

1 **Effects of cultivation and reforestation on suspended**
2 **sediment concentrations: a case study in a**
3 **mountainous catchment in China**

4
5 **N.F. Fang ^{1,2}, F.X. Chen ³, H.Y. Zhang ^{1,2}, Y.X. Wang ^{1,2}, and Z.H. Shi ^{2,3*}**

6 ¹ State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,
7 Northwest A & F University, Yangling 712100, PR China

8 ² Institute of Soil and Water Conservation of Chinese Academy of Sciences and
9 Ministry of Water Resources, Yangling 712100, PR China

10 ³College of Resources and Environment, Huazhong Agricultural University, Wuhan
11 430070, China

12 *Correspondence to:* Z.H. Shi (shizhihua70@gmail.com)

13

14

15 **Abstract**

16 Understanding how sediment concentrations vary with land use/cover is critical for
17 evaluating the current and future impacts of human activities on river systems. This
18 paper presents suspended sediment concentration (SSC) dynamics and the relationship
19 between SSC and discharge (Q) in the 8973-km² Du catchment and its sub-catchment
20 (4635 km²). In the Du catchment and its sub-catchment, 4235 and 3980 paired Q -SSC
21 samples, respectively, were collected over 30 years. Under the influence of the
22 “Household Contract Responsibility System” and Grain-for-Green projects in China,
23 three periods were designated, the original period (1980s), cultivation period (1990s),
24 and reforestation period (2000s). The results of a Mann-Kendall test showed that
25 rainfall slightly increased during the study years; however, the annual discharge and
26 sediment load significantly decreased. The annual suspended sediment yield of the Du
27 catchment varied between 1.3×10^8 and 1.0×10^{10} kg, and that of the sub-catchment
28 varied between 6.3×10^7 and 4.3×10^9 kg. The SSCs in the catchment and
29 sub-catchment fluctuated between 1 and 22400 g m⁻³ and between 1 and 31800 g m⁻³,
30 respectively. The mean SSC of the Du catchment was relatively stable during the three
31 periods (± 83 g m⁻³). ANOVA indicated that the SSC did not significantly change under
32 cultivation for low and moderate flows, but was significantly different under high
33 flow during reforestation of the Du catchment. The SSC in the sub-catchment was
34 more variable, and the mean-SSC in the sub-catchment varied from 1058 ± 2217 g m⁻³
35 in the 1980s to 1256 ± 2496 g m⁻³ in the 1990s and 891 ± 1558 g m⁻³ in the 2000s.
36 Reforestation significantly decreased the SSCs during low and moderate flows,
37 whereas cultivation increased the SSCs during high flow. The sediment rating curves
38 showed a stable relationship between the SSC and Q in the Du catchment during the
39 three periods. However, the $SSC-Q$ of the sub-catchment exhibited scattered
40 relationships during the original and cultivation periods and a more linear relationship
41 during the reforestation period.

42 **1 Introduction**

43 Suspended sediment is conventionally regarded as sediment that is transported by a
44 fluid and is fine enough to remain suspended in turbulent eddies (Parsons et al., 2015).
45 Suspended sediment plays important roles in the hydraulics, hydrology, and ecology
46 of rivers (Luo et al., 2013). Land use/cover is thought to affect hydrology and
47 suspended sediment yield (*SSY*) (Van Rompaey et al., 2002; Casali et al., 2010).
48 Although many studies have assumed that forest cover is an effective method for
49 controlling sediment yield throughout the world (e.g., Mount et al., 2005; Hopmans
50 and Bren, 2007; Garzía-Ruiz et al., 2008; Stickler et al., 2009; Verbist et al., 2010; Lü
51 et al., 2015; Wei et al., 2015), other studies have disagreed (e.g., Mizugaki et al., 2008;
52 Ide et al., 2009). Additionally, many studies have implicated farmland as a major
53 contributor of sediments (Gafur et al., 2003; Shi et al., 2004; Izaurrealde et al., 2007;
54 Cerdan et al., 2010). However, whether changes in land use/cover alter soil loss by
55 changing the runoff volume or by changing the suspended sediment concentration
56 (*SSC*) has received little attention. The relationships between *SSC* and discharge (Q)
57 have been discussed using sediment rating curves (Walling, 1977), a fuzzy logic
58 model (Kisi et al., 2006), artificial neural networks (Liu et al., 2012), and other
59 multivariate regression methods (Francke et al., 2008). *SSCs* are highly variable and
60 can vary over many orders of magnitude during storm events (Naden and cooper,
61 1999; Cooper, 2002; Fang et al., 2012). The mean annual/monthly *SSC* fails to capture
62 the highly episodic nature of sediment transport because >90% of the sediment load
63 can be transported in <10% of time (Collins et al., 2011). Morehead et al. (2003)
64 indicated that the suspended sediment load carried by rivers varies spatially and
65 temporally and that sediment rating curve parameters can exhibit time-dependent
66 trends. Warrick et al. (2013) concluded that the discharge and sediment relationships
67 from six coastal rivers varied substantially with time in response to land use. In most
68 studies, *SSYs* were calculated using *SSCs* and Q . However, little work has focused on
69 the effects of land use/cover change on *SSCs*.

70 China contains 22% of the world's population but only 7% of the world's
71 croplands (Liu and Diamond, 2005). In China, erosion by water affects an area of
72 $3.6 \times 10^6 \text{ km}^2$, or approximately 37% of the country's land area (Ni et al., 2008). Thus,
73 soil erosion has become an important topic for local and national policy makers. In
74 the 1980s, a policy called the "Household Contract Responsibility System" was
75 implemented in China's rural areas. Consequently, more land was reclaimed for
76 farming. In the late 1990s, the Grain-for-Green project was introduced to increase
77 forest and grassland cover. To combat soil erosion on sloped croplands, farmland with
78 slopes $>25^\circ$ was restored. The farmers who agreed to stop cultivating these lands
79 received subsidies to cover their losses (Gao et al., 2012). Before this project,
80 subtropical zones with adequate rainfall were often over-exploited due to economic
81 and demographic pressures. Cultivation of steeply sloping lands in subtropical areas
82 can result in serious soil erosion during intense rainfall (Fang et al., 2012). In this
83 study, a mountainous catchment and its sub-catchment were investigated and analyzed
84 in detail. This catchment is located in the Danjiangkou Reservoir Area, which is a
85 source area in the Middle Route Project under the South-to-North Water Transfer
86 Scheme (the largest water transfer project in the world). The study catchment has
87 experienced cultivation and reforestation periods. The first part of this study focuses
88 on how cultivation and reforestation affect Q , SSC , and SSY at different time scales.
89 Then, we discuss the dual roles of cultivation and reforestation that affect the
90 relationship between SSC and Q . Finally, the SSC dynamics in the catchment and
91 sub-catchment were determined under land use/cover changes.

92 **2 Study area and methods**

93 **2.1 Study area**

94 This study was conducted in the Du catchment ($31^\circ 30' - 32^\circ 37' \text{ N}$, $109^\circ 11' - 110^\circ 25' \text{ E}$),
95 which is located in Hubei Province, China, and covers an area of 8973 km^2 (Figure 1).
96 Elevations within the watershed range from 245 to 3002 m. The sub-catchment

97 (Xinzhou catchment) is located in the northwest region of the Du catchment and
98 covers an area of 4635 km². The topography in the Du catchment is undulating and is
99 characterized by mountain ranges, steep slopes and a subtropical climate with a mean
100 temperature of 15°C. The mean annual precipitation in this region is approximately
101 1000 mm, with 80% of the precipitation occurring between May and September. The
102 major soil types include yellow–brown soils, Chao soils, and purple soils (National
103 Soil Survey Office, 1992), which correspond to Alfisols, Entisols, and Inceptisols,
104 respectively, according to USDA Soil Taxonomy (Soil Survey Staff, 1999). The major
105 crops in this region are corn (*Zea mays L.*) and wheat (*Triticum aestivum L.*). There
106 were 1002 villages with total population of 1.9×10⁶ based on the fifth population
107 census of China in 2000.

108 *Insert: Figure 1*

109 **2.2 Land use/cover change**

110 The land cover was digitized as part of a previous research project. Reconnaissance
111 field surveys were conducted in 2007. A watershed topographic map was used in
112 combination with 1999 ETM photographs and Landsat imagery from 1987 and 2007.
113 The land use/cover units were delineated on the photographs and verified in the field.
114 We assigned the periods of the 1980s, 1990s, and 2000s to original, cultivation, and
115 reforestation periods, respectively. The areas of the various types of land use/cover are
116 presented in Tables 1 and 2. In 1987, forestland, farmland, and shrubland covered
117 areas of 6316 km² (70.4%), 919 km² (10.2%) and 929 km² (10.4%), respectively. The
118 other land use/cover types covered small areas and included barren land (0.4%),
119 grassland (7.3%), urban land (0.9%), and water bodies (0.4%) (Table 1). During the
120 2000s, some steep lands with slopes of more than 25° were converted to forestland.
121 The area of forestland increased to 75.2% in 2007, whereas the area of farmland
122 decreased to 6.1% (Figure 2). The sub-catchment experienced a similar change in
123 farmland, which increased from 11.5% in 1987 to 14.7% in 1999 and decreased to 6.7%
124 in 2007. However, the change in forestland in the sub-catchment was different from

125 that in the Du catchment, in which forestland increased from 66.3% in 1987 to 67.9%
126 in 1999 and 74.0% in 2007 (Table 2).

127 *Insert: Figure 2*

128 *Insert: Table 1*

129 *Insert: Table 2*

130 **2.3 Data acquisition**

131 All of the hydrological data were obtained from the Hubei Provincial Water
132 Resources Bureau. Two gauge stations (Zhushan and Xinzhou) and seven weather
133 stations (nearly evenly distributed) are located in the study catchment. The yearly
134 average rainfall measured at three weather stations in Xinzhou was very similar to the
135 mean rainfall measured at the seven weather stations. Therefore, we used the average
136 annual values of rainfall obtained from the seven stations for the Zhushan and
137 Xinzhou stations. A continuously recording water-level stage recorder and a silt
138 sampler (metal type) were used to record discharge and sediment (complemented by
139 manual samples), respectively. The water stage was measured and transformed into
140 discharge by using the calibrated rating curve obtained through periodic flow
141 measurements. $SSCs$ were determined using the gravimetric method, in which water
142 samples were vacuum-filtered through a 0.45- μm filter and the residue was oven-
143 dried at 105°C for 24 h. The weight of each dried residue and the initial sample
144 volume were used to obtain the SSC (g m^{-3}). Next, the SSY was calculated from the
145 SSC and Q . During a month, the total SSY was the sum SSY of each event. Monthly
146 SSC was calculated by monthly SSY and Q . During rainfall events, the sampling
147 measurement frequency was increased several times each day. Paired $SSC-Q$ data
148 were obtained during rainfall-runoff events. Because bed load measurements were not
149 performed in this area, this study does not consider bed load sediment transport. From
150 1980 to 2009, 4235 paired $SSC-Q$ samples were collected at the Zhushan station and
151 3980 samples were collected at the Xinzhou station. This study uses several variables,

152 and their meanings and abbreviations are shown in Table 3. To distinguish between
153 the variables of the two gauges, we used Qd , Dd , $SSYd$, and $SSCd$ for the Zhushan
154 station (Du catchment) and Qx , Dx , $SSYx$, and $SSCx$ for the Xinzhou station
155 (sub-catchment).

156 *Insert: Table 3*

157 The variables for D , SSY_i and SSY are calculated as follows:

158
$$D = Q/A \quad (1)$$

159
$$SSY_i = SSC_i \times Q_i \quad (2)$$

160
$$SSY = \int_1^n SSY_i \quad (3)$$

161 where A is the area of the catchment and SSY_i , SSC_i and Q_i are the suspended sediment
162 yield, suspended sediment concentration, and discharge during period i , respectively.

163 **2.4 Statistical analyses**

164 The Mann-Kendall test, which was proposed by Mann (1945) and Kendall (1975),
165 was used to identify trends in P , Q and SSY during the 30-year study period. The S
166 statistic was calculated as follows:

167
$$S = \sum_{i=1}^{n-1} \sum_{j=i+1}^n \text{sgn}(x_j - x_i) \quad (4)$$

168 where n is the number of data points, x_i and x_j are the respective data values in the
169 time series i and j ($j > 1$), and $\text{sgn}(x_j - x_i)$ is the sign function (Gao et al., 2012), which is
170 determined as follows:

171
$$\text{sgn}(x_j - x_i) = \begin{cases} +1, & \text{if } x_j - x_i > 0 \\ 0, & \text{if } x_j - x_i = 0 \\ -1, & \text{if } x_j - x_i < 0 \end{cases} \quad (5)$$

172 The variance is computed as

173
$$\text{VAR}(S) = \frac{1}{18} \left[n(n-1)(2n+5) - \sum_{i=1}^q t_i(t_i-1)(2t_i+5) \right] \quad (6)$$

174 where n is the number of data points, q is the number of tied groups and t_i is the
 175 number of data values in the i th group. The standard test statistic, Z , is computed as
 176 follows:

177
$$Z = \begin{cases} \frac{S-1}{\sqrt{\text{VAR}(S)}} & \text{if } S > 0 \\ 0 & \text{if } S = 0 \\ \frac{S+1}{\sqrt{\text{VAR}(S)}} & \text{if } S < 0 \end{cases} \quad (7)$$

178 A positive value of Z indicates an upward trend, and a negative value of Z
 179 indicates a downward trend. We use the threshold of ± 1.96 for significant difference
 180 (Gao et al., 2012). The Mann-Kendall statistical test has frequently been used to
 181 quantify the significance of trends in hydro-meteorological time series (Gocic and
 182 Trajkovic, 2013).

183 To discuss relationships between SSC and Q , hydrologists often use sediment
 184 rating curves. The most common approach is to fit a power curve to the normal data
 185 (Khanchoul et al., 2010) as follows:

186
$$SSC = \alpha Q^\beta \quad (8)$$

187 Here, α and β are constants in the non-linear regression equation. The non-linear
 188 model assumes that the dependent variable (SSC) has a constant variance (scatter),
 189 which typically does not occur because the scatter around the regression generally
 190 increases with increasing Q (Harrington and Harrington, 2013). The Mann-Kendall
 191 test was performed in MATLAB 7.0.

192 **3 Results**

193 **3.1 Stream flow and sediment yield during different periods**

194 Figure 3 shows the annual P , D and SSY for the hydrological years of 1980-2009
195 from the Zhushan and Xinzhou gauges. The annual P fluctuated between 665 and
196 1219 mm. The annual Dd and Dx varied between 253 to 873 mm and 279 to 931 mm,
197 respectively. The annual SSY varied between 1.3×10^8 and 1.0×10^{10} kg yr⁻¹ from the
198 Zhushan gauge and between 6.3×10^7 and 4.3×10^9 kg yr⁻¹ from the Xinzhou gauge. To
199 identify the relationships between the annual P , Dd , Dx , SSY d , and SSY x , we generated
200 a Pearson's correlation matrix, as shown in Figure 4. The analysis showed significant
201 correlations between all of the variables ($n=30$, $p<0.0001$). During the low-flow years
202 (e.g., 1997 or 2001), SSY d was similar to SSY x . However, during the high-flow years
203 (e.g., 1983 or 2005), SSY d was several times greater than SSY x .

204 *Insert: Figures 3 and 4*

205 The Mann-Kendall test was applied to the annual P , D and SSY data for
206 1980-2009. The test shows a decreasing but not significant trend for P , a significant (5%
207 level) decreasing trend for Qd , and highly significant decreasing trends for Qx , SSY x
208 and SSY d (1% level) (Figure 5). After 2000, P shows an increasing trend and Q and
209 SSY show decreasing trends.

210 *Insert: Figure 5*

211 To better understand the dynamics of Q and SSC, Tables 4 and 5 compare the
212 observed average monthly Q and SSC among the three periods monitored at the
213 Zhushan and Xinzhou gauges.

214 *Insert: Tables 4 and 5*

215 During 1980s-1990s, the annual Qd showed a decreasing trend (Table 4), with
216 only 3 of 12 months showing a slightly increasing trend. The rate of decrease varied
217 from -3.3% to -53.0%. In addition, Qx exhibited a decreasing trend that was similar to

218 that of Qd during the same period. During 1990s-2000s, Qd greatly increased from 1%
219 to 34% during 9 of 12 months. Meanwhile, Qx increased over eight months and
220 fluctuated between 10% and 42%. During 1990s-2000s, Qd and Qx both exhibited a
221 more obvious increasing trend during the winter than during the flow seasons.

222 Table 5 shows the monthly mean SSC from the two gauges. $SSCd$ decreased (-1%
223 to -66%) during the flow seasons (May to September), except in August, when it
224 slightly increased (2%) during 1980s-1990s. The decrease of $SSCd$ did not coincide
225 with that of Qd . During 1990s-2000s, the decrease in $SSCd$ was more obvious than
226 that in 1980s-1990s. Eight of ten months experienced a decreasing change, and the
227 change over seven months was >-40%. In addition, the $SSCx$ decreased over six
228 months and increased during the other four months during 1980s-1990s. During
229 1990s-2000s, the $SSCx$ decreased over seven months, and four out of five months
230 showed a decreasing trend during the flow season. However, the monthly SSC is
231 calculated by SSY and Q and is not the actual SSC. To better understand SSC
232 dynamics, paired $SSC-Q$ data collected by monitoring should be discussed.

233 **3.2 SSC-Q dynamics**

234 Figure 6 shows the statistical characteristics of the SSC and Q during the three
235 periods. The mean- $SSCd$ was relatively stable during the three periods ($\pm 83 \text{ g m}^{-3}$),
236 and the mean- $SSCx$ varied from 1058 g m^{-3} in the 1980s to 1256 g m^{-3} in the 1990s
237 and then decreased to 891 g m^{-3} in the 2000s. In the 1980s, the max $SSCd$ and max
238 $SSCx$ were 22400 and 31800 g m^{-3} , respectively. Next, the max $SSCd$ shape decreased
239 to 20000 g m^{-3} during the 1990s and to 17800 g m^{-3} during the 2000s. Meanwhile, the
240 max $SSCx$ decreased to 26900 and 19200 g m^{-3} during the 1990s and 2000s,
241 respectively. The max Qx was more variable than the max Qd and was 12400 g m^{-3} in
242 the 1980s, 3610 g m^{-3} in the 1990s and 3010 g m^{-3} in the 2000s. However, the rate of
243 change of the mean Qx was similar to that of the mean Qd .

244 *Insert: Figure 6*

245 Figure7 shows that the *SSCs* varied by several orders of magnitude for a given
246 discharge at both gauges. *SSCd* and *SSCx* fluctuated between 1 and 22400 g m⁻³ and
247 between 1 and 31800 g m⁻³, respectively. The maximum *SSCx* (31800 g m⁻³) was
248 larger than the maximum *SSCd* (21400 g m⁻³). In Figure 7, *SSCd-Qd* maintained a
249 stable relationship during the three periods (1980s, 1990s, and 2000s). However,
250 *SSCx-Qx* showed a scattered relationship from 1980s and 1990s and showed a more
251 liner relationship from 2000s. During the three periods, the max *Qd* decreased from
252 9880 to 6140 and 5070 m³ s⁻¹, respectively. Meanwhile, the max *Qx* was reduced
253 from 5960 to 3580 and 2990 m³ s⁻¹, respectively.

254 *Insert: Figure 7*

255 The relationship between *SSC* and *Q* is complicated. To better understand the
256 dynamics of *SSC*, *SSC* was sorted by ranking the paired *Q* values, which were
257 classified using a threshold level approach (e.g., low flow ($Q \leq 25\%$), moderate flow
258 ($25 < Q < 75\%$), and high flow ($Q \geq 75\%$)). The *SSC* dynamics were compared under
259 different flow regimes. For the sub-catchment, the thresholds were 188 and 674 m³ s⁻¹
260 for the minimum 25% and maximum 25%, respectively. For *Qd*, the thresholds of the
261 minimum and maximum 25% were 332 and 1100 m³ s⁻¹, respectively. Figure 8
262 presents box plots for *SSCd* and *SSCx* during the three periods for the three flow
263 grades. The box plots indicate the maximum, 75%, 50%, 25%, and minimum values
264 for each *SSC* (outliers are excluded). For the sub-catchment, *SSCx* increased between
265 the original period and the cultivation period for moderate and high flow, but not for
266 low flow. Then, *SSCx* decreased during the reforestation period for all flows. At the
267 Zhushan station, *SSCd* was larger during the cultivation period for both moderate and
268 high flows. During the reforestation period, the *SSCd* during low flow was higher than
269 during the other periods.

270 *Insert: Figure 8*

271 Six ANOVA tests were performed using *SSC* as the dependent variable and using
272 the different periods (land use) as independent variables. ANOVA was only conducted
273 for the same flow during different periods. One-way ANOVA (Table 6) revealed that
11

274 $SSCx$ showed significant differences among the different periods for all three types of
275 flows ($p<0.001$). However, a significant difference in $SSCd$ was only observed among
276 high flows ($p<0.001$). No statistically significant differences were observed among
277 the $SSCd$ values during the different periods for low or moderate flows.

278 *Insert: Table 6*

279 **4 Discussion**

280 Land use/cover has been widely documented to have dire environmental
281 consequences through their adverse impacts on soil and water qualities (Zhang et al.,
282 2015). Olang et al (2011) indicated that 40% and 51 of forest and agriculture land
283 respectively revealed reduced runoff volumes by about 12%, while 86% land cover of
284 agriculture increased runoff volumes by about 12 %. Buendia (2015) et al studied the
285 effects of afforestation on runoff at a Pyrenean Basin (2807 km^2), the results show
286 with forest of sub-basins increase ranging between 19% and 57% account for ~40%
287 of the observed decrease in annual runoff. Liu et al (2014) demonstrated that
288 afforestation leads to increased runoff in dry seasons in Yarlung Zangbo River basin.
289 In this study, land use/cover changes significantly affect Q and SSY (Tables 4 and 5).
290 During the cultivation period, an increase in farmland resulted in an obvious
291 decreasing trend in Q in the Du catchment and its sub-catchment. The sediment
292 concentration in the direct runoff from a slope consists of a combination of the
293 sediment stored on the slope and that generated by flow erosion during the current
294 rainfall event (Aksoy and Kavvas 2005; Rankinen et al., 2010). Large storms generate
295 sufficient surface runoff to deliver sediment from the uplands to the stream. In forest
296 catchments over flow typically occurs only in a small fraction of the catchment, it is
297 most likely to occur very close to the stream (Underwood et al., 2015). Reforestation
298 many increased the return period of peak flow and peak sediment yield (Keesstra,
299 2007). Borrelli et al (2013) illustrated that a disturbed forest sector could produce
300 about 74% more net erosion than a nine times larger, undisturbed forest sector. High

301 SSCs are not detected in the absence of a high flow velocity to carry the suspended
302 sediment to the outlet of a catchment. *SSCs* are determined by onsite sediment
303 production and the connectivity of sediment sources to the channel. Sediment
304 delivered to the channel can deposited (Keesstra et al., 2009). When runoff is
305 decreased, its erodibility is reduced (Bakker et al., 2008; Van Rompaey et al., 2002).
306 Reduced stream flow can reduce the sediment transport capacity and increase the
307 probability for further sediment deposition in the river (Zhu et al., 2015).
308 Human-induced modifications of land use/cover in river basins may cause strong
309 geomorphic responses by disturbing sediment supply, transport and deposition
310 processes (Liebault et al., 2005).

311 Hydrological studies rely on the analysis of processes at different spatial scales
312 (García-Ruiz et al., 2008). Sediment yield and watershed areas have been elucidated
313 in many studies (e.g., Renschler and Harbor, 2002; de Vente and Poesen, 2005). The
314 mean-*SSC* was stable during the study years in the Du catchment, and the mean-*SSC*
315 varied in the sub-catchment. The increase in Q_x was larger than the increase in Q_d .
316 The monitored sub-catchment covered approximately half of the entire catchment.
317 Likewise, the combined mean annual discharge volume of the sub-catchment was
318 nearly half of the total catchment output (i.e., a deficit of approximately 50% at the
319 outlet). However, the *SSC* dynamics were more variable. Due to sediment delivery
320 problems, sediment is generated on catchment slopes and is either stored on the
321 surface or removed (Rankinen et al, 2010). Only a fraction of the gross soil erosion
322 within a catchment will reach the outlet and be represented in the sediment yield. In
323 addition, stream flow erodes the sediment directly from the surface or causes channel
324 erosion, which both removes the stored surface layer of detached sediment.

325 Our previous study in Du catchment showed that the area scale dominates the
326 sediment delivery ratio (Shi et al., 2014). The sediment stored in the gullies is flushed
327 to the river when a certain threshold is exceeded, and the deposition of sediment in
328 channels is flushed at higher discharges. The max SSC_x is greater than the max SSC_d
329 (31800 vs. 22400 $g m^{-3}$). One possible explanation is the sediment stock is depleted

330 during a flood, this process not occur simultaneously within the entire river basin and
331 results in gradually decreasing *SSCs* downstream (Doomen et al., 2008). Cultivation
332 or reforestation alter the slope surfaces but do not remove gullies and channels. The
333 *SSCs* in Zhushan were only significantly different during high flow and the
334 reforestation period when the forest cover greatly increased.

335 **5 Conclusions**

336 This study investigated *Q* and *SSC* dynamics for 30 years under cultivation and
337 reforestation. The results of a Mann-Kendall test showed that rainfall slightly
338 increased during the study years; however, the annual discharge and sediment load
339 significantly decreased. The sediment flux is extremely spatially and temporally
340 variable. The relationship between *SSC* and *Q* is complicated. Reforestation caused
341 significant differences in the *SSC* for both low and moderate flows. For low and
342 moderate flow, the changes in *SSY* primarily resulted from runoff, while the *SSC*
343 showed little change. For the sub-catchment, the changes in the *SSC* were more
344 sensitive to land use/cover changes. Meanwhile, cultivation resulted in significant
345 differences in the *SSC* for high flow. Overall, our results provide useful information
346 regarding *SSC* dynamics relative to land use/cover changes in mountainous
347 catchments in a subtropical climate, which have largely been undocumented in the
348 literature.

349 **Acknowledgements**

350 Financial support for this research was provided by the National Natural Science
351 Foundation of China (41525003 and 41301294), and the Fundamental Research
352 Funds for the Central Universities (2014YB053).

353

354 **References**

- 355 Aksoy, H., and Kavvas, M. L.: A review of hillslope and watershed scale erosion and
356 sediment transport models, *Catena*, 64, 247-271, doi: 10.1016/j.catena.2005.
357 08.008, 2005.
- 358 Bakker, M. M., Govers, G., van Doorn, A., Quetier, F., Chouvardas, D., and
359 Rounsevell, M.: The response of soil erosion and sediment export to land-use
360 change in four areas of Europe: The importance of landscape pattern,
361 *Geomorphology*, 98, 213-226, doi: 10.1016/j.geomorph.2006.12.027, 2008.
- 362 Borrelli, P., Marker, M., and Schutt, B.: Modelling Post-Tree-Harvesting Soil Erosion
363 and Sediment Deposition Potential in the Turano River Basin (Italian Central
364 Apennine), *Land Degrad Dev*, 26, 356-366, 10.1002/ldr.2214, 2015.
- 365 Buendia, C., Batalla, R. J., Sabater, S., Palau, A., and Marcé, R.: Runoff Trends
366 Driven by Climate and Afforestation in a Pyrenean Basin, *Land Degrad Dev*,
367 Article in Press. DOI: 10.1002/ldr.2384, 2015.
- 368 Casalí, J., Giménez, R., Díez, J., Álvarez-Mozos, J., Del Valle de Lersundi, J., Goñi,
369 M., Campo, M. A., Chahor, Y., Gastesi, R., and López, J.: Sediment production
370 and water quality of watersheds with contrasting land use in Navarre (Spain),
371 *Agr. Water Manage.*, 97, doi: 1683-1694, 10.1016/j.agwat.2010.05.024, 2010.
- 372 Cerdà, A., and Doerr, S. H.: Soil wettability, runoff and erodibility of major
373 dry-Mediterranean land use types on calcareous soils, *Hydrol Process*, 21,
374 2325-2336, 10.1002/hyp.6755, 2007.
- 375 Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin,
376 A., Vacca, A., Quinton, J., Auerswald, K., Klik, A., Kwaad, F. J. P. M., Raclot, D.,
377 Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M. J., and Dostal, T.: Rates
378 and spatial variations of soil erosion in Europe: A study based on erosion plot
379 data, *Geomorphology*, 122, 167-177, doi: 10.1016/j.geomorph.2010.06.011,
380 2010.
- 381 Collins, A. L., Naden, P. S., Sear, D. A., Jones, J. I., Foster, I. D. L., and Morrow, K.:

- 382 Sediment targets for informing river catchment management: international
383 experience and prospects, *Hydrol. Process.*, 25, 2112-2129, doi: 10.1002/ hyp.
384 7965, 2011.
- 385 Cooper, J. A. G.: The role of extreme floods in estuary-coastal behaviour: contrasts
386 between river- and tide-dominated microtidal estuaries, *Sediment. Geol.*, 150,
387 123-137, doi: 10.1016/S0037 -0738(01)00271-8, 2002.
- 388 de Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey,
389 A., Arabkhedri, M., and Boix-Fayos, C.: Predicting soil erosion and sediment
390 yield at regional scales: Where do we stand?, *Earth-Sci. Rev.*, 127, 16-29, doi:
391 10.1016/j.earscirev. 2013.08.014, 2013.
- 392 Doomen, A. M. C., Wijma, E., Zwolsman, J. J. G., and Middelkoop, H.: Predicting
393 suspended sediment concentrations in the Meuse River using a supply-based
394 rating curve, *Hydrol. Process.*, 22, 1846-1856, doi: 10.1002/hyp.6767, 2008.
- 395 Fang, N.F., Shi, Z.H., Li, L., Guo, Z.L., Liu, Q.J., and Ai, L.: The effects of rainfall
396 regimes and land use changes on runoff and soil loss in a small mountainous
397 watershed, *Catena*, 99, 1-8, doi: 10.1016/j.catena.2012.07.004, 2012.
- 398 Francke, T., López-Tarazón, J. A., and Schröder, B.: Estimation of suspended
399 sediment concentration and yield using linear models, random forests and
400 quantile regression forests, *Hydrol. Process.*, 22, 4892-4904, doi: 10.1002/ hyp.
401 7110, 2008.
- 402 Gao, Z.L., Fu, Y.L., Li, Y.H., Liu, J.X., Chen, N., and Zhang, X.-P.: Trends of
403 streamflow, sediment load and their dynamic relation for the catchments in the
404 middle reaches of the Yellow River over the past five decades, *Hydrol. Earth
405 Syst. Sci.*, 16, 3219-3231, doi: 10.5194/hess-16-3219-2012, 2012.
- 406 Garcia-Ruiz, J. M., Reguees, D., Alvera, B., Lana-Renault, N., Serrano-Muela, P.,
407 Nadal-Romero, E., Navas, A., Latron, J., Marti-Bono, C., and Arnaez, J.: Flood
408 generation and sediment transport in experimental catchments affected by land
409 use changes in the central Pyrenees, *J. Hydrol.*, 356, 245-260, doi: 10.1016/
410 j.jhydrol.2008.04.013, 2008.

- 411 Gafur, A., Jensen, J. R., Borggaard, O. K., and Petersen, L.: Runoff and losses of soil
412 and nutrients from small watersheds under shifting cultivation (Jhum) in the
413 Chittagong Hill Tracts of Bangladesh, *J. Hydrol.*, 274, 30-46, doi: 10.1016/
414 S0022-1694(03)00262-2, 2003.
- 415 Gocic, M., and Trajkovic, S.: Analysis of changes in meteorological variables using
416 Mann-Kendall and Sen's slope estimator statistical tests in Serbia, *Global Planet.
417 Change*, 100, 172-182, doi: 10.1016/j.gloplacha.2012.10.014, 2013.
- 418 Harrington, S. T., and Harrington, J. R.: An assessment of the suspended sediment
419 rating curve approach for load estimation on the Rivers Bandon and Owenabue,
420 Ireland, *Geomorphology*, doi:185, 27-38, 10.1016/j.geomorph.2012.12.002,
421 2013.
- 422 Hopmans, P., and Bren, L. J.: Long-term changes in water quality and solute exports
423 in headwater streams of intensively managed radiata pine and natural eucalypt
424 forest catchments in south-eastern Australia, *Forest Ecol. Manag.*, 253, 244-261,
425 doi: 10.1016/j.foreco.2007.07.027, 2007.
- 426 Ide, J. i., Kume, T., Wakiyama, Y., Higashi, N., Chiwa, M., and Otsuki, K.: Estimation
427 of annual suspended sediment yield from a Japanese cypress (*Chamaecyparis
428 obtusa*) plantation considering antecedent rainfalls, *Forest Ecol. Manag.*, 257,
429 1955-1965, doi: 10.1016/j.foreco.2009.02.011, 2009.
- 430 Izaurrealde, R. C., Williams, J. R., Post, W. M., Thomson, A. M., McGill, W. B.,
431 Owens, L. B., and Lal, R.: Long-term modeling of soil C erosion and
432 sequestration at the small watershed scale, *Climatic Change*, 80, 73-90, doi:
433 10.1007/s10584-006-9167-6, 2006.
- 434 Kendall, M.G.: *Rank correlation methods*: Griffin, London, 1975.
- 435 Khanchoul, K., and Jansson, M. B.: Sediment rating curves developed on stage and
436 seasonal means in discharge classes for the Mellah wadi, Algeria, *Geogr. Ann. A.,
437 90A*, 227-236, doi: 10.1111/j.1468-0459.2008.341.x, 2008.
- 438 Kisi, O., Karahan, M. E., and Sen, Z.: River suspended sediment modelling using a
439 fuzzy logic approach, *Hydrol. Process.*, 20, 4351-4362, doi: 10.1002/hyp.6166,
440 2006.

- 441 Liébault, F., Gomez, B., Page, M., Marden, M., Peacock, D., Richard, D., and Trotter,
442 C. M.: Land-use change, sediment production and channel response in upland
443 regions, *River Res. Appl.*, 21, 739-756, doi: 10.1002/rra.880, 2005.
- 444 Liu, J., and Diamond, J.: China's environment in a globalizing world, *Nature*, 435,
445 1179-1186, doi: 10.1038/4351179a, 2005.
- 446 Liu, Q.J., Shi, Z.H., Fang, N.F., Zhu, H.D., and Ai, L.: Modeling the daily suspended
447 sediment concentration in a hyperconcentrated river on the Loess Plateau, China,
448 using the Wavelet-ANN approach, *Geomorphology*, 186, 181-190, doi:
449 10.1016/j.geomorph.2013.01.012, 2013.
- 450 Liu, Z., Yao, Z., Huang, H., Wu, S., and Liu, G.: Land Use and Climate Changes and
451 Their Impacts on Runoff in the Yarlung Zangbo River Basin, China, *Land*
452 *Degrad Dev*, 25, 203-215, 10.1002/ldr.1159, 2014.
- 453 Lü, Y.H., Zhang, L.W., Feng, X.M., Zeng, Y., Fu, B.J., Yao, X.L., Li, J.R., and Wu,
454 B.F.: Recent ecological transitions in China: greening, browning, and influential
455 factors, *Sci. Rep.*, 5, 8732, doi: 10.1038/srep08732, 2015.
- 456 Luo, P.P., He, B., Chaffe, P. L. B., Nover, D., Takara, K., and Mohd Remy Rozainy, M.
457 A. Z.: Statistical analysis and estimation of annual suspended sediments of major
458 rivers in Japan, *Environ.Sci. Proc. Imp.*, 15, 1052-1061, doi:
459 10.1039/c3em30777h, 2013.
- 460 Mann, H. B.: Nonparametric Tests Against Trend, *Econometrica*, 13, 245-259, 1945.
- 461 Mizugaki, S., Onda, Y., Fukuyama, T., Koga, S., Asai, H., and Hiramatsu, S.:
462 Estimation of suspended sediment sources using ^{137}Cs and ^{210}Pb in
463 unmanaged Japanese cypress plantation watersheds in southern Japan, *Hydrol.*
464 *Process.*, 22, 4519-4531, doi: 10.1002/ hyp.7053, 2008.
- 465 Morehead, M. D., Syvitski, J. P., Hutton, E. W. H., and Peckham, S. D.: Modeling the
466 temporal variability in the flux of sediment from ungauged river basins, *Global*
467 *Planet. Change*, 39, 95-110, doi: 10.1016/s0921-8181(03)00019-5, 2003.
- 468 Mount, N. J., Sambrook Smith, G. H., and Stott, T. A.: An assessment of the impact of
469 upland afforestation on lowland river reaches: the Afon Trannon, mid-Wales,
470 *Geomorphology*, 64, doi: 255-269, 10.1016/j.geomorph.2004.07.003, 2005.

- 471 Naden, P. S., and Cooper, D. M.: Development of a sediment delivery model for
472 application in large river basins, *Hydrol. Process.*, 13, 1011-1034, 1999.
- 473 National Soil Survey Office: Soil survey technique in China: Agricultural Press,
474 Beijing, 1992. (in Chinese)
- 475 Ni, J.R., Li, X.X., and Borthwick, A. G. L.: Soil erosion assessment based on
476 minimum polygons in the Yellow River basin, China, *Geomorphology*, 93,
477 233-252, doi: 10.1016/j.geomorph.2007.02.015, 2008.
- 478 Olang, L. O., Kundu, P. M., Ouma, G., and Furst, J.: Impacts of Land Cover Change
479 Scenarios on Storm Runoff Generation: A Basis for Management of the Nyando
480 Basin, Kenya, *Land Degrad Dev*, 25, 267-277, 10.1002/ldr.2140, 2014.
- 481 Parsons, A. J., Cooper, J., and Wainwright, J.: What is suspended sediment?, *Earth*
482 *Surf. Proc. Land.*, 40, 1417-1420, doi: 10.1002/esp.3730, 2015.
- 483 Rankinen, K., Thouvenot-Korppoo, M., Lazar, A., Lawrence, D. S. L., Butterfield, D.,
484 Veijalainen, N., Huttunen, I., and Lepistö, A.: Application of catchment scale
485 sediment delivery model INCA-Sed to four small study catchments in Finland,
486 *Catena*, 83, 64-75, doi: 10.1016/j.catena.2010.07.005, 2010.
- 487 Renschler, C. S., and Harbor, J.: Soil erosion assessment tools from point to regional
488 scales-the role of geomorphologists in land management research and
489 implementation, *Geomorphology*, 47, 189-209, doi: 10.1016/S0169-555X(02)
490 00082-X, 2002.
- 491 Shi, Z.H., Cai, C.F., Ding, S.W., Wang, T.W., and Chow, T. L.: Soil conservation
492 planning at the small watershed level using RUSLE with GIS: a case study in the
493 Three Gorge Area of China, *Catena*, 55, 33-48, doi: 10.1016/s0341-8162(03)
494 00088-2, 2004.
- 495 Shi, Z.H., Huang, X.D., Ai, L., Fang, N.F., and Wu, G.L.: Quantitative analysis of
496 factors controlling sediment yield in mountainous watersheds, *Geomorphology*,
497 226, 193-201, doi: 10.1016/j.geomorph.2014.08.012, 2014.
- 498 Soil Survey Staff: *Soil Taxonomy*, A basic system of soil classification for making and
499 interpreting soil surveys , 2nd edition, Agricultural Handbook 436, Natural
500 Resources Conservation Service, USDA, Washington DC, USA, pp. 869, 1999.

- 501 Stickler, C. M., Nepstad, D. C., Coe, M. T., McGrath, D. G., Rodrigues, H. O., Walker,
502 W. S., Soares-Filho, B. S., and Davidson, E. A.: The potential ecological costs
503 and cobenefits of REDD: a critical review and case study from the Amazon
504 region, *Global Change Biol.*, 15, doi: 2803-2824, 10.1111/j.1365-2486.2009.
505 02109.x, 2009.
- 506 Van Rompaey, A. J. J., Govers, G., and Puttemans, C.: Modelling land use changes
507 and their impact on soil erosion and sediment supply to rivers, *Earth Surf. Proc.
508 Land.*, 27, 481-494, doi: 10.1002/esp.335, 2002.
- 509 Verbist, B., Poesen, J., van Noordwijk, M., Widianto, Suprayogo, D., Agus, F., and
510 Deckers, J.: Factors affecting soil loss at plot scale and sediment yield at
511 catchment scale in a tropical volcanic agroforestry landscape, *Catena*, 80, 34-46,
512 doi: 10.1016/j.catena.2009.08.007, 2010.
- 513 Walling, D. E.: Assessing the accuracy of suspended sediment rating curves for a
514 small basin, *Water Resour. Res.*, 13, 531-538, 1977.
- 515 Warrick, J. A., Madej, M. A., Goni, M. A., and Wheatcroft, R. A.: Trends in the
516 suspended-sediment yields of coastal rivers of northern California, 1955-2010, *J.
517 Hydrol.*, 489, 108-123, doi: 10.1016/j.jhydrol.2013.02.041, 2013.
- 518 Wei, W., Chen, L.D., Zhang, H.D., and Chen, J.: Effect of rainfall variation and
519 landscape change on runoff and sediment yield from a loess hilly catchment in
520 China, *Environ. Earth Sci.*, 73, 1005-1016, doi: 10.1007/s12665-014-3451-y,
521 2014.
- 522 Zhang, F., Tiyip, T., Feng, Z. D., Kung, H. T., Johnson, V. C., Ding, J. L., Tashpolat,
523 N., Sawut, M., and Gui, D. W.: Spatio-Temporal Patterns of Land Use/Cover
524 Changes over the Past 20 Years in the Middle Reaches of the Tarim River,
525 Xinjiang, China, *Land Degrad Dev*, 26, 284-299, 10.1002/lde.2206, 2015.
- 526 Zhu, J.L., Gao, P., Geissen, V., Maroulis, J., Ritsema, C. J., Mu, X.M., and Zhao, G.-J.:
527 Impacts of Rainfall and Land Use on Sediment Regime in a Semi-Arid Region:
528 Case Study of the Wuqi Catchment in the Upper Beiluo River Basin, China, *Arid
529 Land Res. Manag.*, 29, 1-16, doi: 10.1080/15324982.2014.919041, 2014.

Table 1 Land use/cover type and change ratio during 1978-2007 in the Du catchment

Land use/cover	Land use/cover (km^2) and ratio			Land use/cover change (km^2) and change ratio		
	1987	1999	2007	1999-1987	2007-1999	2007-1987
Water	35 (0.4%)	26 (0.3%)	31 (0.4%)	-9 (-0.1%)	5 (0.1%)	-4 (-0.0%)
Urban land	81 (0.9%)	88 (1.0%)	115 (1.3%)	8 (0.1%)	26 (0.3%)	34 (0.4%)
Barren land	37 (0.4%)	38 (0.4%)	62 (0.7%)	1 (0.0%)	24 (0.3%)	26 (0.3%)
Forest	6316 (70.4%)	6232 (69.5%)	6841 (75.2%)	-84 (-0.9%)	609 (6.8%)	525 (5.9%)
Shrub	929 (10.4%)	846 (9.4%)	851 (9.9%)	-83 (-0.9%)	5 (0.1%)	-78 (-0.9%)
Grass	657 (7.3%)	525 (5.8%)	551 (6.4%)	-132 (-1.5%)	26 (0.3%)	-106 (-1.2%)
Farmland	919 (10.2%)	1218 (13.6%)	522 (6.1%)	299 (3.3%)	-695 (-7.7%)	-397 (-4.4%)

Table 2 Land use/cover and change ratio during 1978-2007 in the Xinzhou catchment

Land use/cover	Land use/cover (km ²) and ratio			Land use/cover change (km ²)		
	1987	1999	2007	1999-1987	2007-1999	2007-1987
Water	16 (0.3%)	15 (0.3%)	14 (0.3%)	-1 (0.0%)	-1 (0.0%)	-2 (0.0%)
Urban land	52 (1.1%)	57 (1.2%)	51 (1.1%)	5 (0.1%)	-6 (-0.1%)	-1 (0.0%)
Barren land	20 (0.4%)	22 (0.5%)	41 (0.9%)	2 (0.0%)	19 (0.4%)	21 (0.5%)
Forest	3072 (66.3%)	3148 (67.9%)	3432 (74.0%)	76 (1.6%)	284 (6.1%)	360 (7.8%)
Shrub	537 (11.6%)	422 (9.1%)	479 (10.3%)	-115 (-2.5%)	57 (1.2%)	-58 (-1.3%)
Grass	404 (8.7%)	290 (6.3%)	307 (6.6%)	-114 (-2.5%)	17 (0.4%)	-97 (-2.1%)
Farmland	534 (11.5%)	679 (14.7%)	312 (6.7%)	145 (3.1%)	-367 (-7.9%)	-222 (-4.8%)

531

Table 3 Variables and associated abbreviations used in the statistical analysis

Abbreviations	Variables	Units
P	Rainfall	mm
Q	Stream flow	$\text{m}^3 \text{ s}^{-1}$
D	Discharge depth	mm
SSY	Suspended sediment yield	kg or g s^{-1}
SSC	Suspended sediment concentration	kg m^{-3} or g m^{-3}

Table 4 Monthly mean stream flow from the Xinzhou and Zhushan gauges

	Q_d ($\text{m}^3 \text{ s}^{-1}$)			Change (100%)		Q_x ($\text{m}^3 \text{ s}^{-1}$)			Change (100%)	
	1980s	1990s	2000s	C1	C 2	1980s	1990s	2000s	C1	C 2
Jan	35	33	41	-5.7%	24.2%	17	13	19	-23.5%	46.2%
Feb	37	46	49	24.3%	6.5%	18	19	21	5.6%	10.5%
Mar	85	96	74	12.9%	-22.9%	42	46	31	9.5%	-32.6%
Apr	186	146	160	-21.5%	9.6%	92	72	61	-21.7%	-15.3%
May	185	200	203	8.1%	1.5%	89	97	89	9.0%	-8.2%
Jun	274	224	192	-18.2%	-14.3%	132	115	111	-12.9%	-3.5%
Jul	412	223	262	-45.9%	17.5%	207	119	173	-42.5%	45.4%
Aug	269	260	257	-3.3%	-1.2%	129	136	156	5.4%	14.7%
Sep	338	159	202	-53.0%	27.0%	173	76	109	-56.1%	43.4%
Oct	255	136	155	-46.7%	14.0%	123	67	103	-45.5%	53.7%
Dec	121	94	95	-22.3%	1.1%	57	42	47	-26.3%	11.9%
Nov	49	41	62	-16.3%	51.2%	23	18	30	-21.7%	66.7%
Average	187	138	146	-26.2%	5.8%	92	68	79	-26.1%	16.2%

533 Note: C1 is the change for 1990-1980; C2 is the change for 2000-1990

534

Table 5 Monthly mean suspended sediment concentration from the Xinzhou and Zhushan gauges

	$SSCd$ (g m^{-3})				Change (100%)		$SSCx$ (g m^{-3})				Change (100%)	
	1980s	1990s	2000s	C1	C2	1980s	1990s	2000s	C1	C2		
Jan	0	0	0	-	-	0	0	0	-	-		
Feb	10	1	2	-90%	100%	3	0	0	-100%	-		
Mar	7	15	1	114%	-93%	3	12	1	300%	-92%		
Apr	224	147	56	-34%	-62%	118	81	28	-31%	-65%		
May	427	256	139	-40%	-46%	298	128	127	-57%	-1%		
Jun	629	623	321	-1%	-48%	471	718	430	52%	-40%		
Jul	1222	755	686	-38%	-9%	929	895	603	-4%	-33%		
Aug	942	963	364	2%	-62%	736	961	411	31%	-57%		
Sep	674	229	239	-66%	4%	409	115	186	-72%	62%		
Oct	268	146	46	-46%	-68%	185	84	84	-55%	0%		
Dec	26	86	1	231%	-99%	18	54	1	200%	-98%		
Nov	0	0	0	-	-	0	0	0	-	-		
Average	369	268	155	-27.4%	-42.1%	264	254	156	-3.8%	-38.6%		

535 Note: C1 is the change for 1990s-1980s; C2 is the change for 2000s-1990s.

Suspended sediment primarily loads during the flow season. Rainfall is rare in the winter (Dec, Nov and Jan), and the stream flow is dominated by a base flow; thus, in most years, there is no suspended sediment load.

536

Table 6 Mean SSC values and one-way ANOVA of SSCs during the different periods

		Original	Cultivation	Reforestation	p value
Mean SSC_d ($g m^{-3}$)	Low flow	0.49	0.50	0.44	0.285
	Moderate flow	0.83	0.86	0.97	0.080
	High flow	2.42	2.43	2.02*	0.002
Mean SSC_x ($g m^{-3}$)	Low flow	0.68	0.66	0.36*	0.000
	Moderate flow	0.87	0.97	0.64*	0.000
	High flow	1.80	2.83*	1.80	0.000

Note: ANOVA was only conducted for the same flow during different periods; * means significant difference at $\alpha=0.05$

537 Figure captions:
538 Figure 1 Location of study area
539 Figure 2 Land use changes during the three periods
540 Figure 3 Annual P, D and SSY for the hydrological years of 1980-2009 from the Zhushan and Xinzhou
541 gauges
542 Figure 4 Bivariate scatter-plot matrix of selected variables
543 Figure 5 Results of the Mann-Kendall test
544 Figure 6 Descriptive statistics of Q and SSC
545 Figure 7 SSC-Q relationships during the three periods for the two gauges
546 Figure 8 Box plots of SSC
547

551

552 Figure 2

553

554

555 Figure 3

556

557

558 Figure 4

559

560

561 Figure 5

562

563

564 Figure 6

565

566

567 Figure 7

568

571 Figure 8