Dear Dr. Stefan Uhlenbrook,

Thanks for your comments and suggestions to improve our paper. According to your comments and two reviewers comments, we have revised the manuscript substantially.

In this final version, we have highlighted the contributions from this study and provide more information than previous studies. I would like to list just a few areas that we just show the novelty of this work and I hope the revision meets the standard of HESS.

Unlike previous study that use one evaluation period, this study uses two evaluation periods to assess hydrological impact of land use change and climate variation over time. eanwhile, three different hydrological models were combined to assess hydrological effect in each evaluation period. So uncertainty of modelling approaches are identified and assessed. Our study represents the most comprehensive study on the combined effects of environmental change in streamflow in the study basin. This study, for the first time, revealed that climate change impacts exceed landcover change and called for attention in future watershed management. Considering effect of climate changes on water supply, some active land management and water resources management options are discussed.

Please let us know if you have further questions.

Kind regard,

Jiangkun Zheng

Impacts of land use change and climate variations on annual inflow into Miyun Reservoir, Beijing, China

J. K. Zheng^{1,3}, G. Sun², W. H. Li³, X. X. Yu⁴, C. Zhang³, Y. B. Gong¹, and L. H. Tu¹

- [1]{College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China}
- [2]{Eastern Forest Environmental Threat Assessment Center, USDA Forest Service, 920 Main Campus, Venture II, Suite 300, Raleigh, NC 27606, USA}
- [3]{Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA}
- [4]{School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China}

Correspondence to: J. K. Zheng (jiangkunzheng@126.com)

Abstract

Miyun reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contributes to the changes of water supply in this critical watershed. However, the specific causes of the decline in Miyun reservoir are debatable in munder a non-stationary climate in the past four decades. The central objective of this study was to quantify the separate and collective contributions of land use change and climate variability to the decreasing inflow into Miyun reservoir during 1961-2008. Different from previous studies, on this work objectively identified breakpoints by analyzing watershed, we used a comprehensive approach to quantify the timing of changes in hydrology and associate environmental variables using the long-term historical hydrometeorology and remote sensing based land cover records. To effectively studyquantify the different impacts of the climate variation and land cover change on streamflow during different sub-periods, annual water balance model (AWB), climate elasticity model (CEM), and rainfall-runoff model (RRM) were employed to conduct attribution analysis synthetically. We found a significant (p<0.01) decrease in annual streamflow-(p<0.01), a significant positive trend in annual potential evapotranspiration (p<0.01), and an insignificant (p>0.1) negative trend in annual precipitation (p>0.1) during 1961-2008. Combined with historical records, weWe identified two streamflow breakpoints as in, 1983 and 1999 for the period 1961-2008, by the sequential Mann-Kendall Test and Double Mass Curve. Climate variability alone did not explain the decrease in inflow to Miyun reservoir. Reduction

of water yield was closely related to increase in actual evapotranspiration rates due to the expansion of forestlandsforestland and reduction in cropland and grassland, and was likely exacerbated by increased water consumption for domestic and industrial uses in the basin. Our study found that the The contribution to the observed streamflow decline from land use change fell from 64%-92% during 1984-1999 to 36%-58% during 2000-2008, whereas the contribution from climate variation climbed from 8%-36% during the 1984-1999 to 42%-64% during 2000-2008. Model uncertainty analysis further demonstrated that climate warming played a dominant role in streamflow reduction in the most recent decade (i.e., 2000s-). We conclude that future climate change and variability will further challenge the goal of water supply capacity of the Miyun reservoir to meet water demand. A comprehensive watershed management strategy needs to consider the climate variations besides vegetation management in the study basin.

1 Introduction

Land use change and climate variations are two main factors directly affecting the watershed hydrological cycle. Land use change influences watershed water yield by changing canopy interception, soil properties, biophysical factors affecting evapotranspiration, and groundwater use whilst climate variations alters precipitation, air temperature, humidity, plant growth, and consequently the hydrologic balances (Baker and Miller, 2013; Wang et al., 2013). Meanwhile, interactions of land use change and climate variations are complex and understanding the individual effects on watershed water yield is of great importance for land-use planning and water resource management (Zheng et al., 2013). To optimize watershed management—and allocate limited resources, it is important to assess hydrological impacts of climate variations and land use change separately and collectively (Mango et al., 2011). Artificial Neural Networks and Soil Conservation Service Curve Number was employed to evaluate the effect of land use change on daily streamflows in western Georgia, USA (Isik et al., 2013). Soil and Water Assessment Tool was also applied to assess impacts of land use and climate change on hydrologic processes in a coastal Alabama watershed in USA (Wang et al., 2014;) and the Hoeya River Basin, South Korea (Kim et al., 2013). A clear understanding of the driving factors for watershed hydrology also benefits hydrological model development and evaluation methods hydrologic assessment of global change (Wang et al., 2013). Due to the nonlinearity of streamflow response in the synchronous evolution of driving forces, it is challenging to disentangle the integrative effects of climate forcing and basin characteristics (Risbey and Entekhabi, 1996; Beguer á et al., 2003; Arabi et al., 2007; Mor án-Tejeda et al., 2010). Many methods have been developed for isolating the effect of land use change from climate variations on regional hydrology. These methods include paired catchment approach (Brown et al., 2005; Zégre et al., 2010), statistical methods (Costa et al., 2003; Sun et al., 2006; Petchprayoon et al., 2010), and hydrological model (Haverkamp et al., 2005; Mao and Cherkauer, 2009; Baker and Miller, 2013). Raymond et al. (2008) suggested that land use change and management were more important than climate variation to increase riverine water export from Mississippi River over the past 50 years. However, other studies considered climate change as a dominant cause of annual water yield change (Aguado et al., 1992; Christensen et al., 2004; Barnett et al., 2005; Sun et al., 2013). Thus detecting the hydrologic changes in observed streamflow records must consider both land use change and climatic variation should be considered to detect cause of hydrologic change at the same time.

Miyun reservoir provides 70% of total water supply for Beijing and is the only source of surface water supply for the severeseverely water—stressed megacity with a population of 20 Million (Tang et al., 2011). Over the past half-century, streamflow into the Miyun reservoir hadhas shrunk drastically. Mean_annual inflow into the Miyun Reservoir declined from 88.2 m³ s¹ in the 1950s to 15.8 m³ s¹ in the 1980s (Gao et al., 2002). Meanwhile, population in Beijing increased from 2.8 million in 1953 to 20 million in 2000's (Liu et al., 2003). The local water consumption in the catchment is believed to be the main driving and climate was also a influential factor (Ma et al., 2010). today (Liu et al., 2003). Now, 18 reservoirs were built in the catchment, whose total storing capacity is 0.214 billion m³ (Li and Li, 2008). The contradiction between increasing water demand and water shortage constrains economic and social development of the region. Therefore, water resource assessment is extremely important to develop effective management strategies.

A few studies have tried to isolate hydrological impacts of land use change from climate change on streamflow in Miyun reservoir catchment (MYRC) (Wang et al., 2009; Xu et al., 2009; Ma et al., 2010; Zhan et al., 2011; Bao et al., 2012a; Wang et al., 2013). However, conclusions varied significantly. For example, Wang et al. (2009) and Ma et al. (2010) considered that climate impact separately accounted for about 33% and 55% of the decrease in reservoir inflow using the distributed time-variant gain model and geomorphology-based hydrological model. The discrepancies are mainly caused by assessment methodology due to parameter uncertainty(Shen et al., 2012), diversities of structural complexity (Vel ázquez et al., 2013), inconsistent of evaluation period (López-Moreno et al., 2011). It is impracticable remains a grand challenge in watershed hydrology (especially for large basin) to get an exact seperate the hydrological effect of land use and from climate change- and variability. Hence, Wei et al. (2013) recommended indicate that a combination of two or three methods would be a robust research strategy to assess hydrological effect within a certain range. In this research, the relative contributions of land use change and climate variability to changes of the annual streamflow into Miyun reservoir were quantified using annual water balance model based on Zhang et al. (2001), the climate elasticity model (Sankarasubramanian et al., 2001), and rainfall-runoff models (Jones et al., 2006) for understanding water cycles and balance in the study area. To our knowledge, the present work is the first study to comprehensively examine the hydrologic effects of vegetation change under a non-stationary climate using a long-term hydrological and land use record.

Our objectives are This study attempts to: 1) detect the trend and break points of streamflow series for the period from 1961 to 2008, 2) explore an integrated approach

带格式的:缩进:首行缩进: 0 厘米

to evaluate phased effects of climate and land use change on the inflow into Miyun reservoir, and 3) provide suggestion to watershed management for the studied watershed.

Unlike previous study that use one evaluation period, this study use two evaluation periods to assess hydrological impact of land use change and climate variation over time. Meanwhile, three different hydrological models were combined to assess hydrological effect in each evaluation period.

2 Materials and methods

2.1 Catchment characteristic

Miyun reservoir, located about 100 km to the north of downtown Beijing, was built in 1960. The reservoir that received water from the Chao River and the Bai River, has a total storage capacity of approximately 4.4 billion m³, enough to supply more than half of water supply for Beijing City (Dong and Li, 2006). The drainage area is about $15,380 \text{ km}^2 (115°25'\sim 117°33'E, 40°19'\sim 41°31'N)$, occupying nearly 90% of the Chaobai River basin area (Figure 1). The local climate is characterized as temperate monsoon and semi-arid (Xu et al., 2009). MYRC drains nine counties of Hebei Province and three counties of Beijing City. The total landmass of Chicheng, Guyuan, Luanping, and Fengning counties in Heibei Province accounts for 77% of the whole catchment area (Wang, 2010). The population of the four counties increased from 0.95 million during 1961-1983 to 1.18 million during 1984-1999, and further to 1.23 million during 2000-2008 (Figure 2). Land use maps were converted from the 1:100,000 land-use map of China, which was obtained from the Resources and **CAS** Environment Data Center of (http://www.resdc.cn/dataResource/dataResource.asp). Based on data availability and model building, land use maps of sub catchments were used including Yuzhoushuiku (YZSK), Xiabao (XB), Sandaoying (SDY), Zhangjiafen (ZJF), Dage (DG), Daiying (DY), Xiahui (XH) in 1978, 1988, 1998, and 2008; Huaihe (HH), Hongmenchuan (HMC), Banchengzi (BCZ) in 1990, 1995, 2000, and 2005; Tumen (TM) in 2000, and 2005 (Fig. 1). Land use was regrouped into six categories, i.e., water area, bare area, forestland, cropland, grassland, and residential area.

带格式的:字体:(默认) Times New Roman, 小四, 德语(德国)

2.2 Hydro-meteorological data

Daily precipitation data recorded at 37 rainfall gauges and daily discharge data of 11 hydrological stations were obtained from "Hydrological Year Book" by the China Hydrological Bureau. Daily meteorological data for the period of 1961-2008, including precipitation, air temperature (maximum, minimum, and mean), wind speed, relative humidity, and sunshine hours of 7 meteorological stations (Zhangbei, Fengning, Weichang, Zhangjiakou, Huailai, Chengde, and Beijing) were obtained from the China Administration of Meteorology. Daily $E_{\rm p}$ was calculated using Hamon method (Hamon, 1963; Lu et al., 2005) as described in section 2.4.1. All the hydrometeorological data are collected in accordance with international standards. For Abnormal data were replaced by the values obtained from Kriging interpolation using nearby weather stations. Mean hydrometeorological values for the entire catchment are all obtained by the Kriging interpolation method in ArcGIS 9.3.

Average monthly temperatures from November to February were below 0 $^{\circ}$ C Minimum monthly temperature in January was lowest at -15 $^{\circ}$ C and maximum monthly temperature in July was highest at 29 $^{\circ}$ C. Precipitation (P) in summer (June, July, and August) accounted for 68% of annual total precipitation. In comparison, potential evapotranspiration (E_p) in summer, accounted for 48% of annual totals. Figure 3 indicated a more uneven seasonal distribution of P than that of E_p (Figure 3).

2.3 Detecting the break points of streamflow time series

Both the Double Mass Curve (Searcy and Hardison, 1960) and the sequential version of Mann-Kendall test (Mann, 1945; Sneyers, 1975) were applied to detect the break points. The Double Mass Curve is the curve through the points given two cumulative records. A break in this curve indicates a change in the relationship between the two records that may be caused by the processing of the data (Wigbout, 1973). A non-parametric test method, the sequential version of Mann-Kendall test is used to detect the change point of hydrological data series:

$$S_{k} = \sum_{i=1}^{k} r_{i}(k = 2, 3, \dots, n)$$

$$S_{k} = \sum_{i=1}^{k} r_{i}(k = 2, 3, \dots, n)$$

域代码已更改

(1)

Where r_i is as following:

$$r_i = \begin{cases} +1 & (x_i > x_j) \\ 0 & (x_i \le x_i) \end{cases} (j = 1, 2, \dots, i)$$

(2)

For each comparison, the number of cases $x_i > x_j$ is counted, and denoted by r_i . It is assumed that the statistic sequential values are random and independent. Then statistic variance (UF_k) is defined as follows:

$$UF_{k} = \frac{\left[s_{k} - E(s_{k})\right]}{\sqrt{Va\left(s_{k}\right)}} \left(k = 1, 2, \dots, n\right)$$

$$UF_k = \frac{\left[s_k - E(s_k)\right]}{\sqrt{Va(s_k)}} (k = 1, 2, \dots, n)$$

(3)

$$E(s_k) = \frac{n(n+1)}{4}$$

(4)

$$Var(s_k) = \frac{n(n+1)(2n+5)}{72}$$

(5)

where $E(s_k, s_k)$ and $Var(s_k, s_k)$ are mean and variance of s_k, s_k , respectively. Statistic variance

 UF_k is calculated as the forward data series ($UF_1=0$). The backward sequence UB_k is calculated using the same equation but in the reverse data series. A null hypothesis is accepted if the critical value ($u_{0.05}$) lies within ± 1.96 at a significance level ($\alpha=0.05$). The positive UF_k denotes an upward trend while the reverse series as a downward trend. When the value of UF_k exceeds the critical value ($u_{0.05}$), it demonstrates an upward or downward trend significantly. If there are intersections of UF_k and UB_k lines in the range of critical value ($u_{0.05}$), the first cross point is the break point.

2.4 Hydrological models for attribution analysis

In this paperstudy, climate variations primarily refer to the changes of P and E_p . Due to difficulty in quantitatively describing anthropogenic effects including water withdrawal and water consumption, land use change is actedused as the residuals affecting streamflow (Q) in addition to climate variations following Stohlgren *et al.* (1998) and Ma *et al.* (2010). Three models were built to provide a comprehensive evaluation on streamflow decreases in MYRC.

2.4.1 Annual water balance model (AWB)

To detect the influence of land use change on Q, a model was developed based on the sensitivity of land use change to actual evapotranspiration (E_a) (Zhang $et\ al.$, 2001). Formulates were described as follows.

$$Q = P - E_a \pm \Delta \delta$$

域代码已更改

域代码已更改域代码已更改

域代码已更改

(6)

$$E_a = \frac{1 + \omega \frac{E_p}{P}}{1 + \omega \frac{E_p}{P} + \frac{P}{E_p}} \times P$$

(7)

$$E_{a(tot)} = \sum_{i=1}^{n} \left(E_{a(i)} \times f_i \right)$$

 $E_{a(tot)} = \sum_{i=1}^{n} \left(E_{a(i)} \times f_i \right)$

(8)

$$E_p = 0.1651 D V_d K (E_p = 0 \text{ when } T < 0)$$

(9)

 $V_d = 216.7 V_s / (T + 273.3)$

(10)

 $V_s = 6.108 \times \exp(17.26939 T/(T + 273.3))$

(11)

where $\Delta\delta$ (mm) is the water storage change of the watershed which can be neglected at long-time averages (Donohue *et al.*, 2010). At a meso-scale, the watershed annual Q (mm yr⁻¹) can be estimated as the difference between the P (mm yr⁻¹) input and the E_a (mm yr⁻¹) output (Sun *et al.*, 2005). ω is the plant-available water coefficient that varies in soil water use for transpiration. For MYRC, ω values of different land use, as a key indicator, were estimated by trial and error approach with increments in 0.1 using a computer program. f_i is the percentage of land use area, in which i represents diverse landscapes: forestland, grassland, cropland, water area, residential area,

and bare area. $E_{a(tot)}$ $E_{a(tot)}$ is the sum of $E_{a(i)}$ E_{p} (mm day) was calculated using Hamon

method (Hamon, 1963; Lu et al., 2005). D is the day length (h). V_d is saturated vapor density at the daily average temperature (g m⁻³), K is the correction factor. T is the daily average temperature

(°C). $\frac{V_s}{V_s}V_s$ is the saturated vapor under a certain temperature (mbar).

2.4.2 The climate elasticity model (CEM)

To quantitatively evaluate the influence of climate variation on streamflow, the climate elasticity model (CEM) was built. The CEM defines the proportional change of streamflow divided by the proportional change in a climate variable such as precipitation (Ma *et al.*, 2010). The model was first developed by Schaake and Waggoner (1990) to evaluate the sensitivity of streamflow to climate changes, and then employed widely to assess the climate variability impact (Sankarasubramanian *et al.*, 2001; Jones *et al.*, 2006; Fu *et al.*, 2007; Bao *et al.*, 2012b).

$$\frac{\underline{\Delta Q_i}}{\overline{Q_0}} = \varepsilon_1 \frac{\Delta P_i}{\overline{P}} + \varepsilon_2 \frac{\Delta E_{p(i)}}{\overline{E_p}}$$

$$\frac{\Delta Q_i}{\overline{Q_0}} = \varepsilon_1 \frac{\Delta P_i}{\overline{P}} + \varepsilon_2 \frac{\Delta E_{p(i)}}{\overline{E_p}}$$

域代码已更改

域代码已更改

带格式的:字体:(默认) Times New Roman, 非倾斜

域代码已更改

带格式的:字体: Times New Roman

域代码已更改

(12)
$$d\overline{Q}_{c \lim} - \overline{Q}_{e} - \overline{Q}_{0}$$

$$d\overline{Q}_{c \lim} = \overline{Q}_{e} - \overline{Q}_{0}$$

域代码已更改

(13)

$$d\overline{Q}_{l\ a\ n\ d} - \overline{Q}_{e}$$

 $d\overline{Q}_{l\ a\ n} = \overline{O_e} - \overline{Q}_{l\ a\ n}$

域代码已更改

域代码已更改

域代码已更改

域代码已更改

域代码已更改

域代码已更改

域代码已更改

(14)

$$d\overline{Q}_{tot} = d\overline{Q}_{clim} + d\overline{Q}_{lan}$$

(15)

Where \mathcal{E}_1 and \mathcal{E}_2 are elasticity coefficients for P (mm yr⁻¹) and E_p (mm yr⁻¹), respectively, which are estimated by least square estimation with the Matlab7.0. $\overline{Q_0}$ $\overline{Q_0}$ (mm yr⁻¹), \overline{P} \overline{P} (mm yr⁻¹) and $\overline{E_p}$ (mm yr⁻¹) refer to the mean annual Q, P and E_p E_p in the reference period. ΔP_i and $\Delta E_{p(i)}$ are the change of annual P and E_p compared to \overline{P} \overline{P} and $\overline{E_p}$, respectively. Annual Q (mm yr⁻¹) for the period of 1984–1999 and 2000-2008 can be derived from Eq. 12 and calculated into mean value ($\overline{Q_e}$). $\overline{Q_e}$). $d\overline{Q}_{clim}$ is the average change in Q caused by climate

of 1984–1999 and 2000-2008 can be derived from Eq. 12 and \overline{Q}_{clim} is the average change in Q caused by climate 域代码已更改

impact. $d\overline{Q}_{land}$ is the average change in Q cause by land use change, and $d\overline{Q}_{tot}$ is the average change in Q between the reference period and evaluation period. \overline{Q}_{e} and \overline{Q}_{e} \overline{Q}_{e} and \overline{Q}_{e} are the average annual Q observed and simulated during the evaluation periods, respectively.

带格式的: 字体: Times New Roman

2.4.3 Rainfall-runoff model (RRM)

In addition to the CEM method discussed in section 2.4.2, the impact of climate variability on streamflow was also estimated using the following empirical rainfall–runoff models (Jones *et al.*, 2006; Li *et al.*, 2007).

$$Q_i = a + bP_i(\sigma_i^2)^c$$

(16)

$$d\overline{Q}_{c \lim} = \overline{Q}_e - \overline{Q}_r$$

$$d\overline{Q}_{c \lim} = \overline{Q}_e - \overline{Q}_r$$

(17

Here, Q_i (mm yr⁻¹) and P_i (mm yr⁻¹) are the annual observed streamflow and precipitation, respectively. $\sigma_i^2 \sigma_i^2$ is the variance of the monthly precipitation; a, b, and c are constants determined by hydrometeological hydrometeorological data in the reference period. $\overline{Q_e} \overline{Q_e}$ (mm

域代码已更改

域代码已更改

域代码已更改

yr⁻¹) and $\overline{Q_r}$ $\overline{Q_r}$ (mm yr⁻¹) are the average <u>simulatesimulated</u> annual streamflow during the evaluation period and reference period, respectively.

域代码已更改

带格式的:字体:(默认) Times New Roman, 德语(德国)

3 Results

3.1 Land use change and its major driving factors

In the Miyun Reservoir catchment, forestlands accounted for above half of the total area. Compared to 1978, forestland area increased by 5.0% in 1988, 16.3% in 1998 and 18.2% in 2008, respectively, whereas cropland decreased by 6.6%, 8.7%, and 10.8% correspondingly. Meanwhile, grassland enlarged from 16.5% in 1978 to 18.5% in 1988, and then reduced to 10.4% in 1998, and 9.8% in 2008 (Figure 4). National land policies are the main driving forces to the land cover change. Since January 1982, implementation of the household contract responsibility system has brought a huge impact on cropland and forestland. Reforestation has been widely implemented to develop forest industry and tourism especially along with implementation of 'Grain for Green' and 'Beijing Tianjin sandstorm source control project' since later 1990s (Zheng, et al. 2010).

3.23.1 Evolution and break points of annual streamflow series

As described in Figure 54, a significant decreasing trend at the rate of 0.96 mm yr⁻¹ was observed for annual streamflow during 1961–2008 (p < 0.01). Simultaneously, PETE_p increased by 1.25 mm yr⁻¹ significantly (p < 0.01) and precipitation decreased by 0.45mm yr⁻¹ insignificantly (p >0.1) (Figure 34). In Chao River basin and Bai River basin, break points occurred in different years according to different methods. Using the Ordered Clustering analysis method, (Xie et al., 2005), one break point at 1979 was detected in the runoff record in the river basins (Wang et al., 2009). Yang and Tian (2009) found that abrupt changes in runoff occurred in 1983 and 1980 for Chao River basin and Bai River basin, respectively, based on the sequential Mann-Kendall test. Owing to significantly increasing direct water abstraction from the upstream of the reservoir since 1984, two sub-periods, one from 1956 to 1983 and the other from 1984 to 2005, were detected for Chao and Bai River basins (Ma et al., 2010). Tang et al. (2011) noted that soil conservation practice positively affected the intensification intensified reduction of streamflow after 1999. In this study, the sequential Mann Kendall test was used to graphically illustrate the forward and backward trends of streamflow for Miyun Reservoir basin during 1961-2008. Intersection The year of 1984, as intersection point of the the UF_k and UB_k curves inside the dotted lines indicated that the year of 1984, was the startingbreak point of such an abrupt change... In addition, changes in streamflow from 2000 to 2008 were more significant because points of the curves fall outside the dotted lines (Figure 65). Furthermore, the Double Mass Curve was also used to divide annual streamflow series into three phases as in Figure 7-). Combined sequential Mann-Kendall test analysis with the double-mass curve test, we determined the referenced period (1961-1983), the evaluation period I (1984-1999), and the evaluation period II (2000-2008) in MYRC.

带格式的:字体:(默认)Times New Roman,非倾斜

带格式的: 字体: (默认) Times New Roman, 非倾斜

3.33.2 AWB model results

A total of 41 <u>sub-</u>catchments with different land use composition were used to build the model. According to plant-available water coefficient w of different land use in AWB model, the watershedscatchments were composed of forestland, grassland/cropland, water area and residential/bare area. Forestland accounts for more than 50% of the whole area in DG, DY, XH, YZSK, SDY, XB, and ZJF <u>watershedcatchment</u>; more than 80% of the total landmass in BCZ, HMC, and HH watershed; 100% of total area in TM <u>watershedcatchment</u> (Figure §7). The model was calibrated with the data prior to 2001 and was validated with the data after 2001(Figure 98). The range of w values was determined to be [0, 3] for forestland, [0, 2] for grassland/cropland, and [0, 1] for residential area/bare area. The E_a of water area was assumed to be the smaller between P and E_p . Based on the method of trial and error, w values of grassland/farmland, forest, urbanforestland, residential area/bare landarea were ratified as 1.5, 2.8, and 0 during the calibrated period, respectively. Compared the average annual water balance residual $E_a = P - Q$ with that estimated using Equation 7 & 8, the determination coefficients were 0.803 and 0.783 during calibration period and validation period, respectively (Figure 98).

Compared to the reference period (1961-1983), annual observed streamflow for 1984-1999 and 2000-2008 reduced by 18.1 mm and 39.7 mm, respectively. Using the land use data in 1988, the model was applied to evaluation periods. The difference of observed value and simulated value represented the impacts of land use change on inflow declines. As showed in

Table 1, $d\overline{Q}_{land}$ were -11.5 mm and -19.6 mm which contributed 64% and 49% of $d\overline{Q}_{tot}$ for evaluation period I and II, respectively.

3.43.3 CEM model results

Annual Q, P,Based on Eq. (12) and E_p duringdata in the period of 1961-1983, ε_1 and ε_2 were used to determine the parameter ε_1 (separately set as 2.12) and ε_2 (-2.25) in Eq. 12 by the least square estimation. Then the model was applied to simulate the annual Q during the period of 1961-2008. The difference of Q between the simulation period of 1984-2008 and the reference period of 1961-1983 was attributed to the impact of climate variation. Simulated annual Q values were 57.7 mm and 42.6 mm during the periods of 1984-1999 and 2000-2008, respectively. The contribution of climate variation to the decrease of inflow during these two periods is about 1.5 mm (8%) and 16.5 mm (42%), respectively. Correspondingly, land use change contributed 16.6 mm (92%) and 23.2 mm (58%) to the decrease of inflow (Table 1).

3.53.4 RRM model results

Using annual P and the variance of the monthly P from 1961 to 1983, the values of a, b, and c were obtained as 0.85, 0.0004, and 0.74 from Eq. 1416, respectively. Then annual inflow into the reservoir was simulated as 56.4 mm and 33.8 mm for evaluation period I and II, respectively. Derived from Eq. 1517, climate variation constituted for 2.7 mm (15%) and 25.3 mm (64%) of total Q decrease for these two periods (table 1). Compared to estimations from the CEM model, the contribution of climate variations to the decrease of inflow was about 7% higher during the

4 Discussion

4.1 Data limitation and likely impact of other human factors on streamflow

This study involvedspans multiple years and uses multiple data sources for land use, meteorology, and hydrology. The bias of data often existedexist in field measurements, inventory, aggregation and spatial analysis of long series spatiotemporal data (Kavetski et al., 2006; Verburg et al., 2011). In the process of building the annual water balance model, 30 land use scenarios were utilized to calibrate the model and 11 land use scenarios were employed to verify it. To some extent, land use images were not absolutely comparable because the data were interpreted from different day of a year. Meanwhile, artificial interpretation of remote sensing imageries also increases possibility of the errors. Due to data limitation, only Only 37 rainfall gauges and 7 meteorological stations were available to clarify spatial change of precipitation; and air temperature, and other meteorological elements, which might be insufficient to cover For a mountainous catchment with a dranage area of 15,380 km². Certainly, interpolation and calculation of spatial data also constitute integral parts of the error, errors may exist

Since the 1980s, water uses in MYRC have been intensified due to the increased water demand by people (Bao et al., 2012a). On the one hand, due to the growth of population (Figure 2) and development of industry and agriculture, the annual direct abstraction of water from MYRC increased from 2.2 mm yr⁻¹ in 1956-1983 to 13.4 mm yr⁻¹ in 1984-2005 (Ma et al., 2010). At the same time, daily water consumption per capita accrued from 0.03m^3 in 1959 to more than 0.20 m^3 in 2000 (Gao et al., 2002). Population growth aggravates water scarcity because it reduces per-capita availability even with unchanged water resources (Schewe et al., 2014). Meanwhile, soil and water conservation projects have been implemented considerably with slopes transformed into terraces, the construction of silt retention dams and reservoirs in 1970s and 1980s (Chaobai River Management Bureau of Beijing, 2004; Chang et al., 2015). For example, The Yunzhou Reservoir (113.7 million m³) and Baihebao Reservoir (90.6 million m³) were built in 1970 and 1983, respectively (China water yearbook, 1991). In addition to water consumption, these water control projects enhanced evaporation and leakage losses from the catchment(Gao et al., 2013). Consequently, total water loss from the catchment had increased since the 1980s. In recent years, Paddy to Dry Land Project and closedown of water-based industries were carried out to reduce water consumption that might compensate the streamflow decline trend and improve water quality (Wang, 2010).

4.2 Model uncertainties

Three different approaches were used to isolate hydrological impacts of land use change from those of climate change. AWB offered direct approach to evaluate hydrological impacts of land use change (Zhang and Wang, 2007). E_pE_a , as the predominant part of water cycle, is the key to build this model. It is attributed primarily to land cover, and also affected by several other factors such as soil types and topographic slope (Moiwo *et al.*, 2010). The daily E_a (mm day⁻¹)_might be estimated_improved by the Surface Energy Balance Algorithm for Land (SEBAL), remote sensing-based models validated by the Penman–Monteith approach, as well as the Soil and Water

Assessment Tools (SWAT) model (Gao and Long, 2008; Gao et al., 2008). Mean annual evapotranspiration to P, E_n, \(\omega\)2008). had been derived from numerous eatehments (Zhang et al., 2001). Then a simple two parameter model based on these coefficients was applied to many other eatchments (Sun et al., 2005; Ma et al., 2008; Zhang et al., 2008). The Penman-Monteith method is commonly considered as the best way to estimate the value of E_p . However, the application was difficult due to insufficient climate data, especially variable about solar radiation. Therefore, the Hamon method recommended by the Food and Agriculture Organization of United Nations (FAO) was used to calculate E_p (Hamon, 1963). model parameter (ω) had been derived from numerous catchments (Zhang et al., 2001). Then a simple two-parameter model based on these coefficients was applied to many other catchments (Sun et al., 2005; Ma et al., 2008; Zhang et al., 2008). Our research specified an analytical expression to determine the value of model parameter (ω) as 2.8 and 1.5, respectively, for forestland and grassland/cropland, whose correlation coefficients are 0.78 and 0.80 during calibration and validation phases, respectively. The error of data, combined with uncertainty of model structure, increased uncertain to attribution of land use change. Meanwhile, to detect the potential streamflow response of land use change in MYRC, the model adopted the land use data in 1988 to estimate streamflow since 1984, which may cause errors due to variation of land use from 1984 to 1988. Besides, spatial and temporal variations of land use also affected streamflow change (Donohue et al., 2011; Roderick and Farquhar, 2011). In the model, recharge to groundwater and change of soil water storage might be ignored for water balance at a meso-scale catchment (Sun et al., 2005). Moreover, uncertainty of the model would be exaggerated when applied to small catchments, such as BCZ catchment (65.2 km²) and TM catchment (3.4 km²). Although many uncertainties existed in this model, we suggest that the approximate contribution of $d\bar{O}_{tang}$ could be 64% for 1984 1999 and 49% for 2000 2008, respectively, which basically coincided with the result of two other models.

In the climate elasticity model (CEM), P and E_p were employed to assess <u>hydrological impacts of</u> climate variation. Annual P in the evaluation period I was 9 mm yr⁻¹ more than that in the reference period-<u>simultaneously with</u>. <u>Simultaneously, E_p in the evaluation period I was 25 mm</u>

yr⁻¹ less for annual E_p -more than that in the reference period. Whereas dQ $_{clim}$ was justonly -1.5 mm yr⁻¹ which indicated that P and Q increment as the result of P increment was slightly less than Q reduction as the result of E_p had nearly same effect for annual Q in the evaluation period Lincrement. As a quantitative assessment on hydrological impacts of climate change, without spatial input, especially for the catchment area of 15380 km² with altitude range from 50 m to 2292 m (fig.1), the climate elasticity model lacks physical mechanisms and ignores the spatial details of the impact of climate variation (Yang et al., 2014a). Specifically, with catchment slope growing, the __The relative error increases with a median of 3.0% and a maximum of 20% when 10% precipitations alteration in those catchments of moutain in __China (Yang et al., 2014b). Extreme climate events also increase the risk of model result.

<u>The Rainfall</u>—runoff model (<u>RRM</u>) only <u>takesaccounts</u> rainfall as <u>the only</u> climate indicator <u>into</u> account to estimate the impact of climate change—<u>which</u>. <u>This simplification</u> might be the main reason <u>differentially</u>resulting in the <u>differences</u> from other two approaches. *P* for 1984-1999 was

9 mm yr⁻¹ greater than that for 1961-1983 while $d\overline{Q}_{clim}$ was 2.7 mm yr⁻¹ smaller correspondingly (Table 21), which illustrated that the variance of the monthly precipitation played

带格式的:字体:(默认) Times New Roman, 非倾斜

带格式的: 字体: (默认) Times New Roman, 非倾斜

带格式的: 字体: (默认) Times New Roman, 非倾斜

带格式的:字体:(默认) Times New Roman, 非倾斜

带格式的: 字体: (默认) Times New Roman, 非倾斜

带格式的: 字体: (默认) Times New Roman, 非倾斜

带格式的:字体:(默认) Times New Roman, 非倾斜

带格式的:字体:(默认) Times New Roman, 非倾斜 an important role on modeling streamflow besides annual *P*. Moreover, it was noted that the watershed in Miyun reservior was characterized by mountainous with thin soils on a rocky mountain environment—with thin soil stratum—(< 30 cm) (He *et al.*, 2010). Therefore, rather than instead of storing water—large amounts of rainfall in the soil, more rainfall became transformed into streamflow, offsetting water consumption due to afforestation, resulted in *Q* change less than expected, which was another reason differentially estimating the impact of climate change on inflow into MYRC.

4.3 Implications to water resources management

In the Miyun Reservoir catchment, forestlands accounted for more than half of the total area. Compared to 1978, forestland area increased by 5.0% in 1988, 16.3% in 1998 and 18.2 % in 2008, respectively, whereas cropland decreased by 6.6%, 8.7%, and 10.8% correspondingly. Meanwhile, grassland area increased from 16.5 % in 1978 to 18.5 % in 1988, and then reduced to 10.4 % in 1998, and 9.8 % in 2008 (Fig. 9). Compared to the reference period, contribution of land use change to the resulted in streamflow decline for 1984-1999 was greater than that for and the 2000-2008. This finding indicated periods. It appears that land use change effect was most pronounced during 1984-1999. Since January 1982, implementation of the household contract responsibility system has brought a huge impact on cropland and forestland. Reforestation has been widely implemented to develop forest industry and tourism especially along with implementation of adjustment Grain for 2000-2008 alleviated shortage of water supply in MYRC. Meanwhile, Climate change Green and "Beijing-Tianjin sandstorm source control project" since later 1990s (Zheng et al., 2010).

This study shows that the study region has seen global warning and climate change will increase the uncertainty of the estimated land use impact (Lauri et al., 2012). That Climate change should be considered as a critical factor to optimize future water management (Gosling et al., 2011). Furthermore, anthropogenic effects, including water withdrawal and water restriction, would make both negative and positive effects on water supply to Miyun reservoir. Monitoring and objectively evaluating spatial and temporal variation of water resources are the prerequisites for water resource planning. Land use adjustment could also offset the negative effects of climate variation. For example, Paddy to Dry Landdry land conversion in the study basin is considered as an effective mean to increase inflow into Miyun reservoir. Moreover, artificial forest plantations widely implemented during the last 30 years aggravated is considered to aggravate water stress in this semi-arid region (Wang et al., 2012). More native vegetation rather than artificial pure forest man-made forests with exotic tree species should be established to achieve the desired hydrological functioning of MYRC. In the same time, saving and rational proper allocation of water resource such as water demand mangement, can play an important complementary role facing in solving water crisis. In summary, comprehensive measures are necessary to deal with water shortages including vegetation restoration and water allocation.

5 Conclusions

The comprehensive modeling approach developed by this study offers insights to the hydrological changes in the Miyun reservoir that experienced a significant decreasing trend of streamflow in the past three decades. We used due to a comprehensive modeling approach to detect hydrological combination of changes in landcover and their attributions climate. The

dramatic change of land use in the 1980s and 1990s due to expansion of forestland and reduction of cropland had exacerbated streamflow decline by boosting catchment E_a . The global warmingevapotransiration. Climate change during the 1990s-2000s has resulted in an increase in E_p air temperature and thus poential evapotransiration, resulting in an increase in total water loss from the student basin. We found that landLand use change dominated the streamflow decline in the 1980s-1990s, but climate warmingchange contributed most to the water supply decline in the 2000s.

We conclude that <u>future</u> climate change must be considered in designing watershed management strategies <u>inincluding</u> reforesation efforts to protect water quality and to reduce soil erosion in the Miyun reservoir to meet the increasing water supply demand of the megacity of Beijing. Our results suggest that Active land <u>use adjustment (Converting croplandmanagement such as converting marginal croplands</u> to natural grasslands) and water resources management (such as irrigation <u>use and groundwater withdrawal)or industry water uses</u> should be optimized to adapt to future climate changes to sustain the water supply functions of the <u>MYRC:Miyun reservior.</u> Future studies should focus sceanario analysis to examine the tradeoffs of water management options in terms of impacts of hydrologic impacts under future climate change condistions.

Acknowledgements

This work is financially supported by China Postdoctoral Science Foundation (No. 2012M511938), Forestry Nonprofit Industry Research of State Forestry Administration (No. 201104109), and China Scholarship Council for Visiting Duke University. We thank Dr. Cunyong Ju for his assistance in data analysis.

References

- Aguado, E., Cayan, D., Riddle, L., and Roos, M.: Climatic fluctuations and the timing of West Coast streamflow, Journal of Climate, 5, 1468-1483, 1992.
- Arabi, M., Govindaraju, R. S., and Hantush M. M.: A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices, Journal of Hydrology, 333, 459-471, 2007.
- Baker, T. J. and Miller, S. N.: Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed, Journal of Hydrology, 486, 100-111, 2013.
- Bao, Z., Fu, G., Wang, G., Jin, J., He, R., Yan, X., and Liu, C.: Hydrological projection for the Miyun Reservoir basin with the impact of climate change and human activity, Quaternary International, 282, 96-103, DOI: 10.1016/j.quaint.2012.07.012, 2012a.
- Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., and Zhang, A.: Attribution for decreasing streamflow of the Haihe River basin, northern China: Climate variability or human activities? Journal of Hydrology, 460-461, 117-129. DOI: 10.1016/j.jhydrol.2012.06.054, 2012b.
- Barnett, T.P., Adam, J.C., Lettenmaier, D.P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303-309, 2005.
- Beguer á, S., López-Moreno, JI., Lorente, A., Seeger, M., and Garc á-Ruiz, J. M.: Assessing the effect of climate oscillations and land-use changes on streamflow in the Central Spanish Pyrenees, AMBIO: A Journal of the Human Environment, 32, 283-286, 2003.
- Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., and Vertessy, R. A.: A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation, Journal of Hydrology, 310, 28-61. DOI: 10.1016/j.jhydrol.2004.12.010, 2005.
- Chang, J., Zhang, H., Wang, Y., and Zhu, Y.: Assessing the impact of climate variability and human activity to streamflow variation, Hydrol. Earth Syst. Sci. Discuss., 12, 5251–5291, DOI: 10.5194/hessd-12-5251-2015, 2015.
- Chaobai River Management Bureau of Beijing.: Flood and Drought Hazards in the Chaobai River. China Water Resour. and Hydropow. Press, Beijing, 209, 2004.
- Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D.P., and Palmer, R.N.: The effects of climate change on the hydrology and water resources of the Colorado River basin, Climatic change, 62, 337-363. 2004.
- Costa, M. H., Botta, A., and Cardille, J. A.: Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia, Journal of Hydrology, 283, 206-217, DOI: 10.1016/s0022-1694(03)00267-1, 2003.
- Dong, W. and Li, X.: Analysis of water resource of Miyun reservoir in Chaobai river basin. Environmental Science and Technology, 29(2): 58-60, 2006.
- Donohue, R., Roderick, M., and McVicar, T.: Can dynamic vegetation information improve the accuracy of Budyko's hydrological model? Journal of hydrology, 390, 23-34, 2010.
- Donohue, R. J., Roderick, M. L., and McVicar, T. R.: Assessing the differences in sensitivities of runoff to changes in climatic conditions across a large basin, Journal of Hydrology, 406, 234-244, DOI: 10.1016/j.jhydrol.2011.07.003, 2011.
- Fu, G., Charles, S. P., and Chiew, F. H. S.: A two-parameter climate elasticity of streamflow index

- to assess climate change effects on annual streamflow, Water Resources Research, 43, DOI: 10.1029/2007WR005890, 2007.
- Gao, Y., Long, D., and Li, Z. L.: Estimation of daily actual evapotranspiration from remotely sensed data under complex terrain over the upper Chao river basin in North China, International Journal of Remote Sensing, 29, 3295-3315, DOI: 10.1080/01431160701469073, 2008.
- Gao, Y. and Long, D.: Intercomparison of remote sensing-based models for estimation of evapotranspiration and accuracy assessment based on SWAT, Hydrological Processes, 22, 4850-4869. DOI: 10.1002/hyp.7104, 2008.
- Gao, Y., Yao, Z., Liu, B., and Lv, A. Evolution trend of Miyun Reservoir inflow and its motivation factors analysis, Prog. Geogr., 21(6), 546-553, 2002.
- Gao, P., Geissen, V., Ritsema, C. J., Mu X. M., and Wang, F.: Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China, Hydrology and Earth System Sciences, 17, 961-972, DOI: 10.5194/hess-17-961-2013, 2013.
- Gosling, S. N., Taylor, R. G., Arnell N. W., and Todd M. C.: A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models, Hydrology and Earth System Sciences, 15, 279-294, DOI: 10.5194/hess-15-279-2011, 2011.
- Hamon, W. R.: Computation of direct runoff amounts from storm rainfall, International Association of Scientific Hydrology Publication, 63: 52-62, 1963.
- Haverkamp, S., Fohrer, N., and Frede, H. G.: Assessment of the effect of land use patterns on hydrologic landscape functions: a comprehensive GIS-based tool to minimize model uncertainty resulting from spatial aggregation, Hydrological Processes, 19, 715-727, DOI: 10.1002/hyp.5626, 2005.
- He, J., Cai, Q., Li, G., Wang, Z.: Integrated erosion control measures and environmental effects in rocky mountainous areas in northern China, International Journal of Sediment Research, 25, 294-303, DOI: 10.1016/s1001-6279(10)60046-7, 2010.
- Isik, S., Kalin, L., Schoonover, J. E., Srivastava, P., and Lockaby B. G.: Modeling effects of changing land use/cover on daily streamflow: An Artificial Neural Network and curve number based hybrid approach, J. Hydrol., 485, 103-112, 2013.
- Jones, R. N., Chiew, F. H. S., Boughton, W. C., and Zhang, L.: Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models, Advances in Water Resources, 29, 1419-1429, DOI: 10.1016/j.advwatres.2005.11.001, 2006.
- Kavetski, D., Kuczera, G., Franks, S. W.: Bayesian analysis of input uncertainty in hydrological modeling: 2. Application, Water Resources Research, 42, DOI: 10.1029/2005WR004376, 2006.
- Kim, J., Choi, J., Choi, C., and Park, S.: Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea, Science of the Total Environment, 452-453, 181-195, 2013.
- Lauri, H., deMoel, H., Ward, P. J., Räsänen, T. A., Keskinen M., and Kummu, M.: Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge, Hydrology and Earth System Sciences, 16, 4603-4619, DOI: 10.5194/hess-16-4603-2012, 2012.
- Li, L., Zhang, L., Wang, H., Wang, J., Yang, J., Jiang, D., Li, J., and Qin, D.: Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China, Hydrological Processes, 21, 3485-3491, DOI: 10.1002/hyp.6485, 2007.
- Li, Z., and Li, X.: Trend and causation analysis of runoff variation in the upper reach of Chaobaihe

- River Basin in northern China during 1961-2005, Journal of Beijing Forestry University, 30, 82-87, 2008.
- Liao, R. and Li, Q.: Studies on river basin sustainable development strategy for the Miyun Reservoir, China Water Resources, 8, 22-23, 2003.
- Liu, B., Yao, Z., and Gao, Y.: Trend and driving forces of water consumed structure changes in Beijing, Resource Science, 25(2), 38-43, 2003.
- Liu, J., Zhuang, D., Zhang, Z., Gao, Z., and Deng, X.: The establishment of land-use spatial-temporal database and its relative studies in China, Geo-information science, 3, 3-7, 2002...
- López-Moreno, J. I., Vicente-Serrano, S. M., Moran-Tejeda, E., Zabalza, J., Lorenzo-Lacruz J., and Garc á-Ruiz, J. M.: Impact of climate evolution and land use changes on water yield in the ebro basin, Hydrology and Earth System Sciences, 15, 311-322, DOI: 10.5194/hess-15-311-2011, 2011.
- Lu, J., Sun, G., McNulty, S., Amatya, D. M.: A Comparison of Six Potential Evapotranspiration Methods for Regional Use in the Southeastern United States, Journal of the American Water Resources Association, 41, 621-633, 2005.
- Ma, H., Yang, D., Tan, S. K., Gao, B., and Hu, Q.: Impact of climate variability and human activity on streamflow decrease in the Miyun Reservoir catchment, Journal of Hydrology, 389, 317-324, DOI: 10.1016/j.jhydrol.2010.06.010, 2010.
- Ma, Z., Kang, S., Zhang, L., Tong, L., Su, X.: Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China, Journal of Hydrology, 352, 239-249, DOI: 10.1016/j.jhydrol.2007.12.022, 2008.
- Mango, L. M., Melesse, A. M., McClain, M. E., Gann D., and Setegn, S. G.: Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: results of a modeling study to support better resource management, Hydrology and Earth System Sciences, 15, 2245-2258, DOI: 10.5194/hess-15-2245-2011, 2011.
- Mann, H. B.: Nonparametric tests against trend, Econometrica: Journal of the Econometric Society, 13, 245-259, DOI: 10.2307/1907187, 1945.
- Mao, D. and Cherkauer, K. A.: Impacts of land-use change on hydrologic responses in the Great Lakes region, Journal of Hydrology, 374, 71-82, DOI: 10.1016/j.jhydrol.2009.06.016, 2009.
- Moiwo, J. P., Lu, W., Zhao, Y., Yang, Y., Yang, Y.: Impact of land use on distributed hydrological processes in the semi-arid wetland ecosystem of Western Jilin, Hydrological processes, 24, 492-503, 2010.
- Mor án-Tejeda, E., Ceballos-Barbancho, A., and Llorente-Pinto, J. M.: Hydrological response of Mediterranean headwaters to climate oscillations and land-cover changes: The mountains of Duero River basin (Central Spain), Global and Planetary Change, 72, 39-49, 2010.
- Petchprayoon, P., Blanken, P. D., Ekkawatpanit, C., and Hussein, K.: Hydrological impacts of land use/land cover change in a large river basin in central–northern Thailand, International Journal of Climatology, 30, 1917-1930, 2010.
- Raymond, P. A., Oh, N-H, Turner, R. E., Broussard, W.: Anthropogenically enhanced fluxes of water and carbon from the Mississippi River, Nature, 451, 449-452, 2008.
- Risbey, J. S. and Entekhabi, D. Observed Sacramento Basin streamflow response to precipitation and temperature changes and its relevance to climate impact studies, Journal of Hydrology, 184, 209-223, 1996.

- Roderick, M. L. and Farquhar, G. D.: A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties, Water Resources Research, 47, W00G07, DOI: 10.1029/2010WR009826, 2011.
- Sankarasubramanian, A, Vogel, R. M., and Limbrunner, J. F.: Climate elasticity of streamflow in the United States, Water Resources Research, 37, 1771-1781, DOI: 10.1029/2000wr900330, 2001.
- Schaake, J. C. and Waggoner, P.: From climate to flow, Climate change and US water resources. 177-206, 1990.
- Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., Colon-Gonzalez, F. J., Gosling, S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F., Warszawski, L., and Kabat P.: Multimodel assessment of water scarcity under climate change, Proc Natl Acad Sci USA, 111, 3245-3250, DOI: 10.1073/pnas.1222460110, 2014.
- Searcy, J. K. and Hardison, C. H.: Double-mass curves Manual of Hydrology: Part 1. General surface-water Techniques, Geological survey water-supply paper, 1541-B, 31-64, 1960.
- Shen, Z. Y., Chen, L. and Chen, T.: Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China, Hydrology and Earth System Sciences, 16, 121-132, DOI: 10.5194/hess-16-121-2012, 2012.
- Sneyers, R.: Sur l'analyse statistique des séries d'observations. Secrétariat de l'Organisation Météorologique Mondiale, 1975.
- Stohlgren, T. J., Chase, T. N., Pielke, R.A., Kittel, T. G., and Baron, J.: Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas, Global change biology, 4, 495-504, 1998.
- Sun, G., McNulty, S. G., Lu, J., Amatya, D. M., Liang, Y., and Kolka, R. K.: Regional annual water yield from forest lands and its response to potential deforestation across the southeastern United States, Journal of Hydrology, 308, 258-268, DOI: 10.1016/j.jhydrol.2004.11.021, 2005.
- Sun, G., Zhou, G., Zhang, Z., Wei, X., McNulty, S. G., and Vose, J. M. Potential water yield reduction due to forestation across China, Journal of Hydrology, 328, 548-558, DOI: 10.1016/j.jhydrol.2005.12.013, 2006.
- Sun, S., Chen, H., Ju, W., Song, J., Zhang, H., Sun, J., and Fang, Y.: Effects of climate change on annual streamflow using climate elasticity in Poyang Lake Basin, China, Theoretical and applied climatology, 112, 169-183, 2013.
- Tang, L., Yang, D., Hu, H., and Gao, B.: Detecting the effect of land-use change on streamflow, sediment and nutrient losses by distributed hydrological simulation. Journal of Hydrology, 409: 172-182. DOI: 10.1016/j.jhydrol.2011.08.015, 2011.
- Vel ázquez, J. A., Schmid, J., Ricard, S., Muerth, M. J., Gauvin St-Denis, B., Minville, M., Chaumont, D., Caya, D., Ludwig, R., and Turcotte, R.: An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources, Hydrology and Earth System Sciences, 17, 565-578, DOI: 10.5194/hess-17-565-2013, 2013.
- Verburg, P. H., Kathleen, N. and Linda, N.: Challenges in using land use and land cover data for global change studies, Glob Chang Biol, 17, 974-989. DOI:

- 10.1111/j.1365-2486.2010.02307.x, 2011.
- Wang, G., Xia, J., Chen, J.: Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: A case study of the Chaobai River basin in northern China, Water Resources Research, 45, DOI: 10.1029/2007wr006768, 2009.
- Wang, R., Kalin, L., Kuang, W., and Tian, H.: Individual and combined effects of land use/cover and climate change on Wolf Bay watershed streamflow in southern Alabama, Hydrological Processes, 28, 5530-5546, DOI: 10.1002/hyp.10057, 2014.
- Wang, S., Zhang, Z., McVicar, T. R., Zhang, J., Zhu, J., and Guo, J.: An event-based approach to understanding the hydrological impacts of different land uses in semi-arid catchments, Journal of Hydrology, 416-417, 50-59, DOI: 10.1016/j.jhydrol.2011.11.035, 2012.
- Wang, S., Zhang, Z., R. McVicar, T., Guo, J., Tang, Y., Yao, A.: Isolating the impacts of climate change and land use change on decadal streamflow variation: Assessing three complementary approaches, Journal of Hydrology, 507, 63-74, DOI: 10.1016/j.jhydrol.2013.10.018, 2013.
- Wang, Y.: A spatiotemporal analysis of land use change and zoning of landscape restoration and protection in Miyun Reservoir watershed, PhD thesis of Chinese Academy of Forestry, 2010.
- Wei, X., Liu, W., and Zhou, P.: Quantifying the relative contributions of forest change and climatic variability to hydrology in large watersheds: a critical review of research methods, Water, 5, 728-746, DOI: 10.3390/w5020728, 2013.
- Wigbout, M.: Limitation in the use of double-mass curves. Journal of Hydrology, 12 (2): 132-138, 1973.
- Xie, P., Chen, G., Li, D., and Zhu Y.: Comprehensive diagnosis method of hydrologic time series change-point analysis, Water Resour. Pow., 23(2), 11-14, 2005.
- Xu, Z. X., Pang, J. P., Liu, C. M., Li, J. Y.: Assessment of runoff and sediment yield in the Miyun Reservoir catchment by using SWAT model, Hydrological Processes, 23, 3619-3630, DOI: 10.1002/hyp.7475, 2009.
- Yang, H., Qi, J., Xu, X., Yang, D., and Lv, H.: The regional variation in climate elasticity and climate contribution to runoff across China, Journal of Hydrology, 517, 607-616, DOI: 10.1016/j.jhydrol.2014.05.062, 2014b.
- Yang, H., Yang, D., and Hu, Q.: An error analysis of the Budyko hypothesis for assessing the contribution of climate change to runoff, Water Resources Research, 50, DOI: 10.1002/2014wr015451, 2014a.
- Yang, Y., and Tian, F. Abrupt change of runoff and its major driving factors in Haihe River Catchment, China, Journal of Hydrology, 374, 373-383, DOI: 10.1016/j.jhydrol.2009.06.040, 2009.
- Zégre, N., Skaugset, A. E., Som, N. A., McDonnell, J. J., and Ganio, L. M.: In lieu of the paired catchment approach: Hydrologic model change detection at the catchment scale. Water Resources Research, 46, DOI: 10.1029/2009wr008601, 2010.
- Zhan, C., Xu, Z., Ye, A., and Su, H.: LUCC and its impact on run-off yield in the Bai River catchment--upstream of the Miyun Reservoir basin, Journal of Plant Ecology, 4, 61-66. DOI: 10.1093/jpe/rtr003, 2011.
- Zhang, J. and Wang, G. Impacts of climate changes on hydrology and water resources. Beijing: Science Press, 188–189, 2007.
- Zhang, L., Dawes, W. R., and Walker, G. R.: Response of mean annual evapotranspiration to vegetation changes at catchment scale, Water Resources Research, 37, 701-708, DOI:

- 10.1029/2000wr900325, 2001.
- Zhang, X., Zhang, L., Zhao, J., Rustomji, P., and Hairsine, P.: Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resources Research, 44, DOI: 10.1029/2007wr006711, 2008.
- Zheng, J., Yu, X., Deng, W., Wang, H., and Wang, Y.: Sensitivity of land-use change to streamflow in Chaobai river basin. Journal of Hydrologic Engineering, 18, 457-464, DOI: 10.1061/(asce)he.1943-5584.0000669, 2013.
- Zheng, J., Yu, X., Jia, G., and Xia, B.: Dynamic evolution of ecological service value based on LUCC in Miyun Reservoir Catchment, Transactions of the CSAE, 26(9), 315-320, 2010.

Table 1. Estimations on the contribution of land use change and climate variability to streamflow decreasing. The numbers directly following the \pm signs are the standard deviation. The numbers in bracket represent the contribution percentage.

									(mm y	r ⁻¹)	
Period	_ P		\overline{Q}	$d\overline{Q}_{tot}$:	Annual water		The climate		Rainfall-runoff		
					balance model		elasticity model		model		
	\overline{P}	$\overline{E_p}$			$d\overline{Q}_{\scriptscriptstyle land}$	$d\overline{Q}_{c m lim}$	$d\overline{Q}_{land}$	$d\overline{Q}_{c m lim}$	$d\overline{Q}_{land}$	$d\overline{Q}_{ m clim}$	域代码已更改
Reference (1961-1983)	44 6± 75	847± 23	59.1 ±30.3	_	_					_	
Evaluation I (1984-1999)	45 5± 84	872± 24	41.0 ±21.0	-18. 1	-11.5 (64%)	-6.6 (36%)	-16.6 (92%)	-1.5 (8%)	-15.4 (85%)	-2.7 (15%)	
Evaluation II (2000-2008)	41 2± 41	890± 17	19.4 ±8.8	-39. 7	-19.6 (49%)	-20.1 (51%)	-23.2 (58%)	-16.5 (42%)	-14.4 (36%)	-25.3 (64%)	

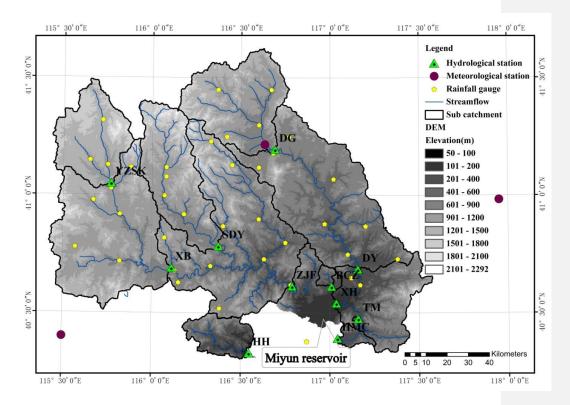
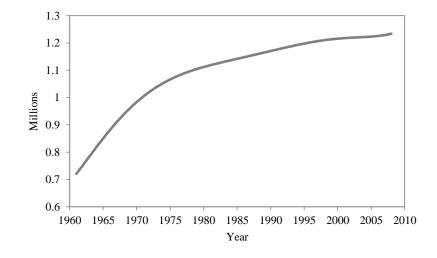
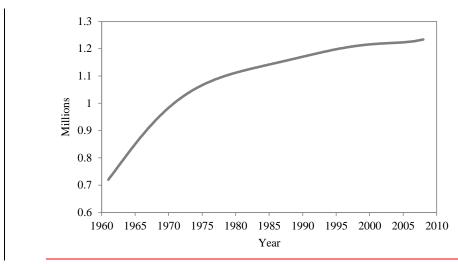
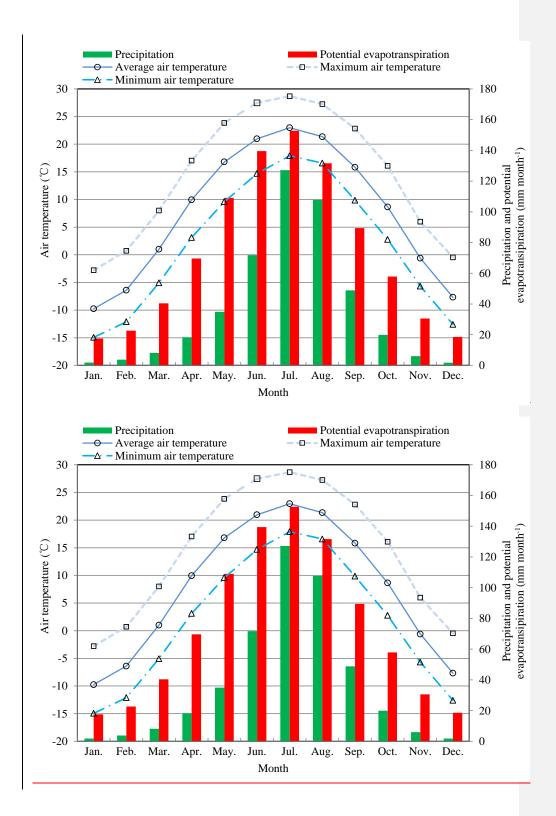
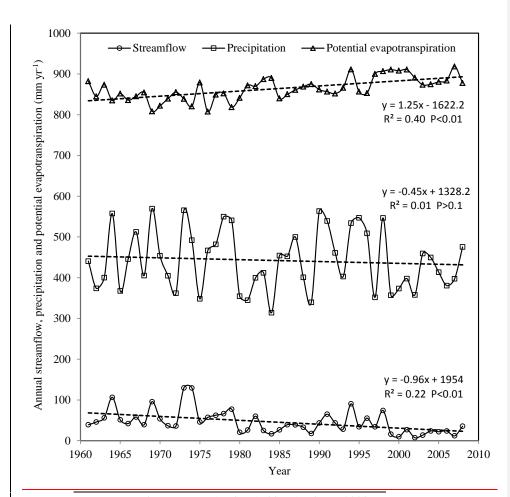



Figure 1. Information of Miyun reservoir catchment and sub catchments including YZSK(Yunzhoushuiku, $1193 \, \mathrm{km^2}$), XB(Xiabao,3960km²), SDY(Sandaoying, $1536 \, \mathrm{km^2}$), ZJF(Zhangjiafen, 8762 km²), DG(Dage, $1660 \, \mathrm{km^2}$), DY(Daiying, $4634 \, \mathrm{km^2}$), XH(Xiahui,5891 km²), HH(Huaihe, $486 \, \mathrm{km^2}$), HMC(Hongmenchuan, $111 \, \mathrm{km^2}$), BCZ(Banchengzi, $65 \, \mathrm{km^2}$), and TM(Tumen, $3 \, \mathrm{km^2}$).


Figure 2. Change in the population of 4 main counties located in Hebei province from 1961 to 2007.

mont	Average air	Maximum air	Minimum air	Precipitatio	Potential evapotranspiratio
h	temperature	temperature	temperature	n	n
Jan.	-9. 7457757 7	-2. 7769927 <u>8</u>	-14. 94844683	1. 862698 9	17. 52 5
Feb.	-6. 3912728 <u>4</u>	0. 7101924 <u>7</u>	-12. 11661221	3. 77381 <u>8</u>	22. 64 <u>6</u>
Mar.	1. 01906469 <u>0</u>	7.99848097 <u>8.</u>	-5. 060808158	8. 131746 <u>1</u>	40.4
Apr.	9. 94022046 9	17. 0288183 0	3. 117433862 <u>1</u>	18. 28915 <u>3</u>	69.6
May.	16. 7950802 8	23. 8500384 9	9. 607671958 <u>6</u>	34. 91825 9	109. <mark>04<u>0</u></mark>
Jun.	20.9692504 <u>21.</u>	27. 4908907 <u>5</u>	14. 69842152 7	71. 75503 <u>8</u>	139. <mark>48<u>5</u></mark>
Jul.	22.9753089 23.	28. 6749189 7	17. 9087899 9	127. 1421 1	152. 72 7
Aug.	21. 3538752 <u>4</u>	27. 2623059 <u>3</u>	16. 58661888 <u>6</u>	107. 727 7	131.6
Sep.	15. 8313051 <u>8</u>	22. 8249206 <u>8</u>	9. 864100529 9	48. 83519 <u>8</u>	89. <mark>44<u>4</u></mark>
Oct.	8. 65164533 7	16. 0926182 <u>1</u>	2. 77177846 <u>8</u>	19. 91111 9	57. <mark>84<u>8</u></mark>
Nov.	-0. 608933 6	<u>5.971119936.</u>	-5. 682257496	<u>5.9859796.</u>	30. 56 <u>6</u>
Dec.	-7. 6903823 7	-0. 4657194 <u>5</u>	-12. 59953234	1. 772222 <u>8</u>	18. 56 6

Figure 3. Monthly average precipitation, potential evapotranspiration and air temperature during 1961-2008 in Miyun reservoir catchment.

_	Figure 4. Land use types	1978 19	88 1998	2008	
	grassland	16.54096	18.48505	10.37711	9.830949
	cropland	23.94668	17.28869	15.16255	13.13394
	forestland	55.61118	60.59168	71.93108	73.79064
_	others	3.90117	3.63459	2.529259	3.244473

Figure 4. Land use composition of Miyun reservoir catchment (15380 km²) in 1978, 1988, 1998, and 2008.

带格式表格

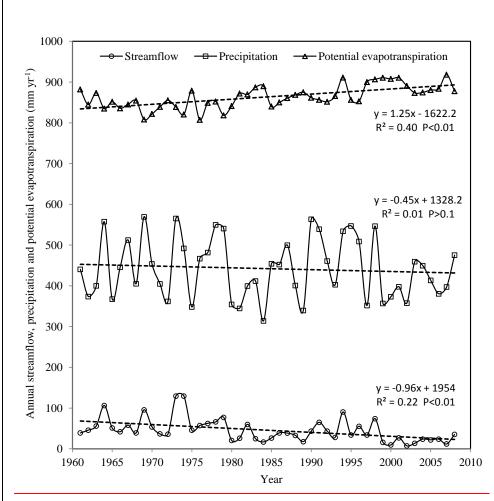
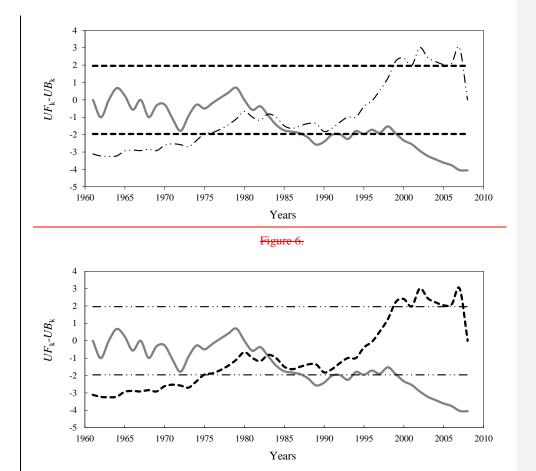
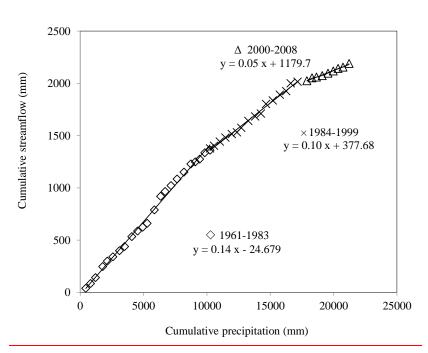


Figure 5. Evolution of streamflow (Q), precipitation (P), and potential evapotranspiration (E_p) of Miyun reservoir catchment over 1961-2008. The dashed lines are the fitted trend for variable.




Fig. 5 The Sequential Mann-Kendall test for annual streamflow in Miyun reservoir catchment with forward-trend UK_k (solid line), and backward-trend UB_k (dasheddotted line). Dotted Dashed bold horizontal lines represent critical values at the 95% confidence.

带格式的:缩进:首行缩进: 2 5 符

带格式的:字体:(默认)Times New Roman,四号

带格式的: 字体: (默认) Times New Roman, 四号

带格式的: 字体: (默认) Times New Roman, 四号

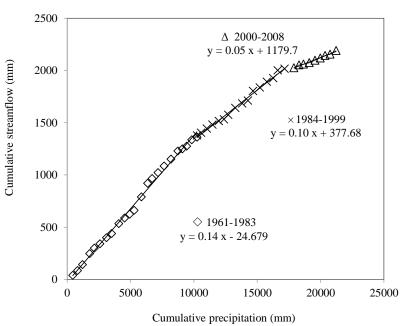
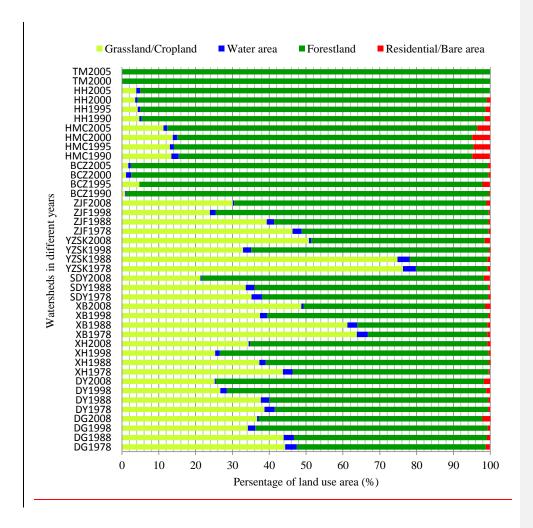



Figure 76. The Double Mass Curve showing the relations between cumulative streamflow and cumulative precipitation for Miyun reservoir catchment (1961-2008).

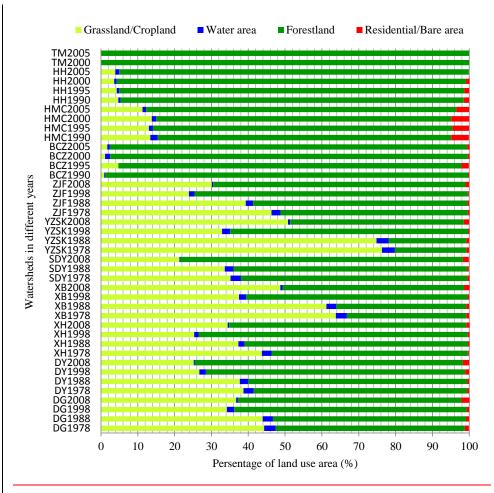
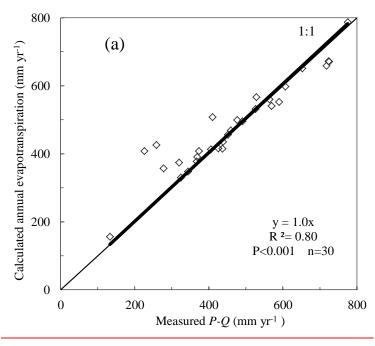



Figure <u>87</u>. Land use composition of watersheds in different year used for annual water balance model building. For example, DG1978 refer to Dage Watershed in 1978. Data prior to 2001 was used for the model calibration. Data after 2001 was used for the model validation.

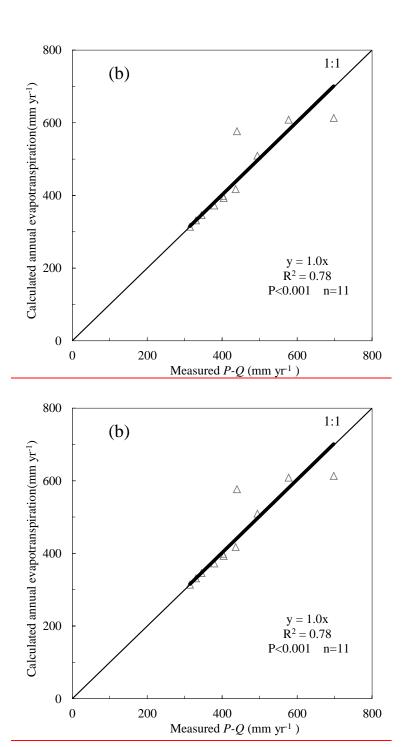
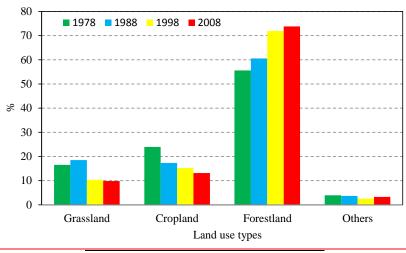



Figure 98. Scatter plots of calculated evapotranspiration using equation (7 & 8) against measured evapotranspiration $E_a = P - Q$ during calibration phase (a) and validation phase period (b). The dashedthin line is the 1:1 line and the solidbold line is the line of best-fit provided by the equation.

Land use types	<u>1978</u> <u>1988</u>		<u>1998</u>	<u>2008</u>
Grassland	<u>16.5</u>	<u>18.5</u>	<u>10.4</u>	<u>9.8</u>
Cropland	<u>23.9</u>	<u>17.3</u>	<u>15.2</u>	<u>13.1</u>
Forestland	<u>55.6</u>	60.6	<u>71.9</u>	<u>73.8</u>
<u>Others</u>	<u>3.9</u>	<u>3.6</u>	2.5	<u>3.2</u>

Figure 9. Land use composition of Miyun reservoir catchment (14,653 km²) in 1978, 1988, 1998, and 2008.

带格式表格