
 1	

Comments to the Author: 
The paper investigates the role of drainage and soil storage properties on modulating climate-
evapotranspiration relations for three mountainous catchments in western U.S. As mentioned 
by the reviewers, the study results are of interest for both field researchers and modellers. 
The paper is clearly written though the conclusions section will benefit from changes 
suggested by the reviewers. 
 
The reviewers have raised a number of additional interesting questions that have been 
carefully responded by the authors, who have also clearly identified the strategy to address 
these issues in the revised paper. The number of revisions is minor but I would like to see a 
revised version. I am therefore recommending minor revisions in line the reviewer’s 
suggestions and with my own assessment of the manuscript. 
	
	
We	thank	the	editor	for	both	the	positive	response	to	the	original	manuscript	
and	for	the	opportunity	to	share	our	revisions	to	the	full	manuscript	text.		
	
Our	revised	manuscript	includes	all	revisions	mentioned	in	our	response	to	
the	referees,	including	the	abbreviated	conclusion	and	focusing	of	the	results	
and	discussion.	There	are	additional	minor	edits	throughout	the	text	that	
modify	our	use	of	the	word	‘soil’	to	‘subsurface	storage’	or	‘geologic’.	These	
edits	are	in	direct	response	to	referee	#1’s	comment	on	the	use	of	terminology	
“soil	AWC”	and	our	agreement	that	storage,	in	the	physical	world	and	in	our	
model,	includes	more	than	the	soil.	Our	edited	manuscript	even	suggests	a	
change	to	the	paper’s	title	to	change	‘Soil	storage…’	to	‘Subsurface	storage	
capacity’,	the	full	title	would	be:	
Subsurface storage capacity influences climate-evapotranspiration interactions in three 

western United States catchments 

REFEREE #1 COMMENTS 
 
Garcia and Tague present an interesting comparison of hydrologic partitioning in three 
catchments, reaching the conclusion that differences in landscape characteristics, 
specifically subsurface water storage, attenuates the role of climate in controlling ET. The 
paper is a nice example of how the timing and amount of precipitation interact with 
variable storage to control the fate of precipitation in mountain catchments and should be 
of interest to the range of observationists and modelers.  
 
Although the authors focus on the implications for these three catchments, the take home 
messages potentially are applicable to a wide range of systems where the spatially and 
temporally explicit interplay between climate and landscape has the potential to result in 
different hydrologic responses in locations with similar mean climate.  
 
Although I am generally supportive of the work, I do have a number of concerns and 
suggestions that I hope will focus the presentation.  
 
Reply: We thank the referee for the supportive comments and have addressed the 
concerns and incorporated many of the suggestions below. 
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Shorten and focus conclusions to highlight key implications. The current take home 
points are somewhat buried, including both modeling issues (e.g. error introduced by 
absence of soil calibration) and broader science take homes (e.g. precipitation timing vs. 
storage interactions)  
 
Reply: We appreciate this suggestion and have removed/moved text that is better 
suited to the discussion and restructured the conclusions to focus on the bigger take-
home points. The conclusion now reads as follows: 
 
We demonstrate how subsurface storage and drainage properties (AWC and parameters 
that control lateral redistribution) interact with climate-related drivers to influence ET in 
three western U.S. mountain watersheds with distinctive precipitation regimes. These 
watersheds reflect conditions found in many other western U.S. snow-dominated systems, 
where summer water availability is influenced by the magnitude of precipitation, timing 
of soil moisture recharge and spring temperature and its effect on snowmelt. We found 
that, for our three watersheds, estimates of longer-term average (15-year) watershed-scale 
ET vary across a range of physically realistic storage/drainage parameters. For all 
watersheds, the range in long term mean ET estimates across AWC estimates (e.g., mean 
ET at a high AWC versus mean ET at a low AWC) may be as large as inter-annual 
variation in ET, suggesting that the influence of AWC and drainage can be substantial.  
 
 
Our results also point to the importance of lateral redistribution as a control on ET, 
particularly for CA-SIER. Only a few studies have emphasized the role of lateral 
redistribution in plot to watershed scale climate responses in the Western U.S. (Barnard 
et al., 2010; Tague and Peng, 2013). For the CA-SIER site, our model results suggest that 
there can also be interactions between AWC and hillslope to watershed scale 
redistribution as controls on ET. Lateral redistribution was less important for the CO-
ROC, where summer precipitation was a more important contributor to annual ET values 
and the least important for the wetter OR-CAS site. Results emphasize that the role of 
subsurface properties, including both storage and drainage, will be different for different 
climate regimes.  
 
These results have important implications both for predicting ET in basins where data is 
not available for calibration and for understanding and predicting the spatial variability of 
ET within a basin. AWC also affects the sensitivity of annual ET to climate drivers, 
particularly in the two more seasonally water-limited basins. Although the three 
watersheds show different responses of annual ET to these climate drivers, there are 
values of AWC that would eliminate these cross-basin differences. These sensitivities 
highlight the need for improved information on spatial patterns of subsurface properties  
to contribute to the development of science-based information on forest vulnerabilities to 
climate change. Improved accounting for plant accessibility to moisture has improved 
model-data ET comparisons in previous modeling studies at regional and global scales 
(Hwang et al., 2009; Tang et al., 2013; Thompson et al., 2011). With expected decreases 
in fractional precipitation received as snow with climate change (Diffenbaugh et al., 
2013; Knowles et al., 2006), we might expect soil storage to play a more important role 
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in providing water for forests in the future. Improved understanding of how climate and 
subsurface storage/drainage combine to control ET can enhance our understanding of 
forest water stress related to increased mortality (van Mantgem et al., 2009). Western U.S. 
forests show substantial vulnerability to drought, with declines in productivity and 
increases in mortality and disturbance in drought years (Allen et al., 2010; Hicke et al., 
2012; Williams et al., 2013).Understanding these ecosystems’ responses to primary 
climate drivers is of particular concern given recent warming trends (Sterl et al., 2008) 
and multi-year droughts (Cook et al., 2004; Dai et al., 2004). Identifying the physical 
conditions in which our ability to estimate ET is most sensitive or limited by knowledge 
of subsurface geologic properties helps to prioritize regional data acquisition agendas. 
Integrating results from recent advances in geophysical measurements and models such 
as those emerging from Critical Zone Observatories in the U.S. and elsewhere (Anderson 
et al., 2008) will be essential for analysis of climate ET interactions. 
   
 
REFEREE #1 COMMENTS CONTINUE BELOW 
 
 
The paper could and should be improved by explicitly addressing alternative explanations 
for the differences between the three catchments. For example, they vary significantly in 
size, elevation, and total precipitation and the differences between catchment responses 
plausibly could be explained by these factors.  
 
Similarly, how do the specifics of climate across the three sites influence results? For 
example, what does PET look like across time and space for your study catchments? 
Presumably, higher elevations in CO are always energy limited, while lower elevations 
switch are water limited. In contrast, CA and OR experience the seasonal pattern in 
energy vs. water limitation that is your focus.  
 
Reply: Though text throughout the paper addresses how cross-site differences in 
physical characteristics are influencing the response of ET to climate, we have 
included an additional paragraph to the discussion (now third paragraph) to be 
explicit about how the range of responses we observe in model results are related to 
these characteristics:  
 
The range of sensitivities of ET to climate in this study is a direct function of 
climatic and physical characteristics of the catchments presented in this study. For 
example, OR-CAS receives twice as much precipitation and spans a much lower 
elevation range than either CA-SIER or CO-ROC (Table 2). Because OR-CAS is 
considerably wetter, its sensitivity of ET to magnitude of annual P is lessened 
considerably. OR-CAS’ lower elevations, and related mean winter temperatures, 
also result in smaller average snowpacks reducing the strength of spring 
temperature as an explanatory variable for ET. Differences between CA-SIER and 
CO-ROC largely reflect seasonal distribution of precipitation, and reflect the 
importance of summer precipitation in CO-ROC. While climate is the dominant 
factor, topographic differences are also important. As discussed above, 
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topographically driven flowpath convergence in CA-SIER tends to increase 
sensitivity of ET to parameters that influence lateral drainage. This effect is less 
evident in the other two watersheds. We also note that CO-ROC is considerably 
larger than our other two study sites and, as such, includes significant fractions of 
other land cover including rock and meadow. We expect the different vegetation 
types to influence the response of ET to climate. 
 
Abstract begins with winter-wet summer dry but CO-ROC receives 46% precipitation in 
growing season while other sites are much less. This is an important part of your paper 
but suggests using a more objective metric perhaps AET: PET to describe differences 
between supply and demand.  
 
Reply: P and PET are averages of annual sums. The aridity index, P:PET, is a 
helpful summary metric for normalizing how water-limited the catchments are. We 
added these values  to Table 2.  
 
 CO-ROC OR-CAS CA-SIER 
P:PET 0.9 2.3 1.2 
 
On a related note, the introduction begins with Mediterranean climates, but CO is a cold 
continental climate; I’m not certain that OR is technically Mediterranean either.  
 
Reply: We appreciate this point and have removed the two occurrences of 
‘Mediterranean’ as a description in the text --in the first line of the introduction, 
and the last paragraph of the introduction. 
 
The results section as written reads too much like a discussion with numerous references 
and comparisons other work, making it difficult to focus on the key points of this effort.  
 
Reply: We have edited the results section to move some of the discussion of results 
to the discussion section, and in some cases remove text that is in the discussion 
already:  

Moved to discussion:  
Among the predicted consequences of increased temperatures are an earlier start to 
the vegetation growing season (Cayan et al.,  2001), and an increase in vapor pressure 
deficits and water demand (Isaac & van Wijngaarden, 2012).  
 
CA-SIER does not show a significant relationship between TAMJ and ET because the 
effect of temperature is strongly dependent on the amount of snowpack the basin 
receives in a year (Tague & Peng, 2013), which is more variable than the amount of 
snowpack received in CO-ROC or OR-CAS. These results suggest that the dominant 
effect of warmer spring temperatures is earlier meltout of snowpack, which leads to 
more snowmelt lost as runoff and results in less net recharge. A mechanism we 
suggest for this loss of runoff is that soils are more likely to be saturated in spring 
months. Later into the growing season, increased ET demands will have depleted soil 
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stores and throughfall/snowmelt will enter the soil matrix and be available for plant 
water use. 
 
Removed: Thus warmer spring temperatures could potentially increase total 
annual ET through lengthening of the early growing season 

 
I suggest you either changing the term “soil AWC” or more clearly define it to include 
other potential water sources. There is a growing body of literature that suggests that soil 
storage alone is often not sufficient to represent available water in mountain catchments. 
There this is rock water, groundwater, mobile vs. immobile water, etc. You have an 
opportunity to broaden the discussion and awareness among the land surface/ 
hydroclimate modeling community of these distinctions with this work.  
 
Reply: We agree with the reviewer that plants often access water beneath what is 
typically defined as soil. In RHESSys plant available water storage is not restricted 
to “soil” but can include sapprolite, and rock water – and water from groundwater 
flow. We agree that the terminology  “soil AWC” is indeed misleading.  We have 
revised this terminology throughout the text and included the following text to 
emphasize that storage occurs not only in the soil:  
 
Previous studies have shown that plants access to stored water is a substantial contributor 
to summer evapotranspiration in semi-arid regions (Bales et al., 2011). Plant accessible 
storage includes both water stored in soil and in sapprolite and bedrock layers that can be 
accessed by plant roots (McNamara et al., 2011). 
 
 
Addressing the above issues should not require large amount of work, but should help 
focus the paper on important take home messages by addressing and removing distracting 
aspects of the current presentation likely to distract a critical reader. 
 
 
References 
Bales, R., Hopmans, J., O’Green, A., Meadows, M., Hartsough, P., Kirchner, P., … 

Beaudette, D. (2011). Soil Moisture Response to Snowmelt and Rainfall in a Sierra 
Nevada Mixed-Conifer Forest. Vadose Zone Journal, 10(3), 786–799. 
doi:10.2136/vzj2011.0001 

Cayan, D. R., Dettinger, M. D., Kammerdiener, S. a., Caprio, J. M., & Peterson, D. H. 
(2001). Changes in the Onset of Spring in the Western United States. Bulletin of the 
American Meteorological Society, 82(3), 399–415. doi:10.1175/1520-
0477(2001)082<0399:CITOOS>2.3.CO;2 

Isaac, V., & van Wijngaarden, W. a. (2012). Surface Water Vapor Pressure and 
Temperature Trends in North America during 1948–2010. Journal of Climate, 
25(10), 3599–3609. doi:10.1175/JCLI-D-11-00003.1 

McNamara, J. P., Tetzlaff, D., Bishop, K., Soulsby, C., Seyfried, M., Peters, N. E., … 
Hooper, R. (2011). Storage as a metric of catchment comparison. Hydrological 
Processes, 25, 3364–3371. doi:10.1002/hyp.8113 
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Tague, C., & Peng, H. (2013). The sensitivity of forest water use to the timing of 
precipitation and snowmelt recharge in the California Sierra: Implications for a 
warming climate. Journal of Geophysical Research: Biogeosciences, 118, 1–13. 
doi:10.1002/jgrg.20073 

 
RESPONSE TO REFEREE #2 
Authors have performed an interesting study to assess the role of soil storage on climate-
evapotranspiration (ET) interactions in three mountainous catchments using a distributed 
ecohydrologic model. In particular, the role of soil storage is considered by incorporating 
uncertainty of soil storage parameters in deriving precipitation, recharge and temperature 
relationships with ET. The manuscript is very well written and discussion of the results is 
very clear. However, the readers can benefit from a more focused conclusion 
summarizing main take home messages of the paper and its broader impact.  
 
Reply: We thank the reviewer for the supportive comments and address the detailed 
comments below. Both referees suggest a more focused conclusion. We have edited 
the conclusion with this suggestion in mind -- some points have been moved to the 
discussion and other text has been removed. The edited conclusion now reads as 
follows: 
 
[Edited conclusion removed for brevity. It is pasted into response to Reviewer #1 above.] 
 
REVIEWER #2 COMMENTS CONTINUE BELOW 
 
 
Detailed comments:  
 
1) Authors have used a spatially distributed model to perform simulations across three 
catchments but the final results are aggregated at the catchment scale. It will be very 
interesting to see how these climate sensitivities change across the catchment? Are they 
observing differences between uplands and lowland areas?  
 
REPLY: We agree that the spatial patterns of these climate sensitivities would be 
interesting to observe across the catchment, however a thorough analysis is beyond 
the scope of this paper and we will explore more spatial patterns in future work. It 
would afford less room in the manuscript length to address how these climate 
sensitivities interact with subsurface properties, which we believe to be the novel 
contribution of our work.  
 
2) Does the sensitivity of ET change for different land cover types in a given catchment? 
 
REPLY: We expect that ET estimates would vary with different land cover types in 
each catchment. Two of our catchments, CA-SIER and OR-CAS, are uniformly 
covered in conifers. CO-ROC, which is significantly larger than the other two 
catchments, is comprised of other land types including meadows and rock. We 
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expect that these land cover types are responding to climate drivers differently than 
the conifers. We have added text to acknowledge this important point: 

We also note that CO-ROC is considerably larger than our other two study sites 
and, as such, includes significant fractions of other land cover including rock 
and meadow. We expect the different vegetation types to confound the response 
of ET to climate. 

 
3) What about sensitivities of plant transpiration and NPP to AWC and precipitation?  
 
REPLY: We explored the response of transpiration and NPP to the climate drivers 
presented in our study and found similar patterns in response across watersheds. 
We chose to focus on ET because we were able to validate our model estimates of 
annual values to field based observations in each catchment, which we believe 
strengthen our paper’s results and discussion. We were unable to find similar 
transpiration observations at an appropriate scale/temporal resolution for model 
validation. We used annual NPP estimates to validate our carbon cycle, but chose to 
focus our presentation on the sensitivity of our hydrologic metric (ET) because it is 
more directly related to availability of soil moisture (AWC). Adding discussions of 
NPP/plant transpiration would also substantially lengthen an already long paper 
but we will consider this in future work.  
 
4) Can authors specify which of the soil parameters generate most of the scatter in their 
results like in Figure 5 or 6? In other words, what is the most sensitive parameter? Is the 
most sensitive parameter different among the catchments?  
 
REPLY:  
We examined the influence of individual soil parameters to the sensitivity of ET 
estimates (not shown) and found that the sensitivity often varied with combinations 
for parameters rather than a single parameter value.  For all catchments, 
streamflow estimates were most sensitivity to the ‘m’ parameter that controls the 
decay of conductivity with depth and defines an effective soil depth.  
 
5) Can authors specify which metric they used for annual NPP during calibration (page 
7899)?  
 
REPLY: We used estimates of annual NPP that we found in peer-reviewed 
literature to define a minimum and maximum range of NPP values then selected 
parameters that fell within this range. That range of values is provided in Table 2. 
For calibration we selected parameters that fell within this NPP range and also 
provided reasonable estimates of streamflow based on the NSE and the daily bias.  
  
6) Since R75 is not the actual recharge, I suggest authors rephrase it to timing of potential 
recharge. 
 
REPLY: We agree that timing of potential recharge is more appropriate and have 
rephrased as follows: 
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To assess the impact of timing of potential recharge (as influenced either by year 
to year variation in precipitation timing, snowmelt or rain-snow partitioning) we 
calculate R75, the day of water year by which 75% of the total potential annual 
recharge has occurred.  

 
7) Can authors briefly describe patch elements in RHESSys (page 7898)?  
 
REPLY: Patch units are not necessarily grid shaped, but instead are delineated 
based on landscape characteristics including elevation, land cover classification, and 
aspect. Average patch sizes range from 90 to 8100m2 with average patch size of 
3600m2. Soil, vegetation and climate processes are calculated at the scale of the 
patch.  
 
8) A brief description of snow module will be helpful. How the results are impacted by 
the snow parameters? 
 
REPLY: 
We have added the following text to the methods section that describes the 
RHESSys model: 
 
RHESSys partitions rain to snow at a daily timestep based on each patch’s air 
temperature. Snowmelt is estimated using a combination of an energy budget approach 
for radiation-driven melt and a temperature index-based approach for latent heat-drive 
melt processes. 
 
We agree with the reviewer that results are potentially sensitive to snow parameters 
that control the rate of accumulation and melt. However we assume that in order to 
achieve reasonable rates of model performance relative to daily streamflow 
observations, the snow parameters used are reasonable and provide a basis for 
assessing the sensitivity to subsurface characteristics, which is the central focus of 
this paper.  
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ABSTRACT 15	

 16	

In the winter-wet, summer-dry forests of the western United States, total annual 17	

evapotranspiration (ET) varies with precipitation and temperature. Geologically mediated 18	

drainage and storage properties, however, may strongly influence these relationships 19	

between climate and ET. We use a physically based process model to evaluate how plant 20	

accessible water storage capacity (AWC) and rates of drainage influence model estimates 21	

of ET-climate relationships for three snow-dominated, mountainous catchments with 22	

differing precipitation regimes. Model estimates show that total annual precipitation is a 23	

primary control on inter-annual variation in ET across all catchments and that the timing 24	

of recharge is a second order control. Low AWC, however, increases the sensitivity of 25	

annual ET to these climate drivers by three to five times in our two study basins with 26	

drier summers. ET – climate relationships in our Colorado basin receiving summer 27	

precipitation are more stable across subsurface drainage and storage characteristics. 28	

Climate driver-ET relationships are most sensitive to subsurface storage (AWC) and 29	

drainage parameters related to lateral redistribution in the relatively dry Sierra site that 30	

receives little summer precipitation. Our results demonstrate that uncertainty in 31	

geophysically mediated storage and drainage properties can strongly influence model 32	

estimates of watershed scale ET responses to climate variation and climate change. This 33	

sensitivity to uncertainty in geophysical properties is particularly true for sites receiving 34	

little summer precipitation.  A parallel interpretation of this parameter sensitivity is that 35	

spatial variation in storage and drainage properties are likely to lead to substantial within-36	

watershed plot scale differences in forest water use and drought stress.  37	

 38	

1. INTRODUCTION 39	

 40	

In high-elevation forested ecosystems in the western U.S., the majority of precipitation 41	

falls during the winter there is often a disconnect between seasonal water availability and 42	

growing season water demand. Consequently forests in these regions are frequently water 43	

limited, even when annual precipitation totals are high (Boisvenue and Running, 2006; 44	

Hanson and Weltzin, 2000).  This disconnect between water inputs and energy demands 45	
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also highlights the importance of storage of winter recharge by both snowpack and by 46	

soils. The importance of snowpack storage in these systems for hydrologic fluxes has 47	

received significant attention, particularly given their vulnerability to climate warming. 48	

Warmer temperatures are already shifting seasonal water availability in the western U.S. 49	

through reductions in snowpack accumulation (Knowles et al., 2006) and earlier 50	

occurrence of peak snowpack (Mote et al., 2005) and shifts in streamflow timing (Stewart 51	

et al., 2005). Recently, field and modeling studies have shown that the years with greater 52	

snowpack accumulation can be a strong predictor of vegetation water use and 53	

productivity for sites in the California Sierra (Tague and Peng, 2013; Trujillo et al., 2012).  54	

 55	

Less attention, however, has been paid to the role of subsurface storage and drainage that 56	

can influence whether or not winter precipitation or snowmelt is available for plant water 57	

use during the summer months.  Previous studies have shown that plant access to stored 58	

water is a substantial contributor to summer evapotranspiration in semi-arid regions 59	

(Bales et al., 2011). Plant accessible storage includes both water stored in soil and in 60	

sapprolite and bedrock layers that can be accessed by plant roots (McNamara et al., 2011). 61	

Like snowpack, the storage of water in the subsurface has the potential to act as a water 62	

reservoir, storing winter precipitation for use later in the growing season (Geroy et al., 63	

2011). The amount of water that can be stored varies substantially in space with 64	

topography, geologic properties, and antecedent moisture conditions (Famiglietti et al., 65	

2008; McNamara et al., 2005).  If the rate of snowmelt allows for subsurface moisture 66	

stores to be replenished later into the growing season, more of the winter precipitation is 67	

made available for plant water use. If, storage capacity is too shallow to capture a 68	

significant amount of runoff or if the rate of rain or snowmelt inputs exceeds the rate of 69	

infiltration, then subsurface storage will not be physically able to extend water 70	

availability.  While field studies in the Western US have shown that shallow soils can 71	

limit how much snowmelt is available for ecological use during the summer (Kampf et al., 72	

2014; Smith et al., 2011), these studies cannot fully characterize the relative impact of 73	

subsurface storage on ET given inter-annual and cross-site variation in climate drivers.  74	

 75	
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In this paper, we focus on the potential for plant accessible subsurface water storage to 84	

mediate the sensitivity of ET to inter-annual variation in climate drivers, precipitation and 85	

temperature.  Understanding how ET varies with climate drivers is important, both from 86	

the perspective of how ET influences downstream water supply and water availability for 87	

forests and other vegetation (Grant et al., 2013). Western U.S. forests show substantial 88	

vulnerability to drought, with declines in productivity and increases in mortality and 89	

disturbance in drought years (Allen et al., 2010; Hicke et al., 2012; Williams et al., 2013). 90	

Understanding these ecosystems’ responses to primary climate drivers is of particular 91	

concern given recent warming trends (Sterl et al., 2008) and multi-year droughts (Cook et 92	

al., 2004; Dai et al., 2004) and that these changes in water and energy demands are 93	

expected to intensify (Ashfaq et al., 2013). Increased temperatures also effect plant 94	

phenology, leading to earlier spring onset of plant water use and productivity (Cayan et 95	

al., 2001) and thus can influence water requirements and water use. However, increases 96	

in early season water use, combined with higher atmospheric moisture demand, may lead 97	

to increased soil water deficit later in the season.  98	

 99	

Forest evapotranspiration is also a substantial component of the water budget (Post and 100	

Jones, 2001) and thus any change in forest water use will potentially have significant 101	

impacts on downstream water use. Goulden et al. [2012], for example, use flux tower and 102	

remote sensing data to argue that warming may result in an increase of up to 60% in 103	

vegetation water use at high elevations in the Upper Kings River watershed in 104	

California’s Southern Sierra watershed. We note however that these projected increases 105	

depend on how subsurface storage capacity interacts with snowpack at high elevations.  106	

 107	

This manuscript’s primary research objective is to quantify the interaction between 108	

subsurface storage characteristics and key climate-related metrics that influence forest 109	

water availability and use in snow-dominated environments receiving a range of summer 110	

precipitation. Heterogeneity in subsurface properties in soil, sapprolite and bedrock layers 111	

make the characterization of subsurface storage difficult at the watershed scale. Here we 112	

use a spatially distributed process-based model, the Regional Hydro-Ecologic Simulation 113	

System (RHESSys), to quantify how uncertainty or spatial variation in subsurface storage 114	
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properties might be expected to influence watershed response to these climate-related 124	

drivers. We apply RHESSys in three case study watersheds of differing precipitation 125	

regimes to investigate how climate and subsurface storage combine to control inter-126	

annual variation in ET.  127	

 128	

2. METHODS 129	

 130	

We apply our model at a daily time step to three watersheds located in the western 131	

Oregon Cascades (OR-CAS), central Colorado Rocky Mountains (CO-ROC) and central 132	

California Sierras (CA-SIER). All three watersheds receive a substantial fraction of 133	

precipitation as snowfall, but vary in their precipitation and temperature regimes and 134	

amount of precipitation that falls as snow (Figure 1). We compare a humid, seasonally 135	

dry watershed (OR-CAS) to two catchments that receive half as much precipitation 136	

annually. The more water-limited catchments differ in that CO-ROC receives a 137	

significant amount of its precipitation budget during the summer growing season. We use 138	

these case studies to estimate ET sensitivity to  storage and drainage properties for 139	

several different precipitation and temperature regimes common in western U.S. 140	

mountain watersheds. For each watershed, we quantify how subsurface storage and 141	

drainage properties interact with a combination of inter-annual variation in precipitation 142	

timing and magnitude, and shifts in snowpack storage. We first establish how inter-143	

annual variation in three primary climate-related metrics (precipitation, average spring 144	

temperature, and timing of soil moisture recharge) influence annual ET with average 145	

subsurface storage properties. We then explore how these relationships change across 146	

physically plausible storage values.  147	

 148	

2.1 RHESSys MODEL DESCRIPTION 149	

 150	

We use a physically based model (RHESSys v.5.15) to calculate vertical water, energy, 151	

and carbon fluxes in our three watersheds (Tague and Band, 2004). RHESSys is a 152	

spatially explicit model that partitions the landscape into units representative of the 153	

different hydro-ecological processes modeled (Band et al., 2000). RHESSys has been 154	
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used to address diverse eco-hydrologic questions across many watersheds (Baron et al., 160	

2000; Shields and Tague, 2012; Tague and Peng, 2013). Key model processes are 161	

described below and a full account is provided in Tague and Band [2004]. 162	

 163	

RHESSys requires data describing spatial landscape characteristics and climate forcing; a 164	

digital elevation model (DEM), geologic and vegetation maps are used to represent the 165	

topographic, geologic, carbon and nitrogen characteristics within a watershed. RHESSys 166	

accounts for variability of climate processes within the catchment using algorithms 167	

developed for extrapolation of climate processes from point station measurements over 168	

spatially variable terrain (Running and Nemani, 1987). Hydrologic processes modeled in 169	

RHESSys include interception, evapotranspiration, infiltration, vertical and lateral 170	

subsurface drainage, and snow accumulation and melt. The Penman-Monteith formula 171	

(Monteith, 1965) is used to calculate evaporation of canopy interception, snow 172	

sublimation, evaporation from subsurface and litter stores, and transpiration by leaves. A 173	

model of stomatal conductance allows transpiration to vary with soil water availability, 174	

vapor pressure deficit, atmospheric CO2 concentration, and radiation and temperature 175	

(Jarvis, 1976). A radiation transfer scheme that accounts for canopy overstory and 176	

understory, as well as sunlit and shaded leaves, controls energy available for transpiration. 177	

RHESSys accounts for changes in vapor pressure deficit for fractions of days that rain 178	

occurs (wet versus dry periods). Plant canopy interception and ET are also a function of 179	

leaf area index (LAI) and gappiness of the canopy such that as LAI increases and gap size 180	

decreases, plant interception capacity and transpiration potential increases. RHESSys 181	

partitions rain to snow at a daily timestep based on each patch’s air temperature. 182	

Snowmelt is estimated using a combination of an energy budget approach for 183	

radiation-driven melt and a temperature index-based approach for latent heat-drive 184	

melt processes. Subsurface water availability varies as a function of infiltration and 185	

water loss through transpiration, evaporation and drainage. RHESSys also routes water 186	

laterally and thus patches can receive additional moisture inputs as either re-infiltration of 187	

surface flow or through shallow subsurface flow from upslope contributing areas. Lateral 188	

subsurface drainage routes subsurface and surface water between spatial units and it is a 189	
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function of topography and soil and saprolite drainage characteristics. Deep groundwater 193	

stores are drained to the stream using a simple linear reservoir representation. 194	

 195	

Carbon and nitrogen cycling in RHESSys was modified from BIOME-BGC (Thornton, 196	

1998) to account for dynamic rooting depth, sunlit and shaded leaves, multiple canopy 197	

layers, variable carbon allocation strategies, and drought stress mortality. The Farquhar 198	

equation is used to calculate gross primary productivity (GPP) (Farquhar et al., 1980). 199	

Plant respiration costs include both growth and maintenance respiration and are 200	

influenced by temperature following Ryan [1991]. Net primary productivity (NPP) is 201	

calculated by subtracting total respiration costs from GPP. 202	

 203	

In our three study sites, RHESSys is driven with daily records of precipitation and 204	

maximum and minimum temperature. Each basin is calibrated for seven parameters that 205	

characterize subsurface storage and drainage properties. Drainage rates are controlled by 206	

saturated hydraulic conductivity (K) and its decay with depth (m).  Air-entry pressure 207	

(ϕae), pore size index (b), and rooting depth (Zr) control subsurface water holding 208	

capacity (Brooks and Corey, 1964). In all basins, we assume that geologic properties 209	

allow for deeper groundwater stores that are inaccessible to vegetation (Table 2).  210	

Vegetation however can access more shallow groundwater flow. These deep groundwater 211	

stores are controlled by two parameters representing the percentage of water that passes 212	

to the store (gw1) and the rate of its release to streamflow (gw2). Calibration is conducted 213	

with a Monte-Carlo based approach, the generalized likelihood uncertainty estimation 214	

(GLUE) method (Beven and Binley, 1992). Parameter sets (1000 total) are generated by 215	

random sampling from uniform distributions of literature-constrained estimates for the 216	

individual parameters; all calibration parameter sets are physically viable representations 217	

of soils within each basin. In other words, though a single parameter set may not meet 218	

streamflow and annual NPP calibration metrics, that particular subsurface storage 219	

capacity may still exist within the basin. 220	

 221	

Model validation and drainage/storage parameter calibration were performed using two 222	

measures: daily streamflow statistics and annual measures of NPP. Streamflow statistics 223	
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were set such that good parameters resulted in daily flow magnitude errors less than 15%, 232	

Nash-Sutcliffe efficiencies (NSE, a measure of hydrograph shape) greater than 0.65, and 233	

logged NSE values greater than 0.7 (a test of peak and low flows) (Nash and Sutcliffe, 234	

1970). We select all parameter sets from these acceptable values; the total number of 235	

parameters equals 87, 246, and 47 for CA-SIER, CO-ROC, and OR-CAS, respectively. 236	

Daily hydrologic fluxes are calculated over 15 years for each soil parameter set in order 237	

to account for variability due to parameters in establishing relationships with our climate 238	

related indices, the results of which are presented in Figs. 2-4. We verify our annual ET 239	

estimates against limited field estimates published in literature for subwatersheds of CO-240	

ROC and OR-CAS (Baron and Denning, 1992; Webb et al., 1978). The average of our 241	

model estimated annual ET matches these limited field-based measurements and also fall 242	

within the bounds of annual ET estimated through water balance by subtracting annual 243	

streamflow from our records of annual precipitation. We assess the performance of the 244	

carbon-cycling model by comparing with published forest field measurements of annual 245	

NPP (values reported in Table 2).  In our fully coupled eco-hydrologic model, accurate 246	

estimates of NPP also suggest that ET estimates are reasonable. Finally we note that 247	

RHESSys estimates of ET and NPP have been evaluated in a number of previous studies 248	

by comparison with flux tower and tree ring data and these studies confirm that RHESSys 249	

provides reasonable estimates of ET and its sensitivity to climate drivers (Vicente-250	

Serrano et al., 2015; Zierl et al., 2007) . We quantify the sensitivity of ET-climate 251	

relationships to geologic properties by varying subsurface storage parameters (Figs. 5-6). 252	

 253	

2.2 STUDY SITES 254	

 255	

These analyses are conducted in three western U.S. mountain catchments: Big Thompson 256	

in Colorado’s Rocky Mountains (CO-ROC), Lookout Creek in Oregon’s Western 257	

Cascades (OR-CAS), and Sagehen Creek Experimental Forest in California’s Northern 258	

Sierra Nevada (CA-SIER). Basin characteristics pertinent to modeling annual ET are 259	

listed in Table 2 and we highlight important similarities and differences here. All sites are 260	

located on steep, mountainous slopes and are dominated by forest cover. All basins have 261	

climates typical of the western U.S., on average receiving 54% - 81% of their annual 262	
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precipitation during the winter, 29% - 64% of the annual P falls as snow, and they do not 268	

meet potential evaporative demand during the growing season (Fig. 1, Table 2). On 269	

average, OR-CAS is a much wetter basin and receives more than twice as much annual 270	

precipitation than CO-ROC and CA-SIER. Despite OR-CAS receiving more precipitation, 271	

a much lower fraction of that winter precipitation is received as snow. On average OR-272	

CAS’s peak streamflow occurs in December, four to five months earlier than CO-ROC 273	

and CA-SIER (Fig. 1). The drier watersheds, CO-ROC and CA-SIER, receive more than 274	

half of their annual precipitation as snow (Table 2). CO-ROC also experiences a summer 275	

monsoonal season and on average receives 46% its annual precipitation from April – 276	

September. Landscape carbon (C) and nitrogen (N) stores in general vary with total 277	

annual P across basins. For example, OR-CAS receives the most precipitation and also 278	

supports stands of large, old-growth forests; its LAI is more than twice that of either CO-279	

ROC or CA-SIER. As presented in the model description (Sect. 2.1), we use a stable, 280	

climatic optimum for vegetation biomass for all analyses in this paper. Garcia et al. 281	

[2013] and Tague and Peng [2013] provide detailed descriptions of the geology and 282	

climate data, model vegetation, and organic soil carbon store spin-up and calibration used 283	

for model implementations of OR-CAS and CA-SIER, respectively. We note that all 284	

precipitation and temperature data were derived from daily measurements made at 285	

climate stations located within the basins and extrapolated across the terrain using MT-286	

CLM algorithms (Running and Nemani, 1987) and 30-m resolution DEMs. Though 287	

RHESSys has previously been used in CO-ROC (Baron et al., 2000), we have made 288	

significant updates in RHESSys since that time, so we re-implemented the model as 289	

described in the next section.  290	

 291	

2.2.1 RHESSys MODEL DEVELOPMENT FOR CO-ROC 292	

 293	

In CO-ROC, landscape topographic characteristics including elevation, slope and aspect 294	

were derived from a digital elevation model (DEM) downloaded from the U.S. Geologic 295	

Survey (USGS) National Elevation Data set at 1/3 arc second resolution 296	

(http://datagateway.nrcs.usda.gov/). A stream network was then derived to accumulate 297	

surface and subsurface flow at USGS gage #06733000. Sub-catchments were delineated 298	
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using GRASS GIS’s watershed basin analysis program, r.watershed. Terrestrial data was 300	

aggregated such that the average size of the patch units, the smallest spatial units for 301	

calculation of vertical model processes, was 3600 m2. Soil classification data was 302	

downloaded from the Soil Survey Geographic database (SSURGO) and aggregated to 303	

four primary soil types: gravelly loam, sandy loam, loamy sandy, and rock 304	

(http://datagateway.nrcs.usda.gov/). Parameter values associated with these soil types are 305	

based on literature values (Dingman, 1994; Flock, 1978) and adjusted using model 306	

calibration, as described above. We note that these initial values are approximate and 307	

calibration permits storage values that reflect plant access to water stored in both organic 308	

soil layers and in sapprolite and rock. Vegetation land cover from the National Land 309	

Cover Database (NLCD) was aggregated to four primary vegetation types: subalpine 310	

conifer, aspen, shrubland, and meadow (Homer et al., 2007). Because a shift in 311	

precipitation patterns occurs at approximately 2700 meters, we use daily records of 312	

precipitation, Tmax, and Tmin from two points within the watershed. RHESSys then 313	

interpolates data from these points based on MTN-CLM (Running and Nemani, 1987) to 314	

provide spatial estimates of temperature, precipitation and other meteorologic drivers for 315	

each patch. Climate data from 1980-2008 was downloaded from the DAYMET system 316	

for two locations – one at elevation 2460 m (latitude 40.35389, longitude -105.58361) 317	

and the second at 3448 m (latitude 40.33769, longitude -105.70315) (Thornton et al., 318	

2012). 319	

 320	

Plant C and N stores were initialized by converting remote-sensing derived LAI to leaf, 321	

stem and woody carbon and nitrogen values using allometric equations appropriate to the 322	

vegetation type (http://daac.ornl.gov/MODIS/; MOD15A2 Collection 5). In order to 323	

stabilize organic soil C and N stores relative to the LAI-derived plant C and N, we run the 324	

model repeatedly over the basin’s climate record until the change in stores stabilizes 325	

(Thornton and Rosenbloom, 2005). After stabilizing soil biogeochemical processes, we 326	

remove vegetation C and N stores and then dynamically ‘regrow’ them using daily 327	

allocation equations (Landsberg and Waring, 1997) for 160 years in order to stabilize 328	

plant and soil C and N stores with model climate drivers. For all three basins, an optimum 329	
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maximum size for each vegetation type was determined using published, field-derived 330	

estimates of LAI and aboveground and total annual NPP.  331	

 332	

2.3 FRAMEWORK for PRIMARY CONTROLS on ET 333	

 334	

In these seasonally water-limited basins, we use total annual precipitation (P) as a metric 335	

of gross climatic water input. Annual precipitation P is summed over a water year (Oct. 1 336	

to Sep. 30 of the following calendar year) and summer season P is summed over July, 337	

August, and September. For all climate metrics we use spatially averaged watershed 338	

values. To assess the impact of timing of soil moisture recharge (as influenced either by 339	

year to year variation in precipitation timing, snowmelt or rain-snow partitioning) we 340	

calculate R75, the day of water year by which 75% of the total annual recharge has 341	

occurred. Recharge is defined as liquid water (e.g. rain throughfall or snowmelt) that 342	

reaches the soil surface. For this metric, we do not differentiate between water that, upon 343	

reaching the soil surface becomes runoff, and water that infiltrates into the soil. We treat 344	

this variable as a temporal marker of potential water availability that denotes the timing 345	

within the water year that either rain throughfall or snowmelt may potentially infiltrate 346	

the soil. To examine energy inputs, we identify a season when temperature most strongly 347	

influences estimates of annual ET modeled using historic climate. We performed linear 348	

regressions between model estimate of total annual ET and one and three-month averages 349	

of daily maximum (Tmax), minimum (Tmin) and average temperatures (Tavg= (Tmax + 350	

Tmin)/2)) for all watersheds and for all months of the year. We test the correlation 351	

significance with a p-value and set a significance threshold at 0.05, i.e., a p-value greater 352	

than 0.05 is not significant. Our analysis found a three-month average of daily Tavg in 353	

April, May and June (TAMJ) to have the greatest explanatory power as a temperature 354	

variable for estimating inter-annual variation in annual ET under historic climate 355	

variability across our three study watersheds (results not shown). We note that the p-356	

value for TAMJ  in CA-SIER was greater than 0.05 so it is not reported as a significant 357	

result. The growing season is assumed to extend from May 1 to September 30 in all 358	

watersheds. For all climate metrics we use spatially-averaged watershed values.  359	

 360	
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We examine the role of storage through AWC.  As noted above, plants access water 361	

organic soils as well as water stored in sapprolite and rock (Schwinning et al., 2010).  We 362	

consider an aggregate storage and do not distinguish between these layers. AWC 363	

represents the water stored after gravity drainage (field capacity) that can be extracted by 364	

plant root suction (wilting point), and is thus still viable for plant water use [Dingman, 365	

1994, p. 236].  We calculate AWC as: 366	

 367	

AWC = (θfc - θwp) Zr         (2) 368	

 369	

Where θfc represents the average field capacity per unit depth, θwp the average 370	

characteristic wilting point also per unit depth, and AWC is scaled by vegetation rooting 371	

depth, Zr, a model calibration parameter. The field capacity and wilting point are 372	

calculated, respectively, as 373	

 374	

θfc = φ (ϕae / 0.033) b         (3) 375	

θwp = φ (ϕae / ψv )1/b          (4) 376	

 377	

Where φ is average subsurface porosity, ϕae represents the air-entry pressure (in meters), 378	

b is a pore size distribution index that describes the moisture-characteristic curve, and ψv 379	

describes the pressure at which the plants’ stomata close. Variables ϕae and b are also 380	

model calibration parameters.  381	

 382	

Larger AWC indicates that more water can be held in the subsurface and potentially 383	

interacts with climate to extend plant water availability by capturing snowmelt, one of the 384	

primary sources of water for forest ET.. Our results present each watershed’s average 385	

AWC; watersheds are represented by one (OR-CAS), two (CA-SIER), and five (CO-386	

ROC) soil types and their characterizations are described in Table 2. All values of AWC 387	

calculated in calibration represent physically feasible values for each watershed. 388	

 389	

We use RHESSys to calculate total annual ET over the entire available climate record in 390	

each basin (28-50 years; Table 2) and use linear regression to quantify how much of the 391	
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inter-annual variation in ET is related to each of the three climate metrics— P, TAMJ, and 410	

R75. We set a limit of less than 0.05 for p-values to determine significance. We then 411	

investigate how long-term mean ET and its relationship with these climate-related 412	

indicators are influenced by AWC.  413	

 414	

To examine how subsurface storage capacity may influence long term average ET, we 415	

calculate average annual ET over a 15-year period (1985-2000) for a range of 1000 AWC 416	

values and linearly regress the long-term averaged ET values against AWC. We then 417	

characterize the interacting influences of AWC and each climate driver. For the 1000 418	

values of AWC, we calculate the slope of annual ET estimates to each climate predictor 419	

(P, TAMJ, R75). 420	

 421	

3. RESULTS 422	

 423	

3.1 ANNUAL P vs. ET 424	

 425	

In all watersheds higher P results in greater total annual ET (Fig. 2). This is a statistically 426	

significant relationship in all watersheds (CO-ROC and CA-SIER, correlations and p-427	

values reported in Table 3) where the years of highest annual P are correlated with the 428	

years of greatest annual ET. Of the three basins, CO-ROC’s annual ET shows the greatest 429	

sensitivity to P, having the steepest slope. Annual P is the strongest explanatory variable 430	

of annual ET in both CO-ROC (r2 =0.9) and CA-SIER (r2 =0.75) (Table 3). For CO-ROC, 431	

annual P has a greater influence (steeper slope) in the drier years when P is less than 432	

1000 mm (Fig. 2). OR-CAS has the least significant relationship between P and ET on an 433	

annual scale. OR-CAS is a relatively wet basin and on average receives more than twice 434	

the amount of winter (Jan-Mar) precipitation than CA-SIER or CO-ROC receives. High 435	

annual P in OR-CAS in most years likely diminishes the sensitivity of ET to the 436	

magnitude of P.  437	

 438	

3.2 TIMING OF RECHARGE vs ET  439	

 440	
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For all three catchments, later R75 has a significant positive correlation with ET (Fig. 3). 445	

In OR-CAS and CA-SIER, R75 occurs between February and May. There is more scatter 446	

in the predictive power of R75 for annual ET when R75 is earlier in the water year. The 447	

earliest R75 are in OR-CAS, where a greater fraction of winter precipitation falls as rain. 448	

CA-SIER and CO-ROC are more sensitive to the timing of recharge than OR-CAS. 449	

Summer monsoonal pulses in CO-ROC push R75 to later in the water year as compared to 450	

OR-CAS or CA-SIER. The explanatory power of R75 for ET is greatest in CA-SIER 451	

where greater accumulation of snowpack and warmer spring temperatures can interact to 452	

increase forest water use earlier in the growing season.  453	

 454	

3.3 SPRING TEMPERATURE vs. ET  455	

 456	

Warmer spring temperature (TAMJ) in all basins generally reduces annual ET (Fig. 4a) and 457	

is significantly correlated with lower ET in CO-ROC and OR-CAS. CA-SIER does not 458	

show a significant relationship between TAMJ and ET. In CO-ROC and OR-CAS 459	

increasing TAMJ leads to a reduction in water availability and a decline in later season ET. 460	

The relationship between spring air temperature and snowmelt timing is demonstrated by 461	

significant correlations between TAMJ and R75 for CO-ROC (Fig. 4b). The colder 462	

temperatures and more persistent snowpack in the CO-ROC basin is more sensitive, 463	

relative to OR-CAS, in ET response to earlier snowmelt due to temperature increases.  464	

 465	

3.4 AWC vs. ET 466	

 467	

Increased AWC increases the long-term average ET in all basins. Figure 5 shows a 468	

nonlinear relationship between long-term mean ET and AWC suggesting that the effect 469	

of increasing storage diminishes for higher AWC values. Each basin reaches an 470	

approximate storage capacity above which a further increase in storage (AWC) is less 471	

important and climate (i.e., P and energy) variables limit ET. Following Muggeo [2003], 472	

for each basin, we calculate that breakpoint value of AWC where ET is less sensitive to 473	

AWC. We find that the threshold value of AWC varies across basins and is substantially 474	

higher in CO-ROC (265 mm) as compared to CA-SIER (195 mm) and OR-CAS (190 475	
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mm) (Fig. 5). Regression of AWC against annual ET show that a significant relationship 506	

exists in OR-CAS and CO-ROC (Table 3).  507	

 508	

The effect of varying lateral redistribution or lateral drainage parameters can be seen in 509	

the range of slopes for a given AWC (e.g., the scatter in the slope-AWC relationship).  510	

All three watersheds show some sensitivity of climate-ET relationships to lateral 511	

redistribution parameters for a given AWC. CA-SIER shows the greatest sensitivity, 512	

followed by OR-CAS and CO-ROC. The greater sensitivity of CA-SIER to lateral 513	

drainage parameters may reflect the strong contribution of snowmelt recharge in its drier 514	

and winter precipitation dominated climate. The topography of CA-SIER is also 515	

distinctive and includes many swale-like features that concentrate drainage from upslope 516	

areas. We calculate the topographic wetness index (TWI) using a 30m resolution DEM 517	

for each watershed (Moore et al., 1991) (Table 2). The TWI reflects the propensity of a 518	

location to develop saturated conditions under the assumption that topography controls 519	

water flow. Higher TWI values represent flatter, converging terrain and lower values 520	

reflect steep topography. The mean TWI for CA-SIER is greater than, and significantly 521	

different from (Welch’s t-test) the mean TWI for CO-ROC and OR-CAS. Particularly for 522	

CA-SIER, changing storage parameters associated with drainage rates can alter the 523	

timing of flow into areas that concentrate flow and subsequently alter their ET rates.  524	

 525	

3.5 SENSITIVITY OF ET to CLIMATE DRIVERS with AWC 526	

 527	

We analyze the sensitivity of ET relationships with climate drivers to subsurface storage 528	

properties by plotting the slope of linear regressions between ET and P, R75, and TAMJ, 529	

across all storage parameter sets in Fig. 6. We note that the slope of the relationships 530	

between climate drivers and ET has been normalized by the watersheds’ mean AWC in 531	

these plots to facilitate cross-site comparison.  532	

 533	

3.5.1 SENSITIVITY to P with AWC 534	

 535	
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Of the climate drivers explored, ET relationships with annual precipitation P have the 541	

greatest robustness across subsurface storage parameter sets, as suggested by number of 542	

sets that show a statistically significant relationship between annual P and annual ET (Fig. 543	

6A). As expected, slopes are positive between P and ET across all basins. Only the drier 544	

basins CO-ROC and CA-SIER have p-values less than 0.001, highlighting the strength of 545	

P as a climatic driver in these drier basins, as discussed above. The response in slope 546	

sensitivity across AWC is similar in OR-CAS and CA-SIER where ET’s sensitivity to P 547	

is highest at low AWC and decreases with increased AWC. OR-CAS has a much smaller 548	

range in sensitivities (slope varies from 0.2-0.6) compared to CA-SIER (slope varies 549	

from 0.0-0.8). Thus in CA-SIER for low values of AWC, year-to-year variation in P 550	

becomes a greater control on year-to-year variation in ET.  For both OR-CAS and CA-551	

SIER, increasing AWC becomes less important at higher values of AWC. Higher scatter 552	

in slope of annual P versus ET relationship for CA-SIER also reflects the greater 553	

sensitivity of ET to subsurface parameters that influence lateral drainage as discussed 554	

above (Sect. 3.4).  555	

 556	

The variation of ET response to P across AWC in CO-ROC is noteworthy for two 557	

reasons. First, CO-ROC has the highest slope values (0.6-0.8), which again reflects the 558	

consistency of annual P as a control on inter-annual variation in ET in this basin. Second, 559	

unlike OR-CAS and CA-SIER, increasing AWC does not substantially reduce that 560	

sensitivity (i.e., slope) to P. Though CO-ROC’s sensitivity to P does not change with 561	

AWC, the scatter in slopes (0.6-0.8) suggests that lateral drainage has a strong effect on 562	

this climate-ET relationship. We note that CO-ROC has a seasonal precipitation regime 563	

where a significant fraction of its annual precipitation is received later in the growing 564	

season as summer monsoonal pulses. When precipitation occurs during the growing 565	

season, the water available for ET is less likely to be limited by storage capacity. Instead 566	

ET is limited by the amount or intensity of precipitation.  Water that does recharge the 567	

system is used relatively quickly, making variation in storage (or AWC) less important as 568	

a control on how much P can be used in CO-ROC.  569	

 570	

3.5.2 SENSITIVITY to R75 with AWC 571	
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 574	

After precipitation, the timing of recharge (R75) most significantly correlates with 575	

increased ET across all AWC and all basins (Fig. 6B). There are several similarities in 576	

the response of ET’s sensitivity to R75 across AWC when compared to sensitivity to P 577	

(Fig. 6A). For example, the dry basins CO-ROC and CA-SIER have the highest degree of 578	

sensitivity (significant slopes > 1.0) as compared to OR-CAS (slopes < 1.0) and CA-579	

SIER has the greatest variability in its sensitivity to AWC with slopes ranging from 1.0-580	

3.0 across variation in storage parameters. CO-ROC once again has the least variability in 581	

the ET versus R75 relationship, with consistently high (2.0-2.5) slopes unaffected by 582	

AWC.  583	

 584	

3.5.3 SENSITIVITY to TAMJ with AWC 585	

 586	

Finally, TAMJ has the fewest subsurface storage/drainage parameter sets with significant 587	

correlation with ET. None of the linear regressions of ET on TAMJ have statistical 588	

significance less than 0.001 (Fig. 6C). The slopes are always negative because earlier 589	

occurrence of snowmelt results in less ET. For all basins, the sensitivity of ET to TAMJ is 590	

greatest at the lowest values of AWC, though CO-ROC once again demonstrates the least 591	

variability in slopes across the entire range of AWC (-0.2 – -0.3). At OR-CAS, TAMJ is 592	

only significant for the lower AWC values. We suggest this is in part due to the small 593	

fraction of P that falls as snow. Because TAMJ’s largest effect is through timing of 594	

snowmelt (Fig. 4), AWC interacts with TAMJ to modulate the melt response. With 595	

relatively less snowmelt in OR-CAS, only the systems with the smallest capacities will 596	

have a significant negative interaction effect with AWC. 597	

 598	

4. DISCUSSION  599	

 600	

Our model estimates show differences in the response of ET to climate-related drivers 601	

across the three watersheds, primarily due to differences in their precipitation regimes. 602	

Spatial heterogeneity in soil and geology, both within and between watersheds 603	

substantially alter these relationships. Our model-based study provides a simplified 604	
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representation of these interactions, ignoring many additional complexities. In particular, 609	

we assume no adaptation of the ecosystem structure and composition that would 610	

influence productivity, evapotranspiration and their relationship with climate 611	

(Loudermilk et al., 2013). Future work will investigate these coupled carbon cycling-612	

hydrology interactions. In this study we focus on the energy and moisture drivers of ET 613	

and how subsurface properties influence their interaction.  614	

 615	

The degree to which climate drivers affect ET varies with the magnitude and seasonality 616	

of basin precipitation. Total annual P is the first order control of ET in the two drier 617	

watersheds, CO-ROC and CA-SIER. In OR-CAS, most of the inter-annual variation in 618	

precipitation is reflected in inter-annual variation in runoff rather than ET. In most years, 619	

subsurface storage is filled by this annual precipitation during the winter and spring, 620	

asynchronously to late growing season demands (Fig. 1). Our results extend findings by 621	

previous studies demonstrating that vegetation productivity and water use relates to the 622	

fraction of regional precipitation available to plants (Brooks et al., 2011; Thompson et al., 623	

2011).  The fraction of water available to plants tends to decrease with larger rainfall 624	

(given saturated soil stores a greater proportion is lost) and with synchronicity between 625	

the timing of recharge and growing season water demands.  626	

 627	

Our analysis highlights the timing of water availability (R75) as a key predictor of total 628	

annual ET; annual ET increases when recharge occurs later in the water year, during the 629	

growing season and period of highest water demand. Previous research has shown how 630	

delayed soil moisture recharge (Tague and Peng, 2013) and snowpack dynamics (Tague 631	

and Heyn, 2009; Trujillo et al., 2012) are able to increase ET in the Sierra Nevada. In 632	

these mountain basins, the sensitivity of ET to timing of recharge is related to the fraction 633	

of precipitation received as snow. The climate metrics related to snowmelt, R75 and TAMJ, 634	

are important secondary controls of ET, especially in the colder, snow-dominated 635	

watersheds, CA-SIER and CO-ROC. We note that CA-SIER does not show a significant 636	

relationship between TAMJ and ET because the effect of temperature is strongly dependent 637	

on the amount of snowpack the basin receives in a year (Tague and Peng, 2013), which is 638	

more variable than the amount of snowpack received in CO-ROC or OR-CAS. In OR-639	
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CAS and CO-ROC, spring temperature TAMJ is more strongly related to ET through its 642	

effect on snowmelt and correlates negatively with ET. These results suggest that the 643	

dominant effect of warmer spring temperatures is earlier meltout of snowpack, which 644	

leads to more snowmelt lost as runoff and results in less net recharge. This greater loss of 645	

runoff occurs when storage capacity is exceeded.. Later into the growing season, 646	

increased ET demands will have depleted subsurface stores and throughfall/snowmelt 647	

will enter the soil matrix and be available for plant water use. Previous work has shown 648	

seasonal increases in spring ET with warmer spring temperatures (Hamlet et al., 2007) 649	

which may be related to an earlier start to the vegetation growing season (Cayan et al., 650	

2001), and an increase in vapor pressure deficits and water demand (Isaac and van 651	

Wijngaarden, 2012). Our work suggests that though early season ET may increase with 652	

warming temperatures, warmer spring temperatures may in some cases decrease total 653	

annual ET by melting the snowpack stores earlier in the water year and reducing soil 654	

moisture recharge later in the spring when energy demand is high.  655	

 656	

The range of sensitivities of ET to climate in this study is a direct function of climatic and 657	

physical characteristics of the catchments presented in this study. For example, OR-CAS 658	

receives twice as much precipitation and spans a much lower elevation range than either 659	

CA-SIER or CO-ROC (Table 2). Because OR-CAS is considerably wetter, its sensitivity 660	

of ET to magnitude of annual P is lessened considerably. OR-CAS’ lower elevations, and 661	

related mean winter temperatures, also result in smaller average snowpacks reducing the 662	

strength of spring temperature as an explanatory variable for ET. Differences between 663	

CA-SIER and CO-ROC largely reflect seasonal distribution of precipitation, and reflect 664	

the importance of summer precipitation in CO-ROC. While climate is the dominant 665	

factor, topographic differences are also important. As discussed above, topographically 666	

driven flowpath convergence in CA-SIER tends to increase sensitivity of ET to 667	

parameters that influence lateral drainage. This effect is less evident in the other two  668	

watersheds. 669	

 670	

Over a range of physically realistic storage characteristics, long-term averages of ET 671	

increase with greater storage (AWC) in all basins. Our analysis found the greatest 672	
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sensitivity of long-term average annual ET to variation in AWC in OR-CAS (Table 3). In 735	

CO-ROC, ET ranges from 380-600 mm across annual P variation, and across all 736	

calibrated subsurface parameters long-term average ET ranges from 450-600 mm. This 737	

variation in CO-ROC’s ET associated with subsurface storage characteristics is on the 738	

same order of magnitude as inter-annual variation in ET with P. Similarly, in CA-SIER, 739	

ET ranges from 400-800 mm across the P record and across all storage parameters, and 740	

ranges from 700-1000 mm long-term. There is a nonlinear relationship between ET and 741	

AWC in each basin. We suggest that below a threshold point in each basin (195 - 265mm 742	

of AWC), long-term average ET is more sensitive to AWC and above these threshold 743	

values the effect of climate on ET is greater than an increase in subsurface storage.  744	

 745	

The sensitivity of ET to year-to-year variability of climate drivers is also influenced by 746	

AWC. The sensitivity of ET estimates to climate drivers varies by two to five magnitudes 747	

in CA-SIER and OR-CAS across the range of plausible storage parameters. These basins 748	

receive the smallest fraction of annual P in the summer and their annual ET estimates are 749	

most sensitive to P, R75, and TAMJ at low  water capacity (AWC). CO-ROC has a high 750	

sensitivity to climate drivers but this sensitivity does not change with AWC. We suggest 751	

that a strong summer P signal in CO-ROC explains the negligible change in ET’s 752	

sensitivity to climate drivers across values of AWC, similar to other studies that show 753	

that summer P can offset the dependence of ET on soil replenishment or winter snowpack 754	

(Hamlet et al., 2007; Litaor et al., 2008). The relative importance of AWC to regional 755	

climate differences is apparent if we consider that a similar sensitivity to P and TAMJ can 756	

be achieved for all basins by varying AWC. For example, ET at the smallest AWC values 757	

in OR-CAS are similarly sensitive (slope of 0.6) to inter-annual variation precipitation as 758	

stands in CO-ROC (Fig. 6A).  759	

 760	

The two more water-limited basins demonstrate similarly high sensitivities of ET to 761	

climate drivers, but differ in the response of their sensitivity to climate across AWCs. 762	

Despite CO-ROC and CA-SIER showing similarly strong sensitivities to climate, their 763	

response across AWC differs considerably. CA-SIER’s sensitivity to climate drivers is 764	

highly variable across all AWC but still demonstrates slightly higher sensitivity at lower 765	
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AWC values. Its lack of summer precipitation, like OR-CAS, gives water storage a more 777	

significant role in mediating late summer water stress. With lower AWC values there is 778	

less potential for water storage and ET becomes more sensitive to climate drivers.  779	

 780	

In addition to the sensitivity to AWC, our results show that lateral redistribution strongly 781	

influences the sensitivity of ET to climate drivers in the drier basins; in CA-SIER and 782	

CO-ROC there is considerable scatter in the slopes for P and R75 across a single  AWC 783	

(e.g., for an AWC of 400 mm, the P:ET ranges from 0.6 to 0.8 and 0.2 to 0.7 for CO-784	

ROC and CA-SIER, respectively in Fig. 6A). We note that this additional sensitivity of 785	

ET-climate relationships to drainage rates, even given similar AWC or storage conditions, 786	

emphasizes the role played by lateral connections. In other words, results suggest that for 787	

the two more water limited sites, the timing of upslope contributions to downslope areas 788	

can mediate the sensitivity of watershed scale vegetation water use. 789	

 790	

Our results have general implications for model based estimates of ET in this region. 791	

Because there is substantial heterogeneity in subsurface storage characteristics within 792	

each basin (Dahlgren et al., 1997; Denning et al., 1991; McGuire et al., 2007) we might 793	

expect that  the full range of AWCs can be observed when we look across individual 794	

forest stands within a basin. Thus, our estimates that show substantial changes in climate-795	

ET relationships across subsurface parameters suggest that there may be substantial 796	

within-basin spatial heterogeneity in vegetation responses to climate variation and change. 797	

Even if model estimates are focused on basin aggregate responses such as streamflow, 798	

our results point to the importance of calibration data for defining subsurface storage and 799	

drainage properties. Estimates of subsurface parameters are often derived from readily 800	

available products such as STATSGO and SSURGO [Natural Resources Conservation 801	

Service] that provide relatively coarse scale and imperfect information about hydrologic 802	

properties. Consequently, hydrologic models are typically calibrated to obtain estimates 803	

of storage and drainage parameters (Beven, 2011). Our results suggest that in areas where 804	

streamflow data is not available for calibration, watershed scale estimates of ET 805	

responses to climate drivers may have substantial errors.  806	

 807	
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 814	

 815	

5. CONCLUSIONS  816	

 817	

We demonstrate how subsurface storage and drainage properties (AWC and parameters 818	

that control lateral redistribution) interact with climate-related drivers to influence ET in 819	

three western U.S. mountain watersheds with distinctive precipitation regimes. These 820	

watersheds reflect conditions found in many other western U.S. snow-dominated systems, 821	

where summer water availability is influenced by the magnitude of precipitation, timing 822	

of soil moisture recharge and spring temperature and its effect on snowmelt. We found 823	

that, for our three watersheds, estimates of longer-term average (15-year) watershed-scale 824	

ET vary across a range of physically realistic storage/drainage parameters. For all 825	

watersheds, the range in long term mean ET estimates across AWC estimates (e.g., mean 826	

ET at a high AWC versus mean ET at a low AWC) may be as large as inter-annual 827	

variation in ET, suggesting that the influence of AWC and drainage can be substantial.  828	

 829	

 830	

Our results also point to the importance of lateral redistribution as a control on ET, 831	

particularly for CA-SIER. Only a few studies have emphasized the role of lateral 832	

redistribution in plot to watershed scale climate responses in the Western U.S. (Barnard 833	

et al., 2010; Tague and Peng, 2013). For the CA-SIER site, our model results suggest that 834	

there can also be interactions between AWC and hillslope to watershed scale 835	

redistribution as controls on ET. Lateral redistribution was less important for the CO-836	

ROC, where summer precipitation was a more important contributor to annual ET values 837	

and the least important for the wetter OR-CAS site. Results emphasize that the role of 838	

subsurface properties, including both storage and drainage, will be different for different 839	

climate regimes.  840	

 841	

These results have important implications both for predicting ET in basins where data is 842	

not available for calibration and for understanding and predicting the spatial variability of 843	

ET within a basin. AWC also affects the sensitivity of annual ET to climate drivers, 844	
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particularly in the two more seasonally water-limited basins. Although the three 962	

watersheds show different responses of annual ET to these climate drivers, there are 963	

values of AWC that would eliminate these cross-basin differences. These sensitivities 964	

highlight the need for  improved information on spatial patterns of subsurface properties  965	

to contribute to the development of science-based information on forest vulnerabilities to 966	

climate change. Improved accounting for plant accessibility to moisture has improved 967	

model-data ET comparisons in previous modeling studies at regional and global scales 968	

(Hwang et al., 2009; Tang et al., 2013; Thompson et al., 2011). With expected decreases 969	

in fractional precipitation received as snow with climate change (Diffenbaugh et al., 970	

2013; Knowles et al., 2006), we might expect soil storage to play a more important role 971	

in providing water for forests in the future. Improved understanding of how climate and 972	

subsurface storage/drainage combine to control ET can enhance our understanding of 973	

forest water stress related to increased mortality (van Mantgem et al., 2009). Western U.S. 974	

forests show substantial vulnerability to drought, with declines in productivity and 975	

increases in mortality and disturbance in drought years (Allen et al., 2010; Hicke et al., 976	

2012; Williams et al., 2013).Understanding these ecosystems’ responses to primary 977	

climate drivers is of particular concern given recent warming trends (Sterl et al., 2008) 978	

and multi-year droughts (Cook et al., 2004; Dai et al., 2004). Identifying the physical 979	

conditions in which our ability to estimate ET is most sensitive or limited by knowledge 980	

of subsurface geologic properties helps to prioritize regional data acquisition agendas. 981	

Integrating results from recent advances in geophysical measurements and models such 982	

as those emerging from Critical Zone Observatories in the U.S.	and elsewhere (Anderson 983	

et al., 2008) will  be essential for analysis of climate ET interactions. 984	
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Table 1. Explanatory variables 1263	

Abbreviation Definition 

P Total annual precipitation 

TAMJ Average daily temperature for April, May, June 

R75 Day of water year that 75% of soil water recharge occurs 

AWC Available water capacity of soil (field capacity-wilting point) 

 1264	

1265	
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Table 2. Basin topography, geology, vegetation and climate characteristics. Climate 1266	

descriptions are averaged over total available climate record (duration noted in table). 1267	

Watershed CO-ROC OR-CAS CA-SIER 

Location Colorado Oregon California 

U.S. Geological Survey 

gage number 

06733000 14161500 10343500 

Geology Holocene glacial till, rock; 

Precambrian gneiss, granite 

Western Cascade basalt Sierra granite, with 

Miocene andesite cap 

Elevation range (m) 1470-4345 410-1630 1800-2650 

Drainage Area (km2) 350 64 26 

Topographic Wetness 

Index- Mean (Std Dev) 

7.0 (1.9) 6.6 (1.7) 7.9 (1.8) 

Climate record 1980 – 2008 1958-2008 1960-2000 

Mean Annual 

Precipitation (mm) 

1000 2250 850 

Annual Precipitation as 

snow (%) 

64 29 55 

Precipitation received in 

Growing Season (%) 

46 21 19 

Min/Max winter T 

(JFM) (oC) 
-12.1/-0.02 -0.9 / 5.2 -9.5/3.7 

Min/Max spring T 

(AMJ) (oC) 
-2.7/10.9 4.0/14.0 -2.5/13.8 

P:PET 0.9 2.3 1.2 

Vegetation Subalpine fir, aspen, 

meadows, shrub 

Douglas-fir, Western 

Hemlock 

Mixed Conifer, Jeffrey 

and Lodgepole Pine 

Mean basin LAI 3.5 9.0 4.1 

Annual NPP range for 

calibration (gC m-2 yr-1) 

280-520 620-1100 450-800 

Literature sources used 

to bound annual NPP 

range 

Arthur and Fahey [1992] 

Bradford et al. [2008] 

Grier and Logan [1977] 

Gholz [1982]  

Hudiburg et al. [2009] 

Goulden et al. [2012]a 

aValues reported as gross primary productivity, converted to NPP using RHESSys 1268	

calculated values of respiration. 1269	

1270	
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Table 3. Statistics for ET predictors based on linear regression models. 1271	

Watershed  CO-ROC OR-CAS CA-SIER 

Precipitation p-value < 0.001  < 0.05 < 0.001 

 (P) r2 0.9 0.1 0.75 

  slope 0.4 0.1 0.2 

     

Timing (R75) p-value <0.001 < 0.01 <0.001 

  r2 0.2 0.2 0.4 

  slope 3.8 1.2 4.6 

     

Temperature p-value <0.001 <0.05 >0.1 

TAMJ r2 0.4 0.1 -0.01 

  slope -26.3 -25.7 15 

     

Soil Capacity p-value 0.001 0.001 0.001 

(AWC)  r2 0.43 0.53 0.11 

  slope 0.1 0.2 0.1 

 1272	

1273	
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Figure Captions 1274	

 1275	

Figure 1. Locations and average daily water fluxes averaged from 1980-2000 for three 1276	

case study watersheds located in (A) the western Oregon Cascades (OR-CAS), (B) 1277	

Colorado Rockies (CO-ROC), and (C) California Sierra Nevada (CA-SIER). 1278	

 1279	

Figure 2. (A) Total annual ET increases with total annual precipitation. Lines indicate 1280	

statistically significant relationships (p-value < 0.05). 1281	

 1282	

Figure 3. Later occurrence of soil moisture recharge (R75) is significantly correlated with 1283	

increased annual ET in all study watersheds. 1284	

 1285	

Figure 4. (A) Warmer spring temperatures are correlated with lower total annual ET in 1286	

the two snow-dominated watersheds. (B) An earlier occurrence of soil moisture recharge 1287	

is correlated with warmer temperatures in CO-ROC. 1288	

 1289	

Figure 5. Each point represents the 15-year average annual ET from WY 1985-2000 for a 1290	

physically viable mean basin soil available water capacity (AWC). Vertical lines 1291	

represent the calculated breakpoint in the nonlinear relationship between long-term ET 1292	

and AWC for each basin. 1293	
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Figure 6. The impact of soil AWC on the slope a linear regression model of annual ET as 1295	

a function of climate predictors: (A) precipitation, (B) R75, and (C) TAMJ. The slope of 1296	

ET:climate predictor is plotted across a physically viable range of mean basin soil AWC 1297	

for each climate predictor and for each study basin: OR-CAS (left column), CO-ROC 1298	

(middle column), and CA-SIER (right column).The slopes are normalized to facilitate 1299	

inter-basin comparison. 1300	
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 1302	
Figure 1. Locations and average daily water fluxes averaged from 1980-2000 for three 1303	

case study watersheds located in (A) the western Oregon Cascades (OR-CAS), (B) 1304	

Colorado Rockies (CO-ROC), and (C) California Sierra Nevada (CA-SIER). 1305	

  1306	

OR−CAS
m

m
 o

f W
at

er

Oct Jan Apr Jul

0
5

10
15

20

CO−ROC

Oct Jan Apr Jul

0
5

10
15

20

Precipitation
Snowfall

Streamflow
AET
PET

CA−SIER

Oct Jan Apr Jul

0
5

10
15

20

(A) (B) (C) 



 45	

 1307	

Figure 2. (A) Total annual ET increases with total annual precipitation. Lines indicate 1308	

statistically significant relationships (p-value < 0.05). 1309	
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Figure 3. Later occurrence of soil moisture recharge (R75) is significantly correlated with 1311	

increased annual ET in all study watersheds.  1312	
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Figure 4. (A) Warmer spring temperatures are correlated with lower total annual ET in 1313	

the two snow-dominated watersheds. (B) An earlier occurrence of soil moisture recharge 1314	

is correlated with warmer temperatures in CO-ROC. 1315	
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 1317	

Figure 5. Each point represents the 15-year average annual ET from WY 1985-2000 for a 1318	

physically viable mean basin soil available water capacity (AWC). Vertical lines 1319	

represent the calculated breakpoint in the nonlinear relationship between long-term ET 1320	

and AWC for each basin.  1321	
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 1322	
Figure 6. The impact of soil AWC on the slope a linear regression model of annual ET as 1323	

a function of climate predictors: (A) precipitation, (B) R75, and (C) TAMJ. The slope of 1324	

ET:climate predictor is plotted across a physically viable range of mean basin soil AWC 1325	

for each climate predictor and for each study basin: OR-CAS (left column), CO-ROC 1326	
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(middle column), and CA-SIER (right column).The slopes are normalized to facilitate 1327	

inter-basin comparison. 1328	


