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Abstract. This study examines the uncertainty in calculating the fundamental climatological char-

acteristics of precipitation in the East Asia region from multiple fine-resolution gridded analysis

datasets based on in-situ rain gauge observations and data assimilations. Five observation-based

gridded precipitation datasets are used to derive the long-term means, standard deviations in lieu of

interannual variability and linear trends over the 28-year period from 1980 to 2007. Both the annual5

and summer (June–July–August) mean precipitation is examined. The agreement amongst these pre-

cipitation datasets are examined using two metrics including the signal-to-noise ratio (SNR) defined

as the ratio between long-term means and the corresponding standard deviations, and Taylor dia-

grams which allows examinations of the pattern correlation, the standard deviation, and the centered

root mean square error. It is found that the five gauge-based precipitation analysis datasets agree well10

in the long-term mean and interannual variability in most of the East Asia region including eastern

China, Manchuria, South Korea, and Japan, which are densely populated and have fairly high density

observation networks. The regions of large inter-dataset variations include Tibetan Plateau, Mongo-

lia, northern Indo-China, and North Korea. The regions of large uncertainties are typically lightly

populated and are characterized by severe terrain and/or extreme high elevations. Unlike the long-15

term mean and interannual variability, agreements between datasets in the linear trend is weak, both

for the annual and summer mean values. In most of the East Asia region, the SNR for the linear trend

is below 0.5, i.e., the inter-dataset variability exceeds the multi-data ensemble mean. The uncertainty

in the spatial distribution of long-term means among these datasets occurs both in the spatial pattern

and variability, but the uncertainty for the interannual variability and time trend is much larger in20
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the variability than in the pattern correlation. Thus, care must be taken in using long-term trends

calculated from gridded precipitation analysis data for climate studies over the East Asia region.

1 Introduction

Long-term means, standard deviations in lieu of interannual variability, and trends calculated from

observed data are among the fundamental fields in representing the characteristics of regional cli-25

mates. These climatological properties play crucial roles in defining climatological norms, occur-

rence of extreme events, detection of climate change, and projecting future climate variations and

change as well as their impacts (Giorgi et al., 1994; Groisman et al., 2001; Kim, 2005). For example,

reliability of the climate change detection is examined by comparing the long-term means and trends

calculated from observations against those simulated in climate model sensitivity experiments (e.g.,30

IPCC, 2001, 2007). In addition, the changes in key local hydrological fields such as precipitation

are frequently measured relative to their climatological means. Thus, calculating reliable values of

these properties is a critical step in climate research for identifying regional climate characteristics,

through quantification of their changes due to external and/or internal forcings such as emissions of

anthropogenic greenhouse gases, and the impacts of such changes on regionally important sectors.35

Gridded representations of observed data on the basis of a variety of instruments, locations, plat-

forms, retrieval algorithms and analysis schemes are widely employed in climate research with vari-

ous goals (Legates and Willmott, 1990; Mitchell and Jones, 2005; Shige et al., 2006; Schneider et al.,

2014). Typically, only a limited number of such datasets were available, and most climate studies

employed a single dataset which includes features needed for their analyses. Recently, a number40

of researchers and institutions have introduced newly developed observation-based gridded analysis

datasets of global or regional coverage with fine spatial resolutions (Legates and Willmott, 1990;

Adler et al., 2003; Mitchell and Jones, 2005; Shige et al., 2006; Yatagai et al., 2012; Pai et al.,

2013; Schneider et al., 2014). These newly introduced analysis datasets provide precipitation and/or

surface air temperatures over extended periods of multiple decades at spatial resolutions of 0.5◦45

or finer, which are substantial improvements from previous generation datasets that are typically at

much coarser horizontal resolutions, for example, the 2.5◦ resolution GEWEX Global Precipitation

Climatology Project (Adler et al., 2003). These recent fine-scale datasets allow us to better examine

the regional precipitation and temperature climatology and to perform more reliable evaluations of

today’s high-resolution climate simulations, especially over the regions of complex terrain, that are50

important for climate-change impact assessments and climate model evaluations (Kim et al., 2013).

These new datasets also introduce uncertainties in calculating regional climate characteristics be-

cause of the differences amongst them. Based on these concerns, two recent studies by Prakash et al.

(2014) and Kim et al. (2015) examined uncertainty in calculating precipitation climatology over In-

dia and its surrounding regions using multiple precipitation analysis datasets. These two studies have55
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revealed independently that there exist substantial amounts of differences amongst today’s gridded

precipitation datasets resulting in uncertainties in the calculated precipitation climatology and that

the uncertainty or the spread amongst multiple datasets vary according to regions as well as seasons.

Kim et al. (2015) further revealed that uncertainties in the calculated precipitation climatology de-

fined relative to their climatological means are generally larger in the dry regions and/or local dry60

seasons. These two studies strongly suggest that uncertainty due to the differences between various

datasets needs to be examined and quantified in all climate studies because the absolute accuracy of

individual datasets cannot be quantified in practice.

In this study, we investigate the uncertainty in calculating fundamental properties in representing

regional climate characteristics of precipitation over the far east Asian region due to the differ-65

ences amongst today’s fine-resolution gridded datasets based on analyses of observed data. This

study examines for the first time the uncertainty in calculating the standard deviation, a widely-used

first-order statistical moment, and linear trend against that in calculating the average, the zero-order

statistical moment. Examining the uncertainty in assessing the key precipitation characteristics from

the current available precipitation data can help interpret future precipitation projections. In East70

Asia, with huge populations and frequent hydrologic extremes, assessing long-term variations in

precipitation has been an important concern. However, the effects of inter-dataset differences on

such assessments have not been studied so far. The uncertainty analysis for the East Asia region in

this study is also applicable to any other parts of the world. The methodology and data are presented

in Sect. 2, and results are given in Sect. 3. Section 4 summarizes and discusses the implications of75

the findings in this study.

2 Methodology and data

In this study, spatial variations in the long-term means, interannual variabilities, and linear trends

over the region of interest are examined in terms of inter-dataset variability measured using signal-

to-noise ratio (SNR) and the similarity with reference data.80

Five gridded precipitation datasets are used to estimate the uncertainty in constructing regional

climate characteristics over East Asia for the entire year and for the summer season (June–July–

August). Only the datasets that cover more than 25 years are selected for analysis for reliable cal-

culations of the temporal variability in lieu of interannual variability and linear trends. The period

of the recent three decades examined in this study corresponds to the period of quite steady (near85

monotonic) and large increases in the global mean temperature. The analysis was limited to the 28-

year period (1980∼ 2007) due to the length of the available data. Examination of the precipitation

trend in the period of clear warming trend is a major scientific interest related to the link between

the changes in precipitation and temperature.
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Based on the selection criterion, five high-resolution gridded datasets are selected, including the90

Climate Research Unit of the University of East Anglia (CRU), University of Delaware (UDEL),

Global Precipitation Climatology Center (GPCC), the Asian Precipitation − Highly Resolved Ob-

servational Data Integration Towards Evaluation of water resources (APHRODITE), and the Mod-

ern Era Retrospective-analysis for Research and Applications (MERRA) land, that are either based

on rain gauge data or assimilations. These datasets and references are summarized in Table 1. We95

also examined uncertainties including the coarse resolution Global Precipitation Climatology project

(GPCP) data (Adler et al., 2003) to get essentially the same conclusions that are obtained with the

original five datasets only; thus, the results including the GPCP data are not presented here to focus

on fine-resolution datasets.

Note that there are some factors leading to differences among the datasets − e.g., the horizon-100

tal and/or vertical resolutions, the gridding procedure, the analysis methods, etc. Such inter-dataset

differences may be an unavoidable source of uncertainty in this study. As seen in Table 1, obser-

vational data are available in various resolutions and discretizations. In fact, datasets of the same

horizontal resolution can be defined in different grid structures. The gridding procedure might also

be different for different dataset. The analysis datasets are usually based on different sets of station105

(observational) data, depending on the data availability at the time of analysis and specifics of the

quality control procedures (e.g., Mitchell and Jones, 2005; Yatagai et al., 2012; Pai et al., 2013).

Furthermore, the analysis methodology, essentially the interpolation scheme that varies for different

analysis datasets, can contribute to the inter-dataset differences. However, assessing the effects of

different datasets and/or the analysis schemes on the inter-dataset differences used here is beyond110

the scope of this study.

To alleviate the uncertainty related to the inter-dataset differences, we have interpolated all datasets

onto a common grid so that we can compare all datasets at the same locations. The spatial interpo-

lation procedure can affect the characteristics of spatial variability of the interpolated data. This can

be an important concern in deriving the characteristics of horizontal variability, e.g., spatial power115

spectra, but is not expected to have serious effects on deriving temporal variability of the interpo-

lated data. Because all of the properties we concern in this study are related to the temporal variability

(e.g., temporal means, standard deviations, and trends), we expect the differences in the horizontal

resolutions and subsequent spatial interpolation have minimal impacts on the results. We have also

created a multi-dataset ensemble by simple averaging of all observational datasets included in the120

analysis, using equal weights. The equal weighting is employed because the accuracy of individual

datasets cannot be determined objectively.

Uncertainties in representing precipitation climatology due to the spread amongst today’s obser-

vational data are examined in terms of the SNR. The SNR has been a key property in a number of

climate studies in which the uncertainty of climate signals are estimated against noises stemming125

from various sources (e.g., Giorgi and Mearns, 2002; Covey et al., 2003; Meehl et al., 2005; Tebaldi
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and Knutti, 2007; Duan and Phillips, 2010). In climate and weather forecast research based on en-

sembles of multiple model or observation datasets, the SNR has been used to measure the reliability

of the multi-dataset ensemble mean against the spread of the datasets in the ensemble. Within this

context, the signal and noise are defined as the associated mean and standard deviation, respectively,130

of multiple datasets. The definition of “noise” can be complicated when the data reliability varies

among datasets and the weighting factor in constructing multi-dataset ensemble can vary for differ-

ent dataset (Duan and Phillips, 2010). Such complications in calculating “noise” frequently occur in

climate projections where outputs from various models of varying performance are used to construct

an ensemble mean using the variable weighting (e.g., Giorgi and Mearns, 2002). Because it is practi-135

cally impossible to rank the selected observational datasets in terms of their accuracy, the ensemble

is constructed using an equal weighting.

The similarity between individual datasets and the reference data defined as the multi-dataset

ensemble is measured in terms of the pattern correlation and the standard deviation of individual

datasets relative to the reference datasets. Measurements of these two properties are presented using140

Taylor diagrams (Taylor, 2001; Gleckler et al., 2008). Taylor diagram was first introduced by Taylor

(2001) to provide a way to intuitively present two properties simultaneously; the correlation coeffi-

cient of a dataset with the reference data are presented in the azimuth angle (the angle for perfect

agreement is zero) and the relative magnitude of the standard deviation of a dataset with respect

to that of the reference data is expressed as the radial distance (e.g., see Fig. 5a). Thus, the radial145

distance of 1 and the azimuthal angle of 0◦ implies that a sample data has the same pattern and

variability as the reference data. In addition, the distance between the point (0◦, 1.0) and a data

point in this diagram corresponds to the centered root mean square error (RMSE). This diagram has

become one of the most widely used methodologies in climate studies for presenting the evaluations

of multiple models and/or variables or intercomparison of multiple datasets (IPCC, 2001; Taylor,150

2001; Duffy et al., 2006; Gleckler et al., 2008; Kim et al., 2013, 2015).

3 Results

3.1 Regional climatology

Figure 1 presents the three basic characteristics of the annual and summer (June–July–August) pre-

cipitation climatology over East Asia – long-term means, interannual variability and trends, calcu-155

lated from the ensemble mean of the multiple datasets in Table 1. The annual mean precipitation in

the region is characterized by the wet regions in southeastern China and Japan (Fig. 1a). Precipita-

tion over the Korean Peninsula is characterized by maxima in the southwestern and central regions

and a rapid decrease towards the northwestern part of the peninsula bordering with Manchuria. The

driest region covers southern Mongolia, the Gobi desert, and northern Tibetan Plateau. Interannual160

variability of the annual mean precipitation (Fig. 1b) also shows similar distribution as the annual
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means. Linear trend of the annual precipitation varies substantially according to geography (Fig. 1c).

The most notable features include the positive trend in the driest region, including southern Mon-

golia, the Gobi desert and northern Tibetan Plateau, and the negative trend along the wet Yangtze

River. Strong positive trends are also found in much of the Korean Peninsula, the coastal region of165

northern China to the west of the Shandong Peninsula, most of southern China, and eastern Japan.

Decreasing precipitation trends also occur in the region between 45 and 50◦ N and extending from

central Mongolia to far-eastern Russia. The summer rainfall climatology (Fig. 1d–f) resembles the

annual mean climatology but with larger magnitudes. This shows that the precipitation climatology

over the East Asia region is primarily determined by the summer rainfall.170

3.2 Uncertainties in precipitation climatology

The climatology presented in Fig. 1 varies for different datasets. This is inevitable because each

dataset utilizes different raw data, data quality control, and analysis methodology (Xie and Arkin,

1995). Because it is practically impossible to determine which dataset is more accurate, assessing the

reliability of climatological properties calculated from various datasets as well as the expected range175

of uncertainty due to the diversity of these datasets is crucial in calculating regional climatology

(Kim et al., 2015). In this section, the range of uncertainty in the three precipitation characteristics

is measured in terms of the SNR and the agreement between individual datasets and the multi-data

ensemble mean in terms of the spatial pattern correlation and the magnitude of spatial variability

following the methodology of Kim et al. (2015), using the Taylor diagram.180

The SNR is calculated as the ratio between the multi-data ensemble mean and the inter-dataset

variability, i.e., a measure of the magnitude of the multi-dataset ensemble mean relative to that of the

inter-dataset variations. Thus, as SNR increases, these datasets agree more closely with each other.

There is no established threshold value of SNR to distinguish “good” from “bad”. However, we may

use some subjective guidance to interpret the SNR values. For instance, if SNR < 1 the signal is185

smaller than the noise, and it becomes a clear case that the signal is not reliable. The case with SNR

> 5 may indicate that the spread amongst the multiple datasets may be small enough so that we can

take the multi-data ensemble as the representative value for the included datasets.

The SNRs for the annual mean precipitation (Fig. 2a) and its interannual variability (Fig. 2b) over

the 25-year period exceeds 5 in most of the study domain. Hence, the five datasets examined in190

this study agree well in terms of the annual mean precipitation and its interannual variability in the

East Asia region. The regions of small SNR, i.e., showing poor agreements amongst the selected

datasets, are located in the western part of the domain that include eastern Tibetan Plateau, the Gobi

desert, and northern Indochina bordering with China. It is notable that the station density is relatively

low in these regions. The SNR for the interannual variability is generally smaller than that for the195

mean; thus, uncertainty in calculating the interannual variability is larger than in calculating the

mean climatology. Unlike the annual mean and its interannual variability, the SNR for the linear
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tendency of the annual precipitation (Fig. 2c) is generally below 5 in most regions. Thus, long-term

annual precipitation trend in the region is highly uncertain except in a few small areas.

Figures 2d−f show the SNR for the summer mean precipitation. Overall, the reliability of the200

three characteristics of the summer precipitation calculated from these five datasets is similar to that

of the annual precipitation. The SNRs for the summer precipitation climatology is somewhat smaller

than those for the annual precipitation climatology, but still largely exceed 5 in about the same region

as for the annual precipitation. For the interannual variability (Fig. 2b vs. Fig. 2e) and linear trend

(Fig. 2c vs. Fig. 2f), the five datasets agree more closely for the summer mean values than for the205

annual mean values. It is noteworthy that the positive tendency of the summer rainfall in southern

China (Fig. 1f) is highly reliable as all five datasets agree closely (i.e., relatively smaller inter-dataset

variations compared with the multi-dataset ensemble mean).

To evaluate the statistical significance of trends, we have plotted the p−values from each dataset in

calculating the linear trend of the annual-mean precipitation and the summer-mean precipitation (see210

Figs. 3 and 4, respectively). The regions of large SNR correspond to the regions of small p−values

in calculating the linear trend. This suggests that some of the uncertainty in the multi-dataset en-

semble may be inherited from the uncertainty in calculating the trend from individual datasets. Still,

a significant portion of the region of small p−values shows small SNR values. Thus, inter-dataset

differences are the main cause of the uncertainty in calculating long-term trends.215

Figure 5 measures the spatial variations in the three climatological properties represented by the

five observational datasets using the Taylor diagrams and the simple multi-dataset ensemble as the

reference. In these diagrams, the areas encompassed by the red polylines may be regarded as the

range of uncertainty (see Kim et al., 2015). Thus, as the area is smaller, the uncertainty due to the

differences between the examined datasets is smaller. The spread in the azimuthal and radial direc-220

tion indicates the spread in the spatial pattern and in the magnitude of spatial variability, respectively.

Similarly as from Fig. 2, the uncertainties in the spatial variations of the annual and summer mean

precipitation and their interannual variability are much less than the uncertainty in the spatial varia-

tions of the linear trend. The distances from the reference data at the point indicated by a star (i.e.,

the reference point with both standardized deviation and correlation being equal to 1.0) to individual225

datasets for the means (Figs. 5a and 5d) are similar to those for their interannual variability (Figs. 5b

and 5e), indicating similar level of spread amongst these datasets in representing these two prop-

erties of the precipitation climatology in the region. Regarding the linear trend (Figs. 5c and 5f),

compared to the means and their interannual variabilities, the distances between the reference point

and individual datasets are much larger. This is another indication of the larger uncertainties in the230

linear trend represented by these datasets.

One interesting feature in the examination of the uncertainties in the spatial variability in Fig. 5 is

that the spreads in these datasets occur in both the spatial pattern and the magnitude for the annual

and summer mean values; however, these datasets show more consistency in the spatial pattern than
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in the variability. Figures 5b and 5e show that the five datasets show similar spatial correlations with235

the reference data and that the predominant spread among these datasets are in the radial direction,

i.e., the magnitude of the spatial variability. This feature is more pronounced for the linear trend

(Figs. 5c and 5f) which shows nearly linear distribution of the data points in radial directions, i.e.,

much smaller spread in the azimuthal direction (pattern correlations) than in the radial direction

(magnitude of variability relative to the reference data).240

4 Summary and discussions

The uncertainties in three fundamental climatological characteristics of the precipitation over East

Asia due to the differences among available fine-scale observation-based gridded analysis datasets

have been examined using the metrics selected for objectively measuring the spread of these proper-

ties calculated from individual datasets. The three climatological characteristics include the means,245

interannual variabilities, and linear trends in the annual and summer mean precipitation, which are

key fundamental climatological characteristics widely used in studies for examining regional climate

characteristics and model evaluations. The spread or the magnitude of disagreements amongst the

selected datasets are measured using the signal-to-noise ratio (SNR) and examined visually using

the Taylor diagrams which allows simultaneous evaluations of three properties – pattern correlation,250

standard deviations and the centered mean square errors between multiple datasets and a reference

dataset.

The SNR values calculated from the five selected precipitation datasets show that the mean cli-

matology of the annual and summer mean precipitation values and their interannual variability are

highly reliable in much of East Asia except in southern Mongolia, the Gobi desert, and the Tibetan255

Plateau – the regions of sparse population and complex terrain. Precipitation measurements in re-

gions of dry climate and complex terrain require high density networks (e.g., Kim et al., 2015).

Unlike the climatological mean values and interannual variability, linear trends calculated over the

28-year period are highly uncertain except in a few limited areas. It is striking that reliable estima-

tions of the temporal trend of the annual mean precipitation (Fig. 2c) is very low compared to that260

for the means and the variability (Fig. 2a and b, respectively). Reliable calculation of linear trends is

only possible over the southern China region for the summer mean precipitation. Thus extra caution

must be taken when analyzing precipitation trends over the East Asian region.

The uncertainty characteristics also vary according to the climatological properties. Figures 1 and

2 discussed above show that the reliability of calculating temporal variabilities is much lower than265

that of time mean values, especially for linear trends. In addition, the spatial pattern and variability of

the calculated linear trend (Fig. 5c) show much larger spread (i.e., uncertainty) among these datasets

compared to the annual means (Fig. 5a) and interannual variability (Fig. 5b). The consistency in the

spatial pattern between individual datasets and the reference data measured in terms of the corre-
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lation are near or over 0.95 for the temporal means and variability whilst it barely exceeds 0.8 for270

the linear trend. The range of spatial variability measured in terms of the standardized deviation (the

ratio between the standard deviation of a datasets and the reference dataset) for the linear trend is

over 0.5 which is more than twice of the range of the means and the variabilities. It is also observed

that uncertainties in the spatial distribution of the annual and summer mean precipitation (Fig. 5a

and 5d, respectively) occur in both the spatial pattern and the magnitude of variability. For the in-275

terannual variability and linear trends, the spread in the standardized deviation (i.e., the magnitude

of variability) is much larger than that in the spatial pattern. These may suggest that all of these

datasets are affected by some common factors in determining the characteristics of these datasets.

For example, the station datasets included in each analysis dataset may provide high consistency

in the spatial distribution pattern, but different analysis schemes may lead to a larger spread in the280

magnitude of their variability because of different basis functions employed in different interpolation

schemes (e.g., Xie and Arkin, 1995; Prakash et al., 2014). This is just a hypothesis and needs close

examinations in future studies.

The uncertainty in calculating precipitation climatology in the regions including southern Mon-

golia, the Gobi desert, and the Tibetan Plateau is of a special concern. These regions can respond285

sensitively to climate change because of disproportionally larger impacts of global warming on high

elevation regions and snow-ice processes (e.g., IPCC, 2007; Waliser et al., 2011). Because of rapid

variations in the spatial precipitation distributions according to terrain during storms, accurate mea-

surement of precipitation in the regions of extreme terrain requires high gauge network (Xie and

Arkin, 1995). The sparse population density in these regions may require higher cost to build and290

maintain additional gauges to reduce the uncertainties. Remote sensing of precipitation will play

important roles in monitoring precipitation over these regions of sparse observations in addition to

the investments for installing and maintaining additional surface observing stations.
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Table 1. The precipitation datasets employed in this study.

Dataset name Source Resolution References

CRU Rain gage 0.5◦ × 0.5◦ Mitchell and Jones (2005)

UDEL Rain gage 0.5◦ × 0.5◦ Legates and Willmott (1990)

APHR Rain gage 0.25◦ × 0.25◦ Yatagai et al. (2012)

GPCC Rain gage 0.5◦ × 0.5◦ Schneider et al. (2014)

MERRA-Land Assimilation 2/3◦ × 0.5◦ Reichle et al. (2011)

Figure 1. The climatological properties of the annual (upper panels) and summer (lower panels) precipitation

for the period 1980–2007 over East Asia: (a, d) the mean climatology, (b, e) the standard deviation, and (c, f)

the linear trend of precipitation. These properties are derived from the ensemble of the corresponding properties

calculated from the datasets in Table 1.
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Figure 2. The signal-to-noise ratio (SNR) for the properties shown in Fig. 1, calculated from the corresponding

properties of the five precipitation analysis datasets in Table 1.

Figure 3. The p−values in calculating the linear trend of the annual-mean precipitation from each dataset.
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Figure 4. Same as in Fig. 3, but for the summer-mean precipitation trend.
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Figure 5. The spread amongst the five precipitation datasets in representing the spatial variability of the three

climatological properties of the annual (upper panels) and summer (lower panels) precipitation over East Asia:

(a, d) the mean, (b, e) the interannual variability, and (c, f) the trends of precipitation. They are presented in

terms of their spatial pattern correlations (the azimuthal direction), the standardized deviation, and the standard

deviation of individual datasets normalized by that of the reference data (the radial direction). The area within

the red polyline represent the range of spread amongst these datasets.
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