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ABSTRACT 14	

 15	

In the winter-wet, summer-dry forests of the western United States, total annual 16	

evapotranspiration (ET) varies with precipitation and temperature. Geologically mediated 17	

drainage and storage properties, however, may strongly influence these relationships 18	

between climate and ET. We use a physically based process model to evaluate how plant 19	

accessible water storage capacity (AWC) and rates of drainage influence model estimates 20	

of ET-climate relationships for three snow-dominated, mountainous catchments with 21	

differing precipitation regimes. Model estimates show that total annual precipitation is a 22	

primary control on inter-annual variation in ET across all catchments and that the timing 23	

of recharge is a second order control. Low AWC, however, increases the sensitivity of 24	

annual ET to these climate drivers by three to five times in our two study basins with 25	

drier summers. ET – climate relationships in our Colorado basin receiving summer 26	

precipitation are more stable across subsurface drainage and storage characteristics. 27	

Climate driver-ET relationships are most sensitive to subsurface storage (AWC) and 28	

drainage parameters related to lateral redistribution in the relatively dry Sierra site that 29	

receives little summer precipitation. Our results demonstrate that uncertainty in 30	

geophysically mediated storage and drainage properties can strongly influence model 31	

estimates of watershed scale ET responses to climate variation and climate change. This 32	

sensitivity to uncertainty in geophysical properties is particularly true for sites receiving 33	

little summer precipitation.  A parallel interpretation of this parameter sensitivity is that 34	

spatial variation in storage and drainage properties are likely to lead to substantial within-35	

watershed plot scale differences in forest water use and drought stress.  36	

 37	

1. INTRODUCTION 38	

 39	

In high-elevation forested ecosystems in the western U.S., the majority of precipitation 40	

falls during the winter there is often a disconnect between seasonal water availability and 41	

growing season water demand. Consequently forests in these regions are frequently water 42	

limited, even when annual precipitation totals are high (Boisvenue and Running, 2006; 43	

Hanson and Weltzin, 2000).  This disconnect between water inputs and energy demands 44	
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also highlights the importance of storage of winter recharge by both snowpack and by 45	

soils. The importance of snowpack storage in these systems for hydrologic fluxes has 46	

received significant attention, particularly given their vulnerability to climate warming. 47	

Warmer temperatures are already shifting seasonal water availability in the western U.S. 48	

through reductions in snowpack accumulation (Knowles et al., 2006) and earlier 49	

occurrence of peak snowpack (Mote et al., 2005) and shifts in streamflow timing (Stewart 50	

et al., 2005). Recently, field and modeling studies have shown that the years with greater 51	

snowpack accumulation can be a strong predictor of vegetation water use and 52	

productivity for sites in the California Sierra (Tague and Peng, 2013; Trujillo et al., 2012).  53	

 54	

Less attention, however, has been paid to the role of subsurface storage and drainage that 55	

can influence whether or not winter precipitation or snowmelt is available for plant water 56	

use during the summer months.  Previous studies have shown that plant access to stored 57	

water is a substantial contributor to summer evapotranspiration in semi-arid regions 58	

(Bales et al., 2011). Plant accessible storage includes both water stored in soil and in 59	

sapprolite and bedrock layers that can be accessed by plant roots (McNamara et al., 2011). 60	

Like snowpack, the storage of water in the subsurface has the potential to act as a water 61	

reservoir, storing winter precipitation for use later in the growing season (Geroy et al., 62	

2011). The amount of water that can be stored varies substantially in space with 63	

topography, geologic properties, and antecedent moisture conditions (Famiglietti et al., 64	

2008; McNamara et al., 2005).  If the rate of snowmelt allows for subsurface moisture 65	

stores to be replenished later into the growing season, more of the winter precipitation is 66	

made available for plant water use. If, storage capacity is too shallow to capture a 67	

significant amount of runoff or if the rate of rain or snowmelt inputs exceeds the rate of 68	

infiltration, then subsurface storage will not be physically able to extend water 69	

availability.  While field studies in the Western US have shown that shallow soils can 70	

limit how much snowmelt is available for ecological use during the summer (Kampf et al., 71	

2014; Smith et al., 2011), these studies cannot fully characterize the relative impact of 72	

subsurface storage on ET given inter-annual and cross-site variation in climate drivers.  73	

 74	



 4	

In this paper, we focus on the potential for plant accessible subsurface water storage to 75	

mediate the sensitivity of ET to inter-annual variation in climate drivers, precipitation and 76	

temperature.  Understanding how ET varies with climate drivers is important, both from 77	

the perspective of how ET influences downstream water supply and water availability for 78	

forests and other vegetation (Grant et al., 2013). Western U.S. forests show substantial 79	

vulnerability to drought, with declines in productivity and increases in mortality and 80	

disturbance in drought years (Allen et al., 2010; Hicke et al., 2012; Williams et al., 2013). 81	

Understanding these ecosystems’ responses to primary climate drivers is of particular 82	

concern given recent warming trends (Sterl et al., 2008) and multi-year droughts (Cook et 83	

al., 2004; Dai et al., 2004) and that these changes in water and energy demands are 84	

expected to intensify (Ashfaq et al., 2013). Increased temperatures also effect plant 85	

phenology, leading to earlier spring onset of plant water use and productivity (Cayan et 86	

al., 2001) and thus can influence water requirements and water use. However, increases 87	

in early season water use, combined with higher atmospheric moisture demand, may lead 88	

to increased soil water deficit later in the season.  89	

 90	

Forest evapotranspiration is also a substantial component of the water budget (Post and 91	

Jones, 2001) and thus any change in forest water use will potentially have significant 92	

impacts on downstream water use. Goulden et al. [2012], for example, use flux tower and 93	

remote sensing data to argue that warming may result in an increase of up to 60% in 94	

vegetation water use at high elevations in the Upper Kings River watershed in 95	

California’s Southern Sierra watershed. We note however that these projected increases 96	

depend on how subsurface storage capacity interacts with snowpack at high elevations.  97	

 98	

This manuscript’s primary research objective is to quantify the interaction between 99	

subsurface storage characteristics and key climate-related metrics that influence forest 100	

water availability and use in snow-dominated environments receiving a range of summer 101	

precipitation. Heterogeneity in subsurface properties in soil, sapprolite and bedrock layers 102	

make the characterization of subsurface storage difficult at the watershed scale. Here we 103	

use a spatially distributed process-based model, the Regional Hydro-Ecologic Simulation 104	

System (RHESSys), to quantify how uncertainty or spatial variation in subsurface storage 105	
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properties might be expected to influence watershed response to these climate-related 106	

drivers. We apply RHESSys in three case study watersheds of differing precipitation 107	

regimes to investigate how climate and subsurface storage combine to control inter-108	

annual variation in ET.  109	

 110	

2. METHODS 111	

 112	

We apply our model at a daily time step to three watersheds located in the western 113	

Oregon Cascades (OR-CAS), central Colorado Rocky Mountains (CO-ROC) and central 114	

California Sierras (CA-SIER). All three watersheds receive a substantial fraction of 115	

precipitation as snowfall, but vary in their precipitation and temperature regimes and 116	

amount of precipitation that falls as snow (Figure 1). We compare a humid, seasonally 117	

dry watershed (OR-CAS) to two catchments that receive half as much precipitation 118	

annually. The more water-limited catchments differ in that CO-ROC receives a 119	

significant amount of its precipitation budget during the summer growing season. We use 120	

these case studies to estimate ET sensitivity to  storage and drainage properties for 121	

several different precipitation and temperature regimes common in western U.S. 122	

mountain watersheds. For each watershed, we quantify how subsurface storage and 123	

drainage properties interact with a combination of inter-annual variation in precipitation 124	

timing and magnitude, and shifts in snowpack storage. We first establish how inter-125	

annual variation in three primary climate-related metrics (precipitation, average spring 126	

temperature, and timing of soil moisture recharge) influence annual ET with average 127	

subsurface storage properties. We then explore how these relationships change across 128	

physically plausible storage values.  129	

 130	

2.1 RHESSys MODEL DESCRIPTION 131	

 132	

We use a physically based model (RHESSys v.5.15) to calculate vertical water, energy, 133	

and carbon fluxes in our three watersheds (Tague and Band, 2004). RHESSys is a 134	

spatially explicit model that partitions the landscape into units representative of the 135	

different hydro-ecological processes modeled (Band et al., 2000). RHESSys has been 136	
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used to address diverse eco-hydrologic questions across many watersheds (Baron et al., 137	

2000; Shields and Tague, 2012; Tague and Peng, 2013). Key model processes are 138	

described below and a full account is provided in Tague and Band [2004]. 139	

 140	

RHESSys requires data describing spatial landscape characteristics and climate forcing; a 141	

digital elevation model (DEM), geologic and vegetation maps are used to represent the 142	

topographic, geologic, carbon and nitrogen characteristics within a watershed. RHESSys 143	

accounts for variability of climate processes within the catchment using algorithms 144	

developed for extrapolation of climate processes from point station measurements over 145	

spatially variable terrain (Running and Nemani, 1987). Hydrologic processes modeled in 146	

RHESSys include interception, evapotranspiration, infiltration, vertical and lateral 147	

subsurface drainage, and snow accumulation and melt. The Penman-Monteith formula 148	

(Monteith, 1965) is used to calculate evaporation of canopy interception, snow 149	

sublimation, evaporation from subsurface and litter stores, and transpiration by leaves. A 150	

model of stomatal conductance allows transpiration to vary with soil water availability, 151	

vapor pressure deficit, atmospheric CO2 concentration, and radiation and temperature 152	

(Jarvis, 1976). A radiation transfer scheme that accounts for canopy overstory and 153	

understory, as well as sunlit and shaded leaves, controls energy available for transpiration. 154	

RHESSys accounts for changes in vapor pressure deficit for fractions of days that rain 155	

occurs (wet versus dry periods). Plant canopy interception and ET are also a function of 156	

leaf area index (LAI) and gappiness of the canopy such that as LAI increases and gap size 157	

decreases, plant interception capacity and transpiration potential increases. RHESSys 158	

partitions rain to snow at a daily timestep based on each patch’s air temperature. 159	

Snowmelt is estimated using a combination of an energy budget approach for radiation-160	

driven melt and a temperature index-based approach for latent heat-drive melt processes. 161	

Subsurface water availability varies as a function of infiltration and water loss through 162	

transpiration, evaporation and drainage. RHESSys also routes water laterally and thus 163	

patches can receive additional moisture inputs as either re-infiltration of surface flow or 164	

through shallow subsurface flow from upslope contributing areas. Lateral subsurface 165	

drainage routes subsurface and surface water between spatial units and it is a function of 166	
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topography and soil and saprolite drainage characteristics. Deep groundwater stores are 167	

drained to the stream using a simple linear reservoir representation. 168	

 169	

Carbon and nitrogen cycling in RHESSys was modified from BIOME-BGC (Thornton, 170	

1998) to account for dynamic rooting depth, sunlit and shaded leaves, multiple canopy 171	

layers, variable carbon allocation strategies, and drought stress mortality. The Farquhar 172	

equation is used to calculate gross primary productivity (GPP) (Farquhar et al., 1980). 173	

Plant respiration costs include both growth and maintenance respiration and are 174	

influenced by temperature following Ryan [1991]. Net primary productivity (NPP) is 175	

calculated by subtracting total respiration costs from GPP. 176	

 177	

In our three study sites, RHESSys is driven with daily records of precipitation and 178	

maximum and minimum temperature. Each basin is calibrated for seven parameters that 179	

characterize subsurface storage and drainage properties. Drainage rates are controlled by 180	

saturated hydraulic conductivity (K) and its decay with depth (m).  Air-entry pressure 181	

(ϕae), pore size index (b), and rooting depth (Zr) control subsurface water holding 182	

capacity (Brooks and Corey, 1964). In all basins, we assume that geologic properties 183	

allow for deeper groundwater stores that are inaccessible to vegetation (Table 2).  184	

Vegetation however can access more shallow groundwater flow. These deep groundwater 185	

stores are controlled by two parameters representing the percentage of water that passes 186	

to the store (gw1) and the rate of its release to streamflow (gw2). Calibration is conducted 187	

with a Monte-Carlo based approach, the generalized likelihood uncertainty estimation 188	

(GLUE) method (Beven and Binley, 1992). Parameter sets (1000 total) are generated by 189	

random sampling from uniform distributions of literature-constrained estimates for the 190	

individual parameters; all calibration parameter sets are physically viable representations 191	

of soils within each basin. In other words, though a single parameter set may not meet 192	

streamflow and annual NPP calibration metrics, that particular subsurface storage 193	

capacity may still exist within the basin. 194	

 195	

Model validation and drainage/storage parameter calibration were performed using two 196	

measures: daily streamflow statistics and annual measures of NPP. Streamflow statistics 197	
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were set such that good parameters resulted in daily flow magnitude errors less than 15%, 198	

Nash-Sutcliffe efficiencies (NSE, a measure of hydrograph shape) greater than 0.65, and 199	

logged NSE values greater than 0.7 (a test of peak and low flows) (Nash and Sutcliffe, 200	

1970). We select all parameter sets from these acceptable values; the total number of 201	

parameters equals 87, 246, and 47 for CA-SIER, CO-ROC, and OR-CAS, respectively. 202	

Daily hydrologic fluxes are calculated over 15 years for each soil parameter set in order 203	

to account for variability due to parameters in establishing relationships with our climate 204	

related indices, the results of which are presented in Figs. 2-4. We verify our annual ET 205	

estimates against limited field estimates published in literature for subwatersheds of CO-206	

ROC and OR-CAS (Baron and Denning, 1992; Webb et al., 1978). The average of our 207	

model estimated annual ET matches these limited field-based measurements and also fall 208	

within the bounds of annual ET estimated through water balance by subtracting annual 209	

streamflow from our records of annual precipitation. We assess the performance of the 210	

carbon-cycling model by comparing with published forest field measurements of annual 211	

NPP (values reported in Table 2).  In our fully coupled eco-hydrologic model, accurate 212	

estimates of NPP also suggest that ET estimates are reasonable. Finally we note that 213	

RHESSys estimates of ET and NPP have been evaluated in a number of previous studies 214	

by comparison with flux tower and tree ring data and these studies confirm that RHESSys 215	

provides reasonable estimates of ET and its sensitivity to climate drivers (Vicente-216	

Serrano et al., 2015; Zierl et al., 2007) . We quantify the sensitivity of ET-climate 217	

relationships to geologic properties by varying subsurface storage parameters (Figs. 5-6). 218	

 219	

2.2 STUDY SITES 220	

 221	

These analyses are conducted in three western U.S. mountain catchments: Big Thompson 222	

in Colorado’s Rocky Mountains (CO-ROC), Lookout Creek in Oregon’s Western 223	

Cascades (OR-CAS), and Sagehen Creek Experimental Forest in California’s Northern 224	

Sierra Nevada (CA-SIER). Basin characteristics pertinent to modeling annual ET are 225	

listed in Table 2 and we highlight important similarities and differences here. All sites are 226	

located on steep, mountainous slopes and are dominated by forest cover. All basins have 227	

climates typical of the western U.S., on average receiving 54% - 81% of their annual 228	
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precipitation during the winter, 29% - 64% of the annual P falls as snow, and they do not 229	

meet potential evaporative demand during the growing season (Fig. 1, Table 2). On 230	

average, OR-CAS is a much wetter basin and receives more than twice as much annual 231	

precipitation than CO-ROC and CA-SIER. Despite OR-CAS receiving more precipitation, 232	

a much lower fraction of that winter precipitation is received as snow. On average OR-233	

CAS’s peak streamflow occurs in December, four to five months earlier than CO-ROC 234	

and CA-SIER (Fig. 1). The drier watersheds, CO-ROC and CA-SIER, receive more than 235	

half of their annual precipitation as snow (Table 2). CO-ROC also experiences a summer 236	

monsoonal season and on average receives 46% its annual precipitation from April – 237	

September. Landscape carbon (C) and nitrogen (N) stores in general vary with total 238	

annual P across basins. For example, OR-CAS receives the most precipitation and also 239	

supports stands of large, old-growth forests; its LAI is more than twice that of either CO-240	

ROC or CA-SIER. As presented in the model description (Sect. 2.1), we use a stable, 241	

climatic optimum for vegetation biomass for all analyses in this paper. Garcia et al. 242	

[2013] and Tague and Peng [2013] provide detailed descriptions of the geology and 243	

climate data, model vegetation, and organic soil carbon store spin-up and calibration used 244	

for model implementations of OR-CAS and CA-SIER, respectively. We note that all 245	

precipitation and temperature data were derived from daily measurements made at 246	

climate stations located within the basins and extrapolated across the terrain using MT-247	

CLM algorithms (Running and Nemani, 1987) and 30-m resolution DEMs. Though 248	

RHESSys has previously been used in CO-ROC (Baron et al., 2000), we have made 249	

significant updates in RHESSys since that time, so we re-implemented the model as 250	

described in the next section.  251	

 252	

2.2.1 RHESSys MODEL DEVELOPMENT FOR CO-ROC 253	

 254	

In CO-ROC, landscape topographic characteristics including elevation, slope and aspect 255	

were derived from a digital elevation model (DEM) downloaded from the U.S. Geologic 256	

Survey (USGS) National Elevation Data set at 1/3 arc second resolution 257	

(http://datagateway.nrcs.usda.gov/). A stream network was then derived to accumulate 258	

surface and subsurface flow at USGS gage #06733000. Sub-catchments were delineated 259	
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using GRASS GIS’s watershed basin analysis program, r.watershed. Terrestrial data was 260	

aggregated such that the average size of the patch units, the smallest spatial units for 261	

calculation of vertical model processes, was 3600 m2. Soil classification data was 262	

downloaded from the Soil Survey Geographic database (SSURGO) and aggregated to 263	

four primary soil types: gravelly loam, sandy loam, loamy sandy, and rock 264	

(http://datagateway.nrcs.usda.gov/). Parameter values associated with these soil types are 265	

based on literature values (Dingman, 1994; Flock, 1978) and adjusted using model 266	

calibration, as described above. We note that these initial values are approximate and 267	

calibration permits storage values that reflect plant access to water stored in both organic 268	

soil layers and in sapprolite and rock. Vegetation land cover from the National Land 269	

Cover Database (NLCD) was aggregated to four primary vegetation types: subalpine 270	

conifer, aspen, shrubland, and meadow (Homer et al., 2007). Because a shift in 271	

precipitation patterns occurs at approximately 2700 meters, we use daily records of 272	

precipitation, Tmax, and Tmin from two points within the watershed. RHESSys then 273	

interpolates data from these points based on MTN-CLM (Running and Nemani, 1987) to 274	

provide spatial estimates of temperature, precipitation and other meteorologic drivers for 275	

each patch. Climate data from 1980-2008 was downloaded from the DAYMET system 276	

for two locations – one at elevation 2460 m (latitude 40.35389, longitude -105.58361) 277	

and the second at 3448 m (latitude 40.33769, longitude -105.70315) (Thornton et al., 278	

2012). 279	

 280	

Plant C and N stores were initialized by converting remote-sensing derived LAI to leaf, 281	

stem and woody carbon and nitrogen values using allometric equations appropriate to the 282	

vegetation type (http://daac.ornl.gov/MODIS/; MOD15A2 Collection 5). In order to 283	

stabilize organic soil C and N stores relative to the LAI-derived plant C and N, we run the 284	

model repeatedly over the basin’s climate record until the change in stores stabilizes 285	

(Thornton and Rosenbloom, 2005). After stabilizing soil biogeochemical processes, we 286	

remove vegetation C and N stores and then dynamically ‘regrow’ them using daily 287	

allocation equations (Landsberg and Waring, 1997) for 160 years in order to stabilize 288	

plant and soil C and N stores with model climate drivers. For all three basins, an optimum 289	
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maximum size for each vegetation type was determined using published, field-derived 290	

estimates of LAI and aboveground and total annual NPP.  291	

 292	

2.3 FRAMEWORK for PRIMARY CONTROLS on ET 293	

 294	

In these seasonally water-limited basins, we use total annual precipitation (P) as a metric 295	

of gross climatic water input. Annual precipitation P is summed over a water year (Oct. 1 296	

to Sep. 30 of the following calendar year) and summer season P is summed over July, 297	

August, and September. For all climate metrics we use spatially averaged watershed 298	

values. To assess the impact of timing of soil moisture recharge (as influenced either by 299	

year to year variation in precipitation timing, snowmelt or rain-snow partitioning) we 300	

calculate R75, the day of water year by which 75% of the total annual recharge has 301	

occurred. Recharge is defined as liquid water (e.g. rain throughfall or snowmelt) that 302	

reaches the soil surface. For this metric, we do not differentiate between water that, upon 303	

reaching the soil surface becomes runoff, and water that infiltrates into the soil. We treat 304	

this variable as a temporal marker of potential water availability that denotes the timing 305	

within the water year that either rain throughfall or snowmelt may potentially infiltrate 306	

the soil. To examine energy inputs, we identify a season when temperature most strongly 307	

influences estimates of annual ET modeled using historic climate. We performed linear 308	

regressions between model estimate of total annual ET and one and three-month averages 309	

of daily maximum (Tmax), minimum (Tmin) and average temperatures (Tavg= (Tmax + 310	

Tmin)/2)) for all watersheds and for all months of the year. We test the correlation 311	

significance with a p-value and set a significance threshold at 0.05, i.e., a p-value greater 312	

than 0.05 is not significant. Our analysis found a three-month average of daily Tavg in 313	

April, May and June (TAMJ) to have the greatest explanatory power as a temperature 314	

variable for estimating inter-annual variation in annual ET under historic climate 315	

variability across our three study watersheds (results not shown). We note that the p-316	

value for TAMJ  in CA-SIER was greater than 0.05 so it is not reported as a significant 317	

result. The growing season is assumed to extend from May 1 to September 30 in all 318	

watersheds. For all climate metrics we use spatially-averaged watershed values.  319	

 320	
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We examine the role of storage through AWC.  As noted above, plants access water 321	

organic soils as well as water stored in sapprolite and rock (Schwinning et al., 2010).  We 322	

consider an aggregate storage and do not distinguish between these layers. AWC 323	

represents the water stored after gravity drainage (field capacity) that can be extracted by 324	

plant root suction (wilting point), and is thus still viable for plant water use [Dingman, 325	

1994, p. 236].  We calculate AWC as: 326	

 327	

AWC = (θfc - θwp) Zr         (2) 328	

 329	

Where θfc represents the average field capacity per unit depth, θwp the average 330	

characteristic wilting point also per unit depth, and AWC is scaled by vegetation rooting 331	

depth, Zr, a model calibration parameter. The field capacity and wilting point are 332	

calculated, respectively, as 333	

 334	

θfc = φ (ϕae / 0.033) b         (3) 335	

θwp = φ (ϕae / ψv )1/b          (4) 336	

 337	

Where φ is average subsurface porosity, ϕae represents the air-entry pressure (in meters), 338	

b is a pore size distribution index that describes the moisture-characteristic curve, and ψv 339	

describes the pressure at which the plants’ stomata close. Variables ϕae and b are also 340	

model calibration parameters.  341	

 342	

Larger AWC indicates that more water can be held in the subsurface and potentially 343	

interacts with climate to extend plant water availability by capturing snowmelt, one of the 344	

primary sources of water for forest ET.. Our results present each watershed’s average 345	

AWC; watersheds are represented by one (OR-CAS), two (CA-SIER), and five (CO-346	

ROC) soil types and their characterizations are described in Table 2. All values of AWC 347	

calculated in calibration represent physically feasible values for each watershed. 348	

 349	

We use RHESSys to calculate total annual ET over the entire available climate record in 350	

each basin (28-50 years; Table 2) and use linear regression to quantify how much of the 351	
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inter-annual variation in ET is related to each of the three climate metrics— P, TAMJ, and 352	

R75. We set a limit of less than 0.05 for p-values to determine significance. We then 353	

investigate how long-term mean ET and its relationship with these climate-related 354	

indicators are influenced by AWC.  355	

 356	

To examine how subsurface storage capacity may influence long term average ET, we 357	

calculate average annual ET over a 15-year period (1985-2000) for a range of 1000 AWC 358	

values and linearly regress the long-term averaged ET values against AWC. We then 359	

characterize the interacting influences of AWC and each climate driver. For the 1000 360	

values of AWC, we calculate the slope of annual ET estimates to each climate predictor 361	

(P, TAMJ, R75). 362	

 363	

3. RESULTS 364	

 365	

3.1 ANNUAL P vs. ET 366	

 367	

In all watersheds higher P results in greater total annual ET (Fig. 2). This is a statistically 368	

significant relationship in all watersheds (CO-ROC and CA-SIER, correlations and p-369	

values reported in Table 3) where the years of highest annual P are correlated with the 370	

years of greatest annual ET. Of the three basins, CO-ROC’s annual ET shows the greatest 371	

sensitivity to P, having the steepest slope. Annual P is the strongest explanatory variable 372	

of annual ET in both CO-ROC (r2 =0.9) and CA-SIER (r2 =0.75) (Table 3). For CO-ROC, 373	

annual P has a greater influence (steeper slope) in the drier years when P is less than 374	

1000 mm (Fig. 2). OR-CAS has the least significant relationship between P and ET on an 375	

annual scale. OR-CAS is a relatively wet basin and on average receives more than twice 376	

the amount of winter (Jan-Mar) precipitation than CA-SIER or CO-ROC receives. High 377	

annual P in OR-CAS in most years likely diminishes the sensitivity of ET to the 378	

magnitude of P.  379	

 380	

3.2 TIMING OF RECHARGE vs ET  381	

 382	
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For all three catchments, later R75 has a significant positive correlation with ET (Fig. 3). 383	

In OR-CAS and CA-SIER, R75 occurs between February and May. There is more scatter 384	

in the predictive power of R75 for annual ET when R75 is earlier in the water year. The 385	

earliest R75 are in OR-CAS, where a greater fraction of winter precipitation falls as rain. 386	

CA-SIER and CO-ROC are more sensitive to the timing of recharge than OR-CAS. 387	

Summer monsoonal pulses in CO-ROC push R75 to later in the water year as compared to 388	

OR-CAS or CA-SIER. The explanatory power of R75 for ET is greatest in CA-SIER 389	

where greater accumulation of snowpack and warmer spring temperatures can interact to 390	

increase forest water use earlier in the growing season.  391	

 392	

3.3 SPRING TEMPERATURE vs. ET  393	

 394	

Warmer spring temperature (TAMJ) in all basins generally reduces annual ET (Fig. 4a) and 395	

is significantly correlated with lower ET in CO-ROC and OR-CAS. CA-SIER does not 396	

show a significant relationship between TAMJ and ET. In CO-ROC and OR-CAS 397	

increasing TAMJ leads to a reduction in water availability and a decline in later season ET. 398	

The relationship between spring air temperature and snowmelt timing is demonstrated by 399	

significant correlations between TAMJ and R75 for CO-ROC (Fig. 4b). The colder 400	

temperatures and more persistent snowpack in the CO-ROC basin is more sensitive, 401	

relative to OR-CAS, in ET response to earlier snowmelt due to temperature increases.  402	

 403	

3.4 AWC vs. ET 404	

 405	

Increased AWC increases the long-term average ET in all basins. Figure 5 shows a 406	

nonlinear relationship between long-term mean ET and AWC suggesting that the effect 407	

of increasing storage diminishes for higher AWC values. Each basin reaches an 408	

approximate storage capacity above which a further increase in storage (AWC) is less 409	

important and climate (i.e., P and energy) variables limit ET. Following Muggeo [2003], 410	

for each basin, we calculate that breakpoint value of AWC where ET is less sensitive to 411	

AWC. We find that the threshold value of AWC varies across basins and is substantially 412	

higher in CO-ROC (265 mm) as compared to CA-SIER (195 mm) and OR-CAS (190 413	
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mm) (Fig. 5). Regression of AWC against annual ET show that a significant relationship 414	

exists in OR-CAS and CO-ROC (Table 3).  415	

 416	

The effect of varying lateral redistribution or lateral drainage parameters can be seen in 417	

the range of slopes for a given AWC (e.g., the scatter in the slope-AWC relationship).  418	

All three watersheds show some sensitivity of climate-ET relationships to lateral 419	

redistribution parameters for a given AWC. CA-SIER shows the greatest sensitivity, 420	

followed by OR-CAS and CO-ROC. The greater sensitivity of CA-SIER to lateral 421	

drainage parameters may reflect the strong contribution of snowmelt recharge in its drier 422	

and winter precipitation dominated climate. The topography of CA-SIER is also 423	

distinctive and includes many swale-like features that concentrate drainage from upslope 424	

areas. We calculate the topographic wetness index (TWI) using a 30m resolution DEM 425	

for each watershed (Moore et al., 1991) (Table 2). The TWI reflects the propensity of a 426	

location to develop saturated conditions under the assumption that topography controls 427	

water flow. Higher TWI values represent flatter, converging terrain and lower values 428	

reflect steep topography. The mean TWI for CA-SIER is greater than, and significantly 429	

different from (Welch’s t-test) the mean TWI for CO-ROC and OR-CAS. Particularly for 430	

CA-SIER, changing storage parameters associated with drainage rates can alter the 431	

timing of flow into areas that concentrate flow and subsequently alter their ET rates.  432	

 433	

3.5 SENSITIVITY OF ET to CLIMATE DRIVERS with AWC 434	

 435	

We analyze the sensitivity of ET relationships with climate drivers to subsurface storage 436	

properties by plotting the slope of linear regressions between ET and P, R75, and TAMJ, 437	

across all storage parameter sets in Fig. 6. We note that the slope of the relationships 438	

between climate drivers and ET has been normalized by the watersheds’ mean AWC in 439	

these plots to facilitate cross-site comparison.  440	

 441	

3.5.1 SENSITIVITY to P with AWC 442	

 443	
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Of the climate drivers explored, ET relationships with annual precipitation P have the 444	

greatest robustness across subsurface storage parameter sets, as suggested by number of 445	

sets that show a statistically significant relationship between annual P and annual ET (Fig. 446	

6A). As expected, slopes are positive between P and ET across all basins. Only the drier 447	

basins CO-ROC and CA-SIER have p-values less than 0.001, highlighting the strength of 448	

P as a climatic driver in these drier basins, as discussed above. The response in slope 449	

sensitivity across AWC is similar in OR-CAS and CA-SIER where ET’s sensitivity to P 450	

is highest at low AWC and decreases with increased AWC. OR-CAS has a much smaller 451	

range in sensitivities (slope varies from 0.2-0.6) compared to CA-SIER (slope varies 452	

from 0.0-0.8). Thus in CA-SIER for low values of AWC, year-to-year variation in P 453	

becomes a greater control on year-to-year variation in ET.  For both OR-CAS and CA-454	

SIER, increasing AWC becomes less important at higher values of AWC. Higher scatter 455	

in slope of annual P versus ET relationship for CA-SIER also reflects the greater 456	

sensitivity of ET to subsurface parameters that influence lateral drainage as discussed 457	

above (Sect. 3.4).  458	

 459	

The variation of ET response to P across AWC in CO-ROC is noteworthy for two 460	

reasons. First, CO-ROC has the highest slope values (0.6-0.8), which again reflects the 461	

consistency of annual P as a control on inter-annual variation in ET in this basin. Second, 462	

unlike OR-CAS and CA-SIER, increasing AWC does not substantially reduce that 463	

sensitivity (i.e., slope) to P. Though CO-ROC’s sensitivity to P does not change with 464	

AWC, the scatter in slopes (0.6-0.8) suggests that lateral drainage has a strong effect on 465	

this climate-ET relationship. We note that CO-ROC has a seasonal precipitation regime 466	

where a significant fraction of its annual precipitation is received later in the growing 467	

season as summer monsoonal pulses. When precipitation occurs during the growing 468	

season, the water available for ET is less likely to be limited by storage capacity. Instead 469	

ET is limited by the amount or intensity of precipitation.  Water that does recharge the 470	

system is used relatively quickly, making variation in storage (or AWC) less important as 471	

a control on how much P can be used in CO-ROC.  472	

 473	

3.5.2 SENSITIVITY to R75 with AWC 474	



 17	

 475	

After precipitation, the timing of recharge (R75) most significantly correlates with 476	

increased ET across all AWC and all basins (Fig. 6B). There are several similarities in 477	

the response of ET’s sensitivity to R75 across AWC when compared to sensitivity to P 478	

(Fig. 6A). For example, the dry basins CO-ROC and CA-SIER have the highest degree of 479	

sensitivity (significant slopes > 1.0) as compared to OR-CAS (slopes < 1.0) and CA-480	

SIER has the greatest variability in its sensitivity to AWC with slopes ranging from 1.0-481	

3.0 across variation in storage parameters. CO-ROC once again has the least variability in 482	

the ET versus R75 relationship, with consistently high (2.0-2.5) slopes unaffected by 483	

AWC.  484	

 485	

3.5.3 SENSITIVITY to TAMJ with AWC 486	

 487	

Finally, TAMJ has the fewest subsurface storage/drainage parameter sets with significant 488	

correlation with ET. None of the linear regressions of ET on TAMJ have statistical 489	

significance less than 0.001 (Fig. 6C). The slopes are always negative because earlier 490	

occurrence of snowmelt results in less ET. For all basins, the sensitivity of ET to TAMJ is 491	

greatest at the lowest values of AWC, though CO-ROC once again demonstrates the least 492	

variability in slopes across the entire range of AWC (-0.2 – -0.3). At OR-CAS, TAMJ is 493	

only significant for the lower AWC values. We suggest this is in part due to the small 494	

fraction of P that falls as snow. Because TAMJ’s largest effect is through timing of 495	

snowmelt (Fig. 4), AWC interacts with TAMJ to modulate the melt response. With 496	

relatively less snowmelt in OR-CAS, only the systems with the smallest capacities will 497	

have a significant negative interaction effect with AWC. 498	

 499	

4. DISCUSSION  500	

 501	

Our model estimates show differences in the response of ET to climate-related drivers 502	

across the three watersheds, primarily due to differences in their precipitation regimes. 503	

Spatial heterogeneity in soil and geology, both within and between watersheds 504	

substantially alter these relationships. Our model-based study provides a simplified 505	
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representation of these interactions, ignoring many additional complexities. In particular, 506	

we assume no adaptation of the ecosystem structure and composition that would 507	

influence productivity, evapotranspiration and their relationship with climate 508	

(Loudermilk et al., 2013). Future work will investigate these coupled carbon cycling-509	

hydrology interactions. In this study we focus on the energy and moisture drivers of ET 510	

and how subsurface properties influence their interaction.  511	

 512	

The degree to which climate drivers affect ET varies with the magnitude and seasonality 513	

of basin precipitation. Total annual P is the first order control of ET in the two drier 514	

watersheds, CO-ROC and CA-SIER. In OR-CAS, most of the inter-annual variation in 515	

precipitation is reflected in inter-annual variation in runoff rather than ET. In most years, 516	

subsurface storage is filled by this annual precipitation during the winter and spring, 517	

asynchronously to late growing season demands (Fig. 1). Our results extend findings by 518	

previous studies demonstrating that vegetation productivity and water use relates to the 519	

fraction of regional precipitation available to plants (Brooks et al., 2011; Thompson et al., 520	

2011).  The fraction of water available to plants tends to decrease with larger rainfall 521	

(given saturated soil stores a greater proportion is lost) and with synchronicity between 522	

the timing of recharge and growing season water demands.  523	

 524	

Our analysis highlights the timing of water availability (R75) as a key predictor of total 525	

annual ET; annual ET increases when recharge occurs later in the water year, during the 526	

growing season and period of highest water demand. Previous research has shown how 527	

delayed soil moisture recharge (Tague and Peng, 2013) and snowpack dynamics (Tague 528	

and Heyn, 2009; Trujillo et al., 2012) are able to increase ET in the Sierra Nevada. In 529	

these mountain basins, the sensitivity of ET to timing of recharge is related to the fraction 530	

of precipitation received as snow. The climate metrics related to snowmelt, R75 and TAMJ, 531	

are important secondary controls of ET, especially in the colder, snow-dominated 532	

watersheds, CA-SIER and CO-ROC. We note that CA-SIER does not show a significant 533	

relationship between TAMJ and ET because the effect of temperature is strongly dependent 534	

on the amount of snowpack the basin receives in a year (Tague and Peng, 2013), which is 535	

more variable than the amount of snowpack received in CO-ROC or OR-CAS. In OR-536	
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CAS and CO-ROC, spring temperature TAMJ is more strongly related to ET through its 537	

effect on snowmelt and correlates negatively with ET. These results suggest that the 538	

dominant effect of warmer spring temperatures is earlier meltout of snowpack, which 539	

leads to more snowmelt lost as runoff and results in less net recharge. This greater loss of 540	

runoff occurs when storage capacity is exceeded.. Later into the growing season, 541	

increased ET demands will have depleted subsurface stores and throughfall/snowmelt 542	

will enter the soil matrix and be available for plant water use. Previous work has shown 543	

seasonal increases in spring ET with warmer spring temperatures (Hamlet et al., 2007) 544	

which may be related to an earlier start to the vegetation growing season (Cayan et al., 545	

2001), and an increase in vapor pressure deficits and water demand (Isaac and van 546	

Wijngaarden, 2012). Our work suggests that though early season ET may increase with 547	

warming temperatures, warmer spring temperatures may in some cases decrease total 548	

annual ET by melting the snowpack stores earlier in the water year and reducing soil 549	

moisture recharge later in the spring when energy demand is high.  550	

 551	

The range of sensitivities of ET to climate in this study is a direct function of climatic and 552	

physical characteristics of the catchments presented in this study. For example, OR-CAS 553	

receives twice as much precipitation and spans a much lower elevation range than either 554	

CA-SIER or CO-ROC (Table 2). Because OR-CAS is considerably wetter, its sensitivity 555	

of ET to magnitude of annual P is lessened considerably. OR-CAS’ lower elevations, and 556	

related mean winter temperatures, also result in smaller average snowpacks reducing the 557	

strength of spring temperature as an explanatory variable for ET. Differences between 558	

CA-SIER and CO-ROC largely reflect seasonal distribution of precipitation, and reflect 559	

the importance of summer precipitation in CO-ROC. While climate is the dominant 560	

factor, topographic differences are also important. As discussed above, topographically 561	

driven flowpath convergence in CA-SIER tends to increase sensitivity of ET to 562	

parameters that influence lateral drainage. This effect is less evident in the other two  563	

watersheds. 564	

 565	

Over a range of physically realistic storage characteristics, long-term averages of ET 566	

increase with greater storage (AWC) in all basins. Our analysis found the greatest 567	
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sensitivity of long-term average annual ET to variation in AWC in OR-CAS (Table 3). In 568	

CO-ROC, ET ranges from 380-600 mm across annual P variation, and across all 569	

calibrated subsurface parameters long-term average ET ranges from 450-600 mm. This 570	

variation in CO-ROC’s ET associated with subsurface storage characteristics is on the 571	

same order of magnitude as inter-annual variation in ET with P. Similarly, in CA-SIER, 572	

ET ranges from 400-800 mm across the P record and across all storage parameters, and 573	

ranges from 700-1000 mm long-term. There is a nonlinear relationship between ET and 574	

AWC in each basin. We suggest that below a threshold point in each basin (195 - 265mm 575	

of AWC), long-term average ET is more sensitive to AWC and above these threshold 576	

values the effect of climate on ET is greater than an increase in subsurface storage.  577	

 578	

The sensitivity of ET to year-to-year variability of climate drivers is also influenced by 579	

AWC. The sensitivity of ET estimates to climate drivers varies by two to five magnitudes 580	

in CA-SIER and OR-CAS across the range of plausible storage parameters. These basins 581	

receive the smallest fraction of annual P in the summer and their annual ET estimates are 582	

most sensitive to P, R75, and TAMJ at low  water capacity (AWC). CO-ROC has a high 583	

sensitivity to climate drivers but this sensitivity does not change with AWC. We suggest 584	

that a strong summer P signal in CO-ROC explains the negligible change in ET’s 585	

sensitivity to climate drivers across values of AWC, similar to other studies that show 586	

that summer P can offset the dependence of ET on soil replenishment or winter snowpack 587	

(Hamlet et al., 2007; Litaor et al., 2008). The relative importance of AWC to regional 588	

climate differences is apparent if we consider that a similar sensitivity to P and TAMJ can 589	

be achieved for all basins by varying AWC. For example, ET at the smallest AWC values 590	

in OR-CAS are similarly sensitive (slope of 0.6) to inter-annual variation precipitation as 591	

stands in CO-ROC (Fig. 6A).  592	

 593	

The two more water-limited basins demonstrate similarly high sensitivities of ET to 594	

climate drivers, but differ in the response of their sensitivity to climate across AWCs. 595	

Despite CO-ROC and CA-SIER showing similarly strong sensitivities to climate, their 596	

response across AWC differs considerably. CA-SIER’s sensitivity to climate drivers is 597	

highly variable across all AWC but still demonstrates slightly higher sensitivity at lower 598	
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AWC values. Its lack of summer precipitation, like OR-CAS, gives water storage a more 599	

significant role in mediating late summer water stress. With lower AWC values there is 600	

less potential for water storage and ET becomes more sensitive to climate drivers.  601	

 602	

In addition to the sensitivity to AWC, our results show that lateral redistribution strongly 603	

influences the sensitivity of ET to climate drivers in the drier basins; in CA-SIER and 604	

CO-ROC there is considerable scatter in the slopes for P and R75 across a single  AWC 605	

(e.g., for an AWC of 400 mm, the P:ET ranges from 0.6 to 0.8 and 0.2 to 0.7 for CO-606	

ROC and CA-SIER, respectively in Fig. 6A). We note that this additional sensitivity of 607	

ET-climate relationships to drainage rates, even given similar AWC or storage conditions, 608	

emphasizes the role played by lateral connections. In other words, results suggest that for 609	

the two more water limited sites, the timing of upslope contributions to downslope areas 610	

can mediate the sensitivity of watershed scale vegetation water use. 611	

 612	

Our results have general implications for model based estimates of ET in this region. 613	

Because there is substantial heterogeneity in subsurface storage characteristics within 614	

each basin (Dahlgren et al., 1997; Denning et al., 1991; McGuire et al., 2007) we might 615	

expect that  the full range of AWCs can be observed when we look across individual 616	

forest stands within a basin. Thus, our estimates that show substantial changes in climate-617	

ET relationships across subsurface parameters suggest that there may be substantial 618	

within-basin spatial heterogeneity in vegetation responses to climate variation and change. 619	

Even if model estimates are focused on basin aggregate responses such as streamflow, 620	

our results point to the importance of calibration data for defining subsurface storage and 621	

drainage properties. Estimates of subsurface parameters are often derived from readily 622	

available products such as STATSGO and SSURGO [Natural Resources Conservation 623	

Service] that provide relatively coarse scale and imperfect information about hydrologic 624	

properties. Consequently, hydrologic models are typically calibrated to obtain estimates 625	

of storage and drainage parameters (Beven, 2011). Our results suggest that in areas where 626	

streamflow data is not available for calibration, watershed scale estimates of ET 627	

responses to climate drivers may have substantial errors.  628	

 629	
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 630	

 631	

5. CONCLUSIONS  632	

 633	

We demonstrate how subsurface storage and drainage properties (AWC and parameters 634	

that control lateral redistribution) interact with climate-related drivers to influence ET in 635	

three western U.S. mountain watersheds with distinctive precipitation regimes. These 636	

watersheds reflect conditions found in many other western U.S. snow-dominated systems, 637	

where summer water availability is influenced by the magnitude of precipitation, timing 638	

of soil moisture recharge and spring temperature and its effect on snowmelt. We found 639	

that, for our three watersheds, estimates of longer-term average (15-year) watershed-scale 640	

ET vary across a range of physically realistic storage/drainage parameters. For all 641	

watersheds, the range in long term mean ET estimates across AWC estimates (e.g., mean 642	

ET at a high AWC versus mean ET at a low AWC) may be as large as inter-annual 643	

variation in ET, suggesting that the influence of AWC and drainage can be substantial.  644	

 645	

 646	

Our results also point to the importance of lateral redistribution as a control on ET, 647	

particularly for CA-SIER. Only a few studies have emphasized the role of lateral 648	

redistribution in plot to watershed scale climate responses in the Western U.S. (Barnard 649	

et al., 2010; Tague and Peng, 2013). For the CA-SIER site, our model results suggest that 650	

there can also be interactions between AWC and hillslope to watershed scale 651	

redistribution as controls on ET. Lateral redistribution was less important for the CO-652	

ROC, where summer precipitation was a more important contributor to annual ET values 653	

and the least important for the wetter OR-CAS site. Results emphasize that the role of 654	

subsurface properties, including both storage and drainage, will be different for different 655	

climate regimes.  656	

 657	

These results have important implications both for predicting ET in basins where data is 658	

not available for calibration and for understanding and predicting the spatial variability of 659	

ET within a basin. AWC also affects the sensitivity of annual ET to climate drivers, 660	
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particularly in the two more seasonally water-limited basins. Although the three 661	

watersheds show different responses of annual ET to these climate drivers, there are 662	

values of AWC that would eliminate these cross-basin differences. These sensitivities 663	

highlight the need for  improved information on spatial patterns of subsurface properties  664	

to contribute to the development of science-based information on forest vulnerabilities to 665	

climate change. Improved accounting for plant accessibility to moisture has improved 666	

model-data ET comparisons in previous modeling studies at regional and global scales 667	

(Hwang et al., 2009; Tang et al., 2013; Thompson et al., 2011). With expected decreases 668	

in fractional precipitation received as snow with climate change (Diffenbaugh et al., 669	

2013; Knowles et al., 2006), we might expect soil storage to play a more important role 670	

in providing water for forests in the future. Improved understanding of how climate and 671	

subsurface storage/drainage combine to control ET can enhance our understanding of 672	

forest water stress related to increased mortality (van Mantgem et al., 2009). Western U.S. 673	

forests show substantial vulnerability to drought, with declines in productivity and 674	

increases in mortality and disturbance in drought years (Allen et al., 2010; Hicke et al., 675	

2012; Williams et al., 2013).Understanding these ecosystems’ responses to primary 676	

climate drivers is of particular concern given recent warming trends (Sterl et al., 2008) 677	

and multi-year droughts (Cook et al., 2004; Dai et al., 2004). Identifying the physical 678	

conditions in which our ability to estimate ET is most sensitive or limited by knowledge 679	

of subsurface geologic properties helps to prioritize regional data acquisition agendas. 680	

Integrating results from recent advances in geophysical measurements and models such 681	

as those emerging from Critical Zone Observatories in the U.S.	and elsewhere (Anderson 682	

et al., 2008) will  be essential for analysis of climate ET interactions. 683	

   684	
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Table 1. Explanatory variables 945	

Abbreviation Definition 

P Total annual precipitation 

TAMJ Average daily temperature for April, May, June 

R75 Day of water year that 75% of soil water recharge occurs 

AWC Available water capacity of soil (field capacity-wilting point) 

 946	

947	
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Table 2. Basin topography, geology, vegetation and climate characteristics. Climate 948	

descriptions are averaged over total available climate record (duration noted in table). 949	

Watershed CO-ROC OR-CAS CA-SIER 

Location Colorado Oregon California 

U.S. Geological Survey 

gage number 

06733000 14161500 10343500 

Geology Holocene glacial till, rock; 

Precambrian gneiss, granite 

Western Cascade basalt Sierra granite, with 

Miocene andesite cap 

Elevation range (m) 1470-4345 410-1630 1800-2650 

Drainage Area (km2) 350 64 26 

Topographic Wetness 

Index- Mean (Std Dev) 

7.0 (1.9) 6.6 (1.7) 7.9 (1.8) 

Climate record 1980 – 2008 1958-2008 1960-2000 

Mean Annual 

Precipitation (mm) 

1000 2250 850 

Annual Precipitation as 

snow (%) 

64 29 55 

Precipitation received in 

Growing Season (%) 

46 21 19 

Min/Max winter T 

(JFM) (oC) 
-12.1/-0.02 -0.9 / 5.2 -9.5/3.7 

Min/Max spring T 

(AMJ) (oC) 
-2.7/10.9 4.0/14.0 -2.5/13.8 

P:PET 0.9 2.3 1.2 

Vegetation Subalpine fir, aspen, 

meadows, shrub 

Douglas-fir, Western 

Hemlock 

Mixed Conifer, Jeffrey 

and Lodgepole Pine 

Mean basin LAI 3.5 9.0 4.1 

Annual NPP range for 

calibration (gC m-2 yr-1) 

280-520 620-1100 450-800 

Literature sources used 

to bound annual NPP 

range 

Arthur and Fahey [1992] 

Bradford et al. [2008] 

Grier and Logan [1977] 

Gholz [1982]  

Hudiburg et al. [2009] 

Goulden et al. [2012]a 

aValues reported as gross primary productivity, converted to NPP using RHESSys 950	

calculated values of respiration. 951	

952	
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Table 3. Statistics for ET predictors based on linear regression models. 953	

Watershed  CO-ROC OR-CAS CA-SIER 

Precipitation p-value < 0.001  < 0.05 < 0.001 

 (P) r2 0.9 0.1 0.75 

  slope 0.4 0.1 0.2 

     

Timing (R75) p-value <0.001 < 0.01 <0.001 

  r2 0.2 0.2 0.4 

  slope 3.8 1.2 4.6 

     

Temperature p-value <0.001 <0.05 >0.1 

TAMJ r2 0.4 0.1 -0.01 

  slope -26.3 -25.7 15 

     

Soil Capacity p-value 0.001 0.001 0.001 

(AWC)  r2 0.43 0.53 0.11 

  slope 0.1 0.2 0.1 

 954	

955	
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Figure Captions 956	

 957	

Figure 1. Locations and average daily water fluxes averaged from 1980-2000 for three 958	

case study watersheds located in (A) the western Oregon Cascades (OR-CAS), (B) 959	

Colorado Rockies (CO-ROC), and (C) California Sierra Nevada (CA-SIER). 960	

 961	

Figure 2. (A) Total annual ET increases with total annual precipitation. Lines indicate 962	

statistically significant relationships (p-value < 0.05). 963	

 964	

Figure 3. Later occurrence of soil moisture recharge (R75) is significantly correlated with 965	

increased annual ET in all study watersheds. 966	

 967	

Figure 4. (A) Warmer spring temperatures are correlated with lower total annual ET in 968	

the two snow-dominated watersheds. (B) An earlier occurrence of soil moisture recharge 969	

is correlated with warmer temperatures in CO-ROC. 970	

 971	

Figure 5. Each point represents the 15-year average annual ET from WY 1985-2000 for a 972	

physically viable mean basin soil available water capacity (AWC). Vertical lines 973	

represent the calculated breakpoint in the nonlinear relationship between long-term ET 974	

and AWC for each basin. 975	

 976	

Figure 6. The impact of soil AWC on the slope a linear regression model of annual ET as 977	

a function of climate predictors: (A) precipitation, (B) R75, and (C) TAMJ. The slope of 978	

ET:climate predictor is plotted across a physically viable range of mean basin soil AWC 979	

for each climate predictor and for each study basin: OR-CAS (left column), CO-ROC 980	

(middle column), and CA-SIER (right column).The slopes are normalized to facilitate 981	

inter-basin comparison. 982	

  983	
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 984	
Figure 1. Locations and average daily water fluxes averaged from 1980-2000 for three 985	

case study watersheds located in (A) the western Oregon Cascades (OR-CAS), (B) 986	

Colorado Rockies (CO-ROC), and (C) California Sierra Nevada (CA-SIER). 987	
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 989	

Figure 2. (A) Total annual ET increases with total annual precipitation. Lines indicate 990	

statistically significant relationships (p-value < 0.05). 991	
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Figure 3. Later occurrence of soil moisture recharge (R75) is significantly correlated with 993	

increased annual ET in all study watersheds.  994	
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Figure 4. (A) Warmer spring temperatures are correlated with lower total annual ET in 995	

the two snow-dominated watersheds. (B) An earlier occurrence of soil moisture recharge 996	

is correlated with warmer temperatures in CO-ROC. 997	
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 999	

Figure 5. Each point represents the 15-year average annual ET from WY 1985-2000 for a 1000	

physically viable mean basin soil available water capacity (AWC). Vertical lines 1001	

represent the calculated breakpoint in the nonlinear relationship between long-term ET 1002	

and AWC for each basin.  1003	
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 1004	
Figure 6. The impact of soil AWC on the slope a linear regression model of annual ET as 1005	

a function of climate predictors: (A) precipitation, (B) R75, and (C) TAMJ. The slope of 1006	

ET:climate predictor is plotted across a physically viable range of mean basin soil AWC 1007	

for each climate predictor and for each study basin: OR-CAS (left column), CO-ROC 1008	
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(middle column), and CA-SIER (right column).The slopes are normalized to facilitate 1009	

inter-basin comparison. 1010	


