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Abstract

Finding ways to improve the efficiency in water usage is one of the most important chal-
lenges in integrated water resources management. One of the most promising solutions
is the use of scarcity-based pricing policies. This contribution presents a procedure to de-
sign efficient pricing policies based on the opportunity cost of water at the basin scale.5

Time series of the marginal value of water are obtained using a stochastic hydro-economic
model. Those series are then post-processed to define step pricing policies, which depend
on the state of the system at each time step. The case study of the Mijares river basin
system (Spain) is used to illustrate the method. The results show that the application of
scarcity-based pricing policies increases the economic efficiency of water use in the basin,10

allocating water to the highest-value uses and generating an incentive for water conserva-
tion during the scarcity periods. The resulting benefits are close to those obtained with the
economically optimal decisions.

1 Introduction

One of the main challenges in integrated water resources management (IWRM) is improv-15

ing the efficiency in water usage while balancing it with equity. Given that in the majority of
the developed world the building of new water supply systems has well-passed its zenith,
water management strategies are now devoted to achieve better operating policies. Several
criteria can be considered when designing a policy for water allocation: flexibility in the allo-
cation, security of tenure for the users, real cost recovery, predictability of its performance,20

fairness and acceptability (Dinar et al., 2007). Each system has a unique configuration and,
in consequence, a unique combination of factors that lead to an adequate management
policy.

There are four major water allocation mechanisms: public water allocation, water mar-
kets, user-based allocation and marginal cost pricing. Public water allocation provides an25

adequate treatment of water as a public good, allows the development of large-scale in-
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frastructures often beyond the private investment capacity, and focuses on equity issues
and non-economic objectives. However, it usually fails in achieving optimal economic per-
formance, leads to water prices which are below the water value, and provides no incentive
to water saving and efficient use (Meinzen-Dick and Mendoza, 1996). Water markets en-
courage both sellers and buyers to use it efficiently, provide flexible allocation mechanisms5

and allow considering the real value of the employed resource. On the contrary, unique
characteristics of water can turn markets into a bad allocation mechanism if externalities
are not adequately considered (Garrick et al., 2009). User-based allocation, in which water
users regulate water resources by themselves, is especially suited for local needs in water
management, and is likely to be accepted by the users. However, it may be inadequate in10

inter-sectorial allocation, requiring also a very transparent structure (Dinar et al., 2007).
Finally, marginal cost pricing provides a theoretically adequate way to consider water

values in allocation, encourages users to save it and puts water in its most valuable uses,
leading to efficient allocations. It also can play a major role in the long run planning and con-
servation of water supplies, delaying the need of capacity expansions and offering higher15

economic returns while holding rationing requirements (Gysi and Loucks, 1971). However,
marginal cost pricing would require estimating the non-accounting opportunity costs in-
volved in water allocation (Griffin, 2001). Calculating the marginal value of water is chal-
lenging as it varies in space and time according to supply-demand imbalances; requires
adequate monitoring; and has some difficulties to deal with equity when water prices are20

beyond what lower-value users can afford (Dinar et al., 2007). Moreover, administrative
constraints on price charges can limit their benefits (Dandy et al., 1984). In Europe, the EU
Water Framework Directive (European Commission, 2000) calls for the implementation of
new pricing policies that assure the contribution of water users to the recovery of the cost
of water services (financial instrument) while providing adequate incentives for an efficient25

use of water (economic instrument). Not only financial costs should be recovered, but also
environmental and resource (opportunity) costs. This issue has been addressed through
the use of hydro-economic models as tools able to couple physical and economic water

3
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resource aspects (Heinz et al., 2007; Pulido-Velazquez et al., 2008, 2013; Riegels et al.,
2013; Ward and Pulido-Velazquez, 2008).

A pricing policy is efficient, according to economic theory, if the prices charged corre-
spond to the marginal cost of water. Therefore, it must take into account supply costs,
opportunity costs and externalities (Rogers et al., 2002). Measuring the opportunity costs5

of scarce water is difficult: since water markets are usually absent or ineffective, scarcity
values are not reflected in the water prices. Given that opportunity cost depends on the
alternative uses, an integrated basinwide approach is needed to simultaneously account
for all major competing water uses in the basin (Rogers et al., 2002; Pulido-Velazquez
et al., 2013). The assessment of these opportunity costs requires a systems approach and10

a proper method to estimate the value of water across the different users (Young, 2005;
Pulido-Velazquez et al., 2008). If pricing policies reflect the entire basinwide marginal op-
portunity costs, then they will act as an economic instrument for efficient water resources
management, modifying the demand-supply interaction by acting on the demand side and
supporting water allocation to the most valuable users.15

The Marginal Resource Opportunity Cost (MROC), or marginal value of water, can be
defined as the benefits that would have been obtained at one location and one time if
the available resource at that location and time had been increased by one unit (Pulido-
Velazquez et al. and 2013; Tilmant et al., 2008, 2014). MROC can be derived from hydro-
economic models. Pulido-Velazquez et al. (2013) developed a method to obtain scarcity-20

based pricing policies using MROC values, in which the time series of MROC obtained after
running a hydro-economic model are post-processed to derive step pricing policies whose
performance can be simulated using a Decision Support System (DSS) shell. However,
in those studies pricing policies were based on either priority-based simulation (which are
not representing an optimal policy) or deterministic hydro-economic optimization, with the25

inherent limitation of the perfect foresight (the optimization algorithm knows future flows in
advance and, in consequence, it has an unrealistic advantage that diminish the applicability
of the results) (Labadie, 2004).
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The main purpose of this paper is to propose a method for the design of scarcity-based
water pricing policies based on the MROC derived from a stochastic hydro-economic model.
With stochastic programming procedures, uncertainty is taken into account in the opti-
mization process. Therefore, it removes the effect that the “perfect foresight” phenomenon
causes in the marginal values, which are flattened across time losing an important part of5

their short-term variability. The marginal values obtained using stochastic programming are
representative of an optimal policy while reflecting the future uncertainties in the system’s
inflows. After describing the method to obtain the MROC values, we propose a method for
the definition of a stochastic-programming-based water pricing policy. Finally, a case study
is developed to prove and illustrate the methodology using a hydro-economic simulation10

model of the Mijares river basin system (Spain). Pricing policies are applied in this paper
exclusively as economic instruments whose purpose is achieving an efficient use of water.
Financial issues are not addressed.

2 Method and materials

2.1 Assessment of the Marginal Resource Opportunity Cost (MROC)15

For a specific water demand, the benefit obtained by the user, Bi, given a change in water
delivery level from x1 to x2 can be calculated by integrating the demand curve (Di) (Fig. 1):

Bi =

x2∫
x1

Di(q)dq (1)

Similarly, for a given location L and time t, the benefit Bt achieved by a change in its
state sL,t (water availability) from x1 to x2 can be calculated integrating the marginal water20

5
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value (or MROC) function:

Bt =

x2∫
x1

MROCL,t(sL,t)ds (2)

The MROC can be defined as the derivative of the benefit function with respect to the sys-
tem state. Therefore, if the MROC integration obtains the systemwide benefits, the MROC
can be calculated as:5

MROCL,t =
dBt(sL,t)

ds
(3)

The MROC value for a specific location and time can be estimated: (1) under a simulation
approach, as the benefits obtained by an increase of one unit in the available resource at
that location and time (Pulido-Velazquez et al., 2008, 2013); and (2) under an optimization
approach, as the shadow value, dual variable or Lagrange multiplier associated to the mass-10

balance equation at the desired place and the specified time (Pulido-Velazquez et al., 2008,
2013; Tilmant et al., 2008).

2.2 MROC assessment through stochastic programming

Stochastic programming (SP) procedures are powerful and useful methodologies to derive
optimal management of water systems with uncertain inputs (Tejada-Guibert et al., 1993).15

Various SP algorithms are available. Among them, Stochastic Dynamic Programming (SDP)
has been widely used in water resources management because: (1) it is able to handle non-
linearities in the objective function in an efficient way; (2) the inflow uncertainty representa-
tion is clear and simple; and (3) it treats the decision-making process sequentially, as done
in real-life operation (Labadie, 2004). The SDP algorithm solves the Bellman’s recursive20

equation as follows:

Ft(St,Qt) = max
Dt

[
Bt(St,Qt,Dt)+EQt+1|Qt

{Ft+1(St+1,Qt+1)}
]

(4)

6
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Where Ft is the total benefit function; St the current (time t) system state vector; Qt cur-
rent inflow vector; Dt decision made at time step t; Bt immediate benefit function; EQt+1|Qt

expectation operator between the current and future inflows; and Ft+1 future benefit func-
tion or benefit-to-go function.

In the SDP method, the state variables St and Qt are discretized over all the state space5

forming a grid, allowing only transitions between grid points. The expectation operator is
then defined by using a Markov chain that relates the current hydrological state Qt with all
the possible future states Qt+1 through a set of transition probabilities.

With the application of the previously showed equation, the optimal policies Dt(St,Qt),
and benefit-to-go function Ft(St,Qt) are calculated at the grid points. Then, interpolation10

methodologies can be applied to obtain the optimal policies D∗t (St,Qt) and the optimal
benefits F ∗t (St,Qt) over the entire state-space. An alternative is to use a reoptimization
approach as in Tejada-Guibert et al. (1993). With this approach, the Bellman function is
implemented forward with the SDP-derived benefit-to-go functions as inputs.

Ft(St,Qt) = max
Dt

[
Bt(St,Qt,Dt)+

∑
q

{
ptp,q ·F ∗t+1(St+1,Qt+1)

}]
(5)15

Where St and Qt are the simulated system state (storage) and inflows at stage t; and
ptp,q is the transition probability (Markov Chain) between inflow class p at time stage t and
inflow class q at time stage t+1. The St+1 and Qt values are not subjected to a discrete
grid. The reoptimization provides time series of allocation decisions and the corresponding
λ values associated to the system’s nodes, which correspond to the MROC.20

2.3 From MROC values to pricing policies

The results given by the SDP algorithm are the optimal allocation policies, benefits and
MROC values at each point of the discrete mesh. Those values vary with the month of the
year, monthly storages and monthly inflows. A pricing scheme based on those values would
be in theory the most efficient. Highly variable prices are normal in hydropower production,25

7
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in which deregulated electricity markets’ prices and demands vary even during the same
day and, in consequence, hydropower producers need to make decisions on very short time
stages, being independent of previous choices. However, this situation is distinctly different
in consumptive demands, especially in irrigated agriculture. The majority of farmers make
most of their decisions in annual or inter-annual basis (area to be irrigated, cropping pattern5

and so on), being monthly choices dependent on decisions in previous months. Farmers act
as risk-averse decision-makers, since errors in the expectations of crop prices, input costs
and water deliveries can cause significant economic losses. For those reasons, a pricing
policy based on the monthly MROC values would introduce too much uncertainty in the
water price and thus in the agricultural sector. On the other hand, the pricing schemes de-10

rived from MROC values were conceived as the basis for a process involving discussion,
negotiation and approval of a certain simple pricing policy with certain consensus among
the stakeholders. As a result, the raw MROC values previously obtained have to be post-
processed in order to transform them into simpler a priori scarcity-based pricing policies,
so that the rule can be negotiated and known beforehand by everybody, allowing farmers to15

reach accordingly with a more predictable price. Several operations must be carried out to
transform the time series of MROC into a step pricing policy depending on the system state
variables (t,St,Qt), in which a step function defines the price to be applied each time pe-
riod. Those operations can be summarized as: MROC values aggregation/disaggregation,
MROC statistical analysis, and step pricing policy construction. Although the SDP method20

was used to obtain the MROC time series, the operations explained below can be used
regardless of the algorithm employed (another stochastic one such as SDDP, deterministic
optimization or simulation) able to provide MROC time series.

The aggregation/disaggregation of the MROC time series previously obtained is required
in order to derive pricing functions at a certain spatial and temporal scale. Regarding the25

spatial dimension of the intended pricing policy, different pricing schedules for raw water in
different zones in the system will better capture the MROC spatial variability. However, the
complexity of pricing policies will probably imply greater implementation difficulties. With
regard to the temporal scale, as stated earlier, pricing policies varying at a lower time res-

8
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olution (seasonal or monthly) are more accurate than annual ones, although they might
also face more implementation problems and higher uncertainty in future prices. Defining
a general procedure to aggregate/disaggregate MROC time series is difficult, since it de-
pends on the desired pricing policy features and each system unique features. An example
of aggregation/disaggregation process for the specific features of the desired pricing policy5

is shown in the case study section.
Once the aggregated MROC values are obtained, their cumulative probability distribution

can be determined. Several characteristic values can then be chosen using different per-
centiles of the cumulative probability distribution. Those characteristic values can be used
to estimate the MROC-state relationship by: 1) sorting the time series of state variables10

obtained with SDP according to their respective aggregated MROC values; 2) selecting the
MROC-state pairs in which the MROC value was a characteristic one; and 3) organizing
the results in the form of state-MROC steps. To sum up, the method presented in this paper
can be divided in the following steps:

1. Definition of the main pricing policy features15

2. Development of a hydro-economic stochastic programming model of the system

3. Determination of MROC (marginal water values or λ-values) time series at the refer-
ence nodes (e.g. main reservoirs)

4. Aggregation/disaggregation of MROC time series to calculate the aggregated MROC
values20

5. Development of a statistical analysis over the aggregated MROC values to obtain their
cumulative probability distribution

6. Building of k steps by:

(a) Choose k different cumulative probability values (characteristic values)

(b) Sort according to the aggregated MROC values the system state values obtained25

in the stochastic programming run
9
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(c) Obtain, for each characteristic value, the system states associated to it

(d) Summarize all the possible state values associated to each characteristic value
in the form of steps

7. Definition of several step pricing policies based on the obtained steps

Pricing policies can be simulated to assess their performance and to compare them to the5

SDP results and to other alternatives such as different operating rules. In case the pricing
policies’ performance is found to be inadequate, the process must be restarted: the pricing
policies’ features are reassessed and the build-up and analysis stages must be redone.
The most straightforward way to determine its adequacy is to quantify the forgone benefits
that the users would be willing to accept as counterpart of using a simpler pricing policy. It10

is impossible to establish a unique threshold value since it totally depends on the system
features. An alternative approach, employed in the case study of this paper, is to compare
the performance of the pricing policy with the one achieved by the optimal operating rules
expressed by the SDP results. In that way, a pricing policy could be considered as adequate
as long as it obtains similar economic returns than those for the optimal policy.15

2.4 Case study: Mijares river basin (Spain)

The Mijares river basin is located in eastern Spain (Fig. 2). It is characterized by the exis-
tence of several relevant water springs in its headwater (Mas Royo and Babor); the imple-
mentation of conjunctive use water strategies to improve water management (Andreu and
Sahuquillo, 1987); and the existence of an allocation framework accepted by all the users20

(SCRM, 1974). Regulated by the Arenós (93Mm3) and Sichar (49Mm3) reservoirs, surface
water is mostly devoted to agricultural purposes (mainly orange trees), with groundwater as
complementary or substitutive resource; while urban demands are entirely supplied using
groundwater. There are 10.499 ha irrigated exclusively by surface water and 11.622 ha irri-
gated by surface and groundwater.25

The Mijares river simplified flow network is showed in Fig. 3. Although groundwater sup-
ply is significant in the lower basin (Plana de Castellon aquifer), it has not been explicitly

10
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represented in the optimization model, as there is no hydraulic connection between the
river and the aquifer (disconnected aquifer). Upstream, stream-aquifer interaction is implicit
in the inflow (discharge) time series. Seepage equations are also added in certain lower
reaches of the river. Consequently, the all-groundwater supplied demands have not been
considered, and the mixed-supplied demands have been reduced an amount equivalent to5

its groundwater supply. The characteristics of each element are showed in Table 1.
Current water management agreements give priority to the supply to the Traditional Irriga-

tion District (ID), which has been using water since the 13th century, over the remaining IDs
(established in mid 20th century). In year 1970, before the construction of the Arenós dam
(with public funding), an agreement was signed between users to regulate the use of the10

Sichar reservoir (funded by the Traditional ID) (SCRM, 1974). That agreement established
a monthly storage limit for the Sichar reservoir below which only the Traditional ID can be
supplied (see Fig. 4). That agreement has continued to be applied after the construction of
the Arenós reservoir, but referred to the total system storage (Arenós and Sichar).

2.5 SDP hydro-economic model of the Mijares river15

The SDP hydro-economic model comprises all the elements previously described and de-
picted in Fig. 4. The hydrologic variables {qt, t= 1, . . . ,12} were discretized into 4 equally-
likely intervals per sub-basin, each one represented by a characteristic value. Water de-
mand curves are derived from Alvarez-Mendiola (2012). The minimum flow requirement
has been considered as a constraint. A lag-1 Markov chain captures the temporal persis-20

tence found in the inflow data. The discrete storage classes adopted were 13 (Arenós) and
7 (Sichar). Minimum flows, demand curves, evaporation and infiltration losses, stream ca-
pacities and benefits (obtained as the sum of integrations under all the demand curves) are
also taken into account in the model. The model was built using a generalized SDP algo-
rithm developed using GAMS software (Macian-Sorribes and Pulido-Velazquez, 2014). This25

model was optimized, for an infinite horizon, taking target storages as decision variables.

11
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3 Results

3.1 SDP-obtained benefits, policies and MROC values

The policies and benefits obtained depend on a vector consisting of four variables: Arenós
storage, Sichar storage, Upper Basin inflow and Middle Basin inflow. The optimal decisions
obtained with the algorithm followed the classic “rule of thumb” of reservoirs in series de-5

voted to water supply: fill the upper reservoirs first, and empty the lower reservoirs first
(Lund and Guzman, 1999); as the results empty first Sichar (the lower reservoir) and fill
first Arenós (the upper reservoir). In addition, Traditional ID users are subject to greater
water deficits compared to the other ones, inverting the current criteria, caused by the river
seepage in the lower Mijares streams.10

A reoptimization procedure was applied to obtain the time series of MROC values at
Arenós and Sichar reservoirs, depicted compared with the sum of storages in Fig. 5. The
plots show the same values during most of the historical time series. The slight differences
between them found in certain time stages correspond to the opportunity cost of the CC220
ID delivery. Water values increase between 1977 and 1986, period that corresponds to the15

largest drought suffered by the Mijares river basin. The average MROC value is equal to
EUR 0.15m−3, ranging from 0 to EUR 0.68m−3.

3.2 Pricing policies in the Mijares river basin

Regarding the aggregation/disaggregation of the MROC time series at Arenós and Sichar
reservoirs, the pricing policy used was defined at basinwide scale. This decision has been20

made considering the proximity of the intakes for the demands and the possibility of re-
leasing water from the two reservoirs to satisfy almost all of them. The chosen temporal
scale for the pricing policy was annual, with the same pricing policy for all the months. For
simplicity, the state variable for defining the pricing schedule was the sum of the storage in
Arenós and Sichar reservoirs, without considering the corresponding monthly inflow. That25

departs from the SDP formulation, but it is consistent with the current management poli-

12



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

cies, based exclusively on storages. The aggregation operation driven by these features
was simply a non-weighted average of the MROC values at Arenós and Sichar reservoirs,
as the MROC values are almost coincident for both reservoirs.

Figure 6 shows the MROC cumulative probability distribution. To establish pricing
policies, we sampled the 5 (EUR 0m−3), 25 (EUR 0.06m−3), 50 (EUR 0.13m−3), 755

(EUR 0.24m−3) and 95 (EUR 0.51m−3) percentiles. The MROC-storage pairs were then
organized in intervals (as depicted in Fig. 7). Each interval or step represents the range of
storage values associated to that MROC.

Those steps were used to define the pricing policies. Firstly, the storage space was di-
vided into intervals of 25Mm3. A price was then defined for each interval as either the10

minimum or the maximum or the average over the MROC values associated to the steps
found within the interval. As a result, a set of 15 pricing policies was obtained. Figure 7
shows some of them, corresponding to policies regarding maximum between steps (Pricing
Policy 1), average (Pricing Policy 2) and minimum (Pricing Policy 3). The remaining pricing
policies were based on different combinations between prices obtained in the first three.15

3.3 Pricing policy performance by hydro-economic modelling

Each pricing policy was simulated for the 1940–2009 period with a hydro-economic sim-
ulation model, previously built using MatLab (Macian-Sorribes, 2012) whose features are
identical to the SDP one. This model implements the network showed in Fig. 3 with the cor-
responding element features (storage capacity, historical monthly inflows, seepage losses20

equations, etc.), the current demand priority scheme (first the Traditional ID, then the rest),
and the current system operation scheme (first fill Arenós, first empty Sichar and avoid as
much as possible the streams subjected to seepage losses). More details can be found in
Macian-Sorribes (2012). This simulation model calculates at each month the price that cor-
responds to the available storage, redefines water demands using the demand curves, and25

then allocates resources using the system’s river network and infrastructure. Simulation re-
sults are then analysed and compared to the performances obtained with both current and
SDP-derived policies (Table 2). Figure 8a shows the time series of benefits resulting from

13
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SDP-derived policies (the optimal policies obtained from the SDP once interpolated as sug-
gested by Tejada-Guibet in 1993), current management rules and the best pricing policies
for the 1940–2009 period.

Regarding Table 2 and Fig. 8a, only slight differences can be found between policies. All
pricing policies increase the economic results of current management policies by around5

EUR 0.70 million per year, being similar to the ones obtained with the direct use of the
SDP policies.For that reason, we consider those pricing policies to be adequate, being
not necessary to test complex ones. This situation is caused by the natural robustness
of the Mijares river water system and by the homogeneity of the cropping pattern (mainly
citrus crops, mostly oranges) found in the basin. The benefit improvement caused by pricing10

policies is due to temporal reallocations: the prices hedge the immediate supplies to allow
greater deliveries in the next months. In that way, the deficits and their induced scarcity
costs are distributed over several months of slight delivery reductions rather than a single
large deficit. As the income losses are non-linear with respect to the deliveries, that deficit
distribution improves the total economic return for the system. Despite having the same15

global benefits, the way they are distributed among the users’ changes for all the pricing
policies tested, being necessary to take it into account when deciding which one to be
implemented.

Focusing on the most severe historical drought faced by the Mijares basin, from year 1977
to 1986 (Table 2 and Fig. 8b), the differences on benefits between the current management20

and the SDP results are higher (around EUR 1.10 million per year), indicating that SDP-
derived policies better hedge available resources against the drought events. To sum up,
pricing policy application resulted in greater benefits. Especially in drought situations, the
adoption of these strategies would lead to greater economic performances and to a more
efficient water use.25

14
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4 Discussion and conclusions

This paper presents a method to design an efficient scarcity-based pricing policy based
on marginal water values (MROC) derived from stochastic programming. The method is
applied to a case study, the Mijares river basin, in Spain. The results show that the benefits
from the application of the resulting pricing policies are close to those obtained by the5

optimal SDP policy for both the entire historical hydrological data series and the drought
conditions. By pricing marginal water opportunity costs, water would be reallocated to the
highest-valued uses, significantly increasing the total net benefit of water use in the basin
(by EUR 0.75 million per year).

The reason why a simple pricing policy is able to achieve similar performance than a com-10

plex optimal operating rule in this case study is due to the in-year time pattern possessed
by this policy: the majority of the MROC values that determined the water prices for the
lower storage levels correspond to start-of-refill ones, while the MROC values associated to
high storage levels are start-of-drawdown ones. For that, the prices triggered vary across
time in accordance to the refill-drawdown cycle of the system, reproducing in some way the15

water value annual cycle.
Given the uncertainties associated to the inputs of the model, the predictions concerning

the pricing policy performance are therefore uncertain. The most important source of uncer-
tainty is the demand curves, since they directly affect the MROC values and the reliability
of the simulated performance of a pricing policy. Given the strong influence of the demand20

curves in the results, demand curves should be properly estimated and tested. The robust-
ness in the estimation of the demand curves will be subject to the availability of the proper
information for the economic characterization of the water uses in the basin as well as the
suitability of the method used in the definition of those curves. This could be a limitation
in the applicability of the method to certain cases. The resulting pricing policies should be25

in any case regarded just as a starting point for a negotiation process involving the users
and policymakers to determine the final prices to be charged for water abstraction. On the
other hand, the pricing policies defined in this paper are conceived exclusively as economic
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instruments for achieving an economically efficient use of water. Financial issues (such as
revenue sufficiency, cost recovery, etc) and other goals of pricing policies like equity and
environmental sustainability should be considered as well.

Unlike the method proposed in Pulido-Velazquez et al. (2013) this one uses a stochastic
programming approach instead of deterministic programming or simulation. It also employs5

a different method to derive the pricing policies based on the MROC and state time series.
The MROC values measure the opportunity cost associated to water use. Therefore, in

order to determine the final prices charged to the users, the cost recovery component of
the supply costs (O & M and capital charges) and the environmental externalities should
be added (Rogers et al., 2002). The main objective in the design of the pricing policies10

discussed here focuses on the use of water prices as economic instrument for an efficient
management of the interaction between supply and demand. The role of pricing for cost-
recovery of water services (pricing as financial instruments) will require a complementary
analysis.

Comparing pricing policies with water markets, both will be theoretically valid approaches15

for enhancing economic efficiency in water allocation in the system. Nowadays in Spain
water markets are allowed by law, but in practice, only in a few occasions have them been
operative, and never in this system. Factors like high transaction costs, farmers’ reluctance
to participate, low physical connectivity, etc., often prevent more transfers. While the expe-
rience and literature on water markets is more abundant, water pricing is clearly underused20

regarding its potential for dealing with water scarcity. Despite its limitations, drawbacks, bar-
riers and issues for its implementation, water pricing offers some interesting features: con-
tributes to match supply and demand, generates revenues, and maintain customer choices
(against command-and control policies). On the other hand, the river basin authority holds
the formal control of the system, what is essential for addressing environmental require-25

ments, third party effects, and so on.
Regarding the established methodology and the case study, several conclusions can be

drawn:
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1. Stochastic programming is a useful tool for estimating optimal policies and MROC time
series under hydrological uncertainty. These time series capture and summarize the
overall performance of the optimization policies, and can be therefore used to assess
pricing policies able to be applied at the basin scale.

2. Pricing policies defined using MROC data series, after statistical analysis and step5

building, are adequate to enhance system’s global economic efficiency. They establish
a univocal relationship between the system state (storages and inflows), and a water
price based on the marginal value of water in a reservoir, linking the price concept to
the MROC one.

3. Participatory framework processes might be desirable to define the features and char-10

acteristics that the pricing policies should have, in order to find as much consensus as
possible for its implementation.

4. The proposed methodology aims at designing efficient pricing policies. Other issues
should be incorporated in the design of a final pricing policy, such as cost recovery of
financial costs related to water services and of environmental cost (externalities), as15

well as equity issues and other social objectives (eg. rural development, environmental
protection, etc.).

5. Pricing policy is one of the economic policy instruments that can be implemented to
adapt individual decisions to collective goals. We can also apply a mix of them (water
markets, pollution taxes, etc.) in order to better reach the social and environmental20

targets in the management of water resource systems.
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Table 1. Characteristic values of elements of the Mijares river network.

Element Characteristic value

Arenós reservoir 93Mm3 capacity
Sichar reservoir 49Mm3 capacity
Upper Basin inflow 138Mm3 annual discharge
Middle Basin inflow 55Mm3 annual discharge
Traditional Irrigation District 83.5Mm3 annual demand
MC Canal Irrigation District 7.6Mm3 annual demand
CC100 Canal Irrigation District 16.3Mm3 annual demand
CC220 Canal Irrigation District 11.9Mm3 annual demand
Minimum flow downstream Sichar 0.2Mm3 annual requirement
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Table 2. Benefits for the 1940–2009 and 1977–1986 periods with stochastic optimization (SDP),
current management rules and pricing policies.

Simulation Traditional MC CC100 CC220 Total
M EUR M EUR M EUR M EUR M EUR

1940–2009 Benefits per demand and total

SDP 44.49 4.14 8.56 6.56 63.75
Current policies 46.31 3.60 7.42 5.73 63.06
Pricing policy 10 44.99 4.06 8.29 6.47 63.81
Pricing policy 11 45.00 4.05 8.29 6.46 63.81
Pricing policy 12 45.05 4.04 8.27 6.44 63.81

1977–1986 Benefits per demand and total

SDP 35.97 3.22 6.80 5.07 51.05
Current policies 42.05 1.69 3.52 2.68 49.93
Pricing policy 4 37.11 3.06 6.09 4.86 51.12
Pricing policy 5 37.11 3.06 6.09 4.86 51.12
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Figure 1. Benefits from an increase of water delivery from x1 to x2.
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Figure 2. Mijares river basin location (Eastern Spain).
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Figure 3. Mijares river network schematic.
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Figure 4. Current management rule curve established in the Mijares river basin.
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Figure 5. MROC time series and storages in the Mijares river.
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Figure 6. Combined MROC cumulative probability distribution.

29



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 7. MROC-based pricing policies.
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Figure 8. Annual total benefits comparison for the 1940–2009 period (a) and for the 1977–1986
drought (b).
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