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Abstract

Nine years of Advanced Microwave Scanning Radiometer – Earth Observing System
(AMSR-E) soil moisture retrievals are assimilated into the Catchment land surface
model at four locations in the US. The assimilation is evaluated using the unbiased
Mean Square Error (ubMSE) relative to watershed-scale in situ observations, with the5

ubMSE separated into contributions from the subseasonal (SMshort), mean seasonal
(SMseas) and inter-annual (SMlong) soil moisture dynamics. For near-surface soil mois-

ture, the average ubMSE for Catchment without assimilation was (1.8×10−3 m3 m−3)2,
of which 19 % was in SMlong, 26 % in SMseas, and 55 % in SMshort. The AMSR-E assim-
ilation significantly reduced the total ubMSE at every site, with an average reduction of10

33 %. Of this ubMSE reduction, 37 % occurred in SMlong, 24 % in SMseas, and 38 % in
SMshort. For root-zone soil moisture, in situ observations were available at one site only,
and the near-surface and root-zone results were very similar at this site. These results
suggest that, in addition to the well-reported improvements in SMshort, assimilating a
sufficiently long soil moisture data record can also improve the model representation15

of important long term events, such as droughts. The improved agreement between
the modeled and in situ SMseas is harder to interpret, given that mean seasonal cycle
errors are systematic, and systematic errors are not typically targeted by (bias-blind)
data assimilation. Finally, the use of one year subsets of the AMSR-E and Catchment
soil moisture for estimating the observation-bias correction (rescaling) parameters is20

investigated. It is concluded that when only one year of data is available, the asso-
ciated uncertainty in the rescaling parameters should not greatly reduce the average
benefit gained from data assimilation, but locally and in extreme years there is a risk of
increased errors.
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1 Introduction

Remotely sensed near-surface soil moisture observations are typically assimilated us-
ing a bias-blind assimilation of observations that have been “bias-corrected” to have
the same mean as the model forecast soil moisture (Reichle et al., 2007; Scipal et al.,
2008; Bolten et al., 2010). This approach is designed to avoid forcing the model into5

a regime that is incompatible with its assumed (likely erroneous) structure and param-
eters, or inadvertently introducing any observation biases into the model, while still
allowing the assimilation to correct for random errors in the model forecasts (Reichle
and Koster, 2004). Here “random” errors are defined as errors that persist for less than
the time scale used to – subjectively – define the bias. Observation-bias correction10

of remotely sensed soil moisture is usually achieved by rescaling the observations to
have the same mean and variance as model forecasts, for example by matching their
Cumulative Distribution Functions (CDFs; Reichle and Koster, 2004). Traditionally, the
observation rescaling (CDF-matching) parameters are estimated over the maximum
available coincident observed and forecast data record (Reichle et al., 2007; Scipal15

et al., 2008; Draper et al., 2012), so that the rescaled observations will retain a sig-
nal of any observation-forecast differences that occurred at time scales shorter than
the data record. For a multi-year data record assimilating these rescaled observations
could then potentially update the model soil moisture with observed information at sub-
seasonal, seasonal, and inter-annual time scales.20

The physical processes causing soil moisture errors at the above-mentioned sub-
seasonal, seasonal, and inter-annual time scales will be quite different. Most notably,
in many locations seasonal scale variability is dominated by the mean seasonal cy-
cle (the annually repeating variability), and any errors in the mean seasonal cycle will
be systematic (with causes such as incorrect separation of the soil and vegetation25

moisture signals from remotely sensed brightness temperatures, or in the land surface
model vegetation dynamics). In contrast, variability at subseasonal and inter-annual
time scales is rarely dominated by repeating cycles, and is more typically associated
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with transient atmospheric forcing events. For example, rapid time scale (daily) soil
moisture dynamics are driven by factors such as individual precipitation events and
changes in cloud cover, while longer time scale (seasonal-plus) dynamics are driven
by changes in the atmospheric supply and demand for moisture (Entin et al., 2000).
Soil moisture errors at subseasonal scales could then be caused by factors such as5

atmospheric noise in remotely sensed data, or errors in the daily meteorology of the
model atmospheric forcing, while inter-annual scale errors could be caused by factors
such as drift in the remote sensor calibration, or incorrect representation of atmospheric
drought conditions in the atmospheric forcing.

The systematic nature of errors in the mean seasonal cycle is problematic for data10

assimilation. Theoretically, (bias-blind) data assimilation is not designed, nor optimized,
to correct for systematic errors. More practically, if the systematic differences are not
due to model errors (i.e., are caused by observation errors, including representativity
errors), then assimilating such information can seriously degrade model performance.
Consequently, due to concerns over the accuracy of the seasonal cycle in remotely15

sensed soil moisture, Drusch et al. (2005) suggested that soil moisture observation-
bias correction for data assimilation might be better designed so that the model soil
moisture seasonal cycle is retained by the assimilation, as has been done in several
more recent studies (Bolten et al., 2010; Yilmaz et al., 2015).

In addition to the systematic nature of seasonal errors, the time scale dependence20

of soil moisture errors may also be more generally problematic for observation rescal-
ing. Even within time scales less than one month, Su and Ryu (2015) showed that
the multiplicative (differences in standard deviation) and additive (differences in mean)
components of the systematic differences between modeled and remotely sensed soil
moisture differ across time scales. They highlight that this lack of stationarity cannot25

be adequately addressed by using bulk statistics to estimate observation rescaling pa-
rameters.

To better understand the time scale dependency of near-surface soil moisture assim-
ilation, we have then decomposed modeled, remotely sensed, and in situ soil moisture
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into separate time series representing soil moisture dynamics at subseasonal, mean
seasonal, and inter-annual time scales. We have used this decomposition to examine
the differences between remotely sensed and modeled soil moisture at each time scale,
how these difference affect observation rescaling, and how assimilating the remotely
sensed observations impacts the model soil moisture at each time scale. The decom-5

position is achieved by fitting each soil moisture time series with harmonic functions
specified to target the mean seasonal cycle (SMseas), and the subseasonal (SMshort)
and inter-annual (SMlong) dynamics.

By fitting the appropriate harmonic functions to each time series, we can separate the
total mean square error of each soil moisture time series into contributions from each10

time scale. This is a much more targeted evaluation of soil moisture dynamics at the
specific time scales that can then be linked to physical processes than is usually under-
taken. Standard evaluation methods focus on bias-blind metrics, such as the correlation
or unbiased Root Mean Square Error (ubRMSE, which is calculated after removing the
long term mean difference (Entekhabi et al., 2010b)). Both of these are sensitive to soil15

moisture time series variability at all time scales. While anomaly correlations (Ranom),
are also used to exclude the seasonal cycle, this is not done consistently, and does not
allow the total error to be broken into contributing time scales. Depending on how the
anomalies are calculated, Ranom measures subseasonal scale errors (anomalies de-
fined relative to a simple moving average, as in Dorigo et al., 2015), or a combination20

of inter-annual and subseasonal scale errors (anomalies defined relative to the mean
seasonal cycle over multiple years as in Draper et al., 2012).

In the second part of this study, we also explore the impact on the assimilation of
using short time periods for observation bias correction. When first introducing CDF-
matching to rescale remotely sensed soil moisture prior to assimilation, Reichle and25

Koster (2004) showed that for Scanning Multi-channel Microwave Radiometer (SMMR)
soil moisture observations (1979–1987), reasonable rescaling parameters could be
estimated using a single year of data. We repeat their investigation using the more
modern Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-
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E) data set, and also extend their investigation by providing a more statistically robust
analysis of the impact of using single-year scaling parameters in the assimilation. This
part of the study is motivated by the recent launch of the NASA’s Soil Moisture Active
Passive (SMAP) mission (Entekhabi et al., 2010a), as it will address the consequences
of using short records to rescaling the observations during the early phases of the5

SMAP mission.

2 Data and methods

Nine years of surface soil moisture retrievals from AMSR-E X-band data (Owe et al.,
2008) have been assimilated into the Catchment land surface model (Koster et al.,
2000), at four locations in the US. The impact of the assimilation on the model skill10

is measured by comparison to watershed-scale in situ soil moisture observations col-
lected by the Agricultural Research Service (ARS) of the United States Department
of Agriculture (Jackson et al., 2010). Each of these data sets is first described below
(Sect. 2.1), followed by a discussion of the assimilation approach (Sect. 2.2) and the
method used to decompose soil moisture time series into subseasonal, seasonal, and15

inter-annual time scales (Sect. 2.3).

2.1 The soil moisture data sets

For over a decade the ARS has been collecting soil moisture observations, at least
hourly, using dense networks of in situ sensors at four watershed scale sites in the US:
Reynolds Creek (RC), Walnut Gulch (WG), Little Washita (LW), and Little River (LR).20

See Table 1 for the locations of each site. These observations are averaged across
each network to produce a coarse scale soil moisture observation with spatial support
similar to typical remotely sensed and modeled soil moisture estimates. Observations
are potentially made at every 5 cm from 5–60 cm depth, although the 5 cm layer typi-
cally has a longer and more complete record than the deeper layers. In this study, the25
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near-surface soil moisture from Catchment and AMSR-E was evaluated using the 5 cm
ARS observations, while the root-zone soil moisture from Catchment was evaluated
using the average of the 5–60 cm observations (including only times with data reported
for all layers). The ARS root-zone soil moisture was used at Little River only, due to
very low observation counts over the study period at the other sites. Given that we will5

focus on evaluating variance, we have not supplemented the ARS observations with
observations from single sensor networks, such as SCAN (Schaefer et al., 2007). Un-
like the locally dense in situ measurements from the ARS networks, the variance (and
mean) of observations from single sensors cannot be assumed representative of the
coarse scale soil moisture from Catchment and AMSR-E.10

Level 3 Land Parameter Retrieval (LPRM) X-band AMSR-E near-surface soil mois-
ture retrievals at 0.25◦ resolution were obtained for the grid cells surrounding each
site in Table 1. At X-band the observations relate to a surface layer depth slightly less
than 1 cm. Only the descending (1:30 a.m. LT) overpass has been used to avoid possi-
ble differences in the climatological statistics of day- and night-time observations. The15

sites were explicitly selected by ARS to avoid possible radio frequency interference
and proximity to permanent open water, and the AMSR-E soil moisture retrievals were
screened to remove observations with X-band vegetation optical depth above 0.8.

NASA’s Catchment land surface model was run over the 9 km EASE grid cells
surrounding each study site, using atmospheric forcing fields from Modern Era20

Retrospective-Analysis for Research (MERRA; Rienecker et al., 2011) and recently
improved soil parameters (De Lannoy et al., 2014). The model initial conditions were
first spun-up from January 1993 to January 2002 using a single member without per-
turbations. The ensemble (including perturbations) was then spun-up from January to
October 2002 (see Sect. 2.2 for details of the ensemble). For both the model open loop25

and data assimilation model output, the ensemble average near-surface (0–5 cm) and
root zone (0–100 cm) soil moisture is then reported.

Daily ARS and Catchment time series were generated by sampling each at the ap-
proximate time of the descending AMSR-E overpass (1:30 a.m. LT). Initially each time
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series spanned the AMSR-E data record, rounded down to nine full years from Octo-
ber 2002 to September 2011, however the Little River root-zone soil moisture obser-
vations are not available before January 2004, and were truncated to the seven years
from October 2004 to September 2011. Also, there were just 21 ARS observations at
Reynolds Creek in the last year of this period, and so the Reynolds Creek time se-5

ries were truncated to the eight years from October 2002 to September 2010. The
ARS and AMSR-E sensors can only measure liquid soil moisture, and all data have
been screened out when the Catchment model indicates frozen near-surface condi-
tions. Since the Reynolds Creek site is frozen for an extended period each winter,
liquid soil moisture is not well defined there during winter, and the Reynolds Creek10

time series have then been truncated to remove winter, defined from 1 December to
10 March (the period during which the Catchment surface is continuously frozen for at
least three of the eight years of the Reynolds Creek record).

2.2 The assimilation experiments

The assimilation experiments were performed using a one-dimensional bias-blind En-15

semble Kalman Filter, with the same set-up and ensemble generation as in Liu et al.
(2011). We used CDF-matching (Reichle and Koster, 2004) to rescale the observations
prior to each assimilation experiment. The details of the time period used to estimate
the observation scaling parameters are given in Sect. 3, before presenting each set
of results. The benefits of each assimilation experiment have then been compared to20

that of the Catchment model open loop ensemble mean, in which the same ensemble
generation parameters were used, and no observations were assimilated.

2.3 Decomposition of soil moisture time series

We wish to decompose each soil moisture (SM) time series into separate components
representing soil moisture dynamics at the subseasonal (SMshort), seasonal (SMseas),25

and inter-annual (SMlong) time scales. Variability in a time series at specific time scales
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can be isolated by fitting a function made up of the sum of sinusoidal functions. For-
mally, for some observed time series, y , the function, ŷ , is fit for some selection of
integers ki:

ŷ(t) = a0 +Σk=k1,k2,...ak sin
(

2πkt
n

)
+bk cos

(
2πkt
n

)
, (1)

where t is the time step and n is the length of the time series. 2πk
n is the (angular)5

frequency for a sinusoid completing k cycles over n time steps (i.e., that has frequency
k/n per time unit), and ŷ for k = ki is referred to as the kith harmonic. a0 is the mean
of y . If the time series is sampled at regular intervals and has no missing data, the
sinusoids for individual harmonics are orthogonal and independent of each other. This
is the basis for the discrete Fourier transform, which exactly fits Eq. (1) to y using the10

first n/2 harmonics (i.e., ki = 1,2,3, . . .n/2). In this study, we use multiple linear least
squares regression to fit Eq. (1) to the soil moisture time series for a sum of harmonic
frequencies selected to isolate the variability at each target time scale, as described
below.

We define SMseas by fitting Eq. (1) to the soil moisture time series for some combi-15

nation of the annual harmonic frequencies (i.e., for k/n an integer multiple of 1 yr−1).
The frequencies higher than 1 yr−1 moderate the shape of ŷ to account for differences
in the shape of the seasonal cycle from the single sinusoid described by the first har-
monic. Typically, only a few annual harmonics are necessary to fit the seasonal cycle of
geophysical variables (Scharlemann et al., 2008; Vinnikov et al., 2008). Here we define20

SMseas to be the sum of the first two harmonics, since fitting additional harmonics did
not improve the ability to predict withheld data, following the method of Narapusetty
et al. (2009). Note that since the same annual harmonics are repeated each year, we
are restricting SMseas to represent only the mean seasonal cycle, and any inter-annual
variability at seasonal time scales, such as anomalous vegetation growth in a given25

year, will be assigned to the subseasonal or inter-annual variability, depending on its
temporal characteristics.
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We define SMlong by fitting Eq. (1) to the soil moisture time series using the harmonic

frequencies lower than 1 yr−1 that divide into the number of years in the data record
(i.e., for k/n = 1/m, 2/m, 3/m.. .(m−1)/m, wherem is the time series length in years).
Finally, we define SMshort as the residual:

SMshort = SM− 〈SM〉 −SMlong −SMseas (2)5

where 〈SM〉 is the temporal mean soil moisture. Note that, as defined here, SMlong,
SMseas, and SMshort are all zero-mean, since the time series mean was assigned to a0
in Eq. (1). The coverage statistics for each data set in Table 2 highlight that the AMSR-E
and ARS observed time series are incomplete. When applied to incomplete time series,
the sinusoids fitted by Eq. (1) are no longer necessarily independent, hence the fitted10

SMseas and SMlong may not be independent. We opted not to use gap-filling prior to
fitting Eq. (1), to keep the method simple, and because gap-filling would directly affect
the SMshort dynamics. In Sect. 3, before using the decomposed time series we check
for signs of strong dependence between the fitted SMlong, SMseas, and SMshort, by test-
ing whether the sum of the variances of the three time scale components differs from15

the variance of the original soil moisture time series. We assume that if there is no dif-
ference (or little difference) then any dependence between SMlong, SMseas, and SMshort
has only a minimal impact on our results. Following initial investigation with this test, the
number of observations used at each location is maximized by comparing only model
(or assimilation) estimates to ARS in situ measurements, avoiding direct comparison20

of the incomplete ARS and AMSR-E time series (which would require cross-screening
for the availability of both). Finally, we do not use the harmonic fit to interpolate missing
data, and instead screen out the fitted SMlong and SMseas at times when the original soil
moisture was not available. Also, at Reynolds Creek, where the time series has been
truncated to remove frozen winters, the length of the year used to fit the harmonics was25

similarly truncated.
For demonstration purposes, we have also decomposed each soil moisture time se-

ries into similarly defined time scale components using moving averages, since mov-
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ing averages are often used for calculating anomaly correlations (Draper et al., 2012;
Dorigo et al., 2015). The length of the averaging windows were chosen to give close
agreement with the results of the harmonic decomposition described above. For the
moving average decomposition, the inter-annual soil moisture time series, SMMA

long, is

defined as the 181 day moving average, and the seasonal cycle, SMMA
seas, is defined5

for each day of the year by averaging the data from all years that fall within a 45 day
window surrounding that day-of-year. As with the harmonic approach, the subseasonal
time series, SMMA

short, is calculated as the residual, analogous to Eq. (2). The same data
processing and quality control as for the harmonic decomposition is used, plus the
moving averages are only calculated when at least 60 % of the data within the averag-10

ing window are available.

3 Results

Below, the original AMSR-E, Catchment, and ARS soil moisture time series are exam-
ined (Sect. 3.1), before being split into SMseas, SMlong, and SMshort (Sect. 3.2). The
distribution of variance across the different time scales for each soil moisture estimate15

is then compared (Sect. 3.3), before the observations are rescaled (Sect. 3.4), and the
benefit of assimilating the AMSR-E data into Catchment is assessed at each time scale
(Sect. 3.5). Finally, the consequences of using a relatively short record to rescale the
AMSR-E data is examined (Sect. 3.6).

3.1 The ARS, AMSR-E, and catchment time series20

Figure 1 shows the original time series at each site. In general, soil moisture from in
situ, modeled, and remotely sensed estimates have systematic differences in their be-
havior, due to representativity or structural differences between each estimate (Reichle
et al., 2004). These systematic differences are clear in Fig. 1. The most obvious dif-
ference is that the mean and variance of each estimate differ (see also Table 2). Both25
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AMSR-E and Catchment are consistently biased high compared to the ARS soil mois-
ture. Bias values for the model range from 0.01 m3 m−3 for Little Washita to 0.09 m3 m−3

for Little River, and bias values for the AMSR-E retrievals range from 0.07 m3 m−3 for
Reynolds Creek to 0.21 m3 m−3 for Little River. Additionally, the standard deviation of
AMSR-E is two to three times larger than the other two estimates. Figure 1 demon-5

strates that this is due to greater noise, and also a prominent seasonal cycle at Little
Washita and Little River that is not evident in the other time series.

In addition to the systematic differences in their mean and standard deviation re-
ported above, there are more subtle differences between the soil moisture dynamics
described by each estimate. For example, for both the surface and root-zone soil mois-10

ture, the ARS time series tend to show a sharper response to individual rain events
than does Catchment, with (relatively) larger peaks followed by more rapid dry down
after each event. At Walnut Gulch this is particularly obvious, with ARS rapidly drying to
a well defined lower limit after each precipitation event, while Catchment has a lesser
response to individual events, and a stronger seasonal signal.15

3.2 Soil moisture time series at each time scale

Figure 2 shows an example of the time scale decomposition, for the Catchment surface
soil moisture at Little River, for both the harmonic and moving average approaches.
The time series described by each method are similar in terms of the magnitude and
timing of their dynamics, except that the moving average inter-annual soil moisture20

includes more high-frequency variability than does the harmonic version. Evaluation of
soil moisture at specific time scales should ideally be based on time series separated
into independent time scale components. For the harmonic method, independence
between the time series at each time scale is not guaranteed since the original time
series were not complete, while for the moving average method, independence is not25

expected.
Figure 3 shows an example of the variance bar plots used to check for signs of

dependence between the time series at each time scale, in this case for the Catchment
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model and the AMSR-E observations. In Fig. 3a, for the harmonic method, the sum
of the variances at each time scale (the stacked bars) is very close (within 2 %) to
the total variance of the original soil moisture time series (the white circles), falling
within the 95 % confidence interval of the total variance in each case. In contrast, for
the moving average method in Fig. 3b the sum of the variances of each time scale5

falls outside the 95 % confidence interval for the total time series variance at three of
four sites, with a mean difference of 8 % of the total variance (with differences ranging
between 1 and 16 %), indicating strong dependence between the three components.
The sum of the variances of the time scale components is less than the total variance
at each site, indicating positively correlated features between the moving average time10

scale components (since 〈(σ2
X+Y )〉 = 〈σ2

X 〉 −2〈σXY 〉+ 〈σ
2
Y 〉). This positive correlation is

intuitively expected, since an anomaly in the original soil moisture time series has the
same direction of influence on both the moving averages and the residual from that
moving average (e.g., in Fig. 2 note the signal of the large positive anomaly in early
2004 in both SMMA

long and SMMA
short). Finally, the distribution of variance across the time15

scales is similar for each method, largely because the moving average window lengths
for SMMA

seas and SMMA
long were selected to generate time series closely matching those

from the harmonic method.

3.3 Variance distribution across time scales

In Fig. 3 the AMSR-E variance is much larger than that for Catchment (as was dis-20

cussed in Sect. 3.1), making it difficult to compare the relative distribution of variance
across each time scale. Figure 4a then shows the AMSR-E and Catchment variance
bar plots with the total variance normalized to one, to allow direct comparison to the
fraction of variance at each time scale. The same plots are also presented for the
Catchment and ARS soil moisture in Fig. 4b (recall we do not directly compare the25

ARS and AMSR-E time series, so as to avoid cross-screening their availability).
In Fig. 4, the distribution of variance across time scales for each data set can be very

different, and there is not a consistent pattern across the four sites. As was previously
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noted from Fig. 1, AMSR-E has a very prominent seasonal cycle at Little River and
Little Washita (40–70 % of the total variance) that is not present for Catchment or ARS,
for which the SMseas fraction of variance is around 10–20 % in Fig. 4. In contrast, at
Reynolds Creek and Walnut Gulch, Catchment has a larger fraction of its variance in
the seasonal cycle (55–70 %) than does AMSR-E (20–40 %), with ARS agreeing with5

Catchment at Reynolds Creek only. At Walnut Gulch the greater variance-fraction in
the Catchment SMseas is mostly balanced by less variability in SMshort (30 % compared
to 60 % for ARS). This is associated with the differing responses to precipitation events
already noted in Fig. 2.

AMSR-E could be expected a priori to have a larger fraction of variance at SMshort,10

due to measurement noise in the remotely sensed observations. However, this is only
the case at Reynolds Creek, where AMSR-E has 50 % of its variance in SMshort, com-
pared to 20–30 % for Catchment and ARS. At Walnut Gulch, the AMSR-E and ARS
SMshort variance-fractions are similar (50–60 %), while the fraction for Catchment is
much lower (25 %). At Little Washita and Little River the variance-fraction in the AMSR-15

E SMshort is similar to Catchment (at around 50 and 30 %, respectively) and both are
much smaller than for ARS (around 70 %). At these two sites the AMSR-E SMshort
variance-fraction may be less than expected due to the large amount of variance in its
exaggerated seasonal cycle.

For the SMlong variance, the patterns at Little Washita and Little River are again20

similar to each other. Catchment has much more variance in SMlong (40–50 %) than
ARS (20 %) or AMSR-E (10 % or less). At the other two sites, the SMlong variance-
fraction is similar for all data sets, except for the lower value for AMSR-E at Walnut
Gulch (< 10 %, compared to around 20 % for ARS and Catchment).

3.4 Baseline observation rescaling25

The systematic differences between observed and forecast soil moisture mean and
variance (Fig. 3) motivate the practice of rescaling observations to match the model
forecast climatology prior to assimilation. If this is not done, the assimilation may force
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the model into a regime that is incompatible with its assumed structure and param-
eters, leading to degraded flux forecasts (De Lannoy et al., 2007). For the baseline
experiment, the AMSR-E observations were rescaled using bulk CDF-matching pa-
rameters estimated over the full data record. By design, the CDF-matched AMSR-E
observations, labeled Oc, have the same mean (not shown) and variance (Fig. 3a)5

as the Catchment soil moisture. Figure 4 shows that the CDF-matching had little im-
pact on the variance distributions across each time scale. This suggests that for the
examples in this study, the CDF-matching operator could be approximated by a linear
rescaling, in which only the mean and variance of the model are matched, as in Scipal
et al. (2008). Hence, the observation rescaling, and assimilation of the resulting obser-10

vations, was repeated using linear rescaling of the AMSR-E observations in place of
CDF-matching, with very similar results in terms of the rescaled observations and the
assimilation output (for both the Oc rescaling presented here, and the Oy rescaling in
Sect. 3.6).

Recall that the distribution of the variance across different time scales was quite15

different for AMSR-E and Catchment soil moisture in Fig. 4. Note that large errors in
the variance at one time scale (in either AMSR-E or Catchment) will affect the rescaling
of the variance at other time scales. In particular, if the unrealistically large AMSR-
E seasonal cycle at Little Washita were replaced with something more realistic, for
example representing 8 % of the total variance (as in the ARS time series), then the20

fraction of variance in SMshort would increase from the current 48 to 75 %, increasing
the SMshort variance in the CDF-matched AMSR-E from 0.0036 to 0.0054 (m3 m−3)2.

3.5 Evaluation of the baseline assimilation experiment at each time scale

The improvement gained from assimilating the AMSR-E observations is evaluated us-
ing the unbiased Mean Square Error (ubMSE) of the resulting model soil moisture, with25

respect to the ARS in situ observations. We define the ubMSE as the mean square dif-
ference after removing the long-term mean bias from both data sets. This is the square
of the commonly used unbiased root mean square error (Entekhabi et al., 2010b). We
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do not use the square root to take advantage of the additive property of the variance
of independent time series, however to aid interpretation the ubMSE equivalent to the
common ubRMSE target accuracy of 0.04 m3 m−3 is indicated in the relevant plots.

Figure 5 shows the ubMSE for each assimilation experiment, separated into each
time scale. In the baseline assimilation experiment, labeled Ac, the observations CDF-5

matched over the full time period (Oc) were assimilated into the Catchment model. Prior
to assimilation, the average ubMSE in the near-surface soil moisture across the four
sites was 1.8×10−3 (m3 m−3)2 (giving a ubRMSE just above the 0.04 m3 m−3 target).
Close to half (55 %) of the ubMSE is in SMshort, with the rest split between SMseas
(26 %) and SMlong (19 %). The Ac assimilation significantly reduced the total ubMSE10

at each site, reducing the average near-surface ubMSE across the four sites by 33 %
to 1.2×10−3 (m3 m−3)2, with average reductions in the near-surface layer of 52 % for
SMlong, 25 % for SMseas, and 22 % for SMshort. The total ubMSE was reduced at each
site for all time scale components, except for SMseas at Little Washita (where the model
ubMSE was already relatively small).15

Root-zone soil moisture observations were available for the study period only at Little
River. Both the distribution of the ubMSE across each time scale, and the relative
reductions achieved from assimilation, are similar for the near-surface and root-zone
layers at Little River in Fig. 5d and e, adding confidence that the model improvements
reported above for the near-surface soil moisture are indicative of the performance20

throughout the soil profile.
To illustrate the impact of the assimilation at each time scale, Fig. 6 compares the

decomposed time series for the Catchment model and Ac assimilation experiments to
that from the ARS in situ observations at Little Washita. The difference between the
three SMshort time series is difficult to visually judge in Fig. 6d, however, the impact25

of the assimilation on the SMseas and SMlong time series is clear. Figure 6b suggests
that the large SMlong ubMSE reduction (by over 80 %) from the assimilation is due
to the reduced amplitude in the SMlong dynamics, although there is perhaps also an
improvement in event timing. In Fig. 6c, the model seasonal cycle has an overestimated
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amplitude, and also includes two maxima per year, where the ARS seasonal cycle has
only one. The assimilation exacerbates the overestimated amplitude, but also removes
the second annual maxima, resulting in an overall SMseas ubMSE reduction (by 46 %).

3.6 Observation rescaling with a short data record

The nine year AMSR-E data record used here is the longest remotely sensed soil5

moisture record available from a single satellite sensor, and soil moisture assimilation
experiments using newer satellites are limited to shorter time periods. Obviously, as-
similating a shorter time period will limit the potential improvements to the model SMlong
(of similar magnitude to the SMshort improvement in this study). The potential benefit
of an assimilation over a shorter period may also be limited by the increased sampling10

uncertainty in the estimated observation rescaling parameters. This increased uncer-
tainty could arise from systematic errors due to inadequate sampling of SMseas and
SMlong, or from increased random errors associated with the smaller sample size. To
establish the potential consequences of this uncertainty, we conducted nine additional
experiments, labeled Ay, with the rescaling parameters for each estimated from a 1215

month period starting in consecutive Octobers (but assimilating the full eight or nine
year near-surface soil moisture data record listed in Table 1).

In contrast to Reichle and Koster (2004), we do not use ergodic substitution (of spa-
tial sampling for temporal sampling) when estimating the rescaling parameters with
a single year of observations, since with more modern remotely sensed data sets (than20

the SMMR data used by Reichle and Koster, 2004) this is no longer necessary to ob-
tain a sufficient sample size. Additionally, for the assimilation of Soil Moisture Ocean
Salinity retrievals, De Lannoy and Reichle (2015) found ergodic substitution degraded
the estimated CDFs, by introducing conflicting information from neighboring grid cells
(possibly due to the higher spatial resolution, compared to SMMR).25

The potential uncertainty introduced by using a single year to estimate the rescaling
parameters depends on the inter-annual variability in the systematic differences be-
tween the observed and forecast soil moisture. The main systematic differences that
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are addressed by the CDF-matching are the differences in the observed and forecast
mean and standard deviation. For demonstrative purposes, Fig. 7 illustrates the differ-
ence between the means, and the ratio of the standard deviations, estimated using the
full data record, and using each single year. In Fig. 7a there is considerable inter-annual
scatter in the yearly mean differences, although by linearity the average is unbiased.5

The standard deviation ratio in Fig. 7b also shows inter-annual variability, however the
single year ratios are also biased low compared to the all-years ratio, since the single
year estimates did not sample the SMlong variance (which was consistently a greater
fraction of the total variance for Catchment than for AMSR-E in Fig. 4a). This is partic-
ularly marked at Little River, where the average of the single year standard deviation10

ratios was 30 % less than when estimated using all years (since SMlong makes up close
to 50 % of the total variance in Catchment, compared to less than 5 % for AMSR-E in
Fig. 4a).

Figure 5 includes the ubMSE for the nine Ay assimilation experiments, as well as the
mean ubMSE (〈Ay〉) across all nine. Note that errors in the rescaling of the mean value15

are likely under-reported here, since any introduction of biases into the model will not
be directly detected by the ubMSE. Comparing the 35 individual Ay experiments to the
baseline Ac experiments, most of the Ay experiments resulted in larger total ubMSE
than the Ac experiment did at Reynolds Creek, Walnut Gulch, and Little Washita, while
the opposite occurred at Little River. Overall there were eight Ay experiments for which20

the total ubMSE was significantly different (at the 5 % level) and higher than for the Ac
experiment, seven for which it was significantly different and lower, and 20 where the
ubMSE was not significantly changed. The differences between the Ac and Ay ubMSE
are skewed, in that when the Ay ubMSE is higher, the difference tends to be greater
than when it is lower. Consequently, the average reduction in the model ubMSE for the25

near-surface soil moisture, compared to the model with no assimilation, is slightly less
for 〈Ay〉 (30 %) than for Ac (33 %).

Each instance of relatively poor ubMSE for an Ay experiment can be traced to the
more extreme (i.e., unrepresentative) single year systematic differences in Fig. 7. For
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example, going through the experiments with the largest relative increase in ubMSE,
experiment Ay07 at Reynolds Creek, and experiments Ay05, Ay06, and Ay07 at Walnut
Gulch all have extreme standard deviation ratios, while Ay06 at Reynolds Creek and
Ay10 at Little Washita have extreme mean differences. In each case, most of the in-
crease in the ubMSE is due to increased errors in the SMseas and SMlong components,5

suggesting that the SMshort corrections are more robust to uncertainty in the scaling
parameters. The result that unrepresentative mean difference corrections can impact
the ubMSE (a bias-robust metric) is interesting in that it demonstrates that bias-free
assimilation of biased observations can degrade model soil moisture dynamics. Note
also that unrepresentative scaling parameters do not necessarily degrade the assimi-10

lation output, and in some instances are even advantageous. Most obviously, at Little
River, where the single year standard deviation ratios were biased low (by 30 %), the
Ay assimilation experiments all produced slightly lower ubMSE than the Ac experiment.

Above, the assimilation of AMSR-E data that has been rescaled using parameters
estimated from a single year, and from the full time period were compared, showing15

that the average ubMSE is slightly higher when the single year parameters were used.
However, it is perhaps more relevant to assess whether the assimilation is still benefi-
cial when the single year parameters are used. Figure 5 suggests that on average it is.
As with the Ac experiment, the 〈Ay〉 ubMSE is consistently less than that of the model at
all time scales, except for SMseas at Little Washita. However, for individual realizations20

there is an increased risk when using the single year parameters that the assimilation
will not significantly improve the model, or will even significantly degrade the model. For
example, at Little Washita, where the Ac experiment reduced the ubMSE by a small but
significant amount, none of the Ay experiments significantly decreased the ubMSE, and
the Ay10 experiment significantly significantly increased it.25

7989

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/7971/2015/hessd-12-7971-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/7971/2015/hessd-12-7971-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 7971–8004, 2015

Soil moisture
assimilation time

scales

C. Draper and R. Reichle

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4 Conclusions

Many studies have demonstrated that near-surface soil moisture assimilation can im-
prove modeled soil moisture, in terms of the anomaly time series used to represent
“random errors”, often implicitly assumed to represent subseasonal scale variability
associated with individual precipitation events (Reichle et al., 2007; Scipal et al., 2008;5

Draper et al., 2012). Here, nine-years of LPRM AMSR-E observations were assimi-
lated into the Catchment model, and the resulting model output evaluated separately
at the subseasonal (SMshort), seasonal (SMseas), and inter-annual (SMlong) time scales
against watershed-scale in situ observations at four ARS sites in the US. The results
show that, in addition to reducing the near-surface SMshort ubMSE averaged across10

the four sites, the assimilation also reduced the near-surface SMlong ubMSE. The mag-

nitude of the reductions in SMshort and SMlong were similar (2.1×10−4 (m3 m−3)2, and

2.5×10−4 (m3 m−3)2, respectively), although this represented a much larger relative re-
duction in the SMlong ubMSE (52 % of the model SMlong ubMSE, compared to 22 % for
the SMshort ubMSE). In situ observations of the root-zone layer were available for only15

one site, however the similarity between the near-surface and root-zone results at this
site (Fig. 5) is encouraging in terms our near-surface results being representative of
the deeper soil moisture profile.

The reduced SMlong ubMSE suggests that assimilating a sufficiently long data record
of near surface soil moisture observations can improve the model soil moisture dy-20

namics at inter-annual time scales, enhancing the model ability to simulate important
events such as droughts. However, more so than for SMshort, it is possible that the re-
duced ubMSE was associated with reduced representativity differences compared to
the in situ observations that were used to calculate the ubMSE. For example, at Little
River in Fig. 5 the substantial improvements to the SMlong near-surface and root-zone25

soil moisture gained by assimilating the AMSR-E observations were largely due to re-
duced SMlong variance. If the model’s exaggerated SMlong was a representativity or
structural error (e.g., too strong a signal of underlying water table), then it is not clear
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that the model would benefit from correcting this error, in terms of improvements to
forecast skill.

Assimilating the AMSR-E observations also reduced the near-surface SMseas
ubMSE by 26 %, averaged across the four sites, suggesting the possibility that the
assimilation was beneficial to the modeled mean seasonal cycle, despite not being5

designed to address systematic errors. However, even more so than for SMlong, the re-
duced SMseas ubMSE could be due to reduced representativity differences, rather than
a genuine improvement to the model’s ability to represent the desired physical pro-
cesses. To confirm that the SMlong and SMseas ubMSE reductions do indicate improved
model soil moisture would require evaluating the dependent moisture and energy flux10

forecast, and unfortunately verifying observations are not available at the study loca-
tions.

In comparing the AMSR-E and Catchment soil moisture at each time scale in this
study, it became apparent that the distribution of variance across each time scale was
very different between the remotely sensed and modeled soil moisture time series15

(Fig. 4). Traditionally, observation rescaling strategies used in land data assimilation
do not distinguish between variability at different time scales, and apply a single set of
bulk rescaling parameters to the full time series. Consequently, the large discrepancies
in the variance at one time scale (due to errors in one of or both estimates) can have
follow-on effects for the rescaling of other time scales. For example, the unrealistically20

large AMSR-E seasonal cycle at Little Washita caused the variability at SMlong and
SMshort to be overly dampened in this study. This could perhaps be avoided by using
rescaling methods that rescale each time scale separately (e.g., Su and Ryu, 2015).

In addition to observation bias removal strategies that respect the time scale-
dependent nature of observation – forecast systematic differences, it may be advanta-25

geous to target only certain time scales, for example by retaining the model seasonal
cycle while rescaling other time scales (e.g., Bolten et al., 2010; Yilmaz et al., 2015).
Ultimately, whether these approaches will be beneficial will depend on whether the
model observation differences at each time scale are caused by model or observation
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errors. This study is a first effort to investigate soil moisture assimilation at specific time
scales associated with different soil moisture physical processes. Looking forward, fur-
ther evaluation of soil moisture at these time scales will help to identify the physical
processes responsible for errors in modeled and remotely sensed soil moisture (in-
cluding representativity errors in the latter), which will in turn help to refine observation5

bias removal strategies.
Finally, we have updated the investigation of Reichle and Koster (2004) into the use

of short data records for estimating observation rescaling (CDF-matching) parameters.
Nine additional assimilation experiments were performed, each with the AMSR-E ob-
servations rescaled using parameters estimated from a single year of data. Compared10

to the scaling parameters estimated using the full data record, using only one year of
data introduced sampling errors due to inter-annual variability in SMseas and SMshort,
and the unsampled SMlong variability in the parameters.

For hindcasting/reanalysis applications, when the same short time period is used for
bias parameter estimation and data assimilation, such unrepresentative parameters15

should not be problematic, since the rescaled observations will still be unbiased rela-
tive to the model over the length of the assimilation experiment, allowing shorter time
scale errors to be corrected. However, in a forecasting/analysis application in which the
bias corrections parameters must be estimated with the available (short) data record,
and then applied to future observations, unrepresentative parameters can be more20

problematic. Our results suggest that, when necessary, for example early in the SMAP
mission, assimilating near-surface soil moisture over an extended period using single
year parameters will introduce some additional uncertainty into the assimilation output,
however over a large domain the overall impact will be minor. Of the total of 35 individ-
ual assimilation realizations that we performed with single year parameters at the four25

locations, nine resulted in no significant change in the near-surface ubMSE, and one
resulted in significantly increased ubMSE (recall that the baseline assimilation signifi-
cantly reduced the ubMSE at all four sites). However, averaged across all realizations,
which should translate to an average across a large spatial domain, the net impact of
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the single year parameters was small, and did not practically reduce the benefit gained
from the assimilation.
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Table 1. Location and time period of study sites.

Name (abbreviation) Location Time period

Reynolds Creek, surface (RC-sfc) 116.7◦W, 43.2◦ N Oct 2002–Sep 2010, excluding 1 Dec–10 Mar
Walnut Gulch, surface (WG-sfc) 110.0◦W, 31.7◦ N Oct 2002–Sep 2011
Little Washita, surface (LW-sfc) 98.0◦W, 34.8◦ N Oct 2002–Sep 2011
Little River, surface (LR-sfc) 83.5◦W, 31.5◦ N Oct 2002–Sep 2011
Little River, root-zone (LR-rz) 83.5◦W, 31.5◦ N Oct 2004–Sep 2011
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Table 2. Descriptive statistics for each data set at each study site.

Data source Number of data Mean (m3 m−3) Standard deviation (m3 m−3)

Reynolds Creek, surface

AMSR-E 1209 0.17 0.097
ARS 1944 0.10 0.068
Catchment 2111 0.16 0.039

Walnut Gulch, surface

AMSR-E 1960 0.15 0.067
ARS 3282 0.05 0.023
Catchment 3287 0.14 0.039

Little Washita, surface

AMSR-E 1748 0.27 0.097
ARS 2690 0.13 0.054
Catchment 3287 0.14 0.039

Little River, surface

AMSR-E 1989 0.31 0.100
ARS 3155 0.10 0.044
Catchment 3287 0.19 0.049

Little River, root-zone

AMSR-E – – –
ARS 2808 0.09 0.036
Catchment 2830 0.15 0.038
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Figure 1. The ARS in situ, Catchment model, and AMSR-E remotely sensed surface soil mois-
ture, with near-surface soil moisture at (a) Reynolds Creek, (b) Walnut Gulch, (c) Little Washita,
(d) Little River, and (e) root-zone soil moisture at Little River.
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Figure 2. Decomposition of the Catchment near-surface soil moisture time series at Little River,
using the harmonic (HA; black) and moving average (MA; cyan) methods, for (a) the original
time series (red dots) and the sum of SMlong +SMseas+ the long-term mean soil moisture (solid
lines), and the individual components (b) SMlong, (c) SMseas, and (d) SMshort.
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Figure 3. Time series variance at each time scale, with the Catchment Model (M), original
AMSR-E Observed (O), and CDF-matched AMSR-E Observed (Oc) soil moisture variances
plotted for the (a) harmonic, and (b) moving average decomposition methods. The circles and
error bars give the variance of the original soil moisture time series, with 95 % confidence
intervals (some very small confidence intervals are obscured by the plotted circles).
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Figure 4. Fraction of variance at each time scale, obtained by normalizing the time series
variance before decomposition. The Catchment Model (M), original AMSR-E Observed (O), and
the CDF-matched AMSR-E Observed (Oc) soil moisture time series, cross-screened for AMSR-
E availability, are plotted in (a), and the ARS In situ observations (I), Catchment model (M),
and baseline assimilation (Ac) soil moisture time series, cross-screened for ARS availability,
are plotted in (b). The circles give the variance of the original (normalized) soil moisture time
series.
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a) RC−sfc: ubMSE [(m3/m3)2]
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b) WG−sfc: ubMSE [(m3/m3)2]
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c) LW−sfc: ubMSE [(m3/m3)2]
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d) LR−sfc: ubMSE [(m3/m3)2]
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e) LR−rz: ubMSE [(m3/m3)2]

Figure 5. Error variances (ubMSE) compared to ARS in situ observations at each time scale,
for the near-surface soil moisture at (a) Reynolds Creek, (b) Walnut Gulch, (c) Little Washita,
(d) Little River, and (e) for the root-zone soil moisture at Little River. Bars show the Catchment
model open loop (M), baseline assimilation (Ac), individual Ay assimilation experiments, and
the mean across the Ay experiments (〈Ay〉). Label AyYY indicates the Ay experiment with bias
correction parameters estimated from the 12 months from 1 October of 20YY. Circles and error
bars give the ubMSE and its 95 % confidence interval for the original soil moisture time series
(some very small confidence intervals are obscured by the plotted circles). The dashed line at
ubMSE of 1.6×10−3 (m3 m−3)2 is equivalent to the common ubRMSE target of 0.04 m3 m−3.
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Figure 6. Decomposition of the ARS In situ (I), Catchment model (M), and baseline assimilation
output (Ac) near-surface soil moisture time series at Little River, showing the (a) original time
series, (b) SMlong, (c) SMseas, and (d) SMshort.
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Figure 7. Systematic differences between AMSR-E observations and Catchment model near-
surface soil moisture, with (a) the mean difference (〈model〉 − 〈observation〉), and (b) the ratio
of the standard deviations (σ(model)/σ(observations)). The parameters are estimated using
all years (All), and each year separately (with label YY indicating the parameters estimated
from the 12 months from 1 October of 20YY), and the dashed lines give the mean of the YY
parameters.
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