We would like to thank all referees for their feedback and generally positive remarks, which helped us to
improve the manuscript. Below is a point by point reply to all comment. The referee’s comment is in italic and
our response in normal font. The page and line numbers we mention in the response refer to the ‘track and
trace’ version of the revised manuscript.

Reply to Referee 1

General remarks: The manuscript presents a derivation of the gradients driving evapotranspiration and runoff
based on the maximum power principle and the Budyko curve. It is an interesting concept, to use the Budyko
curve not as an evaluation criterion, but instead as an additional constraint in the optimisation procedure, and |
think this is in principle suitable for publication. The manuscript, however, could be much more clear on the
goals of the optimisation. In particular, it should be made clear that the authors do not really predict "the Budyko
curve", but rather the shape of the gradient functions and the value of conductances. The Budyko curve is used
as a constraint. | suggest that several parts are extended (see below) to make the study comprehensible also
for readers who are not familiar with the maximum power principle.

We do agree that the goals of the study have to be rephrased. In the revised version we did this in line 74-89,
stating that we “define a model which, under constant forcing, leads to a point on the asymptotes of the Budyko
curve when flow conductances are optimized by maximizing power. The model is comparable to the one
proposed by Porada et al. (2011), but with different relations between relative wetness of the subsurface store
and driving gradients. We derived the gradients driving evaporation and runoff in an inverse manner, with both
the asymptotes of the Budyko curve and the maximum power principle as constraints. Subsequently, we added
dynamics in forcing or in actual evaporation (similar to Westhoff et al., 2014) to move away from these
asymptotes to more realistic values of the aridity and evaporation index, without calibrating any parameter.
Finally, these sensitivities were compared to observations.”

Detailed comments:

p7822,19 "...the asymptotes closely." - please add a short sentence why you did that.

Our aim was to start with a curve expressing the asymptotes of the Budyko curve and deviate from these
curves by only adding dynamics in forcing or evaporation. In the original manuscript we used the formulation in
Eq. (9), which, with a large n, follows the asymptotes closely. So the parameter n was only introduced because
it is in one of the available mathematical expressions of the Budyko curve. In the revised version we use the
expression of Wang and Tang [2014] which follows the asymptotes exactly (see Eq. 9 in the revised
manuscript). Because we now use a different expression for the (asymptotes of the) Budyko curve, we do not
refer explicitly to parameter n anymore.

p7822,112 | guess it should be "sensitivity OF the model TO dry spells..."
We have rephrased this part of the abstract.

p7822,115 This should be more specific, the Budyko curve itself is not "derived" here, it is prescribed in Eq. 9
We rephrased this with “Thus by constraining the — with the maximum power principle optimized — model with
the asymptotes of the Budyko curve we were able to derive more realistic values of the aridity and evaporation
index without any parameter calibration.” (L11-13).

p7823,123 "...coincidence." - could you please add one or two recent references for the debate?
We now refer to Dewar (2009).

p7826,l6 Please use "t" instead of "T" for time.
In the HESS guidelines, a capital T is used for time, so we will leave it this way as well.

p7827,121 There should be an additional remark here that, consequently, the model ignores the influence of
radiation on evapotranspiration. This is important, since some established approaches (e.g. equilibrium
evapotranspiration) assume the opposite.

Thank you. We have added this remark (line 167-168)

p7828,I5 This is quite difficult to comprehend: Power is defined as flux times gradient (Eq. 3), hence | assume
the authors are looking for a function "G" so that dP/dk=0 etc. The way this is described here sounds like the
expression for power could take on any form. This is not correct, it is the expression for G that is assumed to be
flexible, which I am ok with, and resulting from the form of G, the corresponding power is maximised. The
authors should make this part more clear, maybe rearrange the equations 11-13.



We are indeed looking for a function G(h) so that dP/dke = 0, but we do that in a backward analysis, meaning
that we start with the power function. We first chose a function for power depending on ke with the constraint
that this function has a maximum and that it is always above zero. Once this function is chosen, the gradients
are fixed (as a function of ke!) and will always lead to a maximum in power corresponding to a point on the
(asymptotes of the) Budyko curve (assuming constant forcing). Only in the forward model we make a link
between G(ke) and G(h).

p7830,I111 | would rather say, Gr is a linear function of h, that fits better to Eq. 19
In our opinion this is a matter of taste. We choose to leave the expression as it is, because it is h which is being
scaled between zero and unity.

p7831,l121 The authors should shortly explain here why they did not include the parameter n in the optimisation.
This would have been a real step to "move away from empiricism".

The parameter n was only introduced because, when infinitely large, lead to a point on the asymptotes of the
Budyko curve. However, in the revised manuscript we use a different formula describing the asymptotes, so the
parameter n is obsolete now. See also our response to the previous comment (about p7822,19).

p7831,122 | would like to know why the authors did not additionally use a very small value of n for the initial
curve and started from there. Is it only possible for the slope of the curve to decrease and, if so, why?

The answer is indeed that when dynamics are introduced, the slopes of the curves decrease. This is because
when these dynamics are introduced, the optimum ke* values always tends to increase [which is consistent with
the results of Westhoff et al. 2014] and therefore the aridity index as well. Also, starting from the other extreme
of n =0 results in a kex= 0 in Eqg. (10) and (14) and subsequently Ge(ke) (Eg. 13) and power are zero.

p7834,117 | am not sure if using a large value for n really corresponds to an "uncalibrated" Budyko model. As
the authors state, a large n reflects the asymptotes of the Budyko curve, and therefore corresponds to the
energetic and mass constraints of the Budyko model. An uncalibrated version of the Budyko curve would, in my
opinion, rather be associated with an unknown value of n, treating n as a free parameter.

As said earlier in this response, we aimed to start from the asymptotes of the Budyko curve and only deviate
from this by adding dynamics in boundary conditions. Because the asymptotes are the extremes of the Budyko
curve, we do not consider it arbitrary, although we can understand the confusion: The confusion probably arises
because we used an expression for the Budyko curve which only follows the asymptotes exactly for n goes to
infinity. Therefore it seems that any lower value for n seems arbitrary (and thus can be seen as a calibration
parameter). In the revised manuscript we tried to avoid this confusion by using a different expression to
describe the asymptotes, in which no ‘arbitrary’ parameter is present.



Reply to Referee 2

| read this paper with a great interest. Considering Budyko curve as an optimized result is an inspiring idea. The
paper is well-written and technically sound. | see great contribution of this paper to HESS. This paper is almost
ready for publication except for minor corrections that authors already expressed to implement.

| have little comment to make on specific details as this paper is of high standard. Rather, | would like to make a
general inquiry. As described in introduction, there have been previous attempts to investigate Budyko curve
from optimization framework such as maximum entropy production. In this paper, authors used maximum power
approach. It is curious how the maximum power principle works and how it is compared with other principles.
Well this is beyond the scope of this paper. However, it would be very nice if authors can comment on this
somewhere in the manuscript. Or it can be a subject of future study.

Again, | find this paper is of high standard. | have been picky reviewer in many occasions and it is my great
pleasure to encounter such a high quality manuscript. Thank you.

Thank you for this very positive comment. To shed light on the difference between maximum power principle
and maximum entropy production we can say the following: For the example of two heat reservoirs, power is
given as the heat flux times the normalized temperature difference, which follows directly from the first and
second laws of thermodynamics (as explained in the paper). In hydrological settings, power is often generated
by water fluxes and is determined by the product of the mass flux and the potential difference P = dM/dt(unigh —
Miow). It seems that several authors simply divided this equation by the absolute temperature and called it
entropy production. Note, that in isothermal conditions (which are often assumed in these cases) maximizing
power is mathematically the same as maximizing entropy production. We have added this note in the revised
manuscript on lines 115-121.



Reply to Referee 3

Westhoff et al. present an analysis based on maximum entropy production principle of the Budyko curve using a
steady state mass balance model and the assumption that evaporation is at its maximum when the soil is fully
saturated and the soil chemical potential is zero. | find this an interesting study, though | doubt that the content
warrants a research paper. To me this looks more like a technical note, even if there is comparison to
observations.

We find it positive that the referee finds this an interesting study, but we do not agree that it is rather a technical
note than a research paper. Derivation of the Budyko curve from an organizing principle is much more than a
technical issue. It deals with a very fundamental issue, namely whether terrestrial systems operate according to
thermodynamic optimality. And although we do this in a backwards analysis, where the optimality principle is
used as a constraint, the fact that even a relatively simple model forced with simplified precipitation and
potential evaporation dynamics compares reasonably well with observations, hints that terrestrial systems
indeed operate according to thermodynamic optimality.

Below are additional more specific and general comments.

Simplifying assumptions are central to the analysis, such as the one mentioned above and h being a linear
function of Gr. Perhaps, the authors could touch on possibilities to evaluate the impact of these assumptions on
the results and relax them in future studies.

We believe that the assumption that evaporation is at its maximum when the soil is saturated is a very
reasonable assumption: The reason for water limitation of actual evaporation is that roots cannot extract water
against the strong capillary forces. As there is no water limitation in case of absent capillary forces, actual
evaporation can at best be energy limited, which is expressed by assuming actual evaporation being equal to
potential evaporation when the soil chemical potential is zero. Note, that this assumption is also used in many
other models such as the HBV (Lindstrom et al., 1997), SUPERFLEX model framework (Kavetski and Fenicia
2011) or the GR4J model (Perrin et al., 2003).

In contrast, we do agree to investigate the assumption of h being a linear function of Gr (although we believe
this is a reasonable assumption, since runoff is driven by gravity). In the revised manuscript we added this
sensitivity analysis as supplementary material. We showed that when h is assumed to be a quadratic function of
Grthe model is insensitive compared to the linear assumption. However, we also tested h as a linear function of
Ge and h as a linear function of ke. Applying these functions resulted in completely different Budyko curves
which is mainly explained by the fact that a too large part of the Gr curves had to be adapted to make sure that
the Gr= 0 AND monotonously increasing with h.

The authors should state clearly right at the beginning, which parameters are known (chem. pot. atmosphere
and Qin, in my understanding) and which are unknown/they are solving for.
In the revised manuscript we added this at the beginning of the method section (L133-137)

In order to arrive at eqns 13 and 21, the authors need to introduce an additional equation i.e. eqn 11. This
seems arbitrary to me; please comment on that. What are the reference power and conductance?

We do agree that this is a somewhat arbitrary function: but this is the very essence of a backward analysis. We
chose this function since it satisfies the constraints Pe(ke) > O for ke € (0,+=) and dPe/dke = 0 at ke = ke*. We
also tested the function Pe(ke) = Po exp—((ke — a)/ko)2, but this led to two values of ke* (we added this in a
footnote on page 6), which was reason to use the formulation of Eq. 11. We introduced the reference power and
conductance in the formula to get the correct units. In all calculations, we have set them to unity. This is
explained in L182.

Isn't it a given that if one applies eqn (9) then finds an expression for Epot for a known Qin that the results are
consistent and fit the Budyko concept? In this context, what is Ge(h*)? | am somehow missing a functional
relationship for Ge(h) or soil chemical potential as a function of h.

Itis indeed a given that when applying Eq. 9, we end up at the Budyko curve. This is also inherent to the
backwards analysis we made, which forms the basis of finding relations between h and Ge and between h and
Gr.

The gradient Ge(h~) is the gradient for evaporation corresponding to the relative wetness that lead to a point at
the (asymptotes of the) Budyko curve (under constant forcing!). The more general term Ge(h) is introduced
because we aimed to build a forward model to test sensitivities to dynamics in boundary conditions. When
introducing these dynamics, we first derived the gradients assuming a Budyko curve that follows the
asymptotes closely (Eq.9, with n = 20). We will better explain this in the revised manuscript (see also our reply
to Referee 1).



On behalf of all authors,

Martijn Westhoff
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Abstract. Almost all catchments plot within a small envelope arourelBludyko curve. This appar-
ent behaviour suggests that organizing principles may glafe in the evolution of catchments. In
this paper we applied the thermodynamic principle of maxmpower as the organizing principle.
In a top-down approach we derived mathematical formulatiointhe relation between relative
wetness and gradients driving runoff and evaporation fangle one-box model. We did this sueh
away-aninversemannersuchthat when the conductances are optimized with the maximusepo
principle, the steady state behaviour of the model leadstigx® a point on theasymptotesf the

Budyko curve. Subsequen@bpdeweelg#admﬂ&ha{—uﬂdereenstaﬂferemg Fesul{edﬂ&Budyke

mmmmﬂmw&%mmm@%@@mg
the Budyko curveto deviatefrom the asymptotesDespite the simplicity of the model, catchment
observations compare reasonably well with the Budyko auderivedwith-subjectto observed
dynamics in rainfall anévaperationThisindicateshattheactualevaporationThusby constraining
Wmaxmum power pnnuplmqaybehusede}{eﬂewe%%&sudykeeuweand%ﬂ}—te

-optimized—
modelwith the asymptote®f the Budyko curvewe wereableto derivemorerealisticvaluesof the

aridity andevaporatiorindexwithout any parametecalibration.Future work should focus on better
representing the boundary conditions of real catchmerdsaantually adding more complexity to

the model.
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1 Introduction

In different climates, partitioning of rainwater into ewaption and runoff is different as well. Yet,

when plotting the evaporation fraction against the aridityex (ratio of potential evaporation and
rainfall), almost all catchments plot in a small envelopeuaid a single empirical curve known as the
Budyko curve(&g%@w) The fact that almost all catchments worldwide plot within
this small envelope around this curve inspired severahgisis to speculate whether this is due

to co-evolution of climate and terrestrial catchment cbemastics (ed. Harman and TrgL(Lh, 2b14).

Co-evolution between climate and the terrestrial systemidcm turn be explained by an under-

lying organizing principle which determines optimum syst&unctioning I(Sivaoalan et L\L_ZdOS;

McDonnell et aH;O_d . Schaefli et all_‘lbil Thompson Iemi Ehret et AIL;O_ILE Zehe e} al

). As hydrological processes are essentially digsgate suggest that thermodynamic opti-

mality principles areleemedo bevery interesting candidates.

: isclassefprinciplesThemostpopularamongtheseare the closely related princi-

ples of maximum entropy productdn (Kleidon and Schvmivlm%]ﬂemhl_o_diw

Mang.and.&tli JJl_dEJ_J_esyﬁ_LLa.L.HDJ.ZJALeﬁﬂmlahH_ZQ]JB) and maximum power
(Kleidon and Rennét, 201.3; Kleidon ef al., 2013; Westhof5(2014) on the one hand — both

defining the optimum configuration between competing flix@ess the system boundary — and,

on the other hand, minimum energy dissipat‘gn (RinaIdQJeILQ_BJZ Rodriguez-ltur all., 1592;

ILZQ]M) or maximum free energy dissipa l. 3), focusing on
free energy dissipation associated with changes in intstate variables as a result of boundary
fluxes, i.e. soil moisture and capillary potential, and atedl optimum system configuration. In this

research we focus on the maximum power principle.

The validity and the practical value of thermodynamic optlity principles are still debated
9and the partly promising results reported in #igovelisted studies might be
just a matter of coincidence. There is a vital search for defimigorous tests to assess how far
thermodynamic optimality principles bears and appliese Bhdyko curve appears very well suited
for such a test, as it condenses relative weights of the pigate water fluxes in most catchments
around the world. It is thus not astonishing that there haenbseveral attempts to reconcile the
Budyko curve with thermodynamic optimality principles riexamplel, Porada et all._(;&)ll) used the
maximum entropy production principle to optimize the rdndnductance and evaporation con-

ductance of a bucket model being forced with observed rhiafial potential evaporation of the 35
largest catchments in the world. The resulting modelledeuxere plotted in the Budyko diagram
and followed the curve with a similar scatter as real worlgticanents.
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Another very interesting approach was presentéﬂg&l@gﬁem“_(;o_b) aJJd Kleidon gl al.

), using the perspective of the atmosphere. They maatpower of the vertical convective
motion transporting heat and moisture upwards using thad@dmit to constrain the sensible heat
flux. This motion is driven by the temperature differencesveen the surface and the atmosphere,
while at the same time depleting this temperature gradieatling to a maximum in power. Addi-
tionally, evaporation at the surface and condensationegratmosphere depletes this gradient even
further at the expense of more vertical moisture transpadtthus more convective motion. Their
approach showed some more spreading around the Budyko farrtlee same 35 catchments as
used ir'l_EQLa.da_e_t_laL(Zdll), but they used a simpler modeh#sato be forced with much less
observations, namely solar radiation, precipitation amfbse temperature.

Very recently, |AALa.ng_e_t_zIal.|_(2QllS) used the maximum entropydpetion principle to de-
rive directly an expression for the Budyko curve. They st@rtfrom the expression of
kL(ZQIOS) and by maximizing the entrpmduction of the whole system
they reached the expression for the Budyko curve as foreml 14). This is

an intriguing result that partly contradicts the finding A_QQILS), whose study
revealed within simulations with an HBV type conceptual miothat joint optimization of overall
entropy production results in optimum conductances aiog zero.

ta-this—study-we-used-a—medel-comparableto-The objective of this study is to define a

model which, under constantforcing, leadsto a point on the asymptotesof the eneprepesed
Budyko curvefrom-the-maximumpewerhypothesién—an

henflow conductanceareoptimized

by maximizing power. The modelis comparablgo the one proposedd [P_QLada_e_t_ELI 1)but

with differentrelations between relativeaturationwetnesof the subsurfacendstoreanddriving
radientsWe derivedthe gradients drivinguneff-andevaperation.

evaporationand runoff in an inverse manner,

with both the asymptotesf the Budyko curve and the maximum power principle as constraints.
Subsequentlywe added dynamlcs in forcing or in actual evaporatl(may—requrHe%ﬁereﬂt

subsequentiyhe-whole-Budyke-curve-(similar to| Westhoff et AI 2014) tmove away from these

asymptoteso more realistic valuesof the aridity and evaporationindex, without calibratingan
arameterEinally, thesesensitivitieswerecomparedo observations.
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2 The maximum power principle

The maximum power principle implies that a system evolvesuich a way that steady state fluxes
across a systems boundary produce maximum power. It istidirderived from the first and the

second laws of thermodynamics, and is very well explainhﬁ_@ﬂan_aﬂd_liﬂnnl?r (e.b_zd13). Here

we give only a short description: let us start by considedngarm and a cold reservoir, which are

connected to each other. The warm reservoir is forced by stanhenergy inpufi, and the cold
reservoir is cooled by a heat fluk,. In steady stateli, = Jo,t and both reservoirs have a con-
stant temperaturé}, and T, respectively, withl}, > T... The heat flux between the two reservoirs
produces entropy, which is given by:

Jout Jin
o= - —

. T, (1)

However, instead of transferring all incoming energy tocbkl reservoir, the heat gradient can also
be used to perform worko createotherforms of free energy) This means that in steady state, the
incoming energy fluxJi, equals the outgoing energy fluk,: plus the rate of workP (which is
power) performed by the system.

For given temperatures of both reservoirs, the theoretizadimum rate of work is given by the

Carnot limit:

Thw—Te
PCarnot: JlnhT (2)

C

heatfitocNow we introducean extraflux cooling the hot reservoirasa function of its temperature

= f(T}). This flux is in competitionwith the flux Jy.. betweenboth reservoirswhile both
reducethetemperaturgradientbetween the two reservojhereexista-trade-effbetweerthe, In
Eq. (@) Ji, shouldthenbereplacedy Ji.., while 7}, andT,. arenotfixed anymore puta functionof
all fluxes.In this setting thereexistsa flux Jy., maximizingpower.In the extremecasesof Jyc = 0.
and Jy.c — oo, poweris zero,while for intermediatevaluespoweris largerthanzero.

In__ hydrological systems, power is_ often generated by water fluxes and is
given as_the product of a mass flux and the temperaturedifference—potential

by _the absolute temperature, while naming it maximum entropy production:

e.g/Kleidon an hmnlgi,2£|) . Por i;al.,wllemAanZWQv,ZQi'W hoff etlal., 2014; Kol

Although,theseformulationsareequivalenin isothermakircumstanceshe herederivedmaximum
powerprincipleis, in our opinion, moresound Subseguenthamaximumin-powerexists:
In the remainder of this article we used specific water fluxe$ '] and potential differences

Hhigh — fow IN Meter water columnl]], where the flux is given as the product of a specific conduc-

tancek [T~!] and the potential difference. We recognize that, in orderxdme to the same units as

015)..
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power, these formulations should be multiplied by the wdgsrsity, gravitational acceleration and
a cross-sectional area, but since we are looking for a maxrinamd these parameters are constant,
we can leave them out. We also use the word gradient for trepat differencgunigh — ttiow, Where

the length scale with which the difference should be dividédcorporated in the conductance. With

these formulation, power is given by

P =k (thigh — fiow)” 3)

wherek is the free parameter we optimized to find a maximum in power.

3 Mathematical framework

3.1 Initial model setup

Our model consists of a simple reservoir being filled by @in®;, and drained by evaporatidf,

and runoff@,. Using the same expressions as i i J2the steady state
mass balance and corresponding fluxes are expressed by

Qin =L, + Qr (4)
Ea = ke (,U/s - Matm) (5)
Qr = kr (Ms - ,U/r) (6)

where i, 1, and uam are the chemical potential of the soil, chemical potentfahe free water
surface of the nearest river and chemical potential of tioaphere, whilé, andk, are the specific
conductances of evaporation and runoff. In these expmesgig and is — i, are functions of the
relative saturatior in the reservoir:

Ge(h) = ps(h) (7)
Gr(h) = /"s(h) - Mr(h) (8)

whereG.(h) and G, (h) can have any form as long as they are strictly monotonicaltyeiasing

with increasing relative saturation. For exam ) used the van Genuchten model
dean_Gﬁnu&hlérlL_lﬂbO) and gravitational potential to @etfie chemical potential of the soil. How-
ever, here we will derive them in such a way that, under congtacing, we end up exactly at the

Budyko curve.
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3.2 Backwards analysis to determine the driving gradients

3.2.1 Optimum k% matching the Budyko curve

Let us first find an optimum conductance: leading to a point on the

E, 1
an o ( Q"r: )l/n
Lz

asymptote®f the Budyko curve B. An expressiordescribingtheseasymptotegxactlyis givenhb
adapted from Wang and T 2014):

E, B 1+ Epot/Qin - (EPOt/Qin - 1)2

B = =
Qin 2

(9)

with E,q being the potential evaporation. Now we make an importasuragtion to defind,o: we
assume that evaporationpsrely describedasthe productof a gradientandconductanceignoring
theinfluenceof radiation.|t is assumedo be maximum when in Eqs[{5) anfl(8), = 0, meaning
that the relative wetness is 1, implying no water limitati@vith this assumption, potential evapora-
tion is given byEpet = k (—pam) (Note thatuam is always negative). Combining this equation with

Egs. [3),[¥) and(9) results in:

k; = Qin Qin B(k:) (10)
(Ge(h*) — Jtam) (1 n [7{?2”}71) 1/n %

whereh* is the steady state relative wetness leading to a potheBudykecurveontheasymptotes
of the Budykocurve(notethatthisis therelativewetnesccurringwhenk, = k).

3.2.2 Maximum power by evaporation

As mentioned abové;: should also correspond to a maximum in power by evaporafion {hais
meanshat\We achievedhis in abackwardanalysisjmplying thatwe startwith defininga function
P, (k) sheuldbefoundwhich is always larger than zero fég € (0,+o0c) and wheréd P, / 9k, = 0
atke = k’. A pessiblefunction satisfying these constraintg:is

Pe(ke) = ke&tﬁ_(kek;a)Q
ko

1we havealsotesteda the function P, (k) = Pyexp( — ((ke —a)/kq)? ), butthis led to two non-trivial solutionsfor
kX, andis thuslessconveniento usethanthe expressiorin Eq.

(11)
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where P, andk, are the reference powek{T '] and reference conductanc&{'], respectively.

introducedto cometo the correctunits. In all computationghey havebeensetto unity. Setting the
derivative to zero fok. = k} yields:

8Pe B 5 2 9 PO 7(1“;;_,,,)2 B

akc = (lea—Zke +k0) FS@ 0 =0 (12)
o Ko

—a=k; — ok

resulting inP, (ke) = ke Py /koe~ (ke k&) /kotko/(2k3))*
Combining this expression with EqE] (3) afitl (P):= ke (Ge — ptam)’, G. is expressed as:

Golhe) = ) Do~ (5438) 4 (13)
k
0

Since we neglect condensatiofio( k) — ptam > 0), only the positive solution remains. Inserting
Eq. (I3) into Eq.[(I0) and settirig = £} yields:

B(kg) (14)

which can be solved iteratively far:.

Combining these results with the mass balance (Edd. 4-&)sythe following expression for
runoff gradientG, as a function of:

in ke [Po —(ke—ki ko )?
GM@—%k¢£6(%+%)' (15)

Note that any value of, does lead to a point on the Budyko curve.
3.2.3 Maximum power by runoff

Although the Budyko curve does not depend on the valuk. on optimumé; can still be found
by maximizing power by runoff. For this, the similar stepsf@soptimizing k. are used, where in
Egs. [11)-f{IB). is simply replaced b¥., resulting in a gradient for runoff as a function/qf

Py _(Fe=kf kg )2
awa=¢£e(hjﬂw) (16)

while from the mass balance (EG$[#-8)is given by
Qin — [Ge(h) - ,uatm]

r = 17
' Gr(h) 4
Combining these two equations and settipgo & yields:
kr* _ Qin - k: [Ge(k;? - ,Uatm] (18)
k3
%{W

which can also be solved iteratively fof.



3.3 Forward analysis

To apply the maximum power principle in any hydrological rabdhe model should run until
a (quasi-)steady state is reached. Within the above pebdrgckward analysis the steady state
210 optimum gradients are simply found by givikgthe value of:* in Eq. (I3) and:, = & in Eq. [I5).
However, when the relative wetnessevolves over time, the gradients should be resolved as
a function of the relative wetnes&/{ = G.(h) and G, = G,(h)). To do this, we assumed that

is a linear function ofG, (k.) scaled between zero and uniffpr sensitivitiesto different initial

relationsbetweernrelativewetnessandoneof the gradientsseeSupplemeng1).

215 Gy (h) = min[Gy (ke)] + (max [Gy (ke)] — min[G: (ke)]) h (19)

where the maximum irG,.(k,) occurs when the second term on the right-hand-side of[Eg. (15
is zero:max [G(ke)] = % and the minimum value is derived when this second term is mauxi,

2
occurring atc, = k" =1/2 <k;‘ — % + (k;* — 212(%) + 4) . Inserting this into Eq[{15) yields:

. k.max P _ kénax,k; k 2
min[G,(ke)]:im— ‘;{ \/k;)e ( ko +2’c02>, (20)

220 If we now ploth vs. G, a unique relation between the two exists (Eig. 1).

With the gradients as functions af the non-steady mass balance equation is written as

S = Qi i Go() ~ ke (Go() ) @

where Spmax is the maximum storage depth][and ¢ is time [T]. Now, the time evolution of the

relative wetness can be simulated.

225 4 Results and discussion from forward analysis
4.1 Constant forcing

With the known relations between relative wetness and graslidriving evaporation and runoff, the
forward model was run anid, be optimized by maximizing power. With constant forcing;lesalue
of uam resulted in a point on thesymptote®f the Budyko curve (Figl Rgavatueof#=-=2-sused.
230 In Fig.[@b, the time evolution of the relative wetness anchtgradients are shown for an initially
saturated and an initially dry state indicating that irexgjve of the initial state, the forward model

evolves to a steady state.
4.2 Sensitivity to dry spells

By introducing dynamics in forcing, we expected the resgltbudyko curve to deviate from the
35 iRt . . . _—
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In literature, a—value-ofrn=2—(and-small-variationsaroundHs-often-usedsineceit—givesa

propertiesthe deviationfrom the asymptotess often doneby introducinga empirical parameter
(e.q. thudhu& 1g§é; Wang and Lgng, iOlZI)). move away from this empiricisior—r—we

w-, we startat the asymptotes of the

ve-Subsequentlywe added
dry spells and dynamics in evaporation (e.g. when treeghaseleaves the evaporative conductance

ke goes to zero) and tested how this influenced the Budyko curve.

To test sensitivities to dry spells, simple block functievere used, with either a predefined con-
stant input or no input at all. For longer relative lengthstteg dry spell, the slope of the curves
becomes smaller until a maximum &, /Qi, = 0.98 (Fig.[3). The reason the asymptotes do not
reach unity lies in the fact that already at very short dryllsgesecond maximum in power evolves,
while the first maximum disappears quickly with increasimg spells. This is in line with results

of|ﬂe_s_tﬂoie_t_ai. [(LOJI4) while also Mli’a) aoselcoptimum is present. Although

interesting, we leave a better exploration of this traosizone where two maxima exist for future

research.

1@04) with
approximately seven months without rain (F&ftin-the-S2.10f Supplement), plots very close to

These curves were compared with data of real catchmenthdkiata relatively stable wet period
interspersed with a regular dry period. The Mupfure catmmnéimbabwe

the theoretical curve with the same length of the dry speadlweiver, catchments from the MOPEX
databaSEJ_(_S_Qha.a.ke_el E.L,_AOOG) with clear consistent etls gppot still far from the respective the-

oretical curves. This discrepancy can be partly explainethé somewhat arbitrary way the number

of dry months are determined: The MOPEX catchments areddtéy have only those catchments
having at least one month with a median rainfal2.5 mm month~! and a coefficient of variance
< 0.5 for all months with a median rainfalt 25 mm month~!. The final number of dry months
were determined maximizing the difference between the meamthly precipitation of theX driest
months minus the mean monthly precipitation of the X wettest months, wher& =1,2...12.

For example, the MOPEX catchment with a four month dry spmild also be argued to have a dry
spell of seven months (Fig1S2.1, MOPEX ID: 11222000) and similarly, the MOPEX catchment
with a five month dry spell (Figs3S2.1, MOPEX ID: 11210500) could also be argued to have one
of six months. If these “corrections” are made, the varigbivithin the MOPEX catchments is
consistent (with longer dry spells plotting more to the t)ghut there is still a discrepancy of one to
two months, indicating that the model should still be immtyv
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4.3 Sensitivity to dynamics in actual evaporation

We also tested the sensitivity of dynamics in actual evagwordy periodically turning:, on and off,
while keeping the rainfall constant. This sensitivity ayséd shows that the longer actual evaporation
is switched off, the smaller the slope of the Budyko curve tnesmaller the maximum value of
the evaporation index (Fif] 4). Comparing the differentvesrwith real catchments, shows that data
from the Ourthe catchment (Belgium) is relatively closettorespective line (its months without
2 Also the MOPEX catchments plot
relatively close to their respective lines. However, they we MOPEX catchments were filtered is

actual evaporation are estimated from Fig. 6.

somewhat arbitrary (only those having a coefficient of varéa< 0.12 for monthly median rainfall
and with at least one month with a monthly median maximum anttiemperature: 0 °C are taken
into account; a month is considered to have no actual evapoifthe monthly median maximum
air temperature< 0°C; aﬂerM\@& Fig. S2 of Supplement

At first sight the comparison with data looks better than ia tase of dry spells. However, all
plotted catchments have an aridity index between 0.5 antl &hd within this range the different
curves plot also close to each other. Yet, it is still someveliaprising that the comparison is rela-
tively good, since the modelled lines have been createddiynaisg a constant atmospheric demand
(1atm) for each run, which is different from real catchments thateha more or less sinus shape
potential evaporation over the year. However, we considas future work to better represent the
real world dynamics in the model.

5 Conclusions and outlook

The Budyko curve is an empirical proof that only a subset bpatsible combinations of arid-
ity index and evaporation index emerges in nature. It beddoghe, so-called Darwinian models

(]Harman and Troc ll\_.;QlM), focusing on emergent behavioarsgstem as a whole. Since the max-

imum power principle links Newtonian models with the Dariaim models, it has indeed potential

to derive the Budyko curve with an, in essence, Newtonianehod

We presented a top-down approach in which we derived relati@tween relative wetness and
chemical potentials that lead, under constant forcing, poiat on theasymptotef the Budyko
curve when the maximum power principle is applied. Subsetipsensitivities to dynamics in forc-
ing and actual evaporation were tested.

Since the Budyko curve is an empirical curtieeparametei—a calibrationparameteis often
linked to catchment specific characteristics such as laagsod water storage, climate seasonality or

spatial scales (e.b. MiM{, 19b|4; Choudl;“ry, 1|9|99; Zha@leJQOOM Potter et LLﬁOS). Although

correlations between characteristics anthe calibrationparametehave been found, it remains

a calibration parameter.

10



310

315

320

asymptotest-we presentech methodto derive the the Budyko curve-andanalyseddeviations
temporaldynamicsin boundaryconditions.Although we used simple block functions to test these
sensitivities they compare reasonably well with obseovesti Nevertheless, improvements could be

made by modelling dynamics closer to reality, or even by @gldnultiple parallel reservoirs to ac-
count for spatial variability within a catchment.

Even though the model represents observations reasonadly(despite its simplicity), the
method used here is by no means a proof that the maximum paweigte does apply for hy-
drological systems. This is due to the top-down derivatibthe gradients in which the maximum
power principle is used explicitly. In principle, the methoould also be used with respect to any
other optimization principle. However, the reasonableith observations gives floor to further
explore this methodology — including the maximum power @pte.
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Figure 1. The gradients driving evaporatio&'{) and runoff (&;) as a function of the relative saturation) for
different values ofuam with k. = k7 andn = 2. At h = 0, the slope of the gradiert. is vertical, while the
value of G, is set to zero to avoid runoff at zero saturation.
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Figure 2. (a) Analytical Budyko curve (Ed.]9) and result from forward mode witmstant forcingier»—2
and(b) time evolution of relative saturation and both gradients for complete initiatat#dn (solid lines) and

initial dry state (dashed line¥am=—%gam = —0.7.
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Figure 3. Sensitivity to periodic dry spells to the forward model. MOPEX catchmem$ilégred to have only
those catchments having at least one month with a median rainfall mm month~' and a coefficient of
variance< 0.5 for all months with a median rainfatt 25 mm month~*. The final number of dry months were
determined maximizing the difference between the mean monthly precipittitie X driest months minus
the mean monthly precipitation of the— X wettest months, wher& = 1,2...12. Error bars indicate one

standard deviation and are determined with bootstrap sampling.
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Figure 4. Sensitivity to on-off dynamics in actual evaporation to the forward mdd€IPEX catchments were
filtered to have only those catchments having a coefficient of varian@é 2 for monthly median rainfall and
with at least one month with a median maximum air temperatute’C; a month is considered to have no
actual evaporation if the monthly median maximum air temperatuée’ C (aﬁerm,@a. Error bars
indicate one standard deviation and are determined with bootstrap sampling.
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