as such reduces the problems

that arise due to the non-linear relationship between states as well as reducing spurious correlation.
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Furthermore, it reduces the numerical effects that come from changing model states and parameters,
in which the model attempts to regain equilibrium. However, dampening the state updates causes
a slower reduction in head RMSE (Figure [3)), the value approximately converges to the RMSE of

Ens100 and Ens200 within one year of assimilation.
4.1.2 Bias correction using the SepKF

Using the SepKF (scenario SepFil) resulted in significant improvements over the ColFilEns50 setup
in all performance indicators compared to the ColKF setup with the same number of ensemble
members (ColFilEns50) (Figure[2). The mean bias error is reduced to 0.20 m, which is comparable to
ColFilEns200 and ColFilHdamp setups and little drifting behavior is observed in the model (Figure
E[). NS is increased to 0.75, and head RMSE is reduced to 0.34.
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Figure 4. Groundwater head as a function of time in four selected observation locations for the year 1972
(Synthetic test).
4.1.3 Excluding discharge observations

When excluding the discharge observations (scenario SepFilNoQ), the filter performs worse in all
three indicators. Compared to the SepFil scenario, both the mean bias error and the head RMSE is

increased by 58%, and the NS is reduced to -0.74. The reduction in NS is explained by a bias in
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the estimated drain constant (Figure[5)) and by a poorer description of the groundwater head level as

510 indicated by the head RMSE.
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Figure 5. Spread of estimated parameters at the final update (Synthetic test). Thin blue lines show the total
spread of the ensemble and thick blue lines show the 25th and 75th percentile. Dots show the mean of the
ensemble. The horizontal lines show the true parameter value (black line) and the base parameter value (magenta

line).

Rasmussen et al| (2015 showed that discharge observations are particularly valuable for esti-
mating parameters and updating stream discharge, but less valuable for groundwater head updating.
They found that excluding discharge observation resulted in an improvement in groundwater head
description when the spatial coverage of groundwater head observations is good, as there is a trade-

515 off between optimizing the stream flow and the groundwater head. However, the current results sug-
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gest that discharge observations also helps improve the estimation of groundwater head observation

bias and consequently of the groundwater heads.
4.1.4 Bias-unaware filter

Excluding bias estimation from the filter (NoBiasEst scenario) results, as expected, in significant
reductions in filter performance (Figure[2). This scenario may be considered as having an estimated
bias of zero, and as such has a mean bias error of 0.44 m (i.e. the average absolute bias used to
generate the observations), which lead to an increase in head RMSE of 6% over the already poorly
performing ColFilEns50 scenario and 50% over the SepFil scenario. Furthermore, the NS was re-
duced to zero due to erroneous updates of the groundwater head and poorly estimated parameters;
in particular the drain level and the drain constant (see Figure [5). The omission of bias estimation
also resulted in significant (and expected) gradual deviation from the updated level (i.e. drifting) as
seen in Figure[d] When considering the predictive power of the model, the bias-unaware filter is also
more likely to esimate biased groundwater heads (Figure [6). This figure indicates that particularly
in the observation point "Well 8", the bias-unaware will consistently forecast a too low groundwater
head, and, as seen in Figure[d] this is to a great extent casued by the biased filter updates.

It is clear that omitting bias estimation when biases are present has a negative impact on both state
updating and parameter estimation. It is observed that updating the groundwater head to a biased
observation level causes the head to return to an unbiased level when model propagation is resumed
(i.e. it is drifting as seen in Figure ). The model behavior becomes unnatural in the sense that it is
not controlled primarily by the input forcings, but rather by the model trying to retain equilibrium.
This can result in deteriorated estimation of parameters and updates of model states not only in the

observation points but in the entire model domain.
4.1.5 Comparison of the ColKF, the SepKF and the bias-unaware filter

The time varying estimated biases using the ColKF and the SepKF for each observation location are
shown in Figure[/| The figure compares the ColFilEns200 and the SepFil scenarios, as they are the
most easily comparable in terms of setup and performance. Both scenarios have comparable mean
bias error (0.22 m and 0.20 m for ColFilEns200 and SepFil respectively), but as Figure [7] shows,
there are significant differences in the estimation of bias in most observation locations. The ColKF
converges significantly faster than the SepKF to the true value in most locations where the bias
estimation is successful, due to the inclusion of bias-state correlation in the ColKF. The SepKF also
underestimates the bias in some locations, most likely due to the simplifications and assumptions,
notably the assumption that the bias error covariance is proportional to the state error covariance.
Figure [ shows that the drifting behavior i generally most pronounced in the NoBiasEst scenario
and least pronounced in the ColFIIEns200 scenario, with the drifting behavior of the SepFil scenario

falling in between the two former scenarios. Both the ColKF and the SepKF reduce the bias error in
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Figure 6. Model observations versus synthetic observations in selected observation locations. The dashed line
indicates the 1:1 line when corrected for the applied bias. Note that the plotted model observations are the

forecasted model observations, i.e. before the states are updated in the filter.

most locations except in wells 39, 54 and 63. The erroneous bias estimation may be because of the
estimated parameter values. Visual inspections of the groundwater head as a function of time (Figure
[) reveals that there is no significant systematic deviation from the updated level (i.e. drifting) in the
ColFilEns200 and SepFil and therefore no update of the observation bias in the filter. The lack of
model drifting despite erroneous bias estimation is caused by the wrongly estimated parameters,
and as such this is an equifinality issue: The filter has been able to produce non-drifting behavior of
the model despite biased states, by using a biased parameter set. On the other hand, the NoBiasEst
displays significant drifting in wells 8, 39 and 63, even when the updated states are unbiased (well
39) but as the filter is unaware of bias, this is not corrected.

The improvements gained from using the SepKF filter rather than the ColKF stem from the re-
duction in uncertainty needed to be described by the ensemble, and thus a smaller ensemble size is
required. Ignoring the correlation between the bias and the state reduces the complexity of the sys-
tem, and if that correlation is negligible, as in this case, there is little advantage in using the ColKF

over the SepKF.

22



Well 5 Well 8 Well 9 Well 11
=
-1
Well 12 Well 21 Well 22 Well 27
E PAEE——
€ L
©
s
A
Well 34 Well 35 Well 36 Well 37
E
g ° A SN——
@ &_ T
1 :
Well 38 Well 39 Well 41 Well 44
1
E [
2 0 e —— Y A O
2
-1
Well 45 Well 49 Well 51 Well 52
E
e ——
g ° k N—— i
=
-1
Well 54 Well 63 Well 64 Well 69
1
g —
» 0
@
s
1
1971 1972 1971 1972 1971 1972 1971 1972
ColFilEns200 SepFil True value

Figure 7. Estimated bias in the ColFilEns200 and SepFil scenarios as a function of time in the synthetic tests,

compared to the true bias value used to generate the biased observations.
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The two bias correction methods were also compared in|Drecourt et al.| (2006) using a simple one-

dimensional groundwater model. While they did not consider the issue of ensemble size, they too
found that both the ColKF and the SepKF can successfully estimate biases and improve model fore-
casting abilities. They also noted that the convergence of the SepKF is slower than the convergence

of the ColKF, but the performances of the two methods were otherwise comparable.
4.2 Real data tests

The Nash-Sutcliffe coefficient for stream discharge and the mean RMSE of groundwater head can be
seen in Figure[§] When comparing to the base values data assimilation with the separate bias filter
(scenario SepFil), the colored noise filter (scenario ColFil) and the bias-unaware filter (scenario
NoBiasEst) all result in increased Nash-Sutcliffe coefficients and reduced mean head RMSE in the

assimilation period.
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Figure 8. Nash-Sutcliffe coefficient for stream discharge (left) and mean RMSE of groundwater head observa-

tions (right) in the assimilation and validation periods respectively (real data).

In the NoBiasEst scenario, the model states are forced to match the observations as any bias is
ignored, which results in a lower mean head RMSE in both the assimilation and the validation pe-
riod (Figure [8). However, the assumption of unbiased head observations results in the NoBiasEst
scenario having the lowest Nash-Sutcliffe coefficients of the three scenarios due to a trade-off be-
tween stream discharge observations and groundwater head observations, and it results in the drifting
model behavior apparent in Figure [0} in which the model deviates strongly from the observed level
in between updates. In SepFil, bias estimation is included using the SepKF, which results in a higher
Nash-Sutcliffe coefficient and a comparable head RMSE to that of the NoBiasEst scenario. The ef-
fect of the bias estimation can be seen in Figure[J]as the filter does not update the groundwater head

to the level of the observation but acknowledges a bias, which results in less drifting between updates
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compared to the NoBiasEst scenario. However, the deviation is still significant, which indicates that
the bias is underestimated for this observation point. This is in line with the synthetic tests, where it

was observed that the SepFil tends to underestimate large biases.
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Figure 9. Groundwater head as a function of time in head observation location well 64 (real data).

The ColFil scenario results in higher mean head RMSE and slightly lower Nash-Sutcliffe coeffi-
cient than the SepFil, but the ColFil optimal model (i.e. the deterministic model using the parameter
set estimated by the filter) performs better than the SepFil optimal model with respect to most indi-
cators.

The ColFil scenario estimates significantly larger biases in most observation points (Figure [T0),
with an average absolute estimated bias of 0.63 m, compared to 0.19 m in the SepFil scenario. With
few exceptions, SepFil estimates a smaller bias than the ColFil, though in most cases in the same
direction. Different bias directions are estimated by the two filters in two of the 24 observation
locations, as illustrated in Figure 9, which may be caused by significant differences in the estimated
parameter values (see Figure[TT), as is also seen in the synthetic test.

A bias of approximately zero is estimated in seven observation locations, while biases of up to 1.8
m are estimated in others. In most locations however, the bias appears underestimated, as exemplified
by Figure[9] This underestimation is observed as drifting and is likely caused by two factors. For the
SepKF, the update of bias is constrained by the + parameter, meaning that a too low value of v
may limit the update too much and thereby make the filter unable to estimate the correct bias, while
a too high v value is likely to yield unstable bias estimates. A test was made using a y value of
0.3 (the value used in SepFil is 0.1), which resulted in increases in the estimated biases, but also
resulted in unstable bias estimates that changed significantly with each time step as the filter did
not properly distinguish biases, random error and model dynamics. Furthermore, as more and more
observations are assimilated and the spread of the ensemble of states is reduced, the update of the

biases is smaller as the bias error covariance is assumed proportional to the state error covariance.
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line indicates zero bias.
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610 If the ensemble spread of states is reduced too much, or even collapses, before correct biases are
estimated, the bias estimation effectively stops. A similar consideration is applicable to the ColKF,
as the ColKF operates with an ensemble of biases, and the spread of the ensemble of biases (and
thereby the bias error covariance) is independent of the ensemble of states. If the spread of the

ensemble of biases is too small, bias estimation effectively stops.
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Figure 11. Spread of estimated parameters at the final update (real data). Thin blue lines show the total spread
of the ensemble and thick blue lines show the 25th and 75th percentile. Dots show the mean of the ensemble.
The horizontal lines show the AutoCal parameter value (black line) and the base parameter value (magenta

line).
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Comparing the optimal models of the ColFil, the SepFil and the NoBiasEst with the base model
and the AutoCal model reveals a clear difference between the assimilation period and the validation
period. While the optimal models produce lower NS for the assimilation time than both the base
model and the AutoCal model, there is a clear improvement in the NS in the validation period
over both the AutoCalModel and the base model. This suggests that AutoCal has produced a biased
parameter set, which is not the case using any of the three Kalman Filters. However, the value of bias
correction for parameter estimation is unclear, as there is no significant difference in the validation
NS of the bias-aware Kalman filters and the bias-unaware Kalman Filter.

This tendency is not present in head RMSE, where the optimal models perform more poorly in
terms of head RMSE than the base model and the AutoCal model. While it is to be expected that
the AutoCal model would produce lower head RMSE than both the ColKF and the SepKF since
the AutoCal model has been optimized specifically based on the head RMSE, it was expected that
the optimal models of the ColKF and SepKF would produce improvements over the base model.
However, it should be noted that the evaluation of model performance is based on the possibly
biased observed values, and that the estimated biases have not been taken into account in the head
RMSE calculations. The lack of clear improvement in the optimal models may be explained by the
fact that there is little room for improvement with the current model structure as underlined by the
relatively small improvements between the AutoCal model and the base model. It may also in part
be explained by the underestimation of the biases in both the ColFil and SepFil scenarios. Improving
the model structure and the filter setups may improve the potential of estimating parameters, but with

the current results the value of data assimilation for parameter estimation is not clear.

5 Conclusions

Observation bias is a notable challenge in integrated hydrological modelling and needs to be ad-
dressed when applying data assimilation to the models. Updating the states of a model to match
strongly biased observations will decrease filter performance and may even cause numerical insta-
bility. The two methods for correcting observation bias presented in this study can help reduce the
bias issue in data assimilation and improve filter performance. Both methods improved the ground-
water head and stream discharge of the model, and with varying degrees of success estimated the
observation bias when using synthetic observations. When using real observations, both bias esti-
mation methods resulted in improved stream flow modelling, but little improvement was seen in
groundwater heads.

The main difference in the bias correction methods analysed is the interaction between the bias and
the states. While the ColKF takes advantage of the full covariance matrix, the SepKF only takes into
account the interaction that is present from the state to the bias and not the other way around. While

this is a limitation of the SepKeF, it results in a lower requirement for ensemble members, meaning
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that for smaller ensembles, the SepKF outperforms the ColKF. To obtain similar results to those of
the SepKF when using the ColKF, the ensemble size needed to be doubled or even quadrupled, or
the updates of the states needed to be dampened in an attempt to reduce the spurious correlations.

Most of the model parameters were successfully estimated in the synthetic tests, but biased ob-
servations introduces issues with equifinality. A biased parameter set may produce unbiased model
behavior (i.e. without drifting) in one or more observations even if the estimated bias is incorrect.
As a result, the filter does not update the bias of the observation, and the erroneous parameter set is
not corrected. This resulted in significantly different parameter sets estimated by the different filters
for both the synthetic tests and the tests using real data.

The study has shown that hydrological observational bias can be corrected in a data assimilation
scheme and that it can improve state updating and parameter estimation. With both model- and
observational bias being significant sources of error in hydrological modelling that may function as
a road block for the application of data assimilation to hydrological models, these results may act
as a stepping stone for the advancement of hydrological data assimilation in large scale, integrated

hydrological models.”
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