
Responses to Comments of Referee #1 

 

The authors have addressed my comments fully and clearly. I have a very minor point that came out 

while re-reading the manuscript and author responses. 

In the response to my comment about the non-dimensionalization (my comment 6 -- covered on pages 

3-4 of the author rebuttal document) the authors' mention they selected y0 as a characteristic length, 

but actually they used 2 characteristic lengths (they used H in the vertical direction). This leads to z 

including not just the permeability ratio Ky/Kz (similar to x), but also the squared length scale ratio 

y0
2/𝐻2 . Because of this choice, one cannot disentangle the effects of changing z that are due to 

permeability changes, or due to the square root of length scaling changes. 

I understand it is too late in the process to change this sort of detail (and it does not change the results 

or impact of the manuscript), but a consistent single characteristic length scale would have been a bit 

simpler. 

Response: Thanks for the comment. The definition of 𝑧 = 𝐾𝑧 𝑦0
2/(𝐾𝑦 𝐻2)  can explicitly 

demonstrate that both 𝐾𝑧 𝐾𝑦⁄  and 𝑦0
2 𝐻2⁄  are crucial factors in neglecting the effect of the vertical 

flow on stream filtration/depletion rate (SDR) (Huang et al., 2014). Such definition is similar to the 

work of Neuman (1975) in which he defined dimensionless parameter β = 𝐾𝑧 𝑟2/(𝐾𝑟 𝐻2) with 𝐾𝑟 

representing the hydraulic conductivity in the radial direction and r denoting a radial distance measured 

from a pumping well to an observation point. He used the parameter to examine the validity of 

neglecting the effect of the vertical flow on time-dependent drawdown at the observation point (see 

Figure 1 in Neuman, 1975). 

    In our definition, the effect of 𝐾𝑧 𝐾𝑦⁄  on SDR can be clearly explored once the value of y0 is 

selected. On the other hand, the effect of 𝑦0
2 𝐻2⁄  on SDR can also be assessed if the value of 𝐾𝑧 𝐾𝑦⁄  

is known. 
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Responses to Comments of Referee #2 

Analysis of three-dimensional groundwater flow toward a radial collector well in a 

finite-extent unconfined aquifer-second review 

The authors have addressed most of my comments. In my original review, I mentioned that the stream 

function presented for the case of section 3.1 does not exist. The answer of the authors to my objection 

is unsatisfactory. I understand from the problem description that the well is placed along z = 0.5, 9.5 

 x  10.5, y = 1, while the for domain has width Wy = 20. This implies that the flow is three-

dimensional. Although the authors present the flow net for y = 1 and claim that the flow in y = 0 is 

two-dimensional, this does not imply that the stream function exists. The presence of non-zero second 

order derivatives prevents the stream function, as presented by the authors, from being single-valued. 

Response: Thanks for the valuable comment on the fact that the stream function does not exist for 

three-dimensional flow. We realize that the stream function exists only for a few cases. For the cases 

of no stream function, one should rely on numerical approaches to determine the flow path lines. The 

path lines can be regarded as the streamlines for steady flow but not for transient flow.  

We have removed the text associated with the stream function from section 3.1. The appendix C 

showing the derivation of the stream function is also removed. The section 3.1 is now slightly revised 

as: 

“3.1 Identification of 3-D or 2-D flow at observation point 

Most existing models assume 2-D flow with neglecting the vertical flow for pumping at a 

horizontal well (e.g., Mohamed and Rushton, 2006; Haitjema et al., 2010). The head distributions 

predicted by those models are inaccurate if an observation point is close to the region where the vertical 

flow prevails. Figure 2 demonstrates the equipotential lines predicted by the present solution for a 

horizontal well in an unconfined aquifer for 𝑥̅0 = 10, 𝑤̅𝑥 = 𝑤̅𝑦 = 20 and z = 0.1, 1, and 10. The 

well is located at 9.5 ≤ 𝑥̅ ≤  10.5, 𝑦̅ = 1 and 𝑧̅ = 0.5 as illustrated in the figure. The equipotential 

lines are based on steady-state head distributions plotted by Eq. (44) with 𝑦̅ = 1 and 𝑡̅ = 107. When 

z = 0.1, in the range of 10  𝑥̅  13.66, the contours of the hydraulic head are in a curved path, and 

the flow toward the well is thus slanted. Moreover, the range decreases to 10  𝑥̅  11.5 when z = 1 

and to 10  𝑥̅ 10.82 when z = 10. Beyond these ranges, the head contours are nearly vertical, and 

the flow is essentially horizontal. Define 𝑑̅ = d/y0 as a shortest dimensionless horizontal distance 

between the well and a nearest location of only horizontal flow. The 𝑑̅ is therefore chosen as 3.16, 1 

and 0.32 for the cases of z = 0.1, 1 and 10, respectively. Substituting (z, 𝑑̅) = (0.1, 3.16), (1, 1) and 

(10, 0.32) into z𝑑̅2 leads to about unity. We may therefore conclude that the vertical flow at an 

observation point is negligible if its location is beyond the range of 𝑑̅ < √1/𝑧 (i.e., 𝑑 < 𝐻√𝐾𝑦/𝐾𝑧 ) 

for thin aquifers, an observation point far from the well, and/or a small ratio of 𝐾𝑦/𝐾𝑧.” 

 

As a second comment, I remain of the opinion that the the paper would much benefit from a more 



thorough validation, especially in view of my preceding statement. The comparison with Hunt’s 

solution is given, but holds only for a very limited case. 

Response: Please refer to the first response to the statement. The results in Figures 26 are plotted on 

the basis of the same computer program but with different parameters. We achieve agreement on 

stream depletion rate (SDR) predicted by the present solution and Hunt (1999) solution when adjusting 

parameters for the situation used to develop the latter solution. This indicates that the program and the 

derivation of the present solution are correct. In addition, Huang et al. (2012) verified their solution in 

comparison with the Hantush and Papadopoulos (1962) solution describing short-time and long-time 

drawdown distributions due to a radial collector well. The solution of Huang et al. (2012) is a special 

case of the present solution as discussed in section 2.6.4 of the revised manuscript. We would not 

repeat it in this revised manuscript; it has been discussed in detail in Huang et al. (2012). 

Summary 

In my view, the use of the stream function in example 3.1 is in error. If I misunderstood their example 

as being three-dimensional, whereas in reality is two-dimensional, then the authors have to make this 

much more clear than in the present form of the paper. If the problem is indeed three-dimensional, then 

the use of the stream function must be removed from the paper. The reader may easily verify the truth 

of my statement by considering the case of a point sink at the origin in three-dimensional space. The 

discharge potential for that case has the form 

 = −
𝑄

4𝜋

1

𝑟
        (1) 

where 

𝑟2 = 𝑥1
2 + 𝑥2

2 + 𝑥3
2        (2) 

where xi, i = 1, 2, 3, are the Cartesian coordinates. Set x2 = 0. Then 

 =
𝑄

4𝜋

1

√𝑥1
2+𝑥2

2
         (3) 

Introduce complex variables z = x1 + iy1, 𝑧̅, x1  iy1, so that (3) becomes 

 = −
𝑄

4𝜋

1

√𝑧𝑧̅
         (4) 

This function is not holomorphic, and thus the stream function does not exist for this case. 

Response: We appreciate reviewer’s explanation in detail. The text associated with the stream function 

has been removed. 
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Figure 2. Equipotential lines predicted by the present solution for z= (a) 0.1, (b) 1 and (c) 10. 
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Abstract 19 

This study develops a three-dimensional mathematical model for describing transient 20 

hydraulic head distributions due to pumping at a radial collector well (RCW) in a rectangular 21 

confined or unconfined aquifer bounded by two parallel streams and no-flow boundaries. The 22 

streams with low-permeability streambeds fully penetrate the aquifer thickness. The governing 23 

equation with a point-sink term is employed. A first-order free surface equation delineating the 24 

water table decline induced by the well is considered. Robin boundary conditions are adopted 25 

to describe fluxes across the streambeds. The head solution for the point sink is derived by 26 

applying the methods of finite integral transform and Laplace transform. The head solution for 27 

a RCW is obtained by integrating the point-sink solution along the laterals of the RCW and 28 

then dividing the integration result by the sum of lateral lengths. On the basis of Darcy’s law 29 

and head distributions along the streams, the solution for the stream depletion rate (SDR) can 30 

also be developed. With the aid of the head and SDR solutions, the sensitivity analysis can then 31 

be performed to explore the response of the hydraulic head to the change in a specific parameter 32 

such as the horizontal and vertical hydraulic conductivities, streambed permeability, specific 33 

storage, specific yield, lateral length and well depth. Spatial head distributions subject to the 34 

anisotropy of aquifer hydraulic conductivities are analyzed. A quantitative criterion is provided 35 

to identify whether groundwater flow at a specific region is 3-D or 2-D without the vertical 36 

component. In addition, another criterion is also given to allow the neglect of vertical flow 37 

effect on SDR. Conventional 2-D flow models can be used to provide accurate head and SDR 38 

predictions if satisfying these two criteria. 39 

Keywords: Robin boundary condition, sensitivity analysis, stream depletion rate, first-order 40 

free surface equation, analytical solution 41 
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1. Introduction 42 

The applications of a radial collector well (RCW) have received much attention in the 43 

aspects of water resource supply and groundwater remediation since rapid advances in drilling 44 

technology. An average yield for the well approximates 27,000 m3/day (Todd and Mays, 2005). 45 

As compared to vertical wells, RCWs require less operating cost, produce smaller drawdown, 46 

and have better efficiency of withdrawing water from thin aquifers. In addition, RCWs can 47 

extract water from an aquifer underlying obstacles such as buildings, but vertical wells cannot. 48 

Recently, Huang et al. (2012) reviewed semi-analytical and analytical solutions associated with 49 

RCWs. Since then, Yeh and Chang (2013) provided a valuable overview of articles associated 50 

with RCWs. 51 

    A variety of analytical models involving a horizontal well, a specific case of a RCW with 52 

a single lateral, in aquifers were developed (e.g., Park and Zhan, 2003; Hunt, 2005; Anderson, 53 

2013). The flux along the well screen is commonly assumed to be uniform. The equation 54 

describing three-dimensional (3-D) flow is used. Kawecki (2000) developed analytical 55 

solutions of the hydraulic heads for the early linear flow perpendicular to a horizontal well and 56 

late pseudo-radial flow toward the middle of the well in confined aquifers. They also developed 57 

an approximate solution for unconfined aquifers on the basis of the head solution and an 58 

unconfined flow modification. The applicability of the approximate solution was later 59 

evaluated in comparison with a finite difference solution developed by Kawecki and Al-60 

Subaikhy (2005). Zhan et al. (2001) presented an analytical solution for drawdown induced by 61 

a horizontal well in confined aquifers and compared the difference in the type curves based on 62 

the well and a vertical well. Zhan and Zlotnik (2002) developed a semi-analytical solution of 63 

drawdown due to pumping from a nonvertical well in an unconfined aquifer accounting for the 64 

effect of instantaneous drainage or delayed yield when the free surface declines. They discussed 65 

the influences of the length, depth, and inclination of the well on temporal drawdown 66 
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distributions. Park and Zhan (2002) developed a semi-analytical drawdown solution 67 

considering the effects of a finite diameter, the wellbore storage, and a skin zone around a 68 

horizontal well in anisotropic leaky aquifers. They found that those effects cause significant 69 

change in drawdown at an early pumping period. Zhan and Park (2003) provided a general 70 

semi-analytical solution for pumping-induced drawdown in a confined aquifer, an unconfined 71 

aquifer on a leaky bottom, or a leaky aquifer below a water reservoir. Temporal drawdown 72 

distributions subject to the aquitard storage effect were compared with those without that effect. 73 

Sun and Zhan (2006) derived a semi-analytical solution of drawdown due to pumping at a 74 

horizontal well in a leaky aquifer. A transient one-dimensional flow equation describing the 75 

vertical flow across the aquitard was considered. The derived solution was used to evaluate the 76 

Zhan and Park (2003) solution which assumed steady-state vertical flow in the aquitard. 77 

Sophisticated numerical models involved in RCWs or horizontal wells were also reported. 78 

Steward (1999) applied the analytic element method to approximate 3-D steady-state flow 79 

induced by horizontal wells in contaminated aquifers. They discussed the relation between a 80 

pumping rate and the size of a polluted area. Chen et al. (2003) utilized the polygon finite 81 

difference method to deal with three kinds of seepage-pipe flows including laminar, turbulent, 82 

and transitional flows within a finite-diameter horizontal well. A sandbox experiment was also 83 

carried out to verify the prediction made by the method. Mohamad and Rushton (2006) used 84 

MODFLOW to predict flows inside an aquifer, from the aquifer to a horizontal well, and within 85 

the well. The predicted head distributions were compared with field data measured in Sarawak, 86 

Malaysia. Su et al. (2007) used software TOUGH2 based on the integrated finite difference 87 

method to handle irregular configurations of several laterals of two RCWs installed beside the 88 

Russian River, Forestville, California and analyzed pumping-induced unsaturated regions 89 

beneath the river. Lee et al. (2012) developed a finite element solution with triangle elements 90 

to assess whether the operation of a RCW near Nakdong River in South Korea can induce 91 
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riverbank filtration. They concluded that the well can be used for sustainable water supply at 92 

the study site. In addition, Rushton and Brassington (2013a) extended Mohamad and Rushton 93 

(2006) study by enhancing the Darcy-Weisbach formula to describe frictional head lose inside 94 

a horizontal well. The spatial distributions of predicted flux along the well revealed that the 95 

flux at the pumping end is four times of the magnitude of that at the far end. Later, Rushton 96 

and Brassington (2013b) applied the same model to a field experiment at the Seton Coast, 97 

northwest England.  98 

Well pumping in aquifers near streams may cause groundwatersurface water interactions 99 

(e.g., Rodriguez et al., 2013; Chen et al., 2013; Zhou et al., 2013; Exner-Kittridge et al., 2014; 100 

Flipo et al., 2014; Unland et al., 2014). The stream depletion rate (SDR), commonly used to 101 

quantify stream water filtration into the adjacent aquifer, is defined as the ratio of the filtration 102 

rate to a pumping rate. The SDR ranges from zero to a certain value which could be equal to 103 

or less than unity (Zlotnik, 2004). Tsou et al. (2010) developed an analytical solution of SDR 104 

for a slanted well in confined aquifers adjacent to a stream treated as a constant-head boundary. 105 

They indicated that a horizontal well parallel to the stream induces the steady-state SDR of 106 

unity more quickly than a slanted well. Huang et al. (2011) developed an analytical SDR 107 

solution for a horizontal well in unconfined aquifers near a stream regarded as a constant-head 108 

boundary. Huang et al. (2012) provided an analytical solution for SDR induced by a RCW in 109 

unconfined aquifers adjacent to a stream with a low-permeability streambed treated asunder 110 

the Robin condition. The influence of the configuration of the laterals on temporal SDR and 111 

spatial drawdown distributions was analyzed. Recently, Huang et al. (2014) gave an exhaustive 112 

review on analytical and semi-analytical SDR solutions and classified these solutions into two 113 

categories. One group involved two-dimensional (2-D) flow toward a fully-penetrating vertical 114 

well according to aquifer types and stream treatments. The other group included the solutions 115 

involving 3-D and quasi 3-D flows in the lights of aquifer types, well types, and stream 116 
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treatments. 117 

At present, existing analytical solutions associated with flow toward a RCW in unconfined 118 

aquifers have involved laborious calculation (Huang et al., 2012) and predicted approximate 119 

results (Hantush and Papadopoulos, 1962). The Huang et al. (2012) solution involves numerical 120 

integration of a triple integral in predicting the hydraulic head and a quintuple integral in 121 

predicting SDR. The integrand is expressed in terms of an infinite series expanded by roots of 122 

nonlinear equations. The integration variables are related to those roots. The application of 123 

their solution is therefore limited to those who are familiar with numerical methods. In addition, 124 

the accuracy of the Hantush and Papadopoulos (1962) solution is limited to some parts of a 125 

pumping period; that is, it gives accurate drawdown predictions at early and late times but 126 

divergent ones at middle time.  127 

The objective of this study is to present new analytical solutions of the head and SDR, 128 

which overcome the abovementioned limitations, for 3-D flow toward a RCW. A 129 

mathematical model is built to describe 3-D spatiotemporal hydraulic head distributions in a 130 

rectangular unconfined aquifer bounded by two parallel streams and by the no-flow stratums 131 

in the other two sides. The flux across the well screen is assumed to be uniform along each of 132 

the laterals. The assumption is valid for a short lateral within 150 m verified by agreement on 133 

drawdown observed in field experiments and predicted by existing analytical solutions (Huang 134 

et al., 2011; 2012). The streams fully penetrate the aquifer thickness and connect the aquifer 135 

with low-permeability streambeds. The model for the aquifer system with two parallel streams 136 

can be used to determine the fraction of water filtration from the streams and solve the 137 

associated water right problem (Sun and Zhan, 2007). The transient 3-D groundwater flow 138 

equation with a point-sink term is considered. The first-order free surface equation is used to 139 

describe water table decline due to pumping. Robin boundary conditions are adopted to 140 

describe fluxes across the streambeds. The head solution for a point sink is derived by the 141 



 7 

methods of Laplace transform and finite integral transform. The analytical head solution for a 142 

RCW is then obtained by integrating the point-sink solution along the well and dividing the 143 

integration result by the total lateral length. The RCW head solution is expressed in terms of a 144 

triple series expanded by eigenvalues which can be obtained by a numerical algorithm such as 145 

Newton’s method. On the basis of Darcy’s law and the RCW head solution, the SDR solution 146 

can then be obtained in terms of a double series with fast convergence. With the aid of both 147 

solutions, the sensitivity analysis is performed to investigate the response of the hydraulic head 148 

to the change in each of aquifer parameters. The spatial distributions of the head and streamline 149 

are discussed. Spatial head distributions subject to the anisotropy of aquifer hydraulic 150 

conductivities are analyzed. The influences of the vertical flow and well depth on temporal 151 

SDR distributions are investigated. Moreover, temporal SDR distributions induced by a RCW 152 

and a fully penetrating vertical well in confined aquifers are also compared. A quantitative 153 

criterion is provided to identify whether groundwater flow at a specific region is 3-D or 2-D 154 

without the vertical component. In addition, another criterion is also given to judge the 155 

suitability of neglecting the vertical flow effect on SDR.  156 

 157 

2. Methodology 158 

2.1. Mathematical model 159 

    Consider a RCW in a rectangular unconfined aquifer bounded by two parallel streams and 160 

no-flow stratums as illustrated in Figure 1. The symbols for variables and parameters are 161 

defined in Table 1. The origin of the Cartesian coordinate is located at the lower left corner. 162 

The aquifer domain falls in the range of 0 ≤ 𝑥 ≤ 𝑤𝑥, 0 ≤ 𝑦 ≤ 𝑤𝑦, and −𝐻 ≤ 𝑧 ≤ 0. The 163 

RCW consists of a caisson and several laterals, each of which extends finitely with length Lk 164 

and counterclockwise with angle k where k  1, 2, … N and N is the number of laterals. The 165 

caisson is located at (x0, y0), and the surrounding laterals are at z = z0. 166 
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    First of all, a mathematical model describing 3-D flow toward a point sink in the aquifer 167 

is proposed. The equation describing 3-D hydraulic head distribution h(x, y, z, t) is expressed 168 

as 169 
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where 𝛿(   ) is the Dirac delta function, the second term on the right-hand side (RHS) indicates 171 

the point sink, and Q is positive for pumping and negative for injection. The first term on the 172 

RHS of Eq. (1) depicts aquifer storage release based on the concept of effective stress proposed 173 

by Terzaghi (see, for example, Bear, 1979; Charbeneau, 2000), which is valid under the 174 

assumption of constant total stress. By choosing water table as a reference datum where the 175 

elevation head is set to zero, the initial condition can therefore be denoted as 176 

ℎ = 0  at  𝑡 = 0 (2) 177 

Note that equation (2) introduces negative hydraulic head for pumping, and the absolute value 178 

of the head equals drawdown. 179 

The aquifer boundaries at x = 0 and x = wx are considered to be impermeable and thus 180 

expressed as 181 

0/  xh   at  𝑥 = 0 (3) 182 

and 183 

0/  xh   at  𝑥 = 𝑤𝑥 (4) 184 

Streambed permeability is usually less than the adjacent aquifer formation. The fluxes across 185 

the streambeds can be described by Robin boundary conditions as 186 
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The free surface equation describing water table decline is written as 190 
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  at  𝑧 = ℎ (7) 191 

Neuman (1972) indicated that the effect of the second-order terms in Eq. (7) is generally 192 

ignorable to develop analytical solutions. Eq. (7) is thus linearized by neglecting the quadratic 193 

terms, and the position of the water table is fixed at the initial condition (i.e., z = 0). The result 194 

is written as 195 

t

h
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z

h
K yz









  at  𝑧 = 0 (8) 196 

Notice that Eq. (8) is applicable when the conditions |ℎ|/𝐻 ≤ 0.1  and |∂ℎ/ ∂𝑥| +197 

|∂ℎ/ ∂𝑦| ≤ 0.01  are satisfied. These two conditions had been studied and verified by 198 

simulations in, for example, Nyholm et al. (2002), Goldscheider and Drew (2007) and Yeh et 199 

al. (2010). Nyholm et al. (2002) achieved agreement on drawdown measured in a field pumping 200 

test and predicted by MODFLOW which models flow in the study site as confined behavior 201 

because of |ℎ|/𝐻 ≤ 0.1 in the pumping well. Goldscheider and Drew (2007) revealed that 202 

pumping drawdown predicted by Neuman (1972) analytical solution based on Eq. (8) agrees 203 

well with that obtained in a field pumping test. In addition, Yeh et al. (2010) also achieved 204 

agreement on the hydraulic head predicted by their analytical solution based on Eq. (8), their 205 

finite difference solution based on Eq. (7) with ∂ℎ/ ∂𝑦 = 0 (referring to Eq. (7a)), and Teo et 206 

al. (2003) solution derived by applying the perturbation technique to deal with Eq. (7a) when 207 

|ℎ|/𝐻 = 0.1 and |∂ℎ/ ∂𝑥| = 0.01 (i.e.,  = 0.1 and |∂/ ∂𝑥| = 0.01 at x = 0 in Yeh et al. 208 

(2010, Fig. 5(a)). On the other hand, the bottom of the aquifer is considered as a no-flow 209 

boundary condition denoted as 210 

0/  zh   at  𝑧 = −𝐻 (9) 211 

Define dimensionless variables as ℎ̅ = (𝐾𝑦 𝐻 ℎ) 𝑄⁄ , 𝑡̅ = (𝐾𝑦 𝑡) (𝑆𝑠 𝑦0
2)⁄ , 𝑥̅ = 𝑥 𝑦0⁄ , 212 
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𝑦̅ = 𝑦 𝑦0⁄ , 𝑧̅ = 𝑧 𝐻⁄ , 𝑥̅0
′ = 𝑥0

′ 𝑦0⁄ , 𝑦̅0
′ = 𝑦0

′ /𝑦0 , 𝑧0̅
′ = 𝑧0

′ 𝐻⁄ , 𝑤̅𝑥 = 𝑤𝑥 𝑦0⁄  and 𝑤̅𝑦 =213 

𝑤𝑦 𝑦0⁄  where the overbar denotes a dimensionless symbol, H is the initial aquifer thickness, 214 

and 𝑦0, is a distance between stream 1 and the center of the RCW, is chosen as a characteristic 215 

length. On the basis of the definitions, Eq. (1) can be written as 216 

)()()( 0002

2

2

2

2

2

zzyyxx
t

h

z

h

y

h

x

h
zx




















  (10) 217 

where x = 𝐾𝑥 𝐾𝑦⁄  and z = (𝐾𝑧 𝑦0
2) (𝐾𝑦  𝐻2)⁄ . 218 

Similarly, the initial and boundary conditions are expressed as 219 

ℎ̅ = 0  at  𝑡̅ = 0 (11) 220 

∂ℎ̅/ ∂𝑥̅ = 0  at  𝑥̅ = 0 (12) 221 

∂ℎ̅/ ∂𝑥̅ = 0  at  𝑥̅ = 𝑤̅𝑥 (13) 222 

0/ 1  hyh    at  𝑦̅ = 0 (14) 223 

0/ 2  hyh    at  𝑦̅ = 𝑤̅𝑦 (15) 224 

t

h

z

h

z 











  at  𝑧̅ = 0 (16) 225 

and 226 

0/  zh   at  𝑧̅ = −1 (17) 227 

where (𝐾1 𝑦0) (𝐾𝑦  𝑏1)⁄  (𝐾2 𝑦0) (𝐾𝑦 𝑏2)⁄ and𝑆𝑦 (𝑆𝑠 𝐻)⁄  228 

2.2 Head solution for point sink 229 

The model, Eqs. (10)  (17), reduces to an ordinary differential equation (ODE) with two 230 

boundary conditions in terms of 𝑧̅ after taking Laplace transform and finite integral transform. 231 

The former transform converts ℎ̅(𝑥̅, 𝑦̅, 𝑧̅, 𝑡̅) into ℎ̂(𝑥̅, 𝑦̅, 𝑧̅, 𝑝), δ(𝑥̅ − 𝑥̅0
′ ) δ(𝑦̅ − 𝑦̅0

′ )δ(𝑧̅ − 𝑧0̅
′ ) 232 

in Eq. (10) into δ(𝑥̅ − 𝑥̅0
′ ) δ(𝑦̅ − 𝑦̅0

′ )δ(𝑧̅ − 𝑧0̅
′ )/𝑝, and 𝜕ℎ̅ 𝜕𝑡̅⁄  in Eqs. (10) and (16) into 233 

𝑝ℎ̂ − ℎ̅|
𝑡̅=0

 where p is the Laplace parameter, and the second term, initial condition in Eq. (11), 234 
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equals zero (Kreyszig, 1999). The transformed model becomes a boundary value problem 235 

written as 236 

pzzyyxxhp
z

h

y

h

x

h
zx /)()()(ˆ

ˆˆˆ

0002

2

2

2

2

2















     (18) 237 

with boundary conditions ∂ℎ̂/ ∂𝑥̅ = 0 at 𝑥̅ = 0 and 𝑥̅ = 𝑤̅𝑥 , 0ˆ/ˆ
1  hyh   at 𝑦̅ = 0, 238 

0ˆ/ˆ
2  hyh   at 𝑦̅ = 𝑤̅𝑦 , zhpzh  /ˆ/ˆ   at 𝑧̅ = 0  and 0/  zh  at 𝑧̅ = −1 . 239 

We then apply finite integral transform to the problem. One can refer to Appendix A for its 240 

detailed definition. The transform converts ℎ̂(𝑥̅, 𝑦̅, 𝑧̅, 𝑝) in the problem into ℎ̃(𝛼𝑚, 𝛽𝑛, 𝑧̅, 𝑝), 241 

and δ(𝑥̅ − 𝑥̅0
′ ) δ(𝑦̅ − 𝑦̅0

′ ) in Eq. (18) into cos (α𝑚𝑥̅0
′ )𝐾(𝑦̅0

′ ) and 𝑥 𝜕2ℎ̂ 𝜕𝑥̅2⁄ + 𝜕2ℎ̂ 𝜕𝑦̅2⁄  242 

in Eq. (18) into −(𝑥𝛼𝑚
2 + 𝛽𝑛

2)ℎ̃ where (m, n)1, 2, 3, …  , 𝛼𝑚 = 𝑚 𝜋 𝑤̅𝑥⁄ , 𝐾(𝑦̅0
′ ) is 243 

defined in Eq. (A2) with 𝑦̅ = 𝑦̅0
′ , and 𝛽𝑛 are represents eigenvalues equaling the roots of the 244 

following equation as (Latinopoulos, 1985) 245 

 
21

2

21 )(
tan











n

n
yn w             (19) 246 

The method to determine the roots is discussed in section 2.3. In turn, Eq. (18) becomes a 247 

second-order ODE defined by 248 

pzzyKxhp
z

h
mnmxz /)()()cos(

~
)(

~

000

22

2

2





  (20) 249 

with two boundary conditions denoted as 250 

h
p

z

h

z

~
~









  at  𝑧̅ = 0 (21) 251 

and 252 

0/
~

 zh   at  𝑧̅ = −1 (22) 253 

Eq. (20) can be separated into two homogeneous ODEs as 254 

0
~

)(

~
22

2

2





anmx

a
z hp

z

h
   for  −𝑧0̅

′ ≤ 𝑧̅ ≤ 0 (23) 255 
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and 256 

0
~

)(

~
22

2

2





bnmx

b
z hp

z

h
   for  −1 ≤ 𝑧̅ ≤ −𝑧0̅

′  (24) 257 

where ha and hb, respectively, represent the heads above and below 𝑧̅ = −𝑧0̅
′

 where the point 258 

sink is located. Two continuity requirements should be imposed at 𝑧̅ = −𝑧0̅
′ . The first is the 259 

continuity of the hydraulic head denoted as 260 

ℎ̃𝑎 = ℎ̃𝑏  at  𝑧̅ = −𝑧0̅
′  (25) 261 

The second describes the discontinuity of the flux due to point pumping represented by the 262 

Dirac delta function in Eq. (20). It can be derived by integrating Eq. (20) from z̅ = −𝑧0̅
′ − to 263 

z̅ = −𝑧0̅
′ + as 264 

z

mba

p

yKx

z

h

z

h



 )()cos(
~~

00











  at  𝑧̅ = −𝑧0̅

′  (26) 265 

Solving Eqs. (23) and (24) simultaneously with Eqs. (21), (22), (25), and (26) yields the 266 

Laplace-domain head solution as 267 

ℎ̃𝑎(𝛼𝑚, 𝛽𝑛, 𝑧̅, 𝑝) = Ω(−𝑧0̅
′ , 𝑧̅, 1)  for  −𝑧0̅

′ ≤ 𝑧̅ ≤ 0 (27a) 268 

and 269 

ℎ̃𝑏(𝛼𝑚 , 𝛽𝑛, 𝑧̅, 𝑝) = Ω(𝑧̅, 𝑧0̅
′ , −1)  for  −1 ≤ 𝑧̅ ≤ −𝑧0̅

′  (27b) 270 

with 271 

)sinhcosh(

)()cos()]sinh()cosh([])1cosh[(
),,( 00





zz

mz

pp

yKxbpcba
cba




  (28) 272 

𝜆 = √(𝜅𝑥𝛼𝑚
2 + 𝛽𝑛

2 + 𝑝)/𝜅𝑧 (29) 273 

where a, b, and c are arguments. Taking the inverse Laplace transform and finite integral 274 

transform to Eq. (28) results in Eq. (31). One is referred to Appendix B for the detailed 275 

derivation. A time-domain head solution for a point sink is therefore written as 276 

ℎ̅(𝑥̅, 𝑦̅, 𝑧̅, 𝑡̅) = {
(−𝑧0̅

′ , 𝑧̅, 1) for − 𝑧0̅
′  ≤ 𝑧̅ ≤ 0

  (𝑧̅, 𝑧0̅
′ , −1) for − 1 ≤ 𝑧̅ ≤ − 𝑧0̅

′        (30) 277 
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with 278 

Φ(𝑎, 𝑏, 𝑐) =
2

𝑤̅𝑥
{∑ [𝜙𝑛 𝑋𝑛 + 2 ∑ 𝜙𝑚,𝑛 𝑋𝑚,𝑛  cos(𝛼𝑚 𝑥̅)∞

𝑚=1 ]∞
𝑛=1  𝑌𝑛} (31) 279 

𝜙𝑚,𝑛 = 𝜓𝑚,𝑛 + 𝜓𝑚,𝑛,0 + ∑ 𝜓𝑚,𝑛,𝑖
∞
𝑖=1   (32) 280 

𝜓𝑚,𝑛 = − cosh[(1 + 𝑎)𝜆𝑠] cosh(𝑏 𝜆𝑠) (𝜅𝑧 𝜆𝑠  sinh 𝜆𝑠)⁄  (33) 281 

𝜓𝑚,𝑛,0 = 𝜇𝑚,𝑛,0  cosh[(1 + 𝑎)𝜆0] [−𝜅𝑧 𝜆0  cosh(𝑏 𝜆0) + 𝑐 𝑝0 𝛾 sinh(𝑏 𝜆0)] (34) 282 

𝜓𝑚,𝑛,𝑖 = 𝜈𝑚,𝑛,𝑖  cos[(1 + 𝑎)𝜆𝑖]  [−𝜅𝑧  𝜆𝑖  cos(𝑏 𝜆𝑖) + 𝑐 𝑝𝑖 𝛾 sin(𝑏 𝜆𝑖)] (35) 283 

𝜇𝑚,𝑛,0 = 2 exp(𝑝0 𝑡̅) {𝑝0[(1 + 2 𝛾) 𝜅𝑧 𝜆0  cosh 𝜆0 + (𝑝0 𝛾 + 𝜅𝑧) sinh 𝜆0]}⁄  (36) 284 

ν𝑚,𝑛,𝑖 = 2 exp(𝑝𝑖 𝑡̅) {𝑝𝑖[(1 + 2 𝛾) 𝜅𝑧 𝜆𝑖  cos 𝜆𝑖 + (𝑝𝑖 𝛾 + 𝜅𝑧) sin 𝜆𝑖]}⁄  (37) 285 

1

2

2

2

2

2

1

2

1

)]/([)(

)sin()cos(










nyn

nnn
n

w

yy
Y   (38) 286 

and 287 

𝑋𝑚,𝑛 = cos(𝛼𝑚  𝑥̅0
′ ) [𝛽𝑛  cos(𝛽𝑛 𝑦̅0

′ ) + 𝜅1  sin(𝛽𝑛𝑦̅0
′ )] (39) 288 

where 𝜆𝑠 = √(𝜅𝑥𝛼𝑚
2 + 𝛽𝑛

2)/𝜅𝑧 , 𝑝0 = 𝜅𝑧𝜆0
2 − 𝜅𝑥𝛼𝑚

2 − 𝛽𝑛
2 , 𝑝𝑖 = −𝜅𝑧𝜆𝑖

2 − 𝜅𝑥𝛼𝑚
2 − 𝛽𝑛

2 , 𝜙𝑛 289 

and Xn equal 𝜙𝑚,𝑛 and Xm, n with 𝛼𝑚 = 0, respectively, and the eigenvalues 𝜆0 and 𝜆𝑖 are, 290 

respectively, the roots of the following equations: 291 

)(

)(
22

0

2

0

22

0

2

02 0

nmxzz

nmxzze







  (40) 292 

iz

nmxiz
i






)(
tan

222 
  (41) 293 

The determination for those eigenvalues is introduced in the next section. Notice that the 294 

solution consists of simple series expanded in 𝛽𝑛, double series expanded in 𝛽𝑛 and 𝜆𝑖 (or 295 

𝛼𝑚 and 𝛽𝑛), and triple series expanded in 𝛼𝑚, 𝛽𝑛 and 𝜆𝑖. 296 

2.3 Evaluations for n, 0 and i 297 

Application of Newton’s method with proper initial guesses to determine the eigenvalues 298 

𝛽𝑛, 𝜆0 and 𝜆𝑖 has been proposed by Huang et al. (2014) and is briefly introduced herein. The 299 
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eigenvalues are situated at the intersection points of the left-hand side (LHS) and RHS 300 

functions of Eq. (19) for 𝛽𝑛, Eq. (40) for 𝜆0, and Eq. (41) for 𝜆𝑖. Hence, the initial guesses 301 

for 𝛽𝑛  are considered as 𝛽𝑣 − 𝛿  if 𝛽𝑣 > (𝜅1 𝜅2)0.5  and as 𝛽𝑣 + 𝛿  if 𝛽𝑣 < (𝜅1 𝜅2)0.5 302 

where 𝛽𝑣 = (2𝑛 − 1)𝜋/(2 𝑤̅𝑦) and 𝛿 is a chosen small value such as 10-8 for avoiding being 303 

right at the vertical asymptote. In addition, the guess for 𝜆0 can be formulated as  304 

𝜆0 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝛿 + {−𝜅𝑧 − √𝜅𝑧[𝜅𝑧 + 4 𝛾2(𝜅𝑥𝛼𝑚
2 + 𝛽𝑛

2)]} (2𝛾𝜅𝑧)⁄  (42) 305 

where the RHS second term represents the location of the vertical asymptote derived by letting 306 

the denominator of the RHS function in Eq. (40) to be zero and solving 𝜆0 in the resultant 307 

equation. Moreover, the guessed value for 𝜆𝑖 is (2 𝑖 − 1)𝜋 2 + 𝛿⁄ . 308 

2.4 Head solution for radial collector well 309 

The lateral of RCW is approximately represented by a line sink composed of a series of 310 

adjoining point sinks. The locations of these point sinks are expressed in terms of (𝑥̅0 + 𝑙 ̅ cos 𝜃, 311 

𝑦̅0 + 𝑙 ̅ sin 𝜃, 𝑧0̅) where (𝑥̅0, 𝑦̅0, 𝑧0̅) = (𝑥0 𝑦0⁄ , 1, 𝑧0 𝐻⁄ ) is the central of the lateral, and 𝑙 ̅ is 312 

a variable to define different locations of the point sink. The solution of head ℎ̅𝑤(𝑥̅, 𝑦̅, 𝑧̅, 𝑡̅) for 313 

a lateral can therefore be derived by substituting 𝑥̅0
′ = 𝑥̅0 + 𝑙 ̅ cos 𝜃 , 𝑦̅0

′ = 1 + 𝑙 ̅ sin 𝜃  and 314 

𝑧0̅
′ = 𝑧0̅ into the point-sink solution, Eq. (30), then by integrating the resultant solution to 𝑙,̅ 315 

and finally by dividing the integration result into the sum of lateral lengths. The derivation can 316 

be denoted as 317 

ℎ̅𝑤(𝑥̅, 𝑦̅, 𝑧̅, 𝑡̅) = (∑ 𝐿̅𝑘
𝑁
𝑘=1 )−1 ∑ ∫ ℎ̅(𝑥̅, 𝑦̅, 𝑧̅, 𝑡̅)

𝐿̅𝑘

0
𝑑𝑙 ̅𝑁

𝑘=1  (43) 318 

where 𝐿̅𝑘 = 𝐿𝑘/𝑦0 is the k-th dimensionless lateral length. Note that the integration variable 319 

𝑙 ̅ (i.e., 𝑥̅0
′  and 𝑦̅0

′ ) appears only in 𝑋𝑛 and 𝑋𝑚,𝑛 in Eq. (31). The integral in Eq. (43) can 320 

thus be done analytically by integrating 𝑋𝑛 and 𝑋𝑚,𝑛 with respect to 𝑙.̅ After the integration, 321 

Eq. (43) can be expressed as 322 

ℎ̅𝑤(𝑥̅, 𝑦̅, 𝑧̅, 𝑡̅) = (∑ 𝐿̅𝑘
𝑁
𝑘=1 )−1 ∑ { Φ(−𝑧̅0,𝑧̅,1)  for  −𝑧̅0≤𝑧̅≤0

Φ(𝑧̅,𝑧̅0,−1)  for  −1≤𝑧̅≤−𝑧̅0

𝑁
𝑘=1                        (44) 323 
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where Φ  is defined by Eqs. (31)  (38), and 𝑋𝑛  and 𝑋𝑚,𝑛  in Eq. (31) are replaced, 324 

respectively, by 325 

𝑋𝑛,𝑘 = −𝐺𝑘/(𝛽𝑛 sin 𝜃𝑘)                                                  (45) 326 

and 327 

𝑋𝑚,𝑛,𝑘 =
𝛼𝑚𝐹𝑘 cos 𝜃𝑘+𝛽𝑛𝐺𝑘 sin 𝜃𝑘

𝛼𝑚
2 cos2 𝜃𝑘−𝛽𝑛

2 sin2 𝜃𝑘
                                             (46) 328 

with 329 

𝐹𝑘 = sin(𝑋𝛼𝑚)[𝛽𝑛 cos(𝑌𝛽𝑛) + 𝜅1 sin(𝑌𝛽𝑛)] − sin(𝑥̅0𝛼𝑚)(𝛽𝑛 cos 𝛽𝑛 + 𝜅1 sin 𝛽𝑛) (47) 330 

𝐺𝑘 = cos(𝑋𝛼𝑚)[𝜅1 cos(𝑌𝛽𝑛) − 𝛽𝑛 sin(𝑌𝛽𝑛)] − cos(𝑥̅0𝛼𝑚)(𝜅1 cos 𝛽𝑛 − 𝛽𝑛 sin 𝛽𝑛) (48) 331 

where 𝑋 = 𝑥̅0 + 𝐿̅𝑘 cos 𝜃𝑘  and 𝑌 = 1 + 𝐿̅𝑘 sin 𝜃𝑘 . Notice that Eq. (45) is obtained by 332 

substituting 𝛼𝑚 = 0 into Eq. (46). When 𝜃𝑘 = 0 or 𝜋 , Eq. (45) reduces to Eq. (49) by 333 

applying L’Hospital’s rule. 334 

𝑋𝑛,𝑘 = 𝐿̅𝑘(𝛽𝑛 cos 𝛽𝑛 + 𝜅1 sin 𝛽𝑛) (49) 335 

2.5 SDR solution for radial collector well  336 

On the basis of Darcy’s law and the head solution for a RCW, the SDR from streams 1 337 

and 2 can be defined, respectively, as 338 

𝑆𝐷𝑅1(𝑡̅) = − ∫ (∫
𝜕ℎ̅𝑤

𝜕𝑦̅

𝑧̅=0

𝑧̅=−𝑧̅0
𝑑𝑧̅ + ∫

𝜕ℎ̅𝑤

𝜕𝑦̅

𝑧̅=−𝑧̅0

𝑧̅=−1
𝑑𝑧̅) 𝑑𝑥̅

𝑥̅=𝑤̅𝑥

𝑥̅=0
  at  𝑦̅ = 0  (50) 339 

and 340 

𝑆𝐷𝑅2(𝑡̅) = ∫ (∫
𝜕ℎ̅𝑤

𝜕𝑦̅

𝑧̅=0

𝑧̅=−𝑧̅0
𝑑𝑧̅ + ∫

𝜕ℎ̅𝑤

𝜕𝑦̅

𝑧̅=−𝑧̅0

𝑧̅=−1
𝑑𝑧̅) 𝑑𝑥̅

𝑥̅=𝑤̅𝑥

𝑥̅=0
 at  𝑦̅ = 𝑤̅𝑦  (51) 341 

Again, the double integrals in both equations can be done analytically. Notice that the series 342 

term of 2 ∑ 𝜙𝑚,𝑛 𝑋𝑚,𝑛  cos(𝛼𝑚 𝑥̅)∞
𝑚=1  in Eq. (31) disappears due to the consideration of Eqs. 343 

(3) and (4) and the integration with respect to 𝑥̅ in Eqs. (50) and (51) when deriving the SDR 344 

solution. The SDR1 and SDR2 are therefore expressed in terms of double series and given below: 345 

𝑆𝐷𝑅1(𝑡̅) = −
2

∑ 𝐿̅𝑘
𝑁
𝑘=1

∑ ∑ (𝜓𝑛
′ + 𝜓𝑛,0

′ + ∑ 𝜓𝑛,𝑖
′∞

𝑖=1 )𝑋𝑛,𝑘 𝑌𝑛
′(0)∞

𝑛=1
𝑁
𝑘=1  (52) 346 

and 347 
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𝑆𝐷𝑅2(𝑡̅) =
2

∑ 𝐿̅𝑘
𝑁
𝑘=1

∑ ∑ (𝜓𝑛
′ + 𝜓𝑛,0

′ + ∑ 𝜓𝑛,𝑖
′∞

𝑖=1 )𝑋𝑛,𝑘 𝑌𝑛
′(𝑤̅𝑦)∞

𝑛=1
𝑁
𝑘=1  (53) 348 

with 349 

1

2

2

2

2

2

1

2

2

1

)]/([)(

)sin()cos(
)(










nyn

nnnn
n

w

yy
yY  (54) 350 

𝜓𝑛
′ = −{sinh(𝑧0̅𝜆𝑠

′ ) cosh[(1 − 𝑧0̅ )𝜆𝑠
′ ] + sinh[(1 − 𝑧0̅ )𝜆𝑠

′ ] cosh(𝑧0̅ 𝜆𝑠
′ )}/(𝜅𝑧𝜆𝑠

′2 sinh 𝜆𝑠
′ )  351 

 (55) 352 

𝜓𝑛,0
′ = −𝜇𝑛,0(𝜃𝑛,0 + 𝜗𝑛,0) 𝜆0⁄  (56) 353 

𝜃𝑛,0 = cosh[(1 − 𝑧0̅)𝜆0] {𝑝0
′  𝛾[−1 + cosh(𝑧0̅ 𝜆0) + 𝜅𝑧 𝜆0 sinh(𝑧0̅ 𝜆0)]} (57) 354 

𝜗𝑛,0 = sinh[(1 − 𝑧0̅)𝜆0] [𝜅𝑧  𝜆0 cosh(𝑧0̅ 𝜆0) + 𝑝0
′  𝛾 sinh(𝑧0̅ 𝜆0)] (58) 355 

𝜓𝑛,𝑖
′ = 𝜈𝑛,𝑖(𝜎𝑛,𝑖 − 𝜂𝑛,𝑖) 𝜆𝑖⁄  (59) 356 

𝜎𝑛,𝑖 = cos[(1 − 𝑧0̅)𝜆𝑖] {𝑝𝑖
′ 𝛾[−1 + cos(𝑧0̅ 𝜆𝑖)] − 𝜅𝑧 𝜆𝑖 sin(𝑧0̅ 𝜆𝑖)} (60) 357 

𝜂𝑛,𝑖 = sin[(1 − 𝑧0̅)𝜆𝑖] [𝜅𝑧 𝜆𝑖 cos(𝑧0̅ 𝜆𝑖) + 𝑝𝑖
′ 𝛾 sin(𝑧0̅ 𝜆𝑖)] (61) 358 

where 𝜆𝑠
′ = 𝛽𝑛 √𝜅𝑧⁄ ; 𝑝0

′ = 𝜅𝑧  𝜆0
2 − 𝛽𝑛

2; 𝑝𝑖
′ = −𝜅𝑧 𝜆𝑖

2 − 𝛽𝑛
2; 𝜇𝑛,0 equals 𝜇𝑚,𝑛,0 in Eq. (36) 359 

with 𝛼𝑚 = 0; 𝜈𝑛,𝑖 equals 𝜈𝑚,𝑛,𝑖 in Eq. (37) with 𝛼𝑚 = 0; 𝑋𝑛,𝑘 is defined in Eq. (45) for 360 

𝜃𝑘 ≠ 0 or 𝜋 and Eq. (49) for 𝜃𝑘 = 0 or 𝜋; and 𝜆0 and 𝜆𝑖 are the roots of Eqs. (40) and 361 

(41) with 𝛼𝑚 = 0, respectively. 362 

 363 

2.6 Special cases of the present solution 364 

2.6.1 Confined aquifer of finite extent 365 

 If  = 0 (i.e., Sy = 0 in Eq. (8)), the top boundary is regarded as an impermeable stratum. 366 

The aquifer is then a confined system. Under this circumstance, Eq. (40) reduces to 𝑒2 𝜆0 = 1 367 

having the root of 𝜆0 = 0, and Eq. (41) yields tan 𝜆𝑖 = 0 having the roots of 𝜆𝑖 = 𝑖 𝜋 where 368 

i1, 2, 3, …  . With 𝛾 = 0, 𝜆0 = 0 and 𝜆𝑖 = 𝑖 𝜋, the head solution for a confined aquifer 369 

can be expressed as Eq. (44) with Eqs. (31)  (38) and (45)  (49) where 𝜓𝑚,𝑛,0 in Eq. (32) 370 
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is replaced by 371 

𝜓𝑚,𝑛,0 = − exp(𝑝0 𝑡̅) 𝑝0⁄  (62) 372 

Similarly, the SDR solution for a confined aquifer can be written as Eqs. (52) and (53) where 373 

the RHS function in Eq. (56) reduces to that in Eq. (62) by applying L’Hospital’s rule with 𝛾 =374 

0 and 𝜆0 = 0. 375 

2.6.2 Confined aquifer of infinite extent 376 

    The head solution introduced in section 2.6.1 is applicable to spatiotemporal head 377 

distributions in confined aquifers of infinite extent before the lateral boundary effect comes. 378 

Wang and Yeh (2008) indicated that the time can be quantified, in our notation, as t = R2Ss/(16Ky) 379 

(i.e., 𝑡̅ = R2/(16𝑦0
2) for dimensionless time) where R is the shortest distance between a RCW 380 

and aquifer lateral boundary. Prior to the time, the present head solution with N = 1 for a 381 

horizontal well in a confined aquifer gives very close results given in Zhan et al. (2001). 382 

2.6.3 Unconfined aquifer of infinite extent 383 

    Prior to the beginning time mentioned in section 2.6.2, the absolute value calculated by 384 

the present head solution, Eqs. (44) with N = 1, represents drawdown induced by a horizontal 385 

well in unconfined aquifers of infinite extent. The calculated drawdown should be close to that 386 

from Zhan and Zlotnik (2002) solution for the case of the instantaneous drainage from water 387 

table decline. 388 

2.6.4 Unconfined aquifer of semi-infinite extent 389 

    When 1→ (i.e., b1 = 0), Eq. (14) reduces to the Dirichlet condition of ℎ̅ = 0 for stream 390 

1 in the absence from a low-permeability streambed, and Eq. (19) becomes tan(𝛽𝑛𝑤̅𝑦) =391 

−𝛽𝑛/ 2. In addition, the boundary effect occurring at the other three sides of the aquifer can 392 

be neglected prior to the beginning time. Moreover, when N = 1 and θ1 = 0, a RCW can be 393 

regarded as a horizontal well parallel to stream 1. Under these three conditions, the present 394 

head and SDR predictions are close to those in Huang et al. (2011), the head solution of which 395 
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agrees well with measured data from a field experiment executed by Mohamed and Rushton 396 

(2006). On the other hand, before the time when the boundary effect occurs at 𝑥̅ = 0, 𝑥̅ = 𝑤̅𝑥 397 

and 𝑦̅ = 𝑤̅𝑦, the present head and SDR solutions for a RCW give close predictions to those in 398 

Huang et al. (2012), the head and SDR solutions of which agree well with observation data 399 

taken from two field experiments carried out by Schafer (2006) and Jasperse (2009), 400 

respectively.  401 

2.7 Sensitivity analysis 402 

 The hydraulic parameters determined from field observed data are inevitably subject to 403 

measurement errors. Consequently, head predictions from the analytical model have 404 

uncertainty due to the propagation of measurement errors. Sensitivity analysis can be 405 

considered as a tool of exploring the response of the head to the change in a specific parameter 406 

(Zheng and Bennett, 2002). One may define the normalized sensitivity coefficient as  407 

i

i
ti

P

h

H

P
S




,  (63) 408 

where Si,t is the normalized sensitivity coefficient for the ith parameter at time t, and Pi 409 

represents the magnitude of the ith parameter. Eq. (63) can be approximated as 410 
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

)()(
,

 (64) 411 

where iP  is an increment chosen as 10-3 Pi  (Yeh et al., 2008). 412 

3. Results and discussion 413 

 This section demonstrates head and SDR predictions and explores some physical insights 414 

regarding flow behavior. In section 3.1, groundwater flow and equipotential lines induced by 415 

pumping are drawn discussedto identify 3-D or 2-D flow without the vertical flow at a specific 416 

region. In section 3.2, the influence of anisotropy on spatial head and temporal SDR 417 

distributions is studied. In section 3.3, the sensitivity analysis is performed to investigate the 418 

response of the head to the change in each hydraulic parameter. In section 3.4, the effects of 419 
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the vertical flow and well depth on temporal SDR distributions for confined and unconfined 420 

aquifers are investigated. For conciseness, we consider a RCW with two laterals with N = 2, 421 

𝐿̅1 =  𝐿̅2 = 0.5, 1 = 0 and 2 = . The well can be viewed as a horizontal well parallel to 422 

streams 1 and 2. The default values for the other dimensionless parameters are 𝑤̅𝑥 = 𝑤̅𝑦 = 2, 423 

 = 100, 𝑥̅0 = 1, 𝑦̅0 = 1, 𝑧0̅ = 0.5, x = z = 1, and 1 = 2 = 20. 424 

3.1 Identification of 3-D or 2-D flow at observation pointGroundwater flow and hydraulic 425 

head 426 

Most existing models assume 2-D flow with neglecting the vertical flow for pumping at a 427 

horizontal well (e.g., Mohamed and Rushton, 2006; Haitjema et al., 2010). The head 428 

distributions predicted by those models are inaccurate if an observation pointwell is close to 429 

the region where the vertical flow prevails. Figure 2 demonstrates the streamlines and 430 

equipotential lines predicted by the present solution for a horizontal well in an unconfined 431 

aquifer for 𝑥̅0 = 10, 𝑤̅𝑥 = 𝑤̅𝑦 = 20 and z = 0.1, 1, and 10. The well is located at 9.5 ≤432 

𝑥̅ ≤  10.5, 𝑦̅ = 1 and 𝑧̅ = 0.5 as illustrated in the figure. The equipotential lines are based 433 

on steady-state head distributions plotted by Eq. (44) with 𝑦̅ = 1 and 𝑡̅ = 107. The stream 434 

function  can be derived via the Cauchy-Riemann equation, in our notation, as 435 

z

h

x

w
z










  (65) 436 

where ̅ = 𝐾𝑦𝐻/𝑄 is the dimensionless stream function describing 2-D streamlines at 437 

the vertical plane of 𝑦̅ = 1 based on ℎ̅𝑤  in Eq. (44) with 𝑡̅ = 107 for steady state. The 438 

function ̅ is obtained firstly by substituting Eq. (44) into Eq. (65), then by differentiating the 439 

result with respect to 𝑧̅, and eventually by integrating the differentiation result to 𝑥̅. The 440 

coefficient arising from the integration is determined by the condition of ̅ = 0 at 𝑥̅ = 𝑥̅0. 441 

The detailed derivation of the stream function is shown in Appendix C. When z = 0.1, in the 442 

range of 10  𝑥̅  13.66, the contours of the hydraulic head are in a curved path, and the flow 443 

格式化: 縮排: 第一行:  2 字元, 定位停駐點: 不在  36.5 字
元

格式化: 縮排: 第一行:  2 字元
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toward the well is thus slanted. Moreover, the range decreases to 10  𝑥̅  11.5 when z= 1 444 

and to 10  𝑥̅ 10.82 when z= 10. Beyond these ranges, the head contours are nearly vertical, 445 

and the flow is essentially horizontal. Define 𝑑̅ = d/y0 as a shortest dimensionless horizontal 446 

distance between the well and a nearest location of only horizontal flow. The 𝑑̅ is therefore 447 

chosen as 3.16, 1 and 0.32 for the cases of z= 0.1, 1 and 10, respectively. Substituting (z, 𝑑̅) 448 

= (0.1, 3.16), (1, 1) and (10, 0.32) into z𝑑̅2 leads to about unity. We may therefore conclude 449 

that the vertical flow at an observation location point is negligible if its location is beyond the 450 

range 451 

of452 

 𝑎 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑎 𝑅𝐶𝑊 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑑̅ 453 

= < √1/𝑧 (i.e., 𝑑 =< 𝐻√𝐾𝑦/𝐾𝑧 ) for thin aquifers, an observation locations point far from 454 

the well, and/or a small ratio of 𝐾𝑦/𝐾𝑧. 455 

3.2 Anisotropy analysis of hydraulic head and stream depletion rate 456 

Previous articles have seldom analyzed flow behavior for anisotropic aquifers, i.e., x 457 

(Kx/Ky)  1. Head predictions based on the models, developed for isotropic aquifers, will be 458 

inaccurate if x  1. Consider 𝑤̅𝑥 = 𝑤̅𝑦 = 2, 𝑡̅ = 107 for steady-state head distributions, and 459 

a RCW with 𝐿̅1 = 𝐿̅2 = 0.25, 1 = 0, 2 = , and (𝑥̅0, 𝑦̅0, 𝑧0̅) = (1, 1, -0.5) for symmetry. The 460 

contours of the dimensionless head at 𝑧̅ = −0.5 are shown in Figures 3(a)  3(d) for x = 1, 461 

10 and 50, 10-3, and 10-4, respectively. The figure indicates that the anisotropy causes a 462 

significant effect on the head distributions in comparison with the case of x = 1. In Figure 3(b), 463 

the contours exhibit smooth curves in the strip regions of 1  𝑦̅  1.45 for the case of x = 10 464 

and 1  𝑦̅  1.2 for the case of x = 50. For the region of 𝑦̅ ≥ 1.45, the predicted heads for 465 

both cases agree well, and all the contour lines are parallel, indicating that the flow is essentially 466 

unidirectional. Substituting (x, 𝑦̅) = (10, 1.45) and (50, 1.2) into x(𝑦̅ − 1)2 results in a value 467 
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about 2. Accordingly, we may draw the conclusion that plots from the inequality of 468 

x(𝑦̅ − 1)2 2 indicate the strip region for x being greater than 10. Some existing models 469 

assuming 2-D flow in a vertical plane with neglecting the flow component along a horizontal 470 

well give accurate head predictions beyond the region (e.g., Anderson, 2000; Anderson, 2003; 471 

Kompani-Zare et al., 2005). 472 

Aquifers with KyH  103 m2/day can efficiently produce plenty of water from a well. 473 

RCWs usually operate with Q  105 m3/day for field experiments (e.g., Schafer, 2006; Jasperse, 474 

2009). We therefore define significant dimensionless head drop as |ℎ̅| > 10−5 (i.e., |ℎ| > 1 475 

mm). The anisotropy of x <1 produces the drop in the strip areas of 1  𝑥̅  1.48 for the case 476 

of x = 10-3 in Figure 3(c) and 1  𝑦𝑥̅̅ ̅   1.32 for the case of x = 10-4 in Figure 3(d). 477 

Substituting (x, 𝑥̅) = (10-3, 1.48) and (10-4, 1.32) into(𝑥̅ − 𝑥̅0 − 𝐿̅1)2/x approximates 52.9. 478 

This result leads to the conclusion that the area can be determined by the inequalities of 479 

(𝑥̅ − 𝑥̅0 − 𝐿̅1)2 ≤ 52.9x and (𝑥̅ − 𝑥̅0 + 𝐿̅2)2 ≤ 52.9x for any value of x in the range x <1. 480 

For a RCW with irregular lateral configurations, the inequalities become (𝑥̅ − max 𝑥̅𝑘)2 ≤481 

52.9x and (𝑥̅ − min 𝑥̅𝑘)2 ≤ 52.9x where 𝑥̅𝑘  is coordinate 𝑥̅ of the far end of the k-th 482 

lateral. The conclusion applies in principle to reduction in grid points for numerical solutions 483 

based on finite difference methods or finite element methods. On the other hand, we have found 484 

that Eq. (52) or (53) with various x predicts the same temporal SDR distribution (not shown), 485 

indicating that the SDR is independent of x. 486 

3.3 Sensitivity analysis of hydraulic head 487 

 Consider an unconfined aquifer of H = 20 m and wx = wy = 800 m with a RCW having 488 

two laterals of L1 = L2 = 50 m, 1 = 0 and 2 =  and two piezometers installed at point A of 489 

(400 m, 340 m, 10 m) and point B of (400 m, 80 m, 10 m) illustrated in Figure 4. As 490 

discussed in section 3.1, the temporal head distribution at point A exhibits the unconfined 491 

behavior in Figure 4(a) because of z𝑑̅2<1 while at point B displays the confined one in Figure 492 
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4(b) due to z𝑑̅2>1. The sensitivity analysis is conducted with the aid of equation (64) to 493 

observe head responses at these two piezometers to the change in each of Kx, Ky, Kz, Ss, Sy, K1, 494 

L1 and z0. The temporal distribution curves of the normalized sensitivity coefficients for those 495 

eight parameters are shown in Figures 4(a) for point A and 4(b) for point B when Kx = Ky = 1 496 

m/day, Kz = 0.1 m/day, Ss = 10-5 m-1, Sy = 0.2, K1 = K2 = 0.1 m/day, b1 = b2 = 1 m, Q = 100 497 

m3/day, x0 = y0 = 400 m, and z0 = 10 m. The figure demonstrates that the hydraulic heads at 498 

both piezometers are most sensitive to the change in Ky, second sensitive to the change in Kx 499 

and thirdly sensitive to the change in Sy, indicating that Ky, Kx and Sy are the most crucial factors 500 

in designing a pumping system. This figure also shows that the heads at point A is sensitive to 501 

the change in Ss at the early period of 410-3 day < t < 10-1 day but at point B is insensitive to 502 

the change over the entire period. In addition, the head at point A is sensitive to the changes in 503 

Kz and z0 due to 3-D flow (i.e., z𝑑̅2< 1) as discussed in section 3.1. In contrast, the head at 504 

point B is insensitive to the changes in Kz and 𝑧0 because the vertical flow diminishes (i.e., 505 

z𝑑̅2> 1). Moreover, the head at point A is sensitive to the change in L1 but the head at point 506 

B is not because its location is far away from the well. Furthermore, the normalized sensitivity 507 

coefficient of K1 for point A away from stream 1 approaches zero but for point B in the vicinity 508 

of stream 1 increases with time and finally maintains a certain value at the steady state. 509 

Regarding the sensitivity analysis of SDR, Huang et al. (2014) has performed the sensitivity 510 

analysis of normalized coefficients of SDR1 to the changes in Ky, K1 and Ss for a confined 511 

aquifer and in Ky, Kz, K1, Ss and Sy for an unconfined aquifer. 512 

3.4 Effects of vertical flow and well depth on stream depletion rate 513 

Huang et al. (2014) reveals that the effect of the vertical flow on SDR induced by a vertical 514 

well is dominated by the magnitude of the key factor z (i.e., 𝐾𝑧𝑦0
2/(𝐾𝑦𝐻2)) where 𝑦0 herein 515 

is a distance between stream 1 and the vertical well. They concluded that the effect is negligible 516 

when z 10 for a leaky aquifer. The factor should be replaced by 𝑧𝑎̅2 (i.e., 𝐾𝑧𝑎2/(𝐾𝑦𝐻2)) 517 
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where 𝑎 is a shortest distance measured from stream 1 to the end of a lateral of a RCW, and 518 

𝑎̅ = 𝑎/𝑦0 = 1 in this study due to N = 2, 1 = 0 and 2 = . We investigate SDR in response to 519 

various 𝑧0̅ and 𝑧𝑎̅ for unconfined and confined aquifers. The temporal SDR1 distributions 520 

predicted by Eq. (52) for stream 1 adjacent to an unconfined aquifer are shown in Fig. 5(a) for 521 

𝑧0̅ = 0.5 and 𝑧𝑎̅2= 0.01, 0.1, 1, 10, 20 and 30 and Fig. 5(b) for 𝑧𝑎̅2= 1 and 30 when 𝑧0̅ = 522 

0.1, 0.3, 0.5, 0.7 and 0.9. The curves of SDR1 versus 𝑡̅ is plotted in both panels by the present 523 

SDR solution for a confined aquifer. In Fig. 5(a), the present solution for an unconfined aquifer 524 

predicts a close SDR1 to that for the confined aquifer when 𝑧𝑎̅2= 0.01, indicating that the 525 

vertical flow in the unconfined aquifer is ignorable. The SDR1 for the unconfined aquifer with 526 

𝑧𝑎̅2= 30 behaves like that for a confined one, indicating the vertical flow is also ignorable. 527 

The SDR1 is therefore independent of well depths 𝑧0̅ when 𝑧𝑎̅2= 30 as shown in Fig. 5(b). 528 

We may therefore conclude that, under the condition of 𝑧𝑎̅2 0.01 or 𝑧𝑎̅2 30, a 2-D 529 

horizontal flow model can give good predictions in SDR1 for unconfined aquifers. In contrast, 530 

SDR1 increases with decreasing 𝑧𝑎̅2 when 0.01 < 𝑧𝑎̅2 < 30 in Fig. 5(a), indicating that the 531 

vertical flow component induced by pumping in unconfined aquifers significantly affects SDR1. 532 

The effect of well depth 𝑧0̅ on SDR1 is also significant as shown in Fig. 5(b) when 𝑧𝑎̅2= 1. 533 

Obviously, the vertical flow effect should be considered in a model when 0.01 < 𝑧𝑎̅2 < 30 534 

for unconfined aquifers. 535 

It is interesting to note that the SDR1 or SDR2 induced by two laterals (i.e., 1 = 0 and 2 536 

= ) parallel to the streams adjacent to a confined aquifer is independent of 𝑧𝑎̅2 and 𝑧0̅ but 537 

depends on aquifer width of 𝑤̅𝑦. The temporal SDR distribution curves based on Eqs. (52) and 538 

(53) with  = 0 for a confined aquifer with 𝑤̅𝑦 = 2, 4, 6, 10 and 20 are plotted in Fig. 6. The 539 

dimensionless distance between the well and stream 1 is set to unity (i.e., 𝑦̅0 = 1) for each 540 

case. The SDR1 predicted by Hunt (1999) solution based on a vertical well in a confined aquifer 541 
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extending infinitely is considered. The present solution for each 𝑤̅𝑦 gives the same SDR1 as 542 

the Hunt solution before the time when stream 2 contributes filtration water to the aquifer and 543 

influences the supply of SDR1. It is interesting to note that the sum of steady-state SDR1 and 544 

SDR2 is always unity for a fixed 𝑤̅𝑦. The former and latter can be estimated by (𝑤̅𝑦 − 1)/𝑤̅𝑦 545 

and 1/𝑤̅𝑦, respectively. Such a result corresponds with that in Sun and Zhan (2007) which 546 

investigates the distribution of steady-state SDR1 and SDR2 induced by a vertical well. 547 

4. Concluding remarks 548 

This study develops a new analytical model describing 3-D flow induced by a RCW in a 549 

rectangular confined or unconfined aquifer bounded by two parallel streams and no-flow 550 

stratums in the other two sides. The flow equation in terms of the hydraulic head with a point 551 

sink term is employed. Both streams fully penetrate the aquifer and are under the Robin 552 

condition in the presence of low-permeability streambeds. A first-order free surface equation 553 

(8) describing the water table decline gives good predictions when the conditions |ℎ|/𝐻 ≤ 0.1 554 

and |∂ℎ/ ∂𝑥| + |∂ℎ/ ∂𝑦| ≤ 0.01  are satisfied. The flux across the well screen might be 555 

uniform on a lateral within 150 m. The head solution for the point sink is expressed in terms of 556 

a triple series derived by the methods of Laplace transform and finite integral transform. The 557 

head solution for a RCW is then obtained by integrating the point-sink solution along the 558 

laterals and dividing the integration result by the sum of lateral lengths. The integration can be 559 

done analytically due to the aquifer of finite extent with Eqs. (3)  (6). On the basis of Darcy’s 560 

law and the head solution, the SDR solution for two streams can also be acquired. The double 561 

integrals of defining the SDR in Eqs. (50) and (51) can also be done analytically due to 562 

considerations of Eqs. (3)  (6). The sensitivity analysis is performed to explore the response 563 

of the head to the change in each of the hydraulic parameters and variables. New findings 564 

regarding the responses of flow and SDR to pumping at a RCW are summarized below: 565 
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1. Groundwater flow in a region based on 𝑑̅  <= √1/𝑧  is 3-D, and temporal head 566 

distributions exhibit the unconfined behavior. A mathematical model should consider 3-D 567 

flow when predicting the hydraulic head in the region. Beyond this region, groundwater 568 

flow is horizontal, and temporal head distributions display the confined behavior. A 2-D 569 

flow model can predict accurate hydraulic head. 570 

2. The aquifer anisotropy of x >10 causes unidirectional flow in the strip region determined 571 

based on x(𝑦̅ − 1)2> 2 for a horizontal well. Existing models assuming 2-D flow in a 572 

vertical plane with neglecting the flow component along the well give accurate head 573 

predictions in the region. 574 

3. The aquifer anisotropy of x <1 produces significant change in the head (i.e., |ℎ̅| > 10−5 575 

or |ℎ| > 1  mm) in the strip area determined by (𝑥̅ − max 𝑥̅𝑘)2 ≤ 52.9x and (𝑥̅ −576 

min 𝑥̅𝑘)2 ≤ 52.9x for a RCW with irregular lateral configurations.  577 

4. The hydraulic head in the whole domain is most sensitive to the change in Ky, second 578 

sensitive to the change in Kx, and thirdly sensitive to the change in Sy. They are thus the 579 

most crucial factors in designing a pumping system. 580 

5. The hydraulic head is sensitive to changes in Kz, Ss, 𝑧0 and 𝐿𝑘  in the region of 𝑑̅ < 581 

√1/𝑧  and is insensitive to the changes of them beyond the region. 582 

6. The hydraulic head at observation locations points near stream 1 is sensitive to the change 583 

in K1 but away from the stream isn’t. 584 

7. The effect of the vertical flow on SDR is ignorable when 𝑧𝑎̅2  0.01 or 𝑧𝑎̅2  30 for 585 

unconfined aquifers. In contrast, neglecting the effect will underestimate SDR when 0.01 586 

< 𝑧𝑎̅2 < 30. 587 

8. For unconfined aquifers, SDR increases with dimensionless well depth 𝑧0̅ when 0.01 < z 588 

< 30 and is independent of 𝑧0̅ when z  0.01 or z  30. For confined aquifers, SDR is 589 
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independent of 𝑧0̅ and z. For both kinds of aquifers, the distribution curve of SDR versus 590 

𝑡̅ is independent of aquifer anisotropy x. 591 
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 597 

Appendix A: Finite integral transform 598 

Latinopoulos (1985) provided the finite integral transform for a rectangular aquifer 599 

domain where each side can be under either the Dirichlet, no-flow, or Robin condition. The 600 

transform associated with the boundary conditions, Eqs. (12)  (15), is defined as 601 

ℎ̃(𝛼𝑚, 𝛽𝑛) = ℑ{ℎ̅(𝑥̅, 𝑦̅)} = ∫ ∫ ℎ̅(𝑥̅, 𝑦̅) cos(𝛼𝑚 𝑥̅) 𝐾(𝑦̅)
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where cos(𝛼𝑚 𝑥̅)  𝐾(𝑦̅) is the kernel function. According to Latinopoulos (1985, Eq. (9)), the 605 

transform has the property of 606 
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The formula for the inverse finite integral transform can be written as (Latinopoulos, 1985, Eq. 608 

(14)) 609 
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Appendix B: Derivation of equation (31) 612 

The function of p in Eq. (28) is defined as 613 

𝐹(𝑝) =
cosh[(1+𝑎)𝜆][−z𝜆 cosh(𝑏𝜆)+𝑐𝑝𝛾 sinh(𝑏𝜆)]

𝑝 z𝜆(𝑝𝛾 cosh 𝜆+z𝜆 sinh 𝜆)
         (B1) 614 

Notice that the term cos(𝛼𝑚𝑥̅0)𝐾(𝑦̅0) in Eq. (28) is excluded because it is independent of p. 615 

𝐹(𝑝) is a single-value function with respect to p. On the basis of the residue theorem, the 616 

inverse Laplace transform for 𝐹(𝑝) equals the summation of residues of poles in the complex 617 

plane. The residue of a simple pole can be derived according to the formula below: 618 

Res|𝑝=𝑝𝑖
= lim

𝑝→𝑝𝑖

𝐹(𝑝) exp(𝑝𝑡̅) (𝑝 − 𝑝𝑖) (B2) 619 

where 𝑝𝑖 is the location of the pole in the complex plane.  620 

The locations of poles are the roots of the equation obtained by letting the denominator in 621 

Eq. (B1) to be zero, denoted as 622 

𝑝 𝜅𝑧 𝜆(𝑝 𝛾 cosh 𝜆 + 𝜅𝑧 𝜆 sinh 𝜆) = 0          (B3) 623 

where 𝜆 is defined in Eq. (29). Notice that 𝑝 = −𝜅𝑥𝛼𝑚
2 − 𝛽𝑛

2 obtained by 𝜆 = 0 is not a 624 

pole in spite of being a root. Apparently, one pole is at p = 0, and the residue based on Eq. (B2) 625 

with 𝑝𝑖 = 0 is expressed as 626 

Res|𝑝=0 = lim
𝑝→0

cosh[(1+𝑎)𝜆][−z𝜆 cosh(𝑏𝜆)+𝑐𝑝𝛾 sinh(𝑏𝜆)]

z𝜆(𝑝𝛾 cosh 𝜆+z𝜆 sinh 𝜆)
exp(𝑝𝑡̅)      (B4) 627 

Eq. (B4) with 𝑝 = 0 and 𝜆 = 𝜆𝑠 reduces to 𝜓𝑚,𝑛 in Eq. (33).  628 

Other poles are determined by the equation of 629 

𝑝 𝛾 cosh 𝜆 + 𝜅𝑧 𝜆 sinh 𝜆 = 0            (B5) 630 

which comes from Eq. (B3). One pole is at p = p0 between p = 0 and  𝑝 = −𝜅𝑥 𝛼𝑚
2 − 𝛽𝑛

2 in 631 

the negative part of the real axis. Newton’s method can be used to obtain the value of 𝑝0. In 632 

order to have proper initial guess for Newton’s method, we let 𝜆 = 𝜆0 and then have 𝑝 =633 

𝜅𝑧 𝜆0
2 − 𝜅𝑥 𝛼𝑚

2 − 𝛽𝑛
2  based on Eq. (29). Substituting 𝜆 = 𝜆0 , 𝑝 = 𝜅𝑧 𝜆0

2 − 𝜅𝑥 𝛼𝑚
2 − 𝛽𝑛

2 , 634 

cosh 𝜆0 = (𝑒𝜆0 + 𝑒−𝜆0)/2 and sinh 𝜆0 = (𝑒𝜆0 − 𝑒−𝜆0)/2 into Eq. (B5) and rearranging the 635 
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result leads to Eq. (40). Initial guess for finding root 𝜆0 of Eq. (40) is discussed in section 2.3. 636 

With known value of 𝜆0, one can obtain 𝑝0 = 𝜅𝑧 𝜆0
2 − 𝜅𝑥 𝛼𝑚

2 − 𝛽𝑛
2. According to Eq. (B2), 637 

the residue of the simple pole at 𝑝 = 𝑝0 is written as  638 

Res|𝑝=𝑝0
= lim

𝑝→𝑝0

cosh[(1+𝑎)𝜆][−z𝜆 cosh(𝑏𝜆)+𝑐𝑝𝛾 sinh(𝑏𝜆)]

𝑝z𝜆(𝑝𝛾 cosh 𝜆+z𝜆 sinh 𝜆)
exp(𝑝𝑡̅) (𝑝 − 𝑝0)  (B6) 639 

where both the denominator and nominator equal zero when 𝑝 = 𝑝0. Applying L’Hospital’s 640 

Rule to Eq. (B6) results in 641 

Res|𝑝=𝑝0
= lim

𝑝→𝑝0

2cosh[(1+𝑎)𝜆][−z𝜆 cosh(𝑏𝜆)+𝑐𝑝𝛾 sinh(𝑏𝜆)]

𝑝[(1+2𝛾)z𝜆 cosh 𝜆+(𝛾𝑝+z) sinh 𝜆]
exp(𝑝𝑡̅)  (B7) 642 

Eq. (B7) with 𝑝 = 𝑝0 and 𝜆 = 𝜆0 reduces to 𝜓𝑚,𝑛,0 in Eq. (34). 643 

On the other hand, infinite poles are at p = pi behind  𝑝 = −𝜅𝑥 𝛼𝑚
2 − 𝛽𝑛

2. Similar to the 644 

derivation of Eq. (40), we let 𝜆 = √−1𝜆𝑖 and then have 𝑝 = −𝜅𝑧 𝜆𝑖
2 − 𝜅𝑥 𝛼𝑚

2 − 𝛽𝑛
2 based 645 

on Eq. (29). Substituting 𝜆 = √−1𝜆𝑖 , 𝑝 = −𝜅𝑧 𝜆𝑖
2 − 𝜅𝑥 𝛼𝑚

2 − 𝛽𝑛
2 , cosh 𝜆 = cos 𝜆𝑖  and 646 

sinh 𝜆 = √−1 sin 𝜆𝑖  into Eq. (B3) and rearranging the result yields Eq. (41). The 647 

determination of 𝜆𝑖  is discussed in section 2.3. With known value 𝜆𝑖 , one can have 𝑝𝑖 =648 

−𝜅𝑧 𝜆𝑖
2 − 𝜅𝑥 𝛼𝑚

2 − 𝛽𝑛
2. The residues of those simple poles at p=pi can be expressed as 𝜓𝑚,𝑛,𝑖 649 

in Eq. (35) by substituting 𝑝0 = 𝑝𝑖 , 𝑝 = 𝑝𝑖 , 𝜆 = √−1𝜆𝑖 , cosh 𝜆 = cos 𝜆𝑖  and sinh 𝜆 =650 

√−1 sin 𝜆𝑖 into Eq. (B7). Eventually, the inverse Laplace transform for 𝐹(𝑝) equals the sum 651 

of those residues (i.e., 𝜙𝑚,𝑛 = 𝜓𝑚,𝑛 + 𝜓𝑚,𝑛,0 + ∑ 𝜓𝑚,𝑛,𝑖
∞
𝑖=1 ). The time-domain result of 652 

(𝑎, 𝑏, 𝑐)  in Eq. (28) is then obtained as 𝜙𝑚,𝑛 cos(𝛼𝑚𝑥̅0)𝐾(𝑦̅0) . By substituting 653 

ℎ̃(𝛼𝑚, 𝛽𝑛) = 𝜙𝑚,𝑛 cos(𝛼𝑚𝑥̅0)𝐾(𝑦̅0)  and ℎ̃(0, 𝛽𝑛) = 𝜙𝑛𝐾(𝑦̅0)  into Eq. (A4) and letting 654 

ℎ̅(𝑥̅, 𝑦̅) to be (𝑎, 𝑏, 𝑐), the inverse finite integral transform for the result can be derived as 655 

Φ(𝑎, 𝑏, 𝑐) =
1

𝑤̅𝑥
[∑ (𝜙𝑛 𝐾(𝑦̅0)𝐾(𝑦̅) +∞

𝑛=1656 

2 ∑ 𝜙𝑚,𝑛 cos(𝛼𝑚𝑥̅0)𝐾(𝑦̅0) cos(𝛼𝑚 𝑥̅) 𝐾(𝑦̅)∞
𝑚=1 )]  (B8) 657 

Moreover, Eq. (B8) reduces to Eq. (31) when letting the terms of 𝐾(𝑦̅0)𝐾(𝑦̅)  and 658 
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cos(𝛼𝑚𝑥̅0)𝐾(𝑦̅0) 𝐾(𝑦̅) to be 2𝑋𝑛𝑌𝑛 and 2𝑋𝑚,𝑛𝑌𝑛, respectively.  659 

Appendix C: Derivation of ̅ in Eq. (65) 660 

The dimensionless stream function ̅ in Eq. (65) can be expressed as 661 

̅ = 𝐶 − √𝑧 ∫ 𝜕ℎ̅𝑤/𝜕𝑧̅ 𝑑𝑥̅ at 𝑦̅ = 1 and 𝑡̅ = 107 (C1) 662 

where C is a coefficient resulting from the integration, and ℎ̅𝑤  is defined in Eq. (44). 663 

Substituting Eq. (44) into Eq. (C1) leads to  664 

̅(𝑥̅, 𝑧̅) = 𝐶 − √𝑧

∑ 𝐿̅𝑘
𝑁
𝑘=1

 ∑ { ∫ 𝜕Φ(−𝑧̅0,𝑧̅,1)/𝜕𝑧̅ 𝑑𝑥̅  for  −𝑧̅0≤𝑧̅≤0

∫ 𝜕Φ(𝑧̅,𝑧̅0,−1)/𝜕𝑧̅ 𝑑𝑥̅  for  −1≤𝑧̅≤−𝑧̅0

𝑁
𝑘=1  at 𝑦̅ = 1 and 𝑡̅ = 107 (C2) 665 

Φ(𝑎, 𝑏, 𝑐) =
2

𝑤̅𝑥
{∑ [𝜙𝑛 𝑋𝑛,𝑘 + 2 ∑ 𝜙𝑚,𝑛 𝑋𝑚,𝑛,𝑘  cos(𝛼𝑚 𝑥̅)∞

𝑚=1 ]∞
𝑛=1  𝑌𝑛}  (C3) 666 

where 𝜙𝑚,𝑛, 𝑌𝑛, 𝑋𝑛,𝑘 and 𝑋𝑚,𝑛,𝑘 are defined in Eqs. (32), (38), (45) and (46), respectively, 667 

and 𝜙𝑛 equals 𝜙𝑚,𝑛 with 𝛼𝑚 = 0. In Eq. (C3), variable 𝑥̅ appears only in cos(𝛼𝑚 𝑥̅), and 668 

variable 𝑧̅ appears only in 𝜙𝑛 and 𝜙𝑚,𝑛 in Eq. (32). Eq. (C2) therefore becomes 669 

̅(𝑥̅, 𝑧̅) = 𝐶 − √𝑧

∑ 𝐿̅𝑘
𝑁
𝑘=1

 ∑ { Φ′(−𝑧̅0,𝑧̅,1)  for  −𝑧̅0≤𝑧̅≤0

Φ′(−𝑧̅0,𝑧̅,1)  for  −1≤𝑧̅≤−𝑧̅0

𝑁
𝑘=1  at 𝑦̅ = 1 and 𝑡̅ = 107 (C4) 670 

Φ′(𝑎, 𝑏, 𝑐) =
2

𝑤̅𝑥
{∑ [

𝜕𝜙𝑛

𝜕𝑧̅
 𝑋𝑛,𝑘 ∫ 𝑑𝑥̅ + 2 ∑

𝜕𝜙𝑚,𝑛

𝜕𝑧̅
 𝑋𝑚,𝑛,𝑘  ∫ cos(𝛼𝑚 𝑥̅) 𝑑𝑥̅∞

𝑚=1 ]∞
𝑛=1  𝑌𝑛}  (C5) 671 

Consider 𝑡̅ = 107  for steady-state flow that the exponential terms of exp(𝑝0 𝑡̅) and 672 

exp(𝑝𝑖 𝑡̅) approach zero (i.e., 𝑝0 > 0 and 𝑝𝑖 > 0) for the default values of the parameters 673 

used to plot Figure 2. Then, we have 𝜙𝑚,𝑛 = 𝜓𝑚,𝑛 defined in Eq. (33) because of 𝜓𝑚,𝑛,0 ≅ 0, 674 

𝜓𝑚,𝑛,𝑖 ≅ 0, 𝜇𝑚,𝑛,0 ≅ 0 and ν𝑚,𝑛,𝑖 ≅ 0. On the basis of 𝜙𝑚,𝑛 = 𝜓𝑚,𝑛 and Eq. (33) with 𝑎 =675 

−𝑧0̅ and 𝑏 = 𝑧̅ for −𝑧0̅ ≤ 𝑧̅ ≤ 0 and 𝑎 = 𝑧̅ and 𝑏 = 𝑧0̅ for −1 ≤ 𝑧̅ ≤ −𝑧0̅, the result of 676 

differentiation, i.e., 𝜕𝜙𝑚,𝑛/𝜕𝑧̅, in Eq. (C5) equals 677 

𝜕𝜙𝑚,𝑛

𝜕𝑧̅
= {

−𝜆𝑠 cosh[(1 − 𝑧0̅)𝜆𝑠] sinh(𝑧̅ 𝜆𝑠) (𝜅𝑧  𝜆𝑠  sinh 𝜆𝑠)⁄  for − 𝑧0̅ ≤ 𝑧̅ ≤ 0

−𝜆𝑠 sinh[(1 + 𝑧̅)𝜆𝑠] cosh(𝑧0̅ 𝜆𝑠) (𝜅𝑧 𝜆𝑠  sinh 𝜆𝑠)⁄  for − 1 ≤ 𝑧̅ ≤ −𝑧0̅
 (C6) 678 

Notice that 𝜕𝜙𝑛/𝜕𝑧̅ in Eq. (C5) equals Eq. (C6) with 𝛼𝑚 = 0. In addition, both integrations 679 

in Eq. (C5) can be done analytically as 680 
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∫ cos(𝛼𝑚 𝑥̅) 𝑑𝑥̅ = {
sin(𝛼𝑚  𝑥̅) /𝛼𝑚  for 𝛼𝑚 ≠ 0

𝑥̅ for 𝛼𝑚 = 0
  (C7) 681 

On the other hand, coefficient C in Eq. (C4) is determined by the condition of ̅ = 0 at 𝑥̅ =682 

𝑥̅0 and results in 683 

𝐶 = √𝑧

∑ 𝐿̅𝑘
𝑁
𝑘=1

 ∑ { Φ′(−𝑧̅0,𝑧̅,1)  for  −𝑧̅0≤𝑧̅≤0

Φ′(−𝑧̅0,𝑧̅,1)  for  −1≤𝑧̅≤−𝑧̅0

𝑁
𝑘=1  (C8) 684 

where Φ′ is defined in Eq. (C5) with Eqs. (C6) and (C7), 𝑥̅ = 𝑥̅0 and 𝑦̅ = 1. 685 
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Table 1. Symbols used in the text and their definitions. 813 

Symbol Definition 

a Shortest horizontal distance between stream 1 and the far end of lateral 

𝑎̅ 𝑎/𝑦0 

b1, b2 Thicknesses of streambeds 1 and 2, respectively 

d Shortest horizontal distance between the far end of lateral and location of 

having only horizontal flow 

𝑑̅ 𝑑/𝑦0 

H Aquifer thickness 

h Hydraulic head 

ℎ̅ (𝐾𝑦 𝐻 ℎ) 𝑄⁄  

Kx, Ky, Kz Aquifer hydraulic conductivities in x, y and z directions, respectively 

(K1, K2) Hydraulic conductivities of streambeds 1 and 2, respectively 

𝐿𝑘 Length from x axis toof k-th lateral where k  (1, 2, … N) 

𝐿̅𝑘 𝐿𝑘/𝑦0 

N The number of laterals 

Q Pumping rate of point sink or radial collector well 

p Laplace parameter 

𝑝𝑖 −𝜅𝑧𝜆𝑖
2 − 𝜅𝑥𝛼𝑚

2 − 𝛽𝑛
2 

𝑝𝑖
′ −𝜅𝑧 𝜆𝑖

2 − 𝛽𝑛
2 

𝑝0 𝜅𝑧𝜆0
2 − 𝜅𝑥𝛼𝑚

2 − 𝛽𝑛
2 

𝑝0
′  𝜅𝑧 𝜆0

2 − 𝛽𝑛
2 

R Shortest horizontal distance between the far end of lateral and aquifer lateral 

boundary 

Ss, Sy Specific storage and specific yield, respectively 

t Time since pumping 

𝑡̅ (𝐾𝑦 𝑡) (𝑆𝑠 𝑦0
2)⁄  

wx, wy Aquifer widths in x and y directions, respectively 

𝑤̅𝑥, 𝑤̅𝑦 𝑤𝑥 𝑦0⁄ , 𝑤𝑦 𝑦0⁄  

Xn Equaling Xm, n defined in Eq. (39) with 𝛼𝑚 = 0 

𝑋𝑛,𝑘 Defined in Eq. (45) 

x, y, z Cartesian coordinate system 

𝑥̅, 𝑦̅, 𝑧̅ 𝑥 𝑦0⁄ , 𝑦 𝑦0⁄ , 𝑧 𝐻⁄  

𝑥̅𝑘 Coordinate 𝑥̅ of the far end of the k-th lateral 
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x0, y0, z0 Location of center of RCW 

𝑥̅0, 𝑦̅0, 𝑧0̅ 𝑥0 𝑦0⁄ , 1, 𝑧0 𝐻⁄  

𝑥0
′ , 𝑦0

′ , 𝑧0
′  Location of point sink 

𝑥̅0
′ , 𝑦̅0

′ , 𝑧0̅
′  𝑥0

′ /𝑦0, 𝑦0
′ /𝑦0, 𝑧0

′ /𝐻 

m 𝑚 𝜋 𝑤̅𝑥⁄  

n Roots of Eq. (19) 

𝜙𝑛 Equaling 𝜙𝑚,𝑛 defined in Eq. (32) with 𝛼𝑚 = 0 

 𝑆𝑦 (𝑆𝑠 𝐻)⁄  

x, z 𝐾𝑥 𝐾𝑦⁄ , (𝐾𝑧 𝑦0
2) (𝐾𝑦  𝐻2)⁄  

,  (𝐾1 𝑦0) (𝐾𝑦 𝑏1)⁄ , (𝐾2 𝑦0) (𝐾𝑦  𝑏2)⁄  

i Roots of Eqs. (40) and (41), respectively 

𝜆𝑠𝜆𝑠
′  √(𝜅𝑥𝛼𝑚

2 + 𝛽𝑛
2)/𝜅𝑧, 𝛽𝑛 √𝜅𝑧⁄  

𝜇𝑛,0 Equaling 𝜇𝑚,𝑛,0 defined in Eq. (36) with 𝛼𝑚 = 0

𝜈𝑛,𝑖 Equaling 𝜈𝑚,𝑛,𝑖 defined in Eq. (37) with 𝛼𝑚 = 0

𝜃𝑘 Counterclockwise angle from x axis to k-th lateral where k  (1, 2, … N) 

max 𝑥̅𝑘, min 𝑥̅𝑘 Maximum and minimum of 𝑥̅𝑘, respectively, where k  (1, 2, … N) 
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Figures 815 

  816 

Figure 1. Schematic diagram of a radial collector well in a rectangular unconfined aquifer 817 



 

 818 



 

 819 

Figure 2. Streamlines and eEquipotential lines predicted by the present solution for z= (a) 0.1, (b) 1 and (c) 10. 820 



 

 821 

Figure 3. Spatial distributions of the dimensionless head predicted by the present head solution for x = (a) 1, (b) 10 and 50, (c) 10-3 and (d) 10-4. 822 



 

  823 

Figure 4. Temporal distribution curves of the normalized sensitivity coefficients for parameters Kx, Ky, Kz, Ss, Sy, K1, 𝐿1 and 𝑧0 observed at 824 

piezometers (a) A of (400 m, 340 m, 10 m) and (b) B of (400 m, 80 m, 10 m). 825 



 

 826 

Figure 5. Temporal SDR1 distributions predicted by Eq. (52) for stream 1 with various values of (a) 𝑧𝑎̅2 and (b) 𝑧0̅. 827 



 

  828 

Figure 6. Temporal SDR distribution curves predicted by Eqs. (52) and (53) with  = 0 for confined aquifers when 𝑤̅𝑦 = 2, 4, 6, 10 and 20. 829 


