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Abstract

Land Surface Models (LSMs) are prospective starting points to develop a global hyper-
resolution model of the terrestrial water, energy and biogeochemical cycles. However,
there are some fundamental limitations of LSMs related to how meaningfully hydro-
logical fluxes and stores are represented. A diagnostic approach to model evaluation
is taken here that exploits hydrological expert knowledge to detect LSM inadequa-
cies through consideration of the major behavioural functions of a hydrological system:
overall water balance, vertical water redistribution in the unsaturated zone, temporal
water redistribution and spatial water redistribution over the catchment’s groundwa-
ter and surface water systems. Three types of information are utilised to improve the
model’s hydrology: (a) observations, (b) information about expected response from re-
gionalised data, and (c) information from an independent physics-based model. The
study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a
deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations
and the proposed ways to address them are indicative of the challenges faced while
transitioning to a global high resolution model of the water cycle.

1 Introduction

Guidance to support adaptation to the changing water cycle is urgently required, yet the
ability of water cycle models to represent the hydrological impacts of climate change is
limited in several important respects. Climate models are an essential tool in scenario
development, but suffer from fundamental weaknesses in the simulation of hydrology.
Hydrology (as well as other soil-vegetation-atmosphere interactions) in climate models
is represented via Land Surface Models (LSMs) that partition water between evapo-
transpiration, surface runoff, drainage and soil moisture storage. The deficiencies in
hydrological processes representation lead to incorrect energy and water partitioning
at the land surface (Oleson et al., 2008) that propagates into precipitation and near-
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surface air temperature biases in climate model predictions (Lawrence and Chase,
2008). Furthermore, improving the representation of hydrology is a step towards the
development of a global hyper-resolution model for monitoring the terrestrial water, en-
ergy and biogeochemical cycles that is considered as one of the “grand challenges” to
the community (Wood et al., 2011).

The most recent third generation LSMs operate in a continuous time and distributed
space mode, and simulate exchanges of energy, water and carbon between the land
surface and the atmosphere using physics-based process descriptions (Pitman, 2003).
The physics-based nature of third generation LSMs allows widely available global
datasets of soil properties, land use, weather states, etc. to be used as model pa-
rameters and inputs, thus making predictive modeling with LSMs very appealing.

A significant body of literature exists on LSM hydrology assessment and inter-
comparison, including comparison with observed point scale evapotranspiration fluxes,
soil moisture, observed river flow rates and depths to groundwater (Balsamo et al.,
2009; Blyth et al., 2011; Boone et al., 2004; Lohmann et al., 2004; Maxwell and Miller,
2005). Blyth et al. (2011) used point-scale evapotranspiration fluxes from 10 FLUXNET
observation sites covering the major global biomes as well as river flows from seven
large rivers to assess the performance of the JULES model. The evaluation used
monthly average fluxes, over a period of 10years, and demonstrated a number of
model weaknesses in energy partitioning as well as in water partitioning and rout-
ing, thus providing a direction for further model improvements. Balsamo et al. (2009)
revised the soil representation in the TESSEL LSM (used by the European Centre
for Medium-Range Weather Forecasts) and showed better agreement of the new H-
TESSEL model with soil moisture point observations from the Global Soil Moisture
Bank. Lohmann et al. (2004) evaluated four LSMs coupled to a surface runoff rout-
ing model over 1145 small and medium size basins in the USA, and found that “the
modeled mean values of the water balance terms are of the same magnitude as the
spread of the models around them”. The authors name both parameter selection and
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model structure improvements as the key factors to achieve better model performance
for hydrological predictions.

LSMs focus on modeling processes in the near-surface layer (typically, the top three
meters). Typically, a unit gradient (free drainage) or other simple lower boundary condi-
tion is generally assumed in place of explicitly representing the groundwater boundary
(e.g., Best et al., 2011; Kriner et al., 2005; Yang and Niu, 2003). However, in per-
meable basins the depth to the water table is often much deeper, for example in the
Kennet case study, introduced below, this can be as much as 100 m (Jackson et al.,
2008), calling into question the adequacy of a relatively shallow lower boundary con-
dition. This can result in unrealistically dry lower soil layers (e.g., Li et al., 2008). To
address this problem, the NCIPP model relies on an approximate relationship (derived
from detailed simulations) to estimate the soil moisture transfer rate between the root
zone and water table at a catchment scale (Koster et al., 2000). Whereas, CLM uses
the hydraulic gradient between the bottom of the soil column and the water table to
approximate the drainage rate from the soil column (Oleson et al., 2008). Another ap-
proach is to use the location of the water table as a lower boundary condition. The
SWAP model uses a variable depth soil column, whose base is located at the water
table (Gusev and Nasonova, 2003). Maxwell and Miller 2005 developed this further by
coupling CLM to a physics-based 3-D groundwater model ParFlow at the land surface,
replacing the soil column/root-zone soil moisture formulation in CLM with the ParFlow
formulation. They concluded that the resulting model provided reasonable predictions
for runoff rates and shallow groundwater levels on monthly time steps. However, the ex-
plicit inclusion of the deep unsaturated zone requires estimation of hydraulic properties
that are generally not included in existing soil databases.

The tendency for LSMs to use relatively shallow soil column depths and a simplis-
tic or non-existent representation of groundwater also questions their applicability to
catchments with deep groundwater systems (where an average water table is tens of
meters deep). Such systems represent a major storage of water and their interaction
with the unsaturated zone can influence river flows, soil moisture and evapotranspira-
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tion rates (Maxwell and Miller, 2005). Consequently, the addition of a groundwater mod-
eling capability into LSMs not only addresses these issues, but will be a step forward
for multi-purpose modeling (i.e. representing groundwater levels for water resources)
(Wood et al., 2011).

Most LSMs assume a 1-D vertical flow in a soil column neglecting lateral flow (e.g.,
Kriner et al., 2005; Gusev and Nasonova, 2003). Although this assumption is suffi-
ciently accurate only for soils that are relatively homogeneous in horizontal and vertical
directions (Protopapas and Bras, 1991), it is a fairly common feature for LSMs that em-
ploy a gridded surface representation. A further complicating factor is that 1-D flow is
usually described in physics-based LSMs using Richards’ equation, which was derived
at the point scale and used to represent single permeability, single porosity soils. The
validity of this is questionable for a wide variety of soils, particularly at larger scales
(Beven and Germann, 2013). Chalk is an example of a soil/rock system that consists
of both matrix and fractures, whose properties are significantly distinct from each other,
forming a dual porosity, dual-permeability system (Price et al., 1993). Therefore, a tradi-
tional single domain soil water representation is unsuitable to adequately characterise
its properties (Ireson et al., 2009). To the best of our knowledge, there is no currently
operational LSM that is capable of realistically representing such dual porosity, dual
permeability behaviour.

Another important challenge in improving hydrological fluxes in LSMs is the repre-
sentation of surface and near-surface heterogeneity, in particular how it affects parti-
tioning between surface runoff, evaporation and infiltration. For example, 15 LSMs were
coupled to an atmospheric model and a two-layer conceptual hydrological model and
were used to represent river discharge in the Rhone, one of Europe’s major basins, in
the Rhone-Aggregation Land Surface Scheme Inter-comparison Project (Boone et al.,
2004); and, it was concluded that an LSM’s ability to provide a good performance for
daily discharge simulation is linked to their ability to generate sub-grid runoff, i.e. to the
representation of top-soil heterogeneity.
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In light of these concerns, the scope of the study is to assess the hydrological be-
haviour of a typical third-generation LSM, the Joint UK Land Environmental Simulator
(JULES), in a comprehensive and consistent way and adapt the model accordingly.
For this, an evaluation strategy focuses on the primary functions of a hydrological sys-
tem in a hierarchical way. While other alternatives exist (Black, 1997; Wagener et al.,
2007), the following four hydrological functions are considered (Yilmaz et al., 2008): (1)
to maintain an overall water balance, (2) to redistribute water vertically through the soil,
(3) to redistribute water in time, and (4) to redistribute water spatially over the catch-
ment’s groundwater and surface water systems. The hierarchical evaluation strategy (or
diagnosis) allows inferences to be made about the specific aspects of the model struc-
ture that are causing the problems via targeted evaluations of the model response. The
diagnostic evaluation makes use of multiple measures of model performance that are
relevant for each of the four functions evaluated. When model performance is poor in
a particular hydrological aspect, model modifications are based on hydrological expert
knowledge that, whilst subjective, is the only currently available physically meaning-
ful way to adjust the model. The Kennet catchment in southern England is chosen as
a complex case study that represents a number of the modeling challenges; however
the methodology and the results are of interest beyond this study due to the similarities
across the hydrological modules of different third-generation LSMs, and also the broad
importance of chalk aquifers and deep groundwater systems (Brouyere et al., 2004;
Downing et al., 1993; Kloppmann et al., 1998; Pinault et al., 2005; Dahan et al., 1998,
1999; Nativ and Nissim, 1992; Nativ et al., 1995).

2 Case study

2.1 The Joint UK Land Environmental Simulator (JULES)

JULES is a community Land Surface Model, based upon the established UK Met Of-
fice Surface Exchange Scheme (MOSES) (Cox et al., 1999). In addition to representing
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the exchange of fluxes of heat and moisture between the land surface and the atmo-
sphere, the model also represents fluxes of carbon and some other gases, such as
ozone and methane (Clark et al., 2011). It includes linked processes of photosynthe-
sis and evaporation, soil and snow physics as well as plant growth and soil microbial
activity. These processes are all linked through a series of equations that quantify how
soil moisture and temperature govern evapotranspiration, energy balance, respiration,
photosynthesis and carbon assimilation (Best et al., 2011; Clark et al., 2011). JULES
includes multi-layer, finite-difference models of subsurface heat and water fluxes, as
described in Cox et al. (1999). There are options for the specification of the hydraulic
and thermal characteristics, the representation of soil moisture and the subsurface
heterogeneity of soil properties (for more details see Best et al., 2011). JULES can be
used as a standalone Land Surface Model driven by observed forcing data, or can be
coupled to an atmospheric global circulation model (for example, the UK Met Office
Unified Model). The model runs at a sub-daily time step, using meteorological drivers
of rainfall, incoming radiation, temperature, humidity and wind speed.

JULES is typically employed with a 3m fixed depth of soil, a unit hydraulic head
gradient lower boundary condition, and no groundwater component. Shallow ground-
water can be optionally represented via the TOPMODEL approach (Clark and Gedney,
2008). Further, top-soil heterogeneity can be optionally represented via a PDM model
(Clark and Gedney, 2008). Both options require specification of parameters that are
conceptual in nature and are not directly related to the existing data on soil/vegetation
properties.

2.2 Case study catchment

The Kennet is a groundwater-dominated catchment in southern England (Fig. 1). The
topographic catchment has an area of 1030 km? with an annual average rainfall of
759 mm (1961-1990). It is predominantly a permeable catchment (Upper Cretaceous
Chalk) The western and northern parts of the catchment have exposed bedrock with
only a thin, permeable soil. However, in the southern and eastern parts of the catch-
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ment there is significant drift cover, and, in its lowest quarter, it is largely imperme-
able due to overlying Palaeogene deposits (Fig. 1). It is a primarily rural catchment
with scattered settlements. The flow regime is dominated by the slow response of the
groundwater held within the chalk aquifer (the base flow index is 0.87). Where the
chalk outcrops, there is generally little surface runoff. At the Chalk-Palaeogene bound-
ary, surface runoff from low permeability deposits gives rise to focused recharge into
the chalk. As a consequence, there are a number of swallow holes in the area (West
and Dumbleton, 1972) that serve as surface water sinks. The flow at the catchment
outlet at Theale is monitored using a crump profile weir, with bypassing of the weir
occurring above 29 m®s™". The unsaturated zone of the chalk has two characteristic
behaviours: slow drainage over summer, and by-pass flow during rainfall events (Ire-
son and Butler, 2013). Both behaviours are important under extreme conditions (i.e.
droughts or extreme rainfall) for sustaining river flows and rapid water table response.

2.3 Case study data sets

A number of gridded data types are required for JULES parameterisation and forcing
(Table 1), including land cover and soil profile data, and meteorological drivers. Us-
ing a 50 m resolution topographic map, the Kennet catchment is discretised into 1 km?
grids, which matches the resolution of the soil and meteorological data. Soil property
data are provided by the National Soil Resources Institute (NSRI). Most soil profiles
from the NSRI database extend as deep as 1.5m for the basin (about 70 % of the pro-
files) and are provided with vertically variable Brooks and Corey soil moisture retention
parameters. At the surface the NSRI database differentiates between soil hydraulic
parameters depending on land use (arable, permanent grassland, ley grassland and
other). Land use cover is provided from data collected by the International Geosphere-
Biosphere Programme (IGBP). The IGBP 2007 data are utilised to determine land
cover types from 17 IGBP classes. These are re-classified to the 9 JULES land use
types (Smith et al., 2006). The outcome is that cropland and mosaic/natural land use
are the dominant land use types in the area (97 %).
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Meteorological inputs to JULES were provided by the data from the Climate, Hydro-
chemistry and Economics of Surface-water Systems (CHESS) project. The dataset,
produced by the Centre of Ecology and Hydrology (CEH), UK (E. Blyth, personal com-
munication, 2012), includes 1 km gridded daily rainfall amounts derived from the UK
rain gauge network measurements for the period 1971 to 2008 (Keller et al., 2006).
In addition, air temperature, vapor pressure, long and short wave downward radiation
and wind speed, derived by downscaling the observed meteorology from the MORECS
40 x 40 km dataset (Hough and Jones, 1997) accounting for the effects of topography,
are also included. Daily observations of river flow at a number of gauging stations,
along with groundwater levels at various observation frequencies (daily to monthly)
from boreholes in the catchment, are used to evaluate model performance (Fig. 1).
Groundwater levels at the same observational boreholes were previously examined by
Jackson (2012) who used a conceptual model to estimate recharge rates to groundwa-
ter.

Chalk hydraulic properties are not available from standard national/global soil
datasets (in the NSRI dataset it is classified as a rock). Instead, these properties are
estimated using soil moisture and matric potential observations at Warren Farm in the
Kennet along with data from an on-site Automatic Weather Station (Ireson et al., 2006)
(Fig. 1). Soil moisture was measured between May 2003 and February 2006 using neu-
tron probe measurements at different depths between 0.1 and 4.1 m taken fortnightly,
on average. Either pressure transducer tensiometer (wet conditions) or equitensiome-
ter (dry conditions) readings were taken for the same period of time to measure soil
matric potential at 1 m depth every 15min (Ireson et al., 2006; Ireson, 2008). Weather
data include hourly observations of rainfall, downward short-wave solar and downward
long-wave radiation, air temperature, specific humidity, and wind speed for the period
between October 2002 and January 2009.
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3 Method

The hydrological process representation in JULES is assessed with respect to the
four primary functions of a hydrological system (Yilmaz et al., 2008): (1) overall water
balance, (2) vertical redistribution, (3) temporal redistribution, and (4) horizontal spatial
redistribution. Table 2 lists the assessment metrics for each of the four functions, the
examined model assumptions/simplifications, the implemented model modifications,
and the information sources used to inform the model modifications. Each of these
information sources is described in the following sub-sections.

3.1 Sub-daily weather generator

The daily CHESS weather data are downscaled in time (15 min) by a weather generator
(D. Clark, personal communication, 2013). The code provided by CEH uses a cosine
variation for sub-daily temperature defined by the average daily temperature and tem-
perature variation range (defined as 7 °C based on the local AWS). Sub-daily incoming
long-wave radiation is calculated using the same phase of the cosine function as that
used for the temperature disaggregation. Sub-daily downward shortwave radiation is
calculated as a product of the daily average downward shortwave radiation and a nor-
malised fraction of a daily total solar radiation defined by a geographical location, time
of year and day. Sub-daily specific humidity is assumed to be equal to the minimum
of the saturated specific humidity (for a given sub-daily temperature) and the aver-
age daily specific humidity. Wind speed and air pressure are assumed to be constant
throughout the day. Sub-daily precipitation is divided into large scale rainfall, convective
rainfall and large scale snow. This differentiation is based on the mean daily temper-
ature. Precipitation is defined as: snow if the temperature is below 0°C; convective if
the temperature is above 27 °C; and large scale rainfall, otherwise. It is set to start at
a random time during a day and to continue for a specified number of hours: two hours
for a convective storm, and five hours for large scale precipitation.
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3.2 Representation of sub-grid scale heterogeneity of near-surface soil
hydraulic properties

A statistical approach is chosen to represent sub-grid scale heterogeneity of soil hy-
draulic properties, so that the upper soil layer storage capacity is assumed to be het-
erogeneous and to have a Pareto probability distribution with shape parameter b and
upper soil layer depth dz (Bell et al., 2009). This representation is available in the stan-
dard version of JULES, but there is no guidance on selection of the two parameters.
This approach limits the amount of water available for infiltration according to the soil
moisture state, with the rest of the rainwater becoming surface runoff. The infiltrated
water is then routed vertically through the soil using Richards’ equation.

Since there is limited information to constrain both parameters, the effective upper
layer soil depth dz is fixed to the JULES default value of 1 m. A regionalised Base
Flow Index (BFI) from the HOST soil classification (BFIHOST) (Boorman et al., 1995;
Bulygina et al., 2009) is used to specify the Pareto distribution shape parameter b for
each soil type in the catchment. The parameter is calibrated using water partitioning
between surface runoff and drainage by JULES. The parameter value that results in the
drainage-to-total-runoff ratio closest to the expected BFIHOST for that soil classification
is chosen to be representative of the soil heterogeneity. Due to the high computational
requirement of JULES, only 21 regularly spaced values between 0 and 2 are consid-
ered. The parameter b range is found to provide suitable drainage-to-total-runoff ratios
for the catchment soils and meteorological conditions.

3.3 Chalk hydraulic properties estimation

Modeling vertical soil water flow in JULES using Richards’ equation requires the fol-
lowing descriptors: air entry pressure head, Brooks and Corey exponent (Brooks and
Corey, 1964), saturated hydraulic conductivity, soil moisture at saturation, residual soil
moisture, soil moisture at the critical point when transpiration starts to decrease, and
soil moisture at wilting point. Due to the two distinct flow domains in chalk—matrix and
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fractures, two Brooks and Corey curves are employed when fitting a chalk soil moisture
retention curve. This leads to a double curve representation of hydraulic conductivity
dependence on soil moisture. The JULES soil module is modified accordingly to al-
low a dual curve soil moisture retention representation. Although preferential “by-pass”
flow can occur in chalk (Ireson et al., 2012), it is considered to be relatively rare in
the Kennet (Ireson and Butler, 2011). Consequently, it is not a major component in
groundwater recharge and JULES has not been modified to include this effect.

The residual soil moisture content cannot be readily observed in the field, as chalk
never dries out sufficiently to reach this state (Ireson, 2008). Therefore, the residual
soil moisture content is estimated as a difference between maximum observed soil
moisture and the effective porosity. The effective porosity (which includes matrix and
fractures) is fixed at 0.36 (i.e. matrix porosity of 0.35 and fracture porosity of 0.01)
(Bloomfield, 1997; Price et al., 1993). While fracture porosity tends to be higher at the
soil surface due to the chalk weathering process (Ireson, 2008), this is not represented
here due to the lack of comprehensive observations of soil moisture dynamics at multi-
ple vertical levels; and the effects of the assumption are discussed in Sect. 4. Two sets
of Brooks and Corey parameters are estimated by fitting the dual curve soil moisture
retention representation to measurements of soil moisture and matric potential at 1 m
depth obtained from field data collected at Warren Farm, Berkshire (LOCAR experi-
ment data described in Ireson, 2008). Mean Square Error (MSE) is used to measure
goodness of fit. Then, using the derived soil moisture retention curve, soil moisture at
critical point is calculated using the “wet” end curve at —40 kPa matric potential, while
soil moisture at wilting point is calculated using the “dry” end curve at —1500 kPa.

Chalk saturated hydraulic conductivity is estimated by fitting the simulated soil mois-
ture profiles to the available soil moisture neutron probes at multiple depths down to
4 m. For calibration purposes, 100 random values of saturated hydraulic conductivity
are sampled logarithmically between 0.001 and 10 mday_1. Mean square relative error
(MSRelE, see definition in Table 2) for soil moisture between modelled and observed
soil moistures for all observation depths is used as an objective function. The objec-
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tive function increases error weights for the deeper layers that have less variable soil
moisture, which is deemed to be important for drainage evaluation purposes.

3.4 A detailed physics-based model of a chalk hillslope

A physics-based model for 2-D flow in chalk (Ireson and Butler, 2013) represents a hill-
slope transect through unconfined chalk in the Pang catchment, located in close prox-
imity to the river Kennet. While this model is an approximation itself and can only
represent one set of hillslope properties, it is built upon the best current knowledge
of the hydrology of chalk hillslopes and is the best available test bed for simpler ap-
proximations. Flows in the 2-D model are governed by Richards’ equation in both the
saturated and unsaturated zones; and the properties of the chalk matrix and fractures
are represented using an equivalent continuum approach (Peters and Klavetter, 1988;
Doughty, 1999; Ireson et al., 2009). The Richards’ equation is solved using a finite
volume method.

Fluxes and states of the chalk hillslope model for the period 1970—-2000 are exam-
ined to assess the following two assumptions underlying the JULES hydrology: (a)
there is no hydrological interaction between neighboring vertical soil columns, and (b)
a unit gradient flow is a satisfactory approximation of the lower boundary condition at
the 3 m base of the soil column on a hill-slope location with a typically deep unsaturated
zone. Further, the hillslope model is used to evaluate the nature of coupling between
the unsaturated zone and groundwater, as well as the nature of water transport in the
deep unsaturated zone located between the base of the JULES soil column and the
water table. For these purposes, lateral fluxes in the unsaturated and saturated zones,
hydraulic gradients and drainage rates at the soil column base, transpiration volumes
extracted from the saturated and unsaturated zones by plants, and recharge rates at
groundwater table are extracted from the model. To reduce boundary condition effects
at the upper and lower ends of the hillslope, the above variables are considered in the
middle of the hillslope.
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3.5 ZOOMQ3D distributed groundwater model

Groundwater flow in the Kennet is simulated using the ZOOMQSD finite difference code
(Jackson and Spink, 2004). The groundwater model is set up to simulate fluctuations
in groundwater level, river baseflow and spring discharge on a daily time step. The
model uses gridded catchment representations at two scales; a 2km base grid is lo-
cally refined to 500 m over the central part of the catchment. Rivers are simulated using
an interconnected set of river reaches that exchange water with the aquifer according
to a Darcian type flux equation. The vertical variations in rock hydraulic properties
are represented using a three-layer model based on geological models of the hydros-
tratigraphy within the London Basin. The model is assessed to be a relatively good
representation of the processes in the region in comparison with other chalk modeling
examples (Jackson et al., 2011; Power and Soley, 2004).

ZOOMQ3D requires a significant number of parameters including horizontally and
vertically distributed hydraulic conductivity and storage coefficient values. The param-
eters were zonally regularised and calibrated to approximate regional water table ele-
vations (Jackson et al., 2011). For parameter estimation purposes, recharge has been
modelled using a distributed recharge model ZOODRM (Mansour and Hughes, 2004)
based on a conceptual Penman-Grindley Soil Moisture Deficit model (Penman, 1948;
Gridley, 1967). As a result, it needs to be understood that the calibrated groundwa-
ter parameters are only representative for the ZOODRM recharge field and are not,
therefore, adjusted for recharge fluxes obtained using JULES.

3.6 Surface runoff routing

The standard JULES configuration (version 2.2) does not have a surface water routing
option. Therefore, given the catchment size, flows are averaged over 10 day intervals
to reduce the impact of routing effects. For the chosen flow averaging interval, any
inaccuracy in the estimated river discharge due to the lack of surface routing is believed
to be minor when compared to the total flow magnitude (groundwater contributes 87 %
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of the flow, on average), and inaccuracies in both actual baseflow index estimation
(when BFIHOST is used) and in groundwater routing representation. Further, swallow
holes in the catchment (West and Dumbleton, 1972) and river-soil water exchange for
surface runoff (i.e. infiltration of surface runoff into the river bed) are not represented in
the model, and possible consequences of this are discussed later in the Results and
discussion Sect. 4.

3.7 Other JULES parameters

The remaining JULES parameters are assigned as follows. Land use fractions are
taken from the IGBP 2007 dataset, and re-classified into the nine land use types com-
monly used for JULES applications (Smith et al., 2006). Soil hydraulic parameters are
taken from the NSRI soil database with the exception of soil layers that are classified
as chalk. Soil hydraulic properties below the deepest NSRI horizon, typically at 1.5m,
are assigned the deepest horizon properties. Chalk hydraulic properties derived in this
study are assigned to soil horizons that are classified as chalk in the NSRI database.
The dominant agricultural crop for the area is spring barley (Limbrick et al., 2000).
The root depth for the crop was chosen as 1 m (average value based on Breuer et al.,
2003) and canopy height was chosen as 0.8 m (Hough and Jones, 1997; Mauser and
Schadlich, 1998). Leaf area index (LAIl) changes seasonally, with maximum of LAl = 3
(Mauser and Schadlich, 1998; Petr et al., 2002). The maximum interception capacity
per unit leaf area is fixed at 0.2 mm, so that the upper limit to interception is 0.2 x LAI
(Hough and Jones, 1997). Other vegetation parameters are set at their recommended
default value for JULES (Cox et al., 1999).
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4 Results and discussion

Observations of water fluxes, soil moisture and groundwater levels in the Kennet catch-
ment are compared with the simulated values derived using the sequentially modified
JULES model structure to represent the four hydrological functions of a catchment.

4.1 Water balance

The long-term water balance is calculated for the period 1972—2007 from observations
and various model configurations (Table 3). The unmodified JULES (version 2.2) is
found to over-estimate the total runoff by 24 % and, correspondingly, under-estimate
the ET by 15 %. This is attributed to the constant temporal disaggregation of weather
variables that is hard-coded into the model. When this is done using the weather gen-
erator (WG), described in Sect. 3.1, the total runoff is only 2 % lower than the observed
value. However, neither configuration is capable of producing any surface runoff. This
is because the hydraulic conductivities of the catchment soils (derived from the NSRI
parameter database), even for relatively clayey soils, are sufficiently high to enable
virtually all the instantaneous rainfall rates obtained using temporal disaggregation, to
infiltrate into the soil.

Addition of the PDM model (JULES + WG + PDM configuration) with parameters se-
lected based on regionalised information from BFIHOST (Sect. 3.2) generated, on av-
erage, 70mm y'1 of surface runoff (compared to 39 mm y'1 derived by baseflow sepa-
ration at the catchment outlet). This is likely to originate from the regionalisation error —
the catchment average regionalised BFIHOST value (0.78) is lower than the BFI value
calculated from observed flow at the catchment outlet (0.87). This difference may arise
from a number of locally relevant soil properties and processes that are not repre-
sented in the regionalised BFIHOST, for example there is focused recharge into sink
or swallow holes of runoff from the Palaeogene deposits in the lower reaches of the
Kennet catchment (West and Dumbleton, 1972). Such localised processes could, in
principle, be explicitly represented in the Land Surface Model, but this would be difficult
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in practice due to the scales involved; for example representing the sink holes would
require fine scale data (at 0.1 to 1 m resolution) describing the land surface features.

It is to be noted that the proposed model modification with PDM and its parame-
terisation is not the only possible model modification. An alternative, which potentially
leads to increased surface runoff production, includes spatial and, perhaps, further
temporal downscaling of rainfall to produce more intense events over parts of the 1 km
discretisation grids. Table 3 shows that the model modifications used to improve the
representation of the additional processes observed in the catchment (and outlined in
Table 2) do not compromise the simulated water balance.

4.2 Vertical redistribution through the soil

The JULES + WG + PDM configuration results in overly dry soils between 1 and 4.1 m
depth when compared to the observations (Fig. 2); and the corresponding MSRelE
metric equals 3.64. This soil dryness is attributed to incorrect representation of chalk
soil hydraulic properties. Figure 3 shows two Brooks and Corey soil moisture retention
curves fitted to the pairs of soil moisture and matric potential observations at 1 m depth
in chalk; the curves intersect at an effective soil moisture of 0.31 (effective soil mois-
ture equals soil moisture with subtracted residual soil moisture). The figure illustrates
a threshold change in the chalk soil moisture retention curve and consequently, through
the Brooks and Corey and Mualem model, the unsaturated hydraulic conductivity re-
lationship. This change in properties is related to the dual porosity-dual permeability
nature of the chalk soil (Ireson et al., 2009). Estimated chalk hydraulic properties are
given in Table 4. Further, the time varying vertical distribution of soil moisture estimated
by the JULES + WG + PDM + CHALK configuration is shown in Fig. 2; this corresponds
to an MSRelE metric of 1.12. This value stays approximately the same throughout fur-
ther model modifications to include additional functions of the hydrological system. The
inclusion of chalk properties into the model produces an improved simulation of soil
moisture content at the Warren Farm site than that from the JULES + WG + PDM con-
figuration. This corresponds well with the observed soil moisture below, approximately,
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1 m depth. However, the upper soil tends to be wetter than the observed moisture
levels. This is attributed to the chalk’s vertical heterogeneity; fractures appear more
frequently and are larger in the upper chalk. Depth-variable soil hydraulic properties
are required to capture the phenomenon. This is not attempted here due to the lack of
soil moisture — matric potential observational pairs at multiple vertical levels to define
entire soil moisture retention curves.

4.3 Temporal redistribution

The original as well as the modified model configurations are only capable of partition-
ing water fluxes at the point/grid scale, and do not have a mechanism for further routing
to provide temporal water redistribution at the catchment outlet. Here, some assump-
tions about the nature of such water redistribution (Sect. Il in Table 2) are assessed,
and lateral routing through the saturated zone is achieved through coupling the model
to a distributed groundwater model.

Fluxes extracted from the physics-based 2-D model of a chalk hillslope imply that
there are two simplifications that can be made with regards to the 2-D nature of hill-
slope hydrological processes. Firstly, lateral fluxes in the chalk unsaturated zone are
found to be insignificant when compared to the net (vertical and lateral) fluxes in the
unsaturated zone. Hence, the simplifying assumption about inter-soil-column indepen-
dent hydrological behaviour is a reasonable and sufficiently accurate approximation for
the area. Secondly, evapotranspiration losses from the chalk saturated zone are found
to be negligible compared to those from the unsaturated zone. It is therefore assumed
that evapotranspiration processes can be restricted to the unsaturated zone when cou-
pling the unsaturated zone to groundwater for the study area investigated herein.

Extracted vertical hydraulic gradients from the 2-D hillslope model are compared to
the unit gradient lower boundary condition along with a number of alternative lower
boundary conditions (using mean absolute difference as an objective function). Of
these, it is found that a “persistent gradient” condition is the most consistent and accu-
rate approximation of the lower boundary condition for the area. The persistent gradi-
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ent condition assumes that hydraulic gradient is time varying but almost constant with
depth at the soil column base. The condition can be approximated using the hydraulic
gradient between soil column nodes just above the column base, requiring a relatively
fine node mesh at the column base. The persistent gradient condition can be seen as
a general consequence of the following lower boundary condition % =0 where the
unit gradient lower boundary condition % =1 is a special case. Note that only the hy-
draulic gradient at the soil column base is approximated herein. This gradient is used
to substitute the unit gradient in the formula for the drainage flux in JULES. This implies
that hydraulic conductivity at the base of the soil column is based on the nearest to the
bottom node state.

Further, the persistent gradient approximation is evaluated for multiple soil column
depths to optimize its applicability. The mean absolute difference between the persis-
tent hydraulic gradient at the lower boundary and hydraulic gradients extracted from
the hillslope model at a number of depths is used as an objective function. It is found
that the objective function improves with increasing depth of soil column but less signif-
icantly after 6 m. As a trade-off between the soil column depth and the lower boundary
approximation accuracy, an optimal depth to apply the persistent gradient lower bound-
ary condition is chosen to be 6 m. Figure 4 compares hydraulic gradients at a 6 m col-
umn base extracted from the 2-D model to the unit gradient as well as to the gradient
just above 6 m (approximately at 5.5 m depth, based on the model mesh), representing
the persistent boundary condition approximation.

Lastly, to draw a connection between the modelled potential recharge at 6 m depth
and the modelled actual recharge at the water table, temporally averaged vertical fluxes
are considered for 6 hourly (the model step), daily, weekly and 30day periods. The
correlations between the time series of actual and potential recharges for the averag-
ing periods are 0.75, 0.8, 0.89 and 0.94, respectively. Total actual and total potential
recharges for the 1970-2000 period are found to be less than 1% different. Average
daily (the regional groundwater time step) potential simulated recharge at 6m and ac-
tual simulated recharge at the water table extracted from the 2-D model are shown in
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Fig. 5. It can be seen that the potential recharge is widely spread at low actual recharge
rates (below about 2 mm day'1 ). However, the potential recharge becomes quite a con-
sistent predictor for the actual recharge at mid- to high actual recharge rates.

Based on the above findings, JULES + WG + PDM + CHALK is coupled via a weak
two-way coupling to the groundwater model ZOOMQ3D implemented through the
lower boundary condition (persistent gradient). The “weak” coupling assumes that the
drainage flux from JULES is used as an upper boundary condition by ZOOMQ3D, and
any upward water fluxes from the saturated zone to the upper unsaturated zone are
calculated based on the (persistent gradient) lower boundary condition. Note, the satu-
rated hydraulic conductivity for chalk soil is re-calibrated following the procedure given
in Sect. 3.3 (Table 4) as the new persistent gradient lower boundary condition impacts
the soil moisture dynamics.

The resulting ten-day averaged river flow at the catchment outlet (Theale) for the
period 1994-2006 is shown on Fig. 6. The period includes two droughts in the region
(1995-1998 and 2003—-2006) as well as substantially wet 1999-2001 period that led
to groundwater flooding. Figure 6 also shows model performance measures for the to-
tal simulation period of 1972-2007, with a Nash—Sutcliffe efficiency for simulated flow
(NS = 0.82) and log-transformed simulated flow (NSlog = 0.81), as well as a relative
bias for the total flow (RBiasQ = 0.01). Note, the relative bias is calculated using the
flow at the catchment outlet, not the sum of surface and drainage fluxes produced by
the Land Surface Model component of the configuration. This explains a slight differ-
ence between the RBiasQ values in Table 3 and Fig. 6 for the model configuration.

4.4 Spatial redistribution over the groundwater and surface water systems

Due to the distributed nature of the coupled model configuration, flows (Fig. 6) and
groundwater levels (Fig. 7) can be examined at the internal catchment points shown
in Fig. 1. It can be seen that total flow tends to be underestimated in the smaller sub-
catchments such as the Kennet at Marlborough and the Lambourn at Shaw. Inspection
of water movement patterns inside the groundwater model ZOOMQS3D offers a possible
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explanation. The Lambourn groundwater catchment area is found to be underestimated
by ZOOMQ3D when compared to the groundwater catchment area extracted from local
observational boreholes and spring head data (Parker, 2011; Parker et al., 2015). Fur-
ther, the model tends to direct some water from the Lambourn to the middle part of the
Kennet (Parker, 2011, S. Parker, personal communication, 2013), which helps to ex-
plain the total flow over-estimation at the Marlborough, Newbury and Knighton gauges.
Further, during wet years, peak flows appear to be underestimated at all gauging sta-
tions. Meanwhile; low flows are slightly overestimated for the Kennet at Theale and the
Kennet at Newbury, and underestimated for the Lambourn at Shaw. Treating potential
recharge from the Land Surface Model as actual recharge to ZOOMQ3D might partly
explain the low flow overestimation.

Because of the mismatch of scales between an observation borehole (order of 1 m)
and JULES and ZOOMQS3D grid scales (1 km and 500 m, respectively), only a visual
assessment of the predicted water levels is attempted. Figure 7 illustrates simulated
water levels at four selected boreholes for September 2000—August 2001 represent-
ing an unusually wet year leading to a groundwater flooding in the area. Similar to the
results from (Jackson, 2012), who considered the same period and boreholes, water
levels are mainly overestimated at the Marsh Benham and Bradley Wood boreholes.
Moreover, the modelled response at Marsh Benham and Bradley Wood is more attenu-
ated than the observed response. At the model scale (1 km), the estimated groundwa-
ter levels are indicative for the boreholes partly due to soil heterogeneity. For example,
the PDM model parameter b (as well as soil hydraulic properties) is chosen based on
a dominant soil type, so that the recharge to total runoff ratios are 0.52 and 0.17 for
Bradley Wood and Marsh Benham, correspondingly. However, other soils present in
the model grids have very different recharge to total runoff ratios, e.g. 0.98 and 0.88
for Bradley Wood and Marsh Benham, correspondingly. Incorporating the hydrology of
these soils can potentially lead to more responsive water level behaviour at the bore-
holes as more water will infiltrate.
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As indicated in Sect. 3.5, the parameters of the ZOOMQ3D groundwater model are
derived using recharge from a different near-surface model, and thus are likely to be
sub-optimal when recharge produced by JULES is used. A manual sensitivity analysis
of model parameters showed that tuning values of specific yield or hydraulic conductiv-
ity leads to better agreement with the observed data. For example, Fig. 8 shows flows
generated by the coupled model when ZOOMQ3D specific yield parameters are halved
over the whole Kennet area. This results in a better representation of high flows, but
mixed outcomes for low flows (according to the NS and NSlog performance measures).
Groundwater levels at the selected boreholes become slightly more responsive, but do
not change significantly (Fig. 7). As the primary research objective is to diagnose the
hydrological limitations of a Land Surface Model, a formal recalibration of an auxiliary
groundwater model is not pursued here.

5 Conclusions

The paper is motivated by the goals of using Land Surface Models as a basis for
global hyper-resolution modeling of the terrestrial water, energy and biogeochemical
cycles, including application to a range of complex hydrological prediction problems.
This comes alongside the recognition that there are significant limitations in the accu-
racy with which hydrological fluxes and storages are represented in general in LSMs
due to their focus on supporting large scale climate modeling problems (Oleson et al.,
2008; Wood et al., 2011). The paper uses a case study of the JULES LSM model ap-
plied to the Kennet catchment in southern England, which represents the challenging
problem of hydrological modeling in a chalk dominated catchment with a predominantly
deep unsaturated zone. A diagnostic approach is taken to identify the model inadequa-
cies with respect to the four functions of a hydrological system: overall water balance,
vertical redistribution of water through the soil, temporal redistribution of water, and
spatial redistribution over the catchment’s surface water and groundwater systems.
The approach facilitates a sequential model improvement using hydrological expert
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knowledge about model assumptions and simplifications relevant for each hydrological
aspect considered. The following model modifications are presented and assessed in
the paper:

1. Overall water balance: introduction of a weather generator and statistical descrip-
tion of top soil heterogeneity via regionalised information;

2. Vertical redistribution through the soil: approximation of the dual permeability —
dual porosity hydraulic soil behaviour;

3. Temporal redistribution: change of the lower boundary condition and approxima-
tion of coupling to a groundwater model;

4. Spatial redistribution over the catchment: alteration of groundwater model param-
eters.

It is noted that improving the model physics in sequence preserves model perfor-
mance quality with respect to the other previously considered functions. For example,
improving vertical distribution does not corrupt the water balance achieved at a previ-
ous model modifications stage. This might be explained by the physical basis of both
the model and reasoning for model modifications. The improvements are illustrative
of the potential outcomes of a diagnosis approach, and alternative or additional im-
provements are possible. These include: the representation of the temporal and spatial
distribution of precipitation; inclusions of point/small scale features such as sink holes;
and more physics-based inclusion of the vertical and horizontal distribution of soil hy-
draulic properties. As a procedural improvement, uncertainty analysis could be used to
indicate if output errors can be explained by estimates of particular input uncertainties.

Diverse sources of information were used to guide the model assessment and in-
clude remotely sensed data (topography, land use), spatially extrapolated point data
(soils, weather conditions), point measurements (soil moisture and matric poten-
tial, flow, groundwater level), regionalised hydrological information (BFIHOST), and

7563

Jaded uoissnosiq

Jladed uoissnosiq | Jadeq uoissnosiq | Jaded uoissnasiq

HESSD

12, 7541-7582, 2015

Diagnosing
hydrological
limitations of an LSM

N. Le Vine et al.

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/7541/2015/hessd-12-7541-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/7541/2015/hessd-12-7541-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

N
(&)

states/fluxes extracted from an auxiliary physics based hillslope model (Ireson and
Butler, 2013).

Whilst this application of JULES to the Kennet catchment is highly specific; it conve-
niently illustrates the type of challenges—parameterisation of complex and distributed
hydrological processes, model coupling using simplified boundary conditions, and as-
similation of different sources of information to model identification — that will be en-
countered in almost any attempt to improve the utility of LSMs for catchment scale
water cycle modeling, arising due to the “uniqueness of place” problem. The paper has
demonstrated the considerable accuracy gains that can be achieved using a sequen-
tial model error diagnosis strategy and expert-lead model adjustments. These can be
taken forward to develop a general comprehensive guidance for transitioning to high
resolution Land Surface Modeling.
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Table 1. Data used for JULES setup and performance evaluation.

JULES input Data description Source

type

Catchment (1) 50 m resolution raster file (1) http://digimap.edina.ac.uk/

grid (2) catchment outlet coordinates (2) http://www.environment-agency.gov.uk/hiflows/station.
aspx?39016

Land use 50m IGBP 2007 reclassified from 17 MODIS land cover product:

IGPB classes to 9 JULES classes
(Smith et al., 2006)

http://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=
10004

Soil proper- 1km NSRI soil maps (Brooks and

The Cranfield Soil and AgriFood Institute:

ties Corey parameterisation) http://www.landis.org.uk/data/
Meteorological Daily, 1 km CHESS data, 1971-2007 E. Blyth, personal communication, 2012 with CEH, UK
inputs

Observations (1) Soil moisture and soil matric po-
tential measurements at Warren Farm,
2003-2006
(2) Automatic Weather Station data at
Warren Farm, 2002-2009
(3) Daily river flow data
(4) Groundwater levels at observation
boreholes

(1) N. Hewitt, personal communication, 2011 with CEH,
UK and LOCAR project data

(2) N. Hewitt, personal communication, 2011 with CEH,
UK and LOCAR project data

(3) http://www.ceh.ac.uk/data/nrfa/data/search.html

(4) National Groundwater Level Archive:
http://www.bgs.ac.uk/research/groundwater/datainfo/
levels/ngla.html
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Table 2. Metrics and information used for model diagnosis and modification.

Metrics Examined model Implemented model Resulting model Information sources
assumptions/simplifications modifications configuration
|. Water balance
Relative bias in total runoff Weather inputs are con- Sub-daily weather gener- JULES + WG Observed flows at the
RBiasg = D e e/ stant when disaggregated  ator (Sect. 3.1); catchment outlet, pre-
o : ; N
b2 to finer time scales; cipitation from CHESS
Relative bias |nzsubsu)rfazc%;gnoff Soil properties are con- PDM model and its pa- JULES+WG +PDM dataset, regionalised
RBiasgp = 1 "ZT stant over relatively large rameterisation (Sect. 3.2) BFIHOST
spatial scales (1km)
Il. Vertical redistribution
Mean square relative error for soil A single permeability Chalk representation via JULES+WG +PDM Observations  of  soil
moisture®: Richards’ equation is a double Brooks-Corey +CHALK matric potential and soil
- capable of represent- soil moisture retention moisture
W -6 i halk soil hydraulic curve and calibrated K,
MSRelE = = ing cha V! sat
2 R0 21 T behaviour (Sect. 3.3)
lll. Temporal redistribution
Nash—Suitcliffe efficiency for flow: Horizontal ~ unsaturated Change of the lower JULES+WG +PDM States/fluxes from a de-
ot e zone disconnection; boundary condition; + CHALK + GW tailed physics-based
NS=1- Wﬂ;s—’a'wgz no root uptake from approximation of wa- model of a chalk hillslope,
2@ -ElQo) . deep saturated zone; ter travel through the observed flows at the
and log-transformed flow: ) "
unit gradient lower deep unsaturated zone catchment outlet
NS=1- >, (I0g(@")~log(@2™))? boundary condition; (Sect. 3.4); and coupling
= 3 (10g(@7)~E[log(@*))? no  surface/subsurface to the groundwater model
routing ZOOMQ3D (Sect. 3.5)
V. Spatial redistribution
Nash-Sutcliffe efficiency for raw and Groundwater model pa- Change of specific yield JULES+WG +PDM Observed  flows and
log-transformed flow, relative bias into-  rameterisation parameters in the ground-  + CHALK + GWadj groundwater level hy-

tal runoff, visual inspection of ground-
water levels at selected boreholes

water model

drographs at internal

catchment points

" mod refers to modelled values, and obs refers to the observed values. Q; denotes runoff value at time ¢, SR, denotes subsurface runoff value at time ¢.
2 Subsurface runoff is calculated via a hydrograph separation for observations. 3
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Table 3. Observed and simulated water balance and metrics of model performance.

Source/model configuration Rainfall, ET, Total runoff, mmy~" RBias, RBias, MSRelE
mm y'1 mm y'1
Surface runoff, Subsurface runoff,
mm y'1 mm y‘1

Obs' 784 485 299 - - -
39 260

Standard JULES (version 2.2)? 784 410 370 0.24 0.42 -8
0 370

JULES + WG 784 489 292 -0.02 0.12 -
1 291

JULES + WG + PDM 784 489 299 0.00 -0.12 3.64
70 229

JULES + WG + PDM + CHALK 784 495 293 -0.02 -0.13 1.12
67 226

JULES + WG + PDM + CHALK + GW 784 496 293 -0.02 -0.13 1.07
67 226

JULES + WG + PDM + CHALK + GWadj 784 496 293 -0.02 -0.13 1.07
67 226

' For observations, ET is calculated as a residual between the long term precipitation and runoff; surface and subsurface runoff are calculated based on the

hydrograph separation.

2 For a model configurations, surface and subsurface runoff are taken as surface runoff and drainage fluxes, respectively, produced by a model.

3 MSRelE is calculated starting from the JULES + WG + PDM configuration.
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Table 4. Hydraulic double Brooks and Corey curve parameters for chalk.

Parameter Description Wetend Dryend Source
b Exponent 30.2 1.3 Calibration to soil moisture and
matric potential at 1 m
a,m Soil matric potential at 0.15 12.2 Calibration to soil moisture and
saturation matric potential at 1 m
Ky md™ Saturated  hydraulic 0.016 (0.02) JULES calibration to soil mois-
conductivity ture at multiple depths down to
41m
Giﬁ Effective saturated soil 0.36 Price et al. (1993); Bloomfield
moisture (1997)
0, Residual soil moisture 0.11 Soil moisture observations and
6" value
egf Effective saturated 0.32 Brooks and Corey equation at
soil moisture at critical —-40kPa
point
foift Effective  saturated 0.05 Brooks and Corey equation at
soil moisture at wilting —1500 kPa
point
oct Effective soil moisture 0.31 Calibration to soil moisture and

inter

at the two curves inter-
section

matric potential at 1 m

* Ksat is fitted using JULES + WG + PDM + CHALK as well as JULES + WG + PDM + CHALK + GW configurations. The
value for the latter is shown in the parenthesis.
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Figure 1. Hydrogeological map of the Kennet catchment. The square indicates the Warren
Farm site, the triangles are flow gauging stations, and the circles are observational boreholes.
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Figure 2. Comparison of the optimised effective soil moisture time series with the observed
soil moisture (red dots) at various depths at Warren Farm, Berkshire, UK. Brown lines
show soil moisture estimated by JULES + WG + PDM; blue lines show soil moisture esti-
mated by JULES + WG + PDM + CHALK; and black lines show soil moisture estimated by
JULES + WG + PDM + CHALK + GW. For large depths black and blue lines overlap. Grey hori-
zontal line shows the effective soil moisture at saturation 0.36.
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Figure 3. Chalk soil moisture retention fit using a dual Brooks and Corey curve and the corre-
sponding hydraulic conductivity dependence on effective soil moisture. Black dots are observed

data.
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Figure 4. Comparison of hydraulic head gradient dd /8z at a 6 m depth extracted from the 2-D
model with a unit gradient condition (left), and with a persistent gradient condition (right).
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Figure 5. Correspondence between potential and actual daily recharge rates extracted from

the 2-D model.
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Figure 6. 10day average flows at five gauging stations in the Kennet generated by the
JULES + WG + PDM + CHALK + GW model configuration. Grey lines denote simulated flows,

and blue dots are observations.
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Figure 7. Water levels at four observational boreholes in the Kennet. Blue
stars are observed levels, grey lines represent groundwater levels generated by

JULES + WG + PDM + CHALK + GW configuration; and black dotted lines represent ground-
water levels generated by JULES + WG + PDM + CHALK + GWadj configuration.
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Figure 8. 10day average flows at five gauging stations in the Kennet generated by the
JULES + WG + PDM + CHALK + GWadj model configuration. Grey lines denote simulated
flows, and blue dots are observations.
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