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1 Response to Reviewers and Summary of Changes   
First, we would like to thank the editor and the referees for the review and the helpful 

comments to improve the paper. We have addressed all the comments as explained below. 

Editor comments: 
-Abstract: “Climate change is expected to change the water cycle”. I would suggest replacing the 

second “change” with “impact” or “modify”. 

Answer: We changed the sentence, the sentence now reads as follows: 

“Climate change is expected to impact the water cycle and severely affect precipitation patterns across 

central Europe and in other parts of the world, leading to more frequent and severe droughts.” 

-Pag. 26, line 6: “often in addition to elevated” – remove “often” 

Answer: We removed “often” 

-Pag. 26, line 29: “First” should be “first” 

Answer: We corrected it. 

-Pag. 26, line 12-13: “…only few studies focus on forest ecosystems or take a closer look at drought 

impacts on soils where often only soil moisture is observed (Ozolinčius 12 et al.., 2009,; Albert et 

al.., 2011,; Glaser et al.., 2013)”. According to the response to reviewers, this should be “…only 

few studies focus on forest ecosystems or take a closer look at drought impacts on soils where 

often only soil moisture is observed to change and no variations in other soil properties are 

monitored (Ozolinčius et 34 al., 2009; Albert et al., 2011; Glaser et al., 2013).” 

Answer: We changed the sentence as asked above. 

-Pag. 33, lines 4-6: “the reverse moisture…in the data”. This is a bit confusing, please provide other 

plausible explanations, rather than hydraulic redistribution (since you say you did not find any sign 

of hydraulic redistribution). 

Answer: We agree and changed the sentence to: 

“The reverse moisture effect might be caused by effects associated with the installation and placement 

of the probes (e.g. preferential flow along probe cables, concentration of throughfall – although 

installations were performed with great care), or root effects, for example hydraulic redistribution. 

However,…” 

-Fig. 4: for completeness, add in the caption the time period over which the cumulative soil 

moisture 

Answer: We changed the caption and added following sentence: 

“The computations begin with the start of the rainfall reduction and end at the date of the dye tracer 

experiment 2013.” 

 

 



 1 

Does drought alter hydrological functions in forest soils? 1 

An infiltration experiment 2 

 3 

K. F. Gimbel1, H. Puhlmann2, M. Weiler1 4 

 5 

[1]{ Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, 6 

Germany} 7 

[2]{ Forest Research Institute Baden-Württemberg, Freiburg, Germany } 8 

Correspondence to: K. F. Gimbel (katharina.gimbel@hydrology.uni-freiburg.de) 9 

 10 

Abstract 11 

Climate change is expected to change impact the water cycle and severely affect precipitation 12 

patterns across central Europe and in other parts of the world, leading to more frequent and 13 

severe droughts. Usually when projecting drought impacts on hydrological systems, it is 14 

assumed that system properties, like soil properties, remain stable and will not be affected by 15 

drought events. To study if this assumption is appropriate, we address the effects of drought 16 

on the infiltration behavior of forest soils using dye tracer experiments on six sites in three 17 

regions across Germany, which were forced into drought conditions. The sites cover clayey, 18 

loamy and sandy textured soils. In each region, we compared a deciduous and a coniferous 19 

forest stand to address differences between the main tree species. The results of the dye tracer 20 

experiments show clear evidence for changes in infiltration behavior at the sites. The 21 

infiltration changed at the clayey plots from regular and homogeneous flow to fast 22 

preferential flow. Similar behavior was observed at the loamy plots, where large areas in the 23 

upper layers remained dry, displaying signs of strong water repellency. This was confirmed 24 

by water drop penetration times (WDPT) tests, which revealed, in all except one plot, 25 

moderate to severe water repellency. Water repellency was also accountable for the change of 26 

regular infiltration to fingered flow in the sandy soils. The results of this study suggest that 27 

the “drought-history” or generally the climatic conditions in the past of a soil are more 28 

important than the actual antecedent soil moisture status regarding hydrophobicity and 29 
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infiltration behavior; and also, that drought effects on infiltration need to be considered in 1 

hydrological models to obtain realistic predictions concerning water quality and quantity in 2 

runoff and groundwater recharge. 3 

 4 

1 Introduction 5 

Soils moderate how water moves through the vadose zone and govern the percolation of water 6 

to groundwater and stream flow. Soils not only store water for plant growth, function as a 7 

habitat for different biota and as transition zone to groundwater, but are also important – 8 

especially the top layers – for sorption and degradation of contaminants and (agri-)chemicals 9 

(Hendrickx and Flury 2001). The efficiency of this important ecosystem service for 10 

groundwater and surface water protection depends on the behavior of pollutants in the soil 11 

and the hydrological transport processes (Keesstra et al. 2012). How fast water passes the 12 

vadose zone depends on its hydraulic soil properties and distribution such as pore volume 13 

distribution, soil aggregation, water repellency and rooting pattern.  14 

Due to climate change and increasing human intervention, the global water cycle is expected 15 

to change with probably increasing summer dryness and winter wetness in many regions 16 

across the world including Western and Central Europe (IPCC 2012, Prudhomme et al. 2014). 17 

In addition, droughts are expected to be more frequent and severe in the future (Prudhomme 18 

et al. 2014, Seneviratne et al. 2006). Drought conditions can alter the hydrological functions 19 

of soils, and soil structure is responding to drought by shrinkage and fracturing of soil 20 

aggregates. These soil shrinkage cracks channel the infiltrating water and by that foster the 21 

bypassing of the soil matrix (Hendrickx and Flury 2001, Ritsema et al. 1997) and therefore 22 

alter the infiltration patterns in soil. Thus, the infiltration and redistribution of water within 23 

the soil changes and hence also the proportion of water reaching the groundwater (Hendrickx 24 

and Flury 2001). 25 

Soils under drought conditions are prone to become water repellent, depending on soil 26 

properties and organic matter content (DeBano 1981 and 2000). Due to modifications of the 27 

three-dimensional distribution and dynamics of soil moisture, water repellency has far 28 

reaching consequences for infiltration processes (Doerr and Ritsema 2006). Water repellency 29 

hinders infiltration and thus either increases overland flow (Doerr and Ritsema 2006) or 30 

redirects the water into preferential flow paths and creates instable wetting fronts (fingered 31 

preferential flow; Ritsema et al. 1993 and 2000, Dekker and Ritsema 2000). 32 
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To assess the impacts of drought, rainfall exclusion experiments are valuable and often 1 

applied tools (e.g. English et al. 2005, Phillips et al. 2009, Da Costa et al. 2010, Kopittke et al. 2 

2014), often in addition to elevated CO2 concentrations (e.g. Dermody et al. 2007), and night-3 

time warming (e.g. Albert et al. 2011, Selsted et al. 2012). While many studies focus on single 4 

aspects of drought effects like plant growth and seedling activity (Meijer et al., 2011; Wu and 5 

Chen, 2013) or on particular ecosystems like grassland (Suttle and Thomson, 2007; Bütof 5 et 6 

al., 2012) and heather ecosystems (Albert et al., 2011; Selsted et al., 2012), only few studies 7 

focus on forest ecosystems or take a closer look at drought impacts on soils where often only 8 

soil moisture is observed to change and no variations in other soil properties are monitored 9 

(Ozolinčius et 34 al., 2009; Albert et al., 2011; Glaser et al., 2013).only few studies focus on 10 

forest ecosystems or take a closer look at drought impacts on soils where often only soil 11 

moisture is observed (Ozolinčius et al., 2009; Albert et al., 2011; Glaser et al., 2013). 12 

To study drought effects, often extreme short-time events equivalent to droughts with 13 

occurrence probabilities of up to 100 or even 1000 years have been introduced to the 14 

examined soils (e.g. Glaser et al. 2013). By introducing these extreme events, the question of 15 

transferability of the results to natural systems in respect to the expected behavior under 16 

predicted future drought conditions arises. Therefore, this study employs a moderate rainfall 17 

reduction equivalent to an annual drought with a 40-year return period, in accordance to 18 

climate predictions, thereby avoiding tentativeness due to an overreaction to an unnatural 19 

extreme drought (Gimbel et al. 2015). 20 

To monitor changes in soil hydraulic properties, the changes in infiltration patterns in the soil 21 

after two years of prolonged drought were observed in three regions across Germany. 22 

Infiltration patterns were chosen because they reflect the integrated changes of soil 23 

hydrological functions and directly show how water moves in the soil under altered 24 

conditions. In this paper, we present results of several dye tracer infiltration experiments 25 

before and after two years of prolonged artificial drought. The objectives of this study are: 26 

fFirst, to investigate whether droughts predicted by climate projections affect the infiltration 27 

behavior of forest soils, and second, whether changes in infiltration patterns can be attributed 28 

to changes in the hydrologic properties of the soils. Three hypotheses will be tested: (1) 29 

Induced drought alters infiltration patterns due to changes in soil hydraulic properties; e.g. 30 

soil water repellency and forming of shrinkage cracks, leading to preferential flow paths and 31 

faster infiltration. (2) The main tree species have an effect on the magnitude of the observed 32 
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response. (3) The drought will increase water repellency depending on tree species and soil 1 

properties. 2 

 3 

2 Material and Methods 4 

2.1 Study sites 5 

To identify the influence of drought on infiltration patterns of forest soils, six plots in three 6 

different regions across Germany were selected. The plots were located in Schwäbische Alb 7 

(South-West Germany), Hainich-Dün (Central Germany) and Schorfheide-Chorin (North-East 8 

Germany) (Figure 1). All plots are part of the Biodiversity Exploratories framework that 9 

incorporates, in total, 150 sites on grassland and 150 sites in forest (for more information on 10 

the Biodiversity Exploratories, refer to Fischer et al. 2010). In each of the Exploratories, two 11 

forest plots were selected, which are – within each Exploratory – similar with respect to 12 

topography and soil texture type (Figure 2) but differ in tree species composition. In each site, 13 

one plot with a coniferous and one with a deciduous main tree species was selected. At the 14 

Schwäbische Alb and Hainich-Dün sites, beech (Fagus sylvatica) and spruce (Picea abies) 15 

were chosen, in Schorfheide-Chorin beech and pine (Pinus sylvestris). 16 

The Schwäbische Alb soils are shallow (25 to 35 cm) Leptosols on Jurassic shell limestone 17 

with a high stone content (Figure 2, top). The mean annual temperature at this site is 6.5° C 18 

and the mean annual precipitation amounts to 940 mm. The underlying geology of the 19 

Hainich-Dün is Triassic limestone. The soils at this site are loamy Stagnosols with depths 20 

between 45 and 65 cm. At the Hainich-Dün site the mean annual temperature is 7.2° C and 21 

the mean annual precipitation is 533 mm. The Schorfheide-Chorin plots are located in a 22 

young glacial landscape where the dominant geological substrate is glacial till covered by 23 

glacio-fluvial and aeolian sands. The soils at this site are deep, sandy Cambisols. At the 24 

Schorfheide-Chorin site, mean annual temperature is 8.5° C and the mean annual precipitation 25 

amounts to 589 mm. All climate data are taken from nearby stations of the German weather 26 

service (DWD, years 1950–2010). 27 

The experiments of this study are part of the interdisciplinary project ‘Global Change Effects 28 

on Forest Understorey: Interactions between Drought and Land-use Intensity’ (Gimbel et al. 29 

2015). The artificial imposed drought was created by a 10 m x 10 m roofed subplot, covered 30 

with transparent panels. In addition, a control plot with the same technical equipment, but 31 
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without the roofing was installed. The distance between the roofed and the control plots range 1 

between 15 m and 30 m. The control and roofed plots include a central adult overstorey tree, 2 

which are similar in age, size, and canopy structure. To provide sufficient exchange with 3 

ambient air (avoiding a ‘greenhouse effect’), all four sides of the roof are open. To collect 4 

water from the roof, rain gutters are mounted alongside the timber construction. The roof is 5 

designed to reduce precipitation between 11 and 100 % - 11 % already intercepted by the 6 

roofing construction and rain gutters itself. The incoming precipitation was reduced between 7 

March and November to the level equivalent to an annual drought with a return period of 40 8 

years. The resulting annual target precipitation inputs under the roofs were 700 mm (26 % 9 

reduction) for Schwäbische Alb, 355 mm (33 % reduction) at the Hainich-Dün, and 395 mm 10 

(27 % reduction) at the Schorfheide-Chorin site. For a more detailed description of the whole 11 

experimental drought setting and of the study plots see Gimbel et al. (2015).  12 

2.2 Soil moisture measurements 13 

To observe the impact of reduced precipitation input on soil moisture, soil moisture probes 14 

were installed on the drought and on the control subplots of every site. The probes (5TM and 15 

5TE, Decagon Devices Inc.) were inserted in 5 cm, 15 cm and 30 cm depths in three 16 

replicates on the plots at 2, 3, and 4 m distance from the central trees. The accuracy according 17 

to the technical data sheets of the 5TE and 5TM probes is ±15 % of the measured value for 18 

the volumetric water content. The readings of every probe are logged at 15 min intervals. For 19 

better comparability among the sites, the mean values of the three replicates of every depth 20 

per control and drought plot were cumulated and normalized to the maximum cumulated 21 

value of the control plot. 22 

2.3 Soil water repellency 23 

Hydrophobicity in soil was measured with the water drop penetration time (WDPT) test (e.g., 24 

Bisdom et al. 1993). This test determines how long water repellency persists on a porous 25 

surface. The tests were performed immediately before the dye tracer experiments in 2013, in 26 

the drought and control profiles of the deciduous plots and in the drought profiles of the 27 

coniferous plots. For the WDPT tests, a water droplet is placed on a planar soil surface with a 28 

pipette and the time is taken until the water drop is completely taken up by the soil. The 29 

observation was stopped after exceeding a time of 3600 seconds. Depending on the profile 30 

depths, WDPT tests were performed in several depths of the profile, covering the main soil 31 
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horizontation. In each depth, five sampling locations were used to traverse the profile, and the 1 

tests were repeated three times per location, resulting in 15 WDPTs per depth (Figure 3b). 2 

The mean and maximum values of the WDPT test were classified after Bisdom et al. (1993) 3 

(Table 1). 4 

2.4 Dye tracer experiments 5 

The dye tracer experiments were conducted in August 2011 before installation of the roofs 6 

and in August 2013 after two years of drought. For each experiment, an area of 80 x 120 cm 7 

was prepared by cutting smaller vegetation (grasses, herbaceous plants, and small tree 8 

offshoots), covering the surroundings with a thin plastic sheet, and dividing the area into three 9 

sub-areas with a size of 80 x 40 cm each (Figure 3 a). The experimental area was kept shaded 10 

and sheltered from rain in all weather conditions to minimize evaporation and uncontrolled 11 

water input during the experiments. Brilliant Blue FCF was diluted in water of local origin to 12 

a concentration of 4 g/l and was sprayed with a backpack nozzle sprayer for even distribution 13 

(Bachmair et al, 2009). For an overall application amount of 20, 40 and 60 mm, each sub-area 14 

was sprinkled with an intensity of 20 mm/h. The applied rainfall intensity of 20 mm/h reflects 15 

a heavy rainfall event in all regions, therefore the sprinkling amounts simulate one, two, and 16 

three hours of heavy rainfall. After sprinkling, the experimental area was covered with plastic 17 

sheets to prevent evaporation and further water input through eventual rain.  18 

The next day (after waiting at least 12 hours), three vertical soil profiles per sub-area were 19 

prepared. Keeping a 10 cm buffer stripe at the beginning and between the individual sub-20 

areas, every sub-area was divided in three sections, spaced 10 cm from each other (Figure 21 

3 a). To obtain the dye pattern, the surface of the excavated soil profiles was smoothed with a 22 

spatula and loose particles were removed with a brush, avoiding smearing. Stones were left in 23 

place and shaped into relief when needed. Roots were trimmed. Pictures were taken from each 24 

profile with a standard digital compact camera with a resolution of 10 megapixels 25 

(3648 x 2736 pixel). The single profiles were photographed with a ruler frame and a grey 26 

scale under even illumination and different illumination settings (Weiler and Flühler, 2004). 27 

The picture with the best image quality from each profile was used for further processing. 28 
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2.5 Image processing and data analysis 1 

To objectively compare the flow pattern of the different profiles, we used the image analysis 2 

procedure developed by Weiler and Flühler (2004). We provide a short description of the 3 

process here, for more detailed information, refer to Weiler (2001) and Weiler and Flühler 4 

(2004). The image processing consists of three main steps. In the first step, geometric 5 

distortion of the image is corrected by establishing a relationship between the image pixel 6 

location and the true location on the soil profile. During this step, the image is also scaled 7 

such that, one pixel corresponds to a square of 1 x 1 mm2. In the second step, the spectral 8 

composition changes in daylight are balanced to ensure inter-picture comparability. This is 9 

done by a color adjustment of the image using the photographed grey scale. In the third step, 10 

the images are classified into stained and unstained areas. Applying a semi-supervised 11 

classification technique, a binary image of stained versus unstained areas is obtained. In 12 

contrast to the work of Weiler and Flühler (2004), we did not use the information of different 13 

dye tracer concentrations, due to the high heterogeneity of the background color. In this step, 14 

objects like stones and vegetation are manually digitized, too. All calculations were done with 15 

the programming language IDL (Interactive Data Language, Exelis Inc.). 16 

2.6 Dye pattern analysis 17 

To obtain objective measures to compare the dye patterns of the different profiles and sites, 18 

we derived three depth related variables of the binary images: (1) volume density, (2) surface 19 

density and (3) stained path width as basis for further delineation of flow processes. The 20 

volume density (VD) is similar to the frequently used dye coverage. It is defined as stained 21 

volume divided by the reference space and is originating from the methods of stereology, 22 

which relates a three-dimensional parameter to two-dimensional measurements (Weibel 23 

1979). Surface density (SD) is defined as surface area of an object divided by the volume of 24 

the reference space. Surface density provides information on the size and number of features: 25 

a high SD is caused by a large number of small objects, whereas a low SD indicates less but 26 

larger objects (Weiler 2001). The stained path width (SPW) is derived by measuring the width 27 

of every stained object at a certain depth. The SPW of every depth were classified into three 28 

classes of < 20 mm, 20 – 200 mm, and > 200 mm (Weiler and Flühler 2004). The sum of the 29 

three SPW classes per depth corresponds to the VD of the regarding depth. Using the 30 

frequency distribution of the SPW of every depth, the dye pattern can be related to distinct 31 

flow processes. For example, macropore flow with low interaction can be identified by long 32 
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and narrow stains, whereas macropore flow with mixed interaction shows a broader 1 

distribution of shapes (Weiler and Flühler 2004). The classification introduced by Weiler and 2 

Flühler (2004) was used to distinguish five flow processes, depending on the proportion of 3 

stains in each SPW class: two types of matrix flow ((1) homogeneous and (2) heterogeneous) 4 

and three types of macropore flow ((3) low, (4) mixed and (5) high interaction with matrix), 5 

where interaction is understood as the lateral water flow from macropores into the 6 

surrounding soil matrix (Weiler and Naef 2003). To assess the differences in the VD values 7 

between the treatments (pre-drought, control, drought), the Kruskal-Wallis test and the 8 

Nemenyi post-hoc test were applied, using R (version 3.2.3, The R Foundation for 9 

StatisticalComputing, 2015) and the package “PMCMR” (version 4.1 by Thorsten Pohlert) 10 

within. Differences between treatments were supposed significant, when p-values are ≤ 0.01. 11 
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3 Results 13 

3.1 Soil moisture 14 

Figure 4 shows the normalized cumulated sums of the soil moisture measurements of the 15 

control and the drought plots over the course of two years. All plots developed a soil moisture 16 

deficit compared to the control plots in the upper 5 cm of the soil, as shown by the black line 17 

below the 1:1 line. The water deficit is also transduced to the 15 cm and 30 cm depths in both 18 

Schwäbische Alb plots and in the coniferous plot of Hainich-Dün, but is generally less 19 

pronounced. The plots at the Schorfheide-Chorin site show no deficit (deciduous plot) or even 20 

a small plus in soil moisture (coniferous plot) compared to the control plot. The sandy soils of 21 

Schorfheide-Chorin are already very dry without drought treatment. The reverse moisture 22 

effect might be caused by effects associated with the installation and placement of the probes 23 

(e.g. preferential flow along probe cables, concentration of throughfall – although installations 24 

were performed with great care), or root effects, for example hydraulic redistribution. 25 

However, we did not find any signs for hydraulic redistribution in the data. The deciduous 26 

plot of the Hainich-Dün site experienced major probe failures due to animal damage during 27 

the summer month of 2012 and again in 2013. Therefore, only the data taken during the 28 

winter month could be used for the comparison. For this reason, the data do not cover the 29 

months with the highest expected soil moisture deficits. 30 
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3.2 Soil water repellency 1 

Figure 5 shows the results of the WDPT test in 2013. All drought treated plots at all sites – 2 

coniferous and deciduous – exhibit water repellency (WDPT data from control plot under 3 

coniferous not available). All control plot soils are wettable (WDPT class 1) or feature at least 4 

lower water repellency than the drought treated plots. The coniferous plots under drought of 5 

Hainich-Dün and Schwäbische Alb showed higher WDPTs than the deciduous plots. This is 6 

valid for both mean and maximum values. The Schorfheide-Chorin deciduous plot showed 7 

higher water repellency than the coniferous plot. In all soil profiles, water repellency is 8 

highest in the topsoil and diminishes at a depth of about 20 cm. However, in the Schorfheide-9 

Chorin deciduous plot, water repellency is present up to a depth of 50 – 60 cm. When present, 10 

strong to severe water repellency is dominant in the measured drought treated plots. Only the 11 

Hainich-Dün deciduous plot soil is classified as wettable in average and the Schorfheide-12 

Chorin coniferous plot as slightly water repellent. Highest values in mean and maximum 13 

water repellency were found in the coniferous plots Hainich-Dün (mean 941 s; max 3600 s) in 14 

about 10 – 15 cm depth and in the Schwäbische Alb (mean 990 s; max 2340 s) in the topsoil 15 

(Figure 5). 16 

3.3 Dye tracer experiments and dye pattern analysis 17 

3.3.1 Comparison between pre-drought pattern and control pattern 18 

Differences between pre-drought and control plots (without drought treatment) reflect 19 

differences in soil structure, texture and moisture due to a distance of 20 - 40 m between the 20 

drought and reference plot, but may also include time dependent changes of the soil 21 

characteristics, which are independent from the drought treatment. To ensure validity of the 22 

dye pattern analyses, it is necessary to assure comparability among the plots. To exclude time 23 

dependent changes as reasons for differences in pre-drought and drought treated dye patterns, 24 

the pre-drought pattern were checked against the pattern of the control plots. Figure 6 25 

compares the pre-drought pattern and the control pattern of the deciduous plots. In addition, 26 

Figure 7 provides boxplots of VD for different depths of the pre-drought and the control 27 

profiles for direct comparison. 28 

The Schwäbische Alb pre-drought plot (Figure 6, top left) shows high VD in the top 10 cm in 29 

all profiles. The 40 mm and 60 mm sprinkling volume profiles show a high SPW in the top 30 

5 to 10 cm. On the control plot (Figure 6, top right) also large areas of the profiles top 10 cm 31 
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are stained, but the VD and SPW are not as high as the pre-drought profiles. This is especially 1 

evident in the VD boxplots of the upper 0 – 10 cm (Figure 7, top). All Schwäbische Alb 2 

profiles have high stone contents, in some cases exceeding 50 % of the profile width (Figure 3 

6). Below 10 cm depth, the control plot profiles are almost completely stained. This pattern is 4 

similar to the pre-drought profiles. In general, the patterns of the control profiles are similar in 5 

VD, SPW values, and distribution to the 20 mm pre-drought profile. The 60 mm control 6 

profile is reflecting the high VD and SPW values in top layers, which are characteristic of the 7 

40 mm and 60 mm pre-drought profiles. 8 

The Hainich-Dün pre-drought profiles (Figure 6, center left) show low to medium SPW in all 9 

depths. VD values are high in the top 5 cm in all profiles and between 10 cm to 30 cm in the 10 

40 mm and 60 mm sprinkling amount profiles. The 20 mm profile displays only small VD 11 

values below 10 cm depth. All profiles have a medium to high stone content (30 – 60 %) 12 

below 30 cm depth. The control plot profiles (Figure 6, center right) are very similar in VD 13 

and SPW to the pre-drought profile pattern, but with generally lower VD in the 60 mm 14 

sprinkling amount profile (Figure 7, center right). Except for the 20 mm profile, which 15 

displays no stones, the control plot profiles have a medium to high stone content below 25 cm 16 

depth. In all profiles, large areas of the profile stayed unstained. However, although having a 17 

low VD in top layer, the 60 mm control plot profile is not following the pronounced drop in 18 

VD between 5 cm and 10 cm depths and the subsequent rise between 15 cm and 25 cm, which 19 

is characteristic for all other profiles (pre-drought and control). These distinct differences are 20 

apparent in the boxplots (Figure 7) 21 

In the Schorfheide-Chorin pre-drought profiles (Figure 6, bottom left), high VD and SPW 22 

values are present. The highest VD and SPW values can be found in the 60 mm sprinkling 23 

amount profile. Below 10 cm depth, the 20 mm pre-drought profile displays only small to 24 

medium SPW and – in comparison to the 40 mm and 60 mm profiles – small VD values. The 25 

control plot profiles (Figure 6, bottom right), show in general high VD and SPW values, but 26 

have lower values in the top 10 cm than the pre-drought profiles (Figure 6 bottom right and 27 

Figure 7, bottom). This is more apparent in the 20 mm and 40 mm profiles (Figure 7). In the 28 

pre-drought and control plot, infiltration reached down to depths over 70 cm and no stones are 29 

present. 30 

To summarize, the comparison between the pre-drought and control plots showed a broad 31 

agreement. Differences, that need to be accounted for, are the lower VD in the profile top 32 
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layers, especially at the Schwäbische Alb and Schorfheide-Chorin site. These differences 1 

might be due to spatial heterogeneities, e.g. slight differing in soil layer boundary depths, 2 

given the distance between the control and the pre-drought plots (15 m to 30 m). In addition, 3 

the initial conditions (soil moisture) were also slightly different possibly resulting in the 4 

observed differences. Choosing 10 cm steps for statistical comparison of the VD may in 5 

addition introduce differences, if soil layer boundary depths differ. Therefore, not only the 6 

VD, but also the SPW and the determined flow processes need to be taken into account for 7 

comparison. However, the pre-drought and drought experiment were performed in close 8 

vicinity (1 m). In the Hainich-Dün, the drop and rise of VD in all profiles points to a soil layer 9 

boundary effect on infiltration. This is not time dependent and present in both pre-drought and 10 

control profiles, therefore the comparability between the pre-drought and drought pattern is 11 

not affected. 12 

3.3.2 Comparison between pre-drought pattern and drought pattern 13 

As can be seen in Figure 8, all plots show marked differences between pre- and after-drought 14 

infiltration patterns. The clayey and loamy sites (Schwäbische Alb and Hainich-Dün) develop 15 

unstained (=unwetted) areas in the topsoil layers. This is more pronounced in the coniferous 16 

plots, where unstained areas are already visible in the pre-drought infiltration pattern. Figure 9 17 

compares VD in boxplot for different depths of the drought and pre-drought profiles including 18 

the statistical significance. 19 

 20 

Schwäbische Alb coniferous plot 21 

At the Schwäbische Alb site, medium to low volume densities (VD) were found on the pre-22 

drought coniferous plot throughout the whole profile for the 20 mm and 40 mm sprinkling 23 

depth and high VD for 60 mm sprinkling depth (Figure 8, top left). The drought 40 mm and 24 

60 mm profiles are lower in VD in the top layers (0 – 10 cm), than the pre-drought profiles 25 

(Figure 8 and 9, top left); the 40 mm profile is displaying even unstained areas (no VD). The 26 

20 mm pre-drought profile is already very low in VD, therefore the differences to the after 27 

drought profile is not distinct (Figure 8, top left). The drought coniferous plot shows a rise of 28 

VD culminating around 20 cm depth (Figure 8, top) for all sprinkling amounts (20 mm, 29 

40 mm and 60 mm). Below 20 cm depth, the 20 mm and 40 mm profiles show (Figure 9, top 30 
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left) higher VD in the after drought profiles than in the pre-drought profiles, whereas the 1 

60 mm profile show the same extent of VD in the drought and in the pre-drought profile. 2 

The stained path ways (SPW) of the Schwäbische Alb coniferous pre-drought profiles are 3 

small to medium in the 20 mm and 40 mm profiles and high in the 60 mm profile (Figure 8, 4 

top left). After drought, low to medium SPW are dominant in the 20 mm and 60 mm profiles; 5 

high SPW values are occurring in the 40 mm profile below 20 cm. The flow processes 6 

identified in this depth as matrix flow, are caused by local saturation due to low Ks (Figure 8, 7 

top left). The dominating flow types in the pre-drought profiles are identified as macropore 8 

flow, with low, mixed and high interaction depending on soil layer and infiltration volume. 9 

Dominating flow types in the drought plot are macropore flow with low, medium and high 10 

interaction. 11 

 12 

Schwäbische Alb deciduous plot 13 

The Schwäbische Alb deciduous plot shows in the 40 mm and 60 mm pre-drought profiles 14 

high SPW and in all infiltrating volumes high VD in the top layer (0 – 10 cm; Figure 8 and 15 

Figure 9, top right). Medium to high VD are maintained throughout the whole 40 mm and 16 

60 mm profiles, and to lesser extend in the 20 mm profile. The drought profiles show lower 17 

VD in the top 10 cm, compared to the pre-drought profiles (Figure 9, top right). Below 20 –18 

 25 cm depths, the 20 cm and 40 cm drought profiles show higher VD than the pre-drought 19 

profiles. However, the drought profiles are more similar in shape to the VD pattern of the 20 

control than to the pre-drought profiles (Figure 6, top). Also, the stone contents in the three 21 

pre-drought profiles are higher than in the drought profiles (Figure 8, top right). 22 

The dominating flow types in the Schwäbische Alb deciduous pre-drought profiles are 23 

identified as macropore flow with low, mixed, and high interaction, and as matrix flow, 24 

depending on soil layer and infiltration volume (Figure 8, top right). The flow processes 25 

identified in the top layers of the 40 mm and 60 mm pre-drought profiles as matrix flow are 26 

caused by local saturation due to low Ks. The dominating flow types of the drought deciduous 27 

profiles are identified as macropore flow with low, mixed, and high interaction (Figure 8, top 28 

right). 29 

 30 

Hainich-Dün coniferous plot 31 
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The Hainich-Dün coniferous pre-drought profiles show low VD for all sprinkling amounts, 1 

especially in the topsoil between 4 cm and 22 cm (Figure 8, center left). The 20 mm and 2 

40 mm pre-drought profiles show unstained areas (no VD). The small VD values are even 3 

more pronounced in the drought profiles (Figure 8 and Figure 9, center left), in which all 4 

profiles exhibit unstained areas. Below the unstained layer, the VD rises to a maximum in 15 5 

to 20 cm depth and drops again around 30 cm depth. The 20 mm and 60 mm drought profiles 6 

show throughout all depths low VD (Figure 8, center left). 7 

In all Hainich-Dün coniferous pre-drought profiles, no large SPW occur and flow types are 8 

classified as macropore flow with low, mixed and high interaction. This applies also for the 9 

20 mm and 60 mm drought profiles. In contrast, the 40 mm drought profile exhibits high SPW 10 

between 15 cm and 25 cm depth. Therefore, the flow types in this depths are identified as 11 

matrix flow (Figure 8, center left). The main flow types in the coniferous drought profiles are 12 

macropore flow with low, mixed and high interaction. The pre-drought profiles are dominated 13 

by macropore flow with low and mixed interaction. In both, pre-drought and drought profiles, 14 

the stone content is comparable (Figure 8, center left). 15 

 16 

Hainich-Dün deciduous plot 17 

The Hainich-Dün deciduous drought profiles exhibit smaller VD in the top 5 cm compared to 18 

the pre-drought profiles (Figure 8 and Figure 9, center right). Unstained areas are present in 19 

the top 5 – 10 cm of the 20 mm drought profile. The 40 mm and 60 mm pre-drought profiles 20 

show high VD values between 10 cm and 25 cm. High VD values are also present in the 21 

drought profiles, maintaining high values throughout the whole profile. While no high SPW 22 

values are found in the pre-drought profiles, high SPW values can be found in the 40 mm 23 

drought profile between 10 cm and 30 cm and in the 60 mm drought profile between 10 cm 24 

and 40 cm (Figure 8 and Figure 9, center right). The flow types of the deciduous pre-drought 25 

profiles are classified as macropore flow with low, mixed, and high interaction. The drought 26 

profiles are also classified as macropore flow with low, mixed, and high interaction and, 27 

where high SPW values occur, as matrix flow (homogeneous and heterogeneous) (Figure 8, 28 

center right). The stone contents of the pre-drought and drought profiles are increasing with 29 

depth below 25 – 30 cm; the drought profiles are exhibiting a slightly higher stone content 30 

than the pre-drought profiles (Figure 8). 31 

 32 
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Schorfheide-Chorin coniferous plot 1 

The pre-drought pattern of the Schorfheide-Chorin site show high SPW and VD in the top 2 

layers (0 - 10 cm depth) decreasing with depth (Figure 8, bottom left). While the 20 mm and 3 

40 mm pre-drought profiles show a maximum infiltration depth of about 45 cm and 30 cm, 4 

respectively, the 60 mm pre-drought profile is stained below 70 cm, exhibiting medium VD 5 

values (Figure 8, bottom left). High SPW values are found in the 20 mm pre-drought profile 6 

up to a depth of 15 cm and in the 40 mm and 60 mm profiles up to 10 cm and 30 cm, 7 

respectively. The drought profiles of the coniferous plots show far lower VD values in the top 8 

layers compared to the pre-drought profiles (Figure 8 and Figure 9, bottom left). The 40 mm 9 

drought profile is exhibiting even an unstained layer in about 5 cm depth. High SPW values 10 

can be found in the 40 mm and 60 mm drought profile, not in the top layers, but between 11 

20 cm and 25 cm depth (40 mm profile), and between 10 cm and 25 cm depth (60 mm profile) 12 

(Figure 8, bottom left). This is reflected in the flow type classification. Whereas matrix flow 13 

is dominating the top layers in pre-drought profiles (at least the top 10 cm), matrix flow is 14 

occurring below 10 cm depth in the 40 mm and 60 mm drought profiles (Figure 8, bottom 15 

left). 16 

 17 

Schorfheide-Chorin deciduous plot 18 

The Schorfheide-Chorin deciduous pre-drought and drought patterns do not exhibit much 19 

differences in shape and in VD values in the 20 mm and 40 mm profiles (Figure 8, bottom 20 

right). The largest differences in VD can be found in the top 10 cm of the 20 mm profiles and 21 

in the 60 mm profile (Figure 9, bottom right). In addition, the 20 mm drought profile exhibits 22 

an unstained layer around 40 cm depth (Figure 8, bottom right). The difference between pre-23 

drought and drought is more evident in the SPW values: Whereas high SPW values are found 24 

in the 40 mm and 60 mm pre-drought profiles in the top and bottom half of the profile, high 25 

SPW values are found in the drought profile in the bottom half, plus a small layer of two 26 

centimeter of high SPW around 10 cm depth in the 40 mm profile (Figure 8, bottom right). In 27 

the Schorfheide-Chorin deciduous pre-drought profiles, flow types of the 40 mm and 60 mm 28 

are dominated by matrix flow (Figure 8, bottom right). However, all profiles in the pre-29 

drought plots have, a proportion of macropore flow. In the drought profiles, matrix flow is 30 

only occurring in bottom half of the 40 mm and 60 mm profiles. 31 

 32 
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To summarize, compared with pre-drought infiltration pattern, the drought pattern of all plots 1 

reveal differences in infiltration processes. For example, over 90% of the depths ranges show 2 

significant differences in VD between the drought and pre-drought site. Clayey and loamy 3 

soils behave similarly, developing unwetted soil layers. High SPW values in 20 to 30 cm 4 

depth of the drought pattern indicate local saturation. In sandy soils, the change from high 5 

SPW values of the pre-drought pattern to medium and low in the drought pattern exhibit a 6 

change from front-like to a more scattered infiltration. In general, the effects were more 7 

pronounced at the coniferous plots. These findings correspond well with the results of the 8 

WDPT tests: In the clayey and loamy soils (except Hainich-Dün deciduous plot), the 9 

unstained topsoil layers are coinciding with the high WDPTs (Figure 5). Coniferous plot 10 

Hainich-Dün stays unwetted up to a depth of about 15 to 20 cm and Schwäbische Alb plots to 11 

a depth of about 10 cm, which is corresponding to the depths where the highest WDPT values 12 

were observed (Hainich-Dün: WDPT class 4; Schwäbische Alb: WDPT classes 4 and 3, 13 

respectively). In the sandy soils of the Schorfheide-Chorin profiles, low SPW values 14 

correspond to high WDPTs (class 2 and 3). Below the water repellent zone, SPW values are 15 

increasing again (Figure 5, bottom). 16 

 17 

4 Discussion 18 

4.1 Infiltration patterns and influence of main tree species 19 

The comparison of pre-drought infiltration patterns of the drought plots with patterns of the 20 

control plots (without drought treatment) showed broad agreements. All control plot profiles 21 

are comparable to the pre-drought plot profiles, including differences that can be addressed to 22 

small scale heterogeneities of soil properties. When interpreting the patterns, the differences 23 

in VD in the top layers of all plots need to be taken into account. When doing this, at all sites, 24 

the dye experiments before and during drought conditions can be directly compared. 25 

In this study, it was hypothesized that the induced drought alters infiltration patterns due to 26 

changes in soil hydraulic properties (e.g., soil water repellency and forming of shrinkage 27 

cracks) and the main tree species is having an effect on the magnitude of the response. The 28 

results of the infiltration experiment show a clear evidence for changes in infiltration pattern 29 

as well as the importance of tree species on infiltration pattern: Schwäbische Alb plots have 30 

clayey soils with a high stone content, and show, in pre-drought and control plots, a slow and 31 
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even infiltration. The drought-treated plots developed large areas with small volume densities 1 

and SPWs in the topsoil, while for deeper layers, broad stains (large SPW) were observed 2 

which cover the profiles for the most part (high VD). This is typical for preferential flow that 3 

follows the shrinkage cracks of clayey soils or biopores of roots or soil fauna (Dekker and 4 

Ritsema 2000, Hendrickx and Flury 2001, Hardie et al. 2011). Water infiltrates quickly to 5 

deeper layers, bypassing a large proportion of the soil matrix. In deeper soil layers where the 6 

cracks or biopores end, local saturation occurs, and lateral redistribution into the soil matrix 7 

due to the now lower infiltration capacity and velocity can be observed. This also explains the 8 

similar pattern in the loamy Hainich-Dün soils.  9 

A trend to more preferential flow was also observed in the Hainich-Dün plots, where the 10 

dense and loamy soils are also prone to shrinkage. Furthermore, in the Hainich-Dün drought 11 

profiles unstained (i.e., unwetted) areas in the topsoil layers were observed. This is more 12 

pronounced in the coniferous plot, where unstained areas were already visible in the pre-13 

drought experiment. Preferential flow does not only originate from cracks and biopores, but 14 

also from textual boundaries and instable wetting fronts (Doerr and Ritsema. 2006, Hendrickx 15 

and Flury 2001). Unstable wetting fronts can occur due to air entrapment or hydrophobicity, 16 

which effectively hinders infiltration and redirects the water to structural and textural 17 

preferential flow paths (Doerr and Ritsema 2006). The unwetted topsoil layers of the Hainich-18 

Dün coniferous plots can be explained by the combination of severe water repellency and 19 

shrinkage cracks acting as effective bypasses. 20 

In contrast to the other sites, Schorfheide-Chorin soils are sandy and highly permeable with 21 

low stone content. In both Schorfheide-Chorin plots, the infiltration patterns changed from a 22 

regular front-like stable infiltration to unstable, more scattered and fingered infiltration 23 

patterns. Following the conceptualization of unstable flow in water repellent soils by Ritsema 24 

et al. (1993, 2000), water flows, after entering the soil, through preferential pathways through 25 

the water repellent layer and distributes laterally in the divergence layer underneath. In fact, 26 

such flow patterns were pronounced in the Schorfheide-Chorin deciduous drought plot: 27 

medium VD and SPW up to a depth of 50 - 60 cm and larger SPW in the layer beneath. This 28 

fits with the results of the WDPT tests, which show a slight to strong water repellency in the 29 

top 50 - 60 cm of the profile.  30 

In general, drought induced major changes on the infiltration behavior of the examined soils. 31 

Clayey and loamy soils developed preferential flow. In these soils, the bypassing of the top 32 
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10 cm – 20 cm is fostered by water repellency, leading to unwetted topsoil layers. Sandy soils 1 

developed fingered infiltration patterns, due to the forming of a water repellent layer. In all 2 

three sites, the effects of the drought treatment were more pronounced in soils with coniferous 3 

main tree species than with deciduous main tree species. 4 

 5 

4.2 Water repellency 6 

In this study, it was hypothesized that the artificial induced drought will increase soil water 7 

repellency depending on the main tree species and soil properties. The highest water 8 

repellency was found in the coniferous plots of Schwäbische Alb and Hainich-Dün. Soils 9 

under coniferous trees often feature acidic soil conditions, which promote water repellency 10 

(Orfánus et al. 2014). In a study by Orfánus et al. (2014) liming practices and associated rise 11 

of pH-values significantly reduced water repellency of former pine forest soils. Jost et al. 12 

(2004) explained the difference in recharge under a beech and a spruce forest stand, with the 13 

higher hydrophobicity, and therefore the hindering of infiltration, combined with higher 14 

surface runoff of the spruce stand. This is in contrast to the findings of Buczko et al. (2006), 15 

who found the highest proportion of water repellent soils in pure beech stands compared to 16 

pure pine and mixed stands on sandy soils. However, in our study the sandy Schorfheide-17 

Chorin plots showed higher mean WDPTs in the deciduous (beech) plot, than on the 18 

coniferous (pine) plot. 19 

The soil texture can also influence the water repellency: A study of Gonzalez-Penaloza et al. 20 

(2013) suggests that water repellency is related to soil particle size. They induced water 21 

repellency by using different concentrations of stearic acid on samples of fine, medium, and 22 

coarse sand. Water repellency was extreme in coarse textured samples. The authors explained 23 

that by the lower specific surface compared to fine textured samples and therefore smaller 24 

area that has to be covered by water repellent agents. We could not observe this effect in our 25 

sandy soils. The coarser textured coniferous plot was less water repellent than the finer 26 

textured deciduous Schorfheide-Chorin plot. However, water repellency can originate from a 27 

broad range of factors. The degree of water repellency of a soil also depends on the amount 28 

and type of organic matter that is incorporated in it (DeBano 1981, Bisdom et al. 1993, 29 

Buczko et al. 2006, Vogelmann et al. 2013), the age and type of forest and litter type (Neris et 30 

al. 2013). 31 
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Several studies detected a significant impact of spruce litter on infiltration processes, either by 1 

hydrophobicity (Schume et al. 2004) or interception (Neris et al. 2013). Schume et al. (2004) 2 

found that spruce litter can intercept up to 5 mm of precipitation and Neris et al. (2013) found 3 

infiltration rates of 20 mm/h compared to that of 50mm/h of deciduous stands, doubling the 4 

runoff of the sites. In this study, we did not record the interception of the litter layer, which 5 

may have altered the total amount of water infiltrating into the soil. However, a natural litter 6 

layer is always present and intercepts precipitation (e.g. Gerrits et al. 2010). By keeping the 7 

natural litter layer in our experimental setup, our test results include the two influencing 8 

factors of the systems natural response in the infiltration pattern: The redistribution of 9 

incoming precipitation by the litter layer, leading to more spatial heterogeneous water input in 10 

the soil, compared to a soil with removed or hydrophilic litter layer. The measured infiltration 11 

pattern is a result of both factors, giving a more natural representation than a separate 12 

observation of litter layer and soil response. 13 

Furthermore, the plants of the forest understory can also influence hydrophobicity of the soil; 14 

plants are covered with a cuticle composed of hydrophobic liquids, embedded in a polyester 15 

matrix and wax crystalloids (Holloway 1994, Barthlott and Neinhus 1997). Water repellent 16 

plant coatings can be found in all plant life forms with a clear dominance in among herbs 17 

(Neinhus and Barthlott 1997, Dekker and Ritsema 2000). It is even discussed that 18 

hydrophobic exudates might be a strategy for plants, microorganisms and fungi, to suppress 19 

germination and growth of competing vegetation by reducing evaporation and nutrient 20 

leaching (Doerr et al. 2007). 21 

Hydrophobicity is dependent on the moisture status of the soil, which is defined by Doerr and 22 

Thomas (2003) as critical moisture or transition zone. Vogelmann et al. (2013) found a 23 

critical water threshold of 0.36 to 0.57 cm3 cm-3 beyond which hydrophobic soils become 24 

hydrophilic, varying as a function of soil organic matter content. In contrast to the findings of 25 

Doerr and Thomas (2003), we found very similar water contents in drought treated and 26 

control soils, but very different hydrophobicity conditions. This indicates that the “drought-27 

history” or generally the climatic condition in the past of a soil is more important than the 28 

actual antecedent soil moisture status regarding hydrophobicity and infiltration behavior. 29 

In our rainfall exclusion experiment drought stress was not intense enough to induce mortality 30 

or strong changes in above-ground biomass of a particular species (Gimbel et al. 2015). 31 

Nevertheless, drought and water repellency may promote the die-off of fine roots, which 32 
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thereupon contribute to the total organic matter in the soil. The amount of soil organic matter 1 

and its composition has a strong influence on the strength of water repellency (e.g. 2 

Vogelmann et al. 2013, Bisdom et al. 1993, DeBano 1981). Therefore, the die-off of fine 3 

roots may lead to a self-reinforcing circle of water repellency. 4 

Soil organic matter can form micro- and macro-aggregates by acting as binding agent between 5 

soil components (e.g. Tisdall and Oades 1982, Annabi et al. 2011) or by covering soil 6 

particles (e.g., Vogelmann et al. 2013 a). Vogelmann et al. (2013 b) concluded in their study, 7 

that water repellency leads to slower wetting of soil aggregates. Therefore, cohesive forces 8 

hold up longer, which increases the resistance to disaggregation and thus, indirectly aiding in 9 

maintaining soil structure. Terrestrial fungi are also in the focus of research concerning soil 10 

water repellency and aggregation (e.g. Tisdall and Oades 1982, Rillig and Mummey 2006, 11 

Chau et al. 2012). Zheng et al. (2014) found in three of nine species of ectomycorrhizal fungi 12 

associated with Pinus sylvestris seedlings increased soil water repellency and in six of nine 13 

species an increase of water stable aggregation. In our study, only the coniferous plot in 14 

Schorfheide-Chorin has Pinus sylvestris as main tree species. In fact, the plot showed slight 15 

(mean values) to strong (maximum values) water repellency in the top 20 cm. Nevertheless, 16 

the WDPT values of the deciduous plot in this area indicated stronger water repellency (in 17 

mean and maximum values). 18 

All of our experimental plots showed clear response to the drought treatment, irrespective of 19 

their soil type and vegetation cover. Especially the fast bypassing of the topsoil layer and the 20 

developing of unstained and hence not wetted areas may bear consequences in the upcoming 21 

climate change. Sorption and degradation of contaminants is strongest in the topsoil and 22 

decrease with soil depth (Hendrickx and Flury 2001). Thus, bypassing of the topsoil soil 23 

matrix foster early arrival times and high concentrations of contaminants in the groundwater, 24 

which was shown by several tracer field studies (e.g. Hendrickx and Flury 2001, Ritsema et 25 

al. 1997, Hardie et al. 2011). Once formed, dry zones persist further wetting and additional 26 

water infiltrates through already existing preferential pathways, further stabilizing established 27 

flow paths (Dekker and Ritsema 2000; Hagedorn and Bundt 2002). Under present climate 28 

conditions, soil water repellency is already a widespread phenomenon (Buczko et al. 2006). 29 

For the predicted climate conditions, where droughts will be more common, an even higher 30 

level of hydrophobicity is to be expected, according to the findings of our rainfall reduction 31 

experiments. 32 
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 1 

5 Conclusions 2 

Two years of rainfall reduction equivalent to an annual drought with a 40 year return interval 3 

was sufficient to change the soil properties and hence the infiltration pathways of six forest 4 

soils independent of soil type and tree species. All drought treated soils, except one, 5 

developed slight to severe water repellency. Main tree species had a particular effect on 6 

hydrophobicity, but is only accounting for minor differences in infiltration pattern. The 7 

“drought-history” or generally the climatic condition in the past had more effect on the 8 

observed hydrophobicity and infiltration behavior than the actual antecedent soil moisture 9 

conditions of the soils. The results of this study suggest that drought effects on infiltration 10 

processes need to be considered in hydrological models to obtain realistic predictions 11 

regarding water quality and quantity in runoff and groundwater recharge. 12 
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Table 1: Classification of water repellency by WDPT time, after Bisdom et al. (1993) 1 

WDPT in s Classification Class 

< 5 wettable 1 

5 – 60 slightly water repellent 2 

60 – 600 strongly water repellent 3 

600 – 3600 severely water repellent 4 

> 3600 extremely water repellent 5 

   

 2 

3 
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 1 

 2 

Figure 1: Location of the study sites (red squares) within Germany (light blue); South-West: 3 

Schwäbische Alb; center: Hainich-Dün; North-East: Schorfheide-Chorin. 4 
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 2 

Figure 2: Soil horizons, texture, and rock fractions of the six experimental plots. Soil type 3 

classification according to the World reference base for soil (FAO 2006). 4 
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 1 

 2 

Figure 3: Scheme for profile excavation (a) and WDPT experiment (b). The 20 mm, 40 mm, 3 

and 60 mm in (a) denote the applied sprinkling volumes. For the WDPT experiment (b), five 4 

sampling locations (boxes) were used traversing the profile. On every sampling location, the 5 

tests were repeated three times. 6 
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 1 

 2 

Figure 4: Normalized cumulated sums of soil moisture of the drought versus the control 3 

subplots of the investigated soils. The computations begin with the start of the rainfall 4 

reduction and end at the date of the dye tracer experiment 2013. 5 
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 2 

Figure 5: Mean and maximum water drop penetration times (WDPTs) of the control (green) 3 

and drought (red) plots. Orange lines and numbers refer to the WDPT classes after Bisdom et 4 

al. (1993) (see Table 2). 5 

6 



 34 

 1 

 2 



 35 

Figure 6: Comparison between stained path width (SPW) of pre-drought (2011) and control 1 

(2013) plot. Blue shades indicate the SPW classes. The sum of SPW is the volume density 2 

(VD) per depth. Grey and black indicate the VD of stones. 3 

4 



 36 

 1 



 37 

Figure 7: VD boxplots of the drought and the pre-drought pattern. Depth ranges are omitted, 1 

where one of the profile is shorter than the other. Statistically significant (p-value ≤ 0.01) 2 

differences between the treatments are marked with an asterisk. 3 
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 39 

Figure 8: Comparison between before drought (2011) and after drought (2013) stained path 1 

widths (SPW) and flow processes for coniferous and deciduous stand plots. The sum of SPW 2 

is the volume density (VD) per depth. Grey and black indicate the VD of stones. 3 

4 
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Figure 9: VD boxplots of the drought and the pre-drought pattern. Depth ranges are omitted, 3 

where one of the profile is shorter than the other. Statistically significant (p-value ≤ 0.01) 4 

differences between the treatments are marked with an asterisk. 5 


