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Abstract 19 

This study develops a three-dimensional mathematical model for describing transient 20 

hydraulic head distributions due to pumping at a radial collector well (RCW) in a rectangular 21 

confined or unconfined aquifer bounded by two parallel streams and no-flow boundaries. The 22 

streams with low-permeability streambeds fully penetrate the aquifer. The governing equation 23 

with a point-sink term is employed. A first-order free surface equation delineating the water 24 

table decline induced by the well is considered. Robin boundary conditions are adopted to 25 

describe fluxes across the streambeds. The head solution for the point sink is derived by 26 

applying the methods of finite integral transform and Laplace transform. The head solution for 27 

a RCW is obtained by integrating the point-sink solution along the laterals of the RCW and 28 

then dividing the integration result by the sum of lateral lengths. On the basis of Darcy’s law 29 

and head distributions along the streams, the solution for the stream depletion rate (SDR) can 30 

also be developed. With the aid of the head and SDR solutions, the sensitivity analysis can then 31 

be performed to explore the response of the hydraulic head to the change in a specific parameter 32 

such as the horizontal and vertical hydraulic conductivities, streambed permeability, specific 33 

storage, specific yield, lateral length and well depth. Spatial head distributions subject to the 34 

anisotropy of aquifer hydraulic conductivities are analyzed. A quantitative criterion is provided 35 

to identify whether groundwater flow at a specific region is 3-D or 2-D without the vertical 36 

component. In addition, another criterion is also given to allow the neglect of vertical flow 37 

effect on SDR. Conventional 2-D flow models can be used to provide accurate head and SDR 38 

predictions if satisfying these two criteria. 39 

Keywords: Robin boundary condition, sensitivity analysis, stream depletion rate, first-order 40 

free surface equation, analytical solution 41 
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1. Introduction 42 

The applications of a radial collector well (RCW) have received much attention in the 43 

aspects of water resource supply and groundwater remediation since rapid advances in drilling 44 

technology. An average yield for the well approximates 27,000 m3/day (Todd and Mays, 2005). 45 

As compared to vertical wells, RCWs require less operating cost, produce smaller drawdown, 46 

and have better efficiency of withdrawing water from thin aquifers. In addition, RCWs can 47 

extract water from an aquifer underlying obstacles such as buildings, but vertical wells cannot. 48 

Recently, Huang et al. (2012) reviewed semi-analytical and analytical solutions associated with 49 

RCWs. Since then, Yeh and Chang (2013) provided a valuable overview of articles associated 50 

with RCWs. 51 

    A variety of analytical models involving a horizontal well, a specific case of a RCW with 52 

a single lateral, in aquifers were developed (e.g., Park and Zhan, 2003; Hunt, 2005; Anderson, 53 

2013). The flux along the well screen is commonly assumed to be uniform. The equation 54 

describing three-dimensional (3-D) flow is used. Kawecki (2000) developed analytical 55 

solutions of the hydraulic heads for the early linear flow perpendicular to a horizontal well and 56 

late pseudo-radial flow toward the middle of the well in confined aquifers. They also developed 57 

an approximate solution for unconfined aquifers on the basis of the head solution and an 58 

unconfined flow modification. The applicability of the approximate solution was later 59 

evaluated in comparison with a finite difference solution developed by Kawecki and Al-60 

Subaikhy (2005). Zhan et al. (2001) presented an analytical solution for drawdown induced by 61 

a horizontal well in confined aquifers and compared the difference in the type curves based on 62 

the well and a vertical well. Zhan and Zlotnik (2002) developed a semi-analytical solution of 63 

drawdown due to pumping from a nonvertical well in an unconfined aquifer accounting for the 64 

effect of instantaneous drainage or delayed yield when the free surface declines. They discussed 65 

the influences of the length, depth, and inclination of the well on temporal drawdown 66 
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distributions. Park and Zhan (2002) developed a semi-analytical drawdown solution 67 

considering the effects of a finite diameter, the wellbore storage, and a skin zone around a 68 

horizontal well in anisotropic leaky aquifers. They found that those effects cause significant 69 

change in drawdown at an early pumping period. Zhan and Park (2003) provided a general 70 

semi-analytical solution for pumping-induced drawdown in a confined aquifer, an unconfined 71 

aquifer on a leaky bottom, or a leaky aquifer below a water reservoir. Temporal drawdown 72 

distributions subject to the aquitard storage effect were compared with those without that effect. 73 

Sun and Zhan (2006) derived a semi-analytical solution of drawdown due to pumping at a 74 

horizontal well in a leaky aquifer. A transient one-dimensional flow equation describing the 75 

vertical flow across the aquitard was considered. The derived solution was used to evaluate the 76 

Zhan and Park (2003) solution which assumed steady-state vertical flow in the aquitard. 77 

Sophisticated numerical models involved in RCWs or horizontal wells were also reported. 78 

Steward (1999) applied the analytic element method to approximate 3-D steady-state flow 79 

induced by horizontal wells in contaminated aquifers. They discussed the relation between a 80 

pumping rate and the size of a polluted area. Chen et al. (2003) utilized the polygon finite 81 

difference method to deal with three kinds of seepage-pipe flows including laminar, turbulent, 82 

and transitional flows within a finite-diameter horizontal well. A sandbox experiment was also 83 

carried out to verify the prediction made by the method. Mohamad and Rushton (2006) used 84 

MODFLOW to predict flows inside an aquifer, from the aquifer to a horizontal well, and within 85 

the well. The predicted head distributions were compared with field data measured in Sarawak, 86 

Malaysia. Su et al. (2007) used software TOUGH2 based on the integrated finite difference 87 

method to handle irregular configurations of several laterals of two RCWs installed beside the 88 

Russian River, Forestville, California and analyzed pumping-induced unsaturated regions 89 

beneath the river. Lee et al. (2012) developed a finite element solution with triangle elements 90 

to assess whether the operation of a RCW near Nakdong River in South Korea can induce 91 
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riverbank filtration. They concluded that the well can be used for sustainable water supply at 92 

the study site. In addition, Rushton and Brassington (2013a) extended Mohamad and Rushton 93 

(2006) study by enhancing the Darcy-Weisbach formula to describe frictional head lose inside 94 

a horizontal well. The spatial distributions of predicted flux along the well revealed that the 95 

flux at the pumping end is four times of the magnitude of that at the far end. Later, Rushton 96 

and Brassington (2013b) applied the same model to a field experiment at the Seton Coast, 97 

northwest England.  98 

Well pumping in aquifers near streams may cause groundwatersurface water interactions 99 

(e.g., Rodriguez et al., 2013; Chen et al., 2013; Zhou et al., 2013; Exner-Kittridge et al., 2014; 100 

Flipo et al., 2014; Unland et al., 2014). The stream depletion rate (SDR), commonly used to 101 

quantify stream water filtration into the adjacent aquifer, is defined as the ratio of the filtration 102 

rate to a pumping rate. The SDR ranges from zero to a certain value which could be equal to 103 

or less than unity (Zlotnik, 2004). Tsou et al. (2010) developed an analytical solution of SDR 104 

for a slanted well in confined aquifers adjacent to a stream treated as a constant-head boundary. 105 

They indicated that a horizontal well parallel to the stream induces the steady-state SDR of 106 

unity more quickly than a slanted well. Huang et al. (2011) developed an analytical SDR 107 

solution for a horizontal well in unconfined aquifers near a stream regarded as a constant-head 108 

boundary. Huang et al. (2012) provided an analytical solution for SDR induced by a RCW in 109 

unconfined aquifers adjacent to a stream with a low-permeability streambed under the Robin 110 

condition. The influence of the configuration of the laterals on temporal SDR and spatial 111 

drawdown distributions was analyzed. Recently, Huang et al. (2014) gave an exhaustive review 112 

on analytical and semi-analytical SDR solutions and classified these solutions into two 113 

categories. One group involved two-dimensional (2-D) flow toward a fully-penetrating vertical 114 

well according to aquifer types and stream treatments. The other group included the solutions 115 

involving 3-D and quasi 3-D flows in the lights of aquifer types, well types, and stream 116 
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treatments. 117 

At present, existing analytical solutions associated with flow toward a RCW in unconfined 118 

aquifers have involved laborious calculation (Huang et al., 2012) and predicted approximate 119 

results (Hantush and Papadopoulos, 1962). The Huang et al. (2012) solution involves numerical 120 

integration of a triple integral in predicting the hydraulic head and a quintuple integral in 121 

predicting SDR. The integrand is expressed in terms of an infinite series expanded by roots of 122 

nonlinear equations. The integration variables are related to those roots. The application of 123 

their solution is therefore limited to those who are familiar with numerical methods. In addition, 124 

the accuracy of the Hantush and Papadopoulos (1962) solution is limited to some parts of a 125 

pumping period; that is, it gives accurate drawdown predictions at early and late times but 126 

divergent ones at middle time.  127 

The objective of this study is to present new analytical solutions of the head and SDR, 128 

which overcome the abovementioned limitations, for 3-D flow toward a RCW. A 129 

mathematical model is built to describe 3-D spatiotemporal hydraulic head distributions in a 130 

rectangular unconfined aquifer bounded by two parallel streams and by the no-flow stratums 131 

in the other two sides. The flux across the well screen is assumed to be uniform along each of 132 

the laterals. The assumption is valid for a short lateral within 150 m verified by agreement on 133 

drawdown observed in field experiments and predicted by existing analytical solutions (Huang 134 

et al., 2011; 2012). The streams fully penetrate the aquifer and connect the aquifer with low-135 

permeability streambeds. The model for the aquifer system with two parallel streams can be 136 

used to determine the fraction of water filtration from the streams and solve the associated 137 

water right problem (Sun and Zhan, 2007). The transient 3-D groundwater flow equation with 138 

a point-sink term is considered. The first-order free surface equation is used to describe water 139 

table decline due to pumping. Robin boundary conditions are adopted to describe fluxes across 140 

the streambeds. The head solution for a point sink is derived by the methods of Laplace 141 



 7 

transform and finite integral transform. The analytical head solution for a RCW is then obtained 142 

by integrating the point-sink solution along the well and dividing the integration result by the 143 

total lateral length. The RCW head solution is expressed in terms of a triple series expanded 144 

by eigenvalues which can be obtained by a numerical algorithm such as Newton’s method. On 145 

the basis of Darcy’s law and the RCW head solution, the SDR solution can then be obtained in 146 

terms of a double series with fast convergence. With the aid of both solutions, the sensitivity 147 

analysis is performed to investigate the response of the hydraulic head to the change in each of 148 

aquifer parameters. Spatial head distributions subject to the anisotropy of aquifer hydraulic 149 

conductivities are analyzed. The influences of the vertical flow and well depth on temporal 150 

SDR distributions are investigated. Moreover, temporal SDR distributions induced by a RCW 151 

and a fully penetrating vertical well in confined aquifers are also compared. A quantitative 152 

criterion is provided to identify whether groundwater flow at a specific region is 3-D or 2-D 153 

without the vertical component. In addition, another criterion is also given to judge the 154 

suitability of neglecting the vertical flow effect on SDR.  155 

 156 

2. Methodology 157 

2.1. Mathematical model 158 

    Consider a RCW in a rectangular unconfined aquifer bounded by two parallel streams and 159 

no-flow stratums as illustrated in Figure 1. The symbols for variables and parameters are 160 

defined in Table 1. The origin of the Cartesian coordinate is located at the lower left corner. 161 

The aquifer domain falls in the range of 0 ≤ 𝑥 ≤ 𝑤𝑥, 0 ≤ 𝑦 ≤ 𝑤𝑦, and −𝐻 ≤ 𝑧 ≤ 0. The 162 

RCW consists of a caisson and several laterals, each of which extends with length Lk and 163 

counterclockwise with angle k where k  1, 2, … N and N is the number of laterals. The 164 

caisson is located at (x0, y0), and the surrounding laterals are at z = z0. 165 

    First of all, a mathematical model describing 3-D flow toward a point sink in the aquifer 166 
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is proposed. The equation describing 3-D hydraulic head distribution h(x, y, z, t) is expressed 167 

as 168 
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where 𝛿(   ) is the Dirac delta function, the second term on the right-hand side (RHS) indicates 170 

the point sink, and Q is positive for pumping and negative for injection. The first term on the 171 

RHS of Eq. (1) depicts aquifer storage release based on the concept of effective stress proposed 172 

by Terzaghi (see, for example, Bear, 1979; Charbeneau, 2000), which is valid under the 173 

assumption of constant total stress. By choosing water table as a reference datum where the 174 

elevation head is set to zero, the initial condition can therefore be denoted as 175 

ℎ = 0  at  𝑡 = 0 (2) 176 

Note that equation (2) introduces negative hydraulic head for pumping, and the absolute value 177 

of the head equals drawdown. 178 

The aquifer boundaries at x = 0 and x = wx are considered to be impermeable and thus 179 

expressed as 180 

0/  xh   at  𝑥 = 0 (3) 181 

and 182 

0/  xh   at  𝑥 = 𝑤𝑥 (4) 183 

Streambed permeability is usually less than the adjacent aquifer formation. The fluxes across 184 

the streambeds can be described by Robin boundary conditions as 185 
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The free surface equation describing water table decline is written as 189 
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  at  𝑧 = ℎ (7) 190 

Neuman (1972) indicated that the effect of the second-order terms in Eq. (7) is generally 191 

ignorable to develop analytical solutions. Eq. (7) is thus linearized by neglecting the quadratic 192 

terms, and the position of the water table is fixed at the initial condition (i.e., z = 0). The result 193 

is written as 194 
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  at  𝑧 = 0 (8) 195 

Notice that Eq. (8) is applicable when the conditions |ℎ|/𝐻 ≤ 0.1  and |∂ℎ/ ∂𝑥| +196 

|∂ℎ/ ∂𝑦| ≤ 0.01  are satisfied. These two conditions had been studied and verified by 197 

simulations in, for example, Nyholm et al. (2002), Goldscheider and Drew (2007) and Yeh et 198 

al. (2010). Nyholm et al. (2002) achieved agreement on drawdown measured in a field pumping 199 

test and predicted by MODFLOW which models flow in the study site as confined behavior 200 

because of |ℎ|/𝐻 ≤ 0.1 in the pumping well. Goldscheider and Drew (2007) revealed that 201 

pumping drawdown predicted by Neuman (1972) analytical solution based on Eq. (8) agrees 202 

well with that obtained in a field pumping test. In addition, Yeh et al. (2010) also achieved 203 

agreement on the hydraulic head predicted by their analytical solution based on Eq. (8), their 204 

finite difference solution based on Eq. (7) with ∂ℎ/ ∂𝑦 = 0 (referring to Eq. (7a)), and Teo et 205 

al. (2003) solution derived by applying the perturbation technique to deal with Eq. (7a) when 206 

|ℎ|/𝐻 = 0.1 and |∂ℎ/ ∂𝑥| = 0.01 (i.e.,  = 0.1 and |∂/ ∂𝑥| = 0.01 at x = 0 in Yeh et al. 207 

(2010, Fig. 5(a)). On the other hand, the bottom of the aquifer is considered as a no-flow 208 

boundary condition denoted as 209 

0/  zh   at  𝑧 = −𝐻 (9) 210 

Define dimensionless variables as ℎ̅ = (𝐾𝑦 𝐻 ℎ) 𝑄⁄ , 𝑡̅ = (𝐾𝑦 𝑡) (𝑆𝑠 𝑦0
2)⁄ , �̅� = 𝑥 𝑦0⁄ , 211 

�̅� = 𝑦 𝑦0⁄ , 𝑧̅ = 𝑧 𝐻⁄ , �̅�0
′ = 𝑥0

′ 𝑦0⁄ , �̅�0
′ = 𝑦0

′ /𝑦0 , 𝑧0̅
′ = 𝑧0

′ 𝐻⁄ , �̅�𝑥 = 𝑤𝑥 𝑦0⁄  and �̅�𝑦 =212 
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𝑤𝑦 𝑦0⁄  where the overbar denotes a dimensionless symbol, H is the initial aquifer thickness, 213 

and 𝑦0  is a distance between stream 1 and the center of the RCW. On the basis of the 214 

definitions, Eq. (1) can be written as 215 
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  (10) 216 

where x = 𝐾𝑥 𝐾𝑦⁄  and z = (𝐾𝑧 𝑦0
2) (𝐾𝑦 𝐻2)⁄ . 217 

Similarly, the initial and boundary conditions are expressed as 218 

ℎ̅ = 0  at  𝑡̅ = 0 (11) 219 

∂ℎ̅/ ∂�̅� = 0  at  �̅� = 0 (12) 220 

∂ℎ̅/ ∂�̅� = 0  at  �̅� = �̅�𝑥 (13) 221 

0/ 1  hyh    at  �̅� = 0 (14) 222 

0/ 2  hyh    at  �̅� = �̅�𝑦 (15) 223 
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  at  𝑧̅ = 0 (16) 224 

and 225 

0/  zh   at  𝑧̅ = −1 (17) 226 

where (𝐾1 𝑦0) (𝐾𝑦 𝑏1)⁄  (𝐾2 𝑦0) (𝐾𝑦 𝑏2)⁄ and𝑆𝑦 (𝑆𝑠 𝐻)⁄  227 

2.2 Head solution for point sink 228 

The model, Eqs. (10)  (17), reduces to an ordinary differential equation (ODE) with two 229 

boundary conditions in terms of 𝑧̅ after taking Laplace transform and finite integral transform. 230 

The former transform converts ℎ̅(�̅�, �̅�, 𝑧̅, 𝑡̅) into ℎ̂(�̅�, �̅�, 𝑧̅, 𝑝), δ(�̅� − �̅�0
′ ) δ(�̅� − �̅�0

′ )δ(𝑧̅ − 𝑧0̅
′ ) 231 

in Eq. (10) into δ(�̅� − �̅�0
′ ) δ(�̅� − �̅�0

′ )δ(𝑧̅ − 𝑧0̅
′ )/𝑝, and 𝜕ℎ̅ 𝜕𝑡̅⁄  in Eqs. (10) and (16) into 232 

𝑝ℎ̂ − ℎ̅|
�̅�=0

 where p is the Laplace parameter, and the second term, initial condition in Eq. (11), 233 

equals zero (Kreyszig, 1999). The transformed model becomes a boundary value problem 234 

written as 235 
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with boundary conditions ∂ℎ̂/ ∂�̅� = 0 at �̅� = 0 and �̅� = �̅�𝑥 , 0ˆ/ˆ
1  hyh   at �̅� = 0, 237 

0ˆ/ˆ
2  hyh   at �̅� = �̅�𝑦 , zhpzh  /ˆ/ˆ   at 𝑧̅ = 0  and 0/  zh  at 𝑧̅ = −1 . 238 

We then apply finite integral transform to the problem. One can refer to Appendix A for its 239 

detailed definition. The transform converts ℎ̂(�̅�, �̅�, 𝑧̅, 𝑝) in the problem into ℎ̃(𝛼𝑚, 𝛽𝑛, 𝑧̅, 𝑝), 240 

and δ(�̅� − �̅�0
′ ) δ(�̅� − �̅�0

′ ) in Eq. (18) into cos (α𝑚�̅�0
′ )𝐾(�̅�0

′ ) and 𝑥 𝜕2ℎ̂ 𝜕�̅�2⁄ + 𝜕2ℎ̂ 𝜕�̅�2⁄  241 

in Eq. (18) into −(𝑥𝛼𝑚
2 + 𝛽𝑛

2)ℎ̃ where (m, n)1, 2, 3, …  , 𝛼𝑚 = 𝑚 𝜋 �̅�𝑥⁄ , 𝐾(�̅�0
′ ) is 242 

defined in Eq. (A2) with �̅� = �̅�0
′ , and 𝛽𝑛 represents eigenvalues equaling the roots of the 243 

following equation as (Latinopoulos, 1985) 244 
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The method to determine the roots is discussed in section 2.3. In turn, Eq. (18) becomes a 246 

second-order ODE defined by 247 
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Eq. (20) can be separated into two homogeneous ODEs as 253 
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where ha and hb, respectively, represent the heads above and below 𝑧̅ = −𝑧0̅
′

 where the point 257 

sink is located. Two continuity requirements should be imposed at 𝑧̅ = −𝑧0̅
′ . The first is the 258 

continuity of the hydraulic head denoted as 259 

ℎ̃𝑎 = ℎ̃𝑏  at  𝑧̅ = −𝑧0̅
′  (25) 260 

The second describes the discontinuity of the flux due to point pumping represented by the 261 

Dirac delta function in Eq. (20). It can be derived by integrating Eq. (20) from z̅ = −𝑧0̅
′ − to 262 

z̅ = −𝑧0̅
′ + as 263 
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  at  𝑧̅ = −𝑧0̅

′  (26) 264 

Solving Eqs. (23) and (24) simultaneously with Eqs. (21), (22), (25), and (26) yields the 265 

Laplace-domain head solution as 266 

ℎ̃𝑎(𝛼𝑚, 𝛽𝑛, 𝑧̅, 𝑝) = Ω(−𝑧0̅
′ , 𝑧̅, 1)  for  −𝑧0̅

′ ≤ 𝑧̅ ≤ 0 (27a) 267 

and 268 

ℎ̃𝑏(𝛼𝑚, 𝛽𝑛, 𝑧̅, 𝑝) = Ω(𝑧̅, 𝑧0̅
′ , −1)  for  −1 ≤ 𝑧̅ ≤ −𝑧0̅

′  (27b) 269 
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  (28) 271 

𝜆 = √(𝜅𝑥𝛼𝑚
2 + 𝛽𝑛

2 + 𝑝)/𝜅𝑧 (29) 272 

where a, b, and c are arguments. Taking the inverse Laplace transform and finite integral 273 

transform to Eq. (28) results in Eq. (31). One is referred to Appendix B for the detailed 274 

derivation. A time-domain head solution for a point sink is therefore written as 275 

ℎ̅(�̅�, �̅�, 𝑧̅, 𝑡̅) = {
(−𝑧0̅

′ , 𝑧̅, 1) for − 𝑧0̅
′  ≤ 𝑧̅ ≤ 0

  (𝑧̅, 𝑧0̅
′ , −1) for − 1 ≤ 𝑧̅ ≤ − 𝑧0̅

′        (30) 276 

with 277 
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Φ(𝑎, 𝑏, 𝑐) =
2

�̅�𝑥
{∑ [𝜙𝑛 𝑋𝑛 + 2 ∑ 𝜙𝑚,𝑛 𝑋𝑚,𝑛  cos(𝛼𝑚 �̅�)∞

𝑚=1 ]∞
𝑛=1  𝑌𝑛} (31) 278 

𝜙𝑚,𝑛 = 𝜓𝑚,𝑛 + 𝜓𝑚,𝑛,0 + ∑ 𝜓𝑚,𝑛,𝑖
∞
𝑖=1   (32) 279 

𝜓𝑚,𝑛 = − cosh[(1 + 𝑎)𝜆𝑠] cosh(𝑏 𝜆𝑠) (𝜅𝑧 𝜆𝑠  sinh 𝜆𝑠)⁄  (33) 280 

𝜓𝑚,𝑛,0 = 𝜇𝑚,𝑛,0  cosh[(1 + 𝑎)𝜆0] [−𝜅𝑧 𝜆0  cosh(𝑏 𝜆0) + 𝑐 𝑝0 𝛾 sinh(𝑏 𝜆0)] (34) 281 

𝜓𝑚,𝑛,𝑖 = 𝜈𝑚,𝑛,𝑖  cos[(1 + 𝑎)𝜆𝑖] [−𝜅𝑧 𝜆𝑖  cos(𝑏 𝜆𝑖) + 𝑐 𝑝𝑖 𝛾 sin(𝑏 𝜆𝑖)] (35) 282 

𝜇𝑚,𝑛,0 = 2 exp(𝑝0 𝑡̅) {𝑝0[(1 + 2 𝛾) 𝜅𝑧 𝜆0  cosh 𝜆0 + (𝑝0 𝛾 + 𝜅𝑧) sinh 𝜆0]}⁄  (36) 283 

ν𝑚,𝑛,𝑖 = 2 exp(𝑝𝑖 𝑡̅) {𝑝𝑖[(1 + 2 𝛾) 𝜅𝑧 𝜆𝑖  cos 𝜆𝑖 + (𝑝𝑖 𝛾 + 𝜅𝑧) sin 𝜆𝑖]}⁄  (37) 284 
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and 286 

𝑋𝑚,𝑛 = cos(𝛼𝑚 �̅�0
′ ) [𝛽𝑛  cos(𝛽𝑛 �̅�0

′ ) + 𝜅1  sin(𝛽𝑛�̅�0
′ )] (39) 287 

where 𝜆𝑠 = √(𝜅𝑥𝛼𝑚
2 + 𝛽𝑛

2)/𝜅𝑧 , 𝑝0 = 𝜅𝑧𝜆0
2 − 𝜅𝑥𝛼𝑚

2 − 𝛽𝑛
2 , 𝑝𝑖 = −𝜅𝑧𝜆𝑖

2 − 𝜅𝑥𝛼𝑚
2 − 𝛽𝑛

2 , 𝜙𝑛 288 

and Xn equal 𝜙𝑚,𝑛 and Xm, n with 𝛼𝑚 = 0, respectively, and the eigenvalues 𝜆0 and 𝜆𝑖 are, 289 

respectively, the roots of the following equations: 290 
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  (40) 291 
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tan
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  (41) 292 

The determination for those eigenvalues is introduced in the next section. Notice that the 293 

solution consists of simple series expanded in 𝛽𝑛, double series expanded in 𝛽𝑛 and 𝜆𝑖 (or 294 

𝛼𝑚 and 𝛽𝑛), and triple series expanded in 𝛼𝑚, 𝛽𝑛 and 𝜆𝑖. 295 

2.3 Evaluations for n, 0 and i 296 

Application of Newton’s method with proper initial guesses to determine the eigenvalues 297 

𝛽𝑛, 𝜆0 and 𝜆𝑖 has been proposed by Huang et al. (2014) and is briefly introduced herein. The 298 

eigenvalues are situated at the intersection points of the left-hand side (LHS) and RHS 299 
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functions of Eq. (19) for 𝛽𝑛, Eq. (40) for 𝜆0, and Eq. (41) for 𝜆𝑖. Hence, the initial guesses 300 

for 𝛽𝑛  are considered as 𝛽𝑣 − 𝛿  if 𝛽𝑣 > (𝜅1 𝜅2)0.5  and as 𝛽𝑣 + 𝛿  if 𝛽𝑣 < (𝜅1 𝜅2)0.5 301 

where 𝛽𝑣 = (2𝑛 − 1)𝜋/(2 �̅�𝑦) and 𝛿 is a chosen small value such as 10-8 for avoiding being 302 

right at the vertical asymptote. In addition, the guess for 𝜆0 can be formulated as  303 

𝜆0 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝛿 + {−𝜅𝑧 − √𝜅𝑧[𝜅𝑧 + 4 𝛾2(𝜅𝑥𝛼𝑚
2 + 𝛽𝑛

2)]} (2𝛾𝜅𝑧)⁄  (42) 304 

where the RHS second term represents the location of the vertical asymptote derived by letting 305 

the denominator of the RHS function in Eq. (40) to be zero and solving 𝜆0 in the resultant 306 

equation. Moreover, the guessed value for 𝜆𝑖 is (2 𝑖 − 1)𝜋 2 + 𝛿⁄ . 307 

2.4 Head solution for radial collector well 308 

The lateral of RCW is approximately represented by a line sink composed of a series of 309 

adjoining point sinks. The locations of these point sinks are expressed in terms of (�̅�0 + 𝑙 ̅ cos 𝜃, 310 

�̅�0 + 𝑙 ̅ sin 𝜃, 𝑧0̅) where (�̅�0, �̅�0, 𝑧0̅) = (𝑥0 𝑦0⁄ , 1, 𝑧0 𝐻⁄ ) is the central of the lateral, and 𝑙 ̅ is 311 

a variable to define different locations of the point sink. The solution of head ℎ̅𝑤(�̅�, �̅�, 𝑧̅, 𝑡̅) for 312 

a lateral can therefore be derived by substituting �̅�0
′ = �̅�0 + 𝑙 ̅ cos 𝜃 , �̅�0

′ = 1 + 𝑙 ̅ sin 𝜃  and 313 

𝑧0̅
′ = 𝑧0̅ into the point-sink solution, Eq. (30), then by integrating the resultant solution to 𝑙,̅ 314 

and finally by dividing the integration result into the sum of lateral lengths. The derivation can 315 

be denoted as 316 

ℎ̅𝑤(�̅�, �̅�, 𝑧̅, 𝑡̅) = (∑ �̅�𝑘
𝑁
𝑘=1 )−1 ∑ ∫ ℎ̅(�̅�, �̅�, 𝑧̅, 𝑡̅)

�̅�𝑘

0
𝑑𝑙 ̅𝑁

𝑘=1  (43) 317 

where �̅�𝑘 = 𝐿𝑘/𝑦0 is the k-th dimensionless lateral length. Note that the integration variable 318 

𝑙 ̅ (i.e., �̅�0
′  and �̅�0

′ ) appears only in 𝑋𝑛 and 𝑋𝑚,𝑛 in Eq. (31). The integral in Eq. (43) can 319 

thus be done analytically by integrating 𝑋𝑛 and 𝑋𝑚,𝑛 with respect to 𝑙.̅ After the integration, 320 

Eq. (43) can be expressed as 321 

ℎ̅𝑤(�̅�, �̅�, 𝑧̅, 𝑡̅) = (∑ �̅�𝑘
𝑁
𝑘=1 )−1 ∑ { Φ(−�̅�0,�̅�,1)  for  −�̅�0≤�̅�≤0

Φ(�̅�,�̅�0,−1)  for  −1≤�̅�≤−�̅�0

𝑁
𝑘=1                        (44) 322 

where Φ  is defined by Eqs. (31)  (38), and 𝑋𝑛  and 𝑋𝑚,𝑛  in Eq. (31) are replaced, 323 
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respectively, by 324 

𝑋𝑛,𝑘 = −𝐺𝑘/(𝛽𝑛 sin 𝜃𝑘)                                                  (45) 325 

and 326 

𝑋𝑚,𝑛,𝑘 =
𝛼𝑚𝐹𝑘 cos 𝜃𝑘+𝛽𝑛𝐺𝑘 sin 𝜃𝑘

𝛼𝑚
2 cos2 𝜃𝑘−𝛽𝑛

2 sin2 𝜃𝑘
                                             (46) 327 

with 328 

𝐹𝑘 = sin(𝑋𝛼𝑚)[𝛽𝑛 cos(𝑌𝛽𝑛) + 𝜅1 sin(𝑌𝛽𝑛)] − sin(�̅�0𝛼𝑚)(𝛽𝑛 cos 𝛽𝑛 + 𝜅1 sin 𝛽𝑛) (47) 329 

𝐺𝑘 = cos(𝑋𝛼𝑚)[𝜅1 cos(𝑌𝛽𝑛) − 𝛽𝑛 sin(𝑌𝛽𝑛)] − cos(�̅�0𝛼𝑚)(𝜅1 cos 𝛽𝑛 − 𝛽𝑛 sin 𝛽𝑛) (48) 330 

where 𝑋 = �̅�0 + �̅�𝑘 cos 𝜃𝑘  and 𝑌 = 1 + �̅�𝑘 sin 𝜃𝑘 . Notice that Eq. (45) is obtained by 331 

substituting 𝛼𝑚 = 0 into Eq. (46). When 𝜃𝑘 = 0 or 𝜋 , Eq. (45) reduces to Eq. (49) by 332 

applying L’Hospital’s rule. 333 

𝑋𝑛,𝑘 = �̅�𝑘(𝛽𝑛 cos 𝛽𝑛 + 𝜅1 sin 𝛽𝑛) (49) 334 

2.5 SDR solution for radial collector well  335 

On the basis of Darcy’s law and the head solution for a RCW, the SDR from streams 1 336 

and 2 can be defined, respectively, as 337 

𝑆𝐷𝑅1(𝑡)̅ = − ∫ (∫
𝜕ℎ̅𝑤

𝜕�̅�

�̅�=0

�̅�=−�̅�0
𝑑𝑧̅ + ∫

𝜕ℎ̅𝑤

𝜕�̅�

�̅�=−�̅�0

�̅�=−1
𝑑𝑧̅) 𝑑�̅�

�̅�=�̅�𝑥

�̅�=0
  at  �̅� = 0  (50) 338 

and 339 

𝑆𝐷𝑅2(𝑡̅) = ∫ (∫
𝜕ℎ̅𝑤

𝜕�̅�

�̅�=0

�̅�=−�̅�0
𝑑𝑧̅ + ∫

𝜕ℎ̅𝑤

𝜕�̅�

�̅�=−�̅�0

�̅�=−1
𝑑𝑧̅) 𝑑�̅�

�̅�=�̅�𝑥

�̅�=0
 at  �̅� = �̅�𝑦  (51) 340 

Again, the double integrals in both equations can be done analytically. Notice that the series 341 

term of 2 ∑ 𝜙𝑚,𝑛 𝑋𝑚,𝑛  cos(𝛼𝑚 �̅�)∞
𝑚=1  in Eq. (31) disappears due to the consideration of Eqs. 342 

(3) and (4) and the integration with respect to �̅� in Eqs. (50) and (51) when deriving the SDR 343 

solution. The SDR1 and SDR2 are therefore expressed in terms of double series and given below: 344 

𝑆𝐷𝑅1(𝑡)̅ = −
2

∑ �̅�𝑘
𝑁
𝑘=1

∑ ∑ (𝜓𝑛
′ + 𝜓𝑛,0

′ + ∑ 𝜓𝑛,𝑖
′∞

𝑖=1 )𝑋𝑛,𝑘 𝑌𝑛
′(0)∞

𝑛=1
𝑁
𝑘=1  (52) 345 

and 346 
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𝑆𝐷𝑅2(𝑡̅) =
2

∑ �̅�𝑘
𝑁
𝑘=1

∑ ∑ (𝜓𝑛
′ + 𝜓𝑛,0

′ + ∑ 𝜓𝑛,𝑖
′∞

𝑖=1 )𝑋𝑛,𝑘 𝑌𝑛
′(�̅�𝑦)∞

𝑛=1
𝑁
𝑘=1  (53) 347 

with 348 

1

2
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)]/([)(

)sin()cos(
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yY  (54) 349 

𝜓𝑛
′ = −{sinh(𝑧0̅𝜆𝑠

′ ) cosh[(1 − 𝑧0̅ )𝜆𝑠
′ ] + sinh[(1 − 𝑧0̅ )𝜆𝑠

′ ] cosh(𝑧0̅ 𝜆𝑠
′ )}/(𝜅𝑧𝜆𝑠

′2 sinh 𝜆𝑠
′ )  350 

 (55) 351 

𝜓𝑛,0
′ = −𝜇𝑛,0(𝜃𝑛,0 + 𝜗𝑛,0) 𝜆0⁄  (56) 352 

𝜃𝑛,0 = cosh[(1 − 𝑧0̅)𝜆0] {𝑝0
′  𝛾[−1 + cosh(𝑧0̅ 𝜆0) + 𝜅𝑧 𝜆0 sinh(𝑧0̅ 𝜆0)]} (57) 353 

𝜗𝑛,0 = sinh[(1 − 𝑧0̅)𝜆0] [𝜅𝑧 𝜆0 cosh(𝑧0̅ 𝜆0) + 𝑝0
′  𝛾 sinh(𝑧0̅ 𝜆0)] (58) 354 

𝜓𝑛,𝑖
′ = 𝜈𝑛,𝑖(𝜎𝑛,𝑖 − 𝜂𝑛,𝑖) 𝜆𝑖⁄  (59) 355 

𝜎𝑛,𝑖 = cos[(1 − 𝑧0̅)𝜆𝑖] {𝑝𝑖
′ 𝛾[−1 + cos(𝑧0̅ 𝜆𝑖)] − 𝜅𝑧 𝜆𝑖 sin(𝑧0̅ 𝜆𝑖)} (60) 356 

𝜂𝑛,𝑖 = sin[(1 − 𝑧0̅)𝜆𝑖] [𝜅𝑧 𝜆𝑖 cos(𝑧0̅ 𝜆𝑖) + 𝑝𝑖
′ 𝛾 sin(𝑧0̅ 𝜆𝑖)] (61) 357 

where 𝜆𝑠
′ = 𝛽𝑛 √𝜅𝑧⁄ ; 𝑝0

′ = 𝜅𝑧 𝜆0
2 − 𝛽𝑛

2; 𝑝𝑖
′ = −𝜅𝑧 𝜆𝑖

2 − 𝛽𝑛
2; 𝜇𝑛,0 equals 𝜇𝑚,𝑛,0 in Eq. (36) 358 

with 𝛼𝑚 = 0; 𝜈𝑛,𝑖 equals 𝜈𝑚,𝑛,𝑖 in Eq. (37) with 𝛼𝑚 = 0; 𝑋𝑛,𝑘 is defined in Eq. (45) for 359 

𝜃𝑘 ≠ 0 or 𝜋 and Eq. (49) for 𝜃𝑘 = 0 or 𝜋; and 𝜆0 and 𝜆𝑖 are the roots of Eqs. (40) and 360 

(41) with 𝛼𝑚 = 0, respectively. 361 

 362 

2.6 Special cases of the present solution 363 

2.6.1 Confined aquifer of finite extent 364 

 If  = 0 (i.e., Sy = 0 in Eq. (8)), the top boundary is regarded as an impermeable stratum. 365 

The aquifer is then a confined system. Under this circumstance, Eq. (40) reduces to 𝑒2 𝜆0 = 1 366 

having the root of 𝜆0 = 0, and Eq. (41) yields tan 𝜆𝑖 = 0 having the roots of 𝜆𝑖 = 𝑖 𝜋 where 367 

i1, 2, 3, …  . With 𝛾 = 0, 𝜆0 = 0 and 𝜆𝑖 = 𝑖 𝜋, the head solution for a confined aquifer 368 

can be expressed as Eq. (44) with Eqs. (31)  (38) and (45)  (49) where 𝜓𝑚,𝑛,0 in Eq. (32) 369 
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is replaced by 370 

𝜓𝑚,𝑛,0 = − exp(𝑝0 𝑡̅) 𝑝0⁄  (62) 371 

Similarly, the SDR solution for a confined aquifer can be written as Eqs. (52) and (53) where 372 

the RHS function in Eq. (56) reduces to that in Eq. (62) by applying L’Hospital’s rule with 𝛾 =373 

0 and 𝜆0 = 0. 374 

2.6.2 Confined aquifer of infinite extent 375 

    The head solution introduced in section 2.6.1 is applicable to spatiotemporal head 376 

distributions in confined aquifers of infinite extent before the lateral boundary effect comes. 377 

Wang and Yeh (2008) indicated that the time can be quantified, in our notation, as t = R2Ss/(16Ky) 378 

(i.e., 𝑡̅ = R2/(16𝑦0
2) for dimensionless time) where R is the shortest distance between a RCW 379 

and aquifer lateral boundary. Prior to the time, the present head solution with N = 1 for a 380 

horizontal well in a confined aquifer gives very close results given in Zhan et al. (2001). 381 

2.6.3 Unconfined aquifer of infinite extent 382 

    Prior to the beginning time mentioned in section 2.6.2, the absolute value calculated by 383 

the present head solution, Eqs. (44) with N = 1, represents drawdown induced by a horizontal 384 

well in unconfined aquifers of infinite extent. The calculated drawdown should be close to that 385 

from Zhan and Zlotnik (2002) solution for the case of the instantaneous drainage from water 386 

table decline. 387 

2.6.4 Unconfined aquifer of semi-infinite extent 388 

    When 1→ (i.e., b1 = 0), Eq. (14) reduces to the Dirichlet condition of ℎ̅ = 0 for stream 389 

1 in the absence from a low-permeability streambed, and Eq. (19) becomes tan(𝛽𝑛�̅�𝑦) =390 

−𝛽𝑛/ 2. In addition, the boundary effect occurring at the other three sides of the aquifer can 391 

be neglected prior to the beginning time. Moreover, when N = 1 and θ1 = 0, a RCW can be 392 

regarded as a horizontal well parallel to stream 1. Under these three conditions, the present 393 

head and SDR predictions are close to those in Huang et al. (2011), the head solution of which 394 
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agrees well with measured data from a field experiment executed by Mohamed and Rushton 395 

(2006). On the other hand, before the time when the boundary effect occurs at �̅� = 0, �̅� = �̅�𝑥 396 

and �̅� = �̅�𝑦, the present head and SDR solutions for a RCW give close predictions to those in 397 

Huang et al. (2012), the head and SDR solutions of which agree well with observation data 398 

taken from two field experiments carried out by Schafer (2006) and Jasperse (2009), 399 

respectively.  400 

2.7 Sensitivity analysis 401 

 The hydraulic parameters determined from field observed data are inevitably subject to 402 

measurement errors. Consequently, head predictions from the analytical model have 403 

uncertainty due to the propagation of measurement errors. Sensitivity analysis can be 404 

considered as a tool of exploring the response of the head to the change in a specific parameter 405 

(Zheng and Bennett, 2002). One may define the normalized sensitivity coefficient as  406 
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,  (63) 407 

where Si,t is the normalized sensitivity coefficient for the ith parameter at time t, and Pi 408 

represents the magnitude of the ith parameter. Eq. (63) can be approximated as 409 
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 (64) 410 

where iP  is an increment chosen as 10-3 Pi  (Yeh et al., 2008). 411 

3. Results and discussion 412 

 This section demonstrates head and SDR predictions and explores some physical insights 413 

regarding flow behavior. In section 3.1, equipotential lines are drawn to identify 3-D or 2-D 414 

flow without the vertical flow at a specific region. In section 3.2, the influence of anisotropy 415 

on spatial head and temporal SDR distributions is studied. In section 3.3, the sensitivity analysis 416 

is performed to investigate the response of the head to the change in each hydraulic parameter. 417 

In section 3.4, the effects of the vertical flow and well depth on temporal SDR distributions for 418 
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confined and unconfined aquifers are investigated. For conciseness, we consider a RCW with 419 

two laterals with N = 2, �̅�1 =  �̅�2 = 0.5, 1 = 0 and 2 = . The well can be viewed as a 420 

horizontal well parallel to streams 1 and 2. The default values for the other dimensionless 421 

parameters are �̅�𝑥 = �̅�𝑦 = 2,  = 100, �̅�0 = 1, �̅�0 = 1, 𝑧0̅ = 0.5, x = z = 1, and 1 = 2 = 422 

20. 423 

3.1 Identification of 3-D or 2-D flow at observation point 424 

Most existing models assume 2-D flow with neglecting the vertical flow for pumping at a 425 

horizontal well (e.g., Mohamed and Rushton, 2006; Haitjema et al., 2010). The head 426 

distributions predicted by those models are inaccurate if an observation point is close to the 427 

region where the vertical flow prevails. Figure 2 demonstrates the equipotential lines predicted 428 

by the present solution for a horizontal well in an unconfined aquifer for �̅�0 = 10, �̅�𝑥 = �̅�𝑦 =429 

20 and z = 0.1, 1, and 10. The well is located at 9.5 ≤ �̅� ≤  10.5, �̅� = 1 and 𝑧̅ = 0.5 as 430 

illustrated in the figure. The equipotential lines are based on steady-state head distributions 431 

plotted by Eq. (44) with �̅� = 1 and 𝑡̅ = 107. When z = 0.1, in the range of 10  �̅�  13.66, 432 

the contours of the hydraulic head are in a curved path, and the flow toward the well is thus 433 

slanted. Moreover, the range decreases to 10  �̅�  11.5 when z= 1 and to 10  �̅� 10.82 434 

when z= 10. Beyond these ranges, the head contours are nearly vertical, and the flow is 435 

essentially horizontal. Define �̅� = d/y0 as a shortest dimensionless horizontal distance between 436 

the well and a nearest location of only horizontal flow. The �̅� is therefore chosen as 3.16, 1 437 

and 0.32 for the cases of z= 0.1, 1 and 10, respectively. Substituting (z, �̅�) = (0.1, 3.16), (1, 438 

1) and (10, 0.32) into z�̅�2 leads to about unity. We may therefore conclude that the vertical 439 

flow at an observation point is negligible if its location is beyond the range of  �̅� < √1/𝑧 440 

(i.e., 𝑑 < 𝐻√𝐾𝑦/𝐾𝑧 ) for thin aquifers, an observation point far from the well, and/or a small 441 

ratio of 𝐾𝑦/𝐾𝑧. 442 



 20 

3.2 Anisotropy analysis of hydraulic head and stream depletion rate 443 

Previous articles have seldom analyzed flow behavior for anisotropic aquifers, i.e., x 444 

(Kx/Ky)  1. Head predictions based on the models, developed for isotropic aquifers, will be 445 

inaccurate if x  1. Consider �̅�𝑥 = �̅�𝑦 = 2, 𝑡̅ = 107 for steady-state head distributions, and 446 

a RCW with �̅�1 = �̅�2 = 0.25, 1 = 0, 2 = , and (�̅�0, �̅�0, 𝑧0̅) = (1, 1, -0.5) for symmetry. The 447 

contours of the dimensionless head at 𝑧̅ = −0.5 are shown in Figures 3(a)  3(d) for x = 1, 448 

10 and 50, 10-3, and 10-4, respectively. The figure indicates that the anisotropy causes a 449 

significant effect on the head distributions in comparison with the case of x = 1. In Figure 3(b), 450 

the contours exhibit smooth curves in the strip regions of 1  �̅�  1.45 for the case of x = 10 451 

and 1  �̅�  1.2 for the case of x = 50. For the region of �̅� ≥ 1.45, the predicted heads for 452 

both cases agree well, and all the contour lines are parallel, indicating that the flow is essentially 453 

unidirectional. Substituting (x, �̅�) = (10, 1.45) and (50, 1.2) into x(�̅� − 1)2 results in a value 454 

about 2. Accordingly, we may draw the conclusion that plots from the inequality of 455 

x(�̅� − 1)2 2 indicate the strip region for x being greater than 10. Some existing models 456 

assuming 2-D flow in a vertical plane with neglecting the flow component along a horizontal 457 

well give accurate head predictions beyond the region (e.g., Anderson, 2000; Anderson, 2003; 458 

Kompani-Zare et al., 2005). 459 

Aquifers with KyH  103 m2/day can efficiently produce plenty of water from a well. 460 

RCWs usually operate with Q  105 m3/day for field experiments (e.g., Schafer, 2006; Jasperse, 461 

2009). We therefore define significant dimensionless head drop as |ℎ̅| > 10−5 (i.e., |ℎ| > 1 462 

mm). The anisotropy of x <1 produces the drop in the strip areas of 1  �̅�  1.48 for the case 463 

of x = 10-3 in Figure 3(c) and 1  �̅�  1.32 for the case of x = 10-4 in Figure 3(d). Substituting 464 

(x, �̅�) = (10-3, 1.48) and (10-4, 1.32) into(�̅� − �̅�0 − �̅�1)2/x approximates 52.9. This result 465 

leads to the conclusion that the area can be determined by the inequalities of (�̅� − �̅�0 − �̅�1)2 ≤466 
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52.9x and (�̅� − �̅�0 + �̅�2)2 ≤ 52.9x for any value of x in the range x <1. For a RCW with 467 

irregular lateral configurations, the inequalities become (�̅� − max �̅�𝑘)2 ≤ 52.9 x and 468 

(�̅� − min �̅�𝑘)2 ≤ 52.9x where �̅�𝑘  is coordinate �̅�  of the far end of the k-th lateral. The 469 

conclusion applies in principle to reduction in grid points for numerical solutions based on 470 

finite difference methods or finite element methods. On the other hand, we have found that Eq. 471 

(52) or (53) with various x predicts the same temporal SDR distribution (not shown), 472 

indicating that the SDR is independent of x. 473 

3.3 Sensitivity analysis of hydraulic head 474 

 Consider an unconfined aquifer of H = 20 m and wx = wy = 800 m with a RCW having 475 

two laterals of L1 = L2 = 50 m, 1 = 0 and 2 =  and two piezometers installed at point A of 476 

(400 m, 340 m, 10 m) and point B of (400 m, 80 m, 10 m) illustrated in Figure 4. As 477 

discussed in section 3.1, the temporal head distribution at point A exhibits the unconfined 478 

behavior in Figure 4(a) because of z�̅�2<1 while at point B displays the confined one in Figure 479 

4(b) due to z�̅�2>1. The sensitivity analysis is conducted with the aid of equation (64) to 480 

observe head responses at these two piezometers to the change in each of Kx, Ky, Kz, Ss, Sy, K1, 481 

L1 and z0. The temporal distribution curves of the normalized sensitivity coefficients for those 482 

eight parameters are shown in Figures 4(a) for point A and 4(b) for point B when Kx = Ky = 1 483 

m/day, Kz = 0.1 m/day, Ss = 10-5 m-1, Sy = 0.2, K1 = K2 = 0.1 m/day, b1 = b2 = 1 m, Q = 100 484 

m3/day, x0 = y0 = 400 m, and z0 = 10 m. The figure demonstrates that the hydraulic heads at 485 

both piezometers are most sensitive to the change in Ky, second sensitive to the change in Kx 486 

and thirdly sensitive to the change in Sy, indicating that Ky, Kx and Sy are the most crucial factors 487 

in designing a pumping system. This figure also shows that the heads at point A is sensitive to 488 

the change in Ss at the early period of 410-3 day < t < 10-1 day but at point B is insensitive to 489 

the change over the entire period. In addition, the head at point A is sensitive to the changes in 490 

Kz and z0 due to 3-D flow (i.e., z�̅�2< 1) as discussed in section 3.1. In contrast, the head at 491 
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point B is insensitive to the changes in Kz and 𝑧0 because the vertical flow diminishes (i.e., 492 

z�̅�2> 1). Moreover, the head at point A is sensitive to the change in L1 but the head at point 493 

B is not because its location is far away from the well. Furthermore, the normalized sensitivity 494 

coefficient of K1 for point A away from stream 1 approaches zero but for point B in the vicinity 495 

of stream 1 increases with time and finally maintains a certain value at the steady state. 496 

Regarding the sensitivity analysis of SDR, Huang et al. (2014) has performed the sensitivity 497 

analysis of normalized coefficients of SDR1 to the changes in Ky, K1 and Ss for a confined 498 

aquifer and in Ky, Kz, K1, Ss and Sy for an unconfined aquifer. 499 

3.4 Effects of vertical flow and well depth on stream depletion rate 500 

Huang et al. (2014) reveals that the effect of the vertical flow on SDR induced by a vertical 501 

well is dominated by the magnitude of the key factor z (i.e., 𝐾𝑧𝑦0
2/(𝐾𝑦𝐻2)) where 𝑦0 herein 502 

is a distance between stream 1 and the vertical well. They concluded that the effect is negligible 503 

when z 10 for a leaky aquifer. The factor should be replaced by 𝑧�̅�2 (i.e., 𝐾𝑧𝑎2/(𝐾𝑦𝐻2)) 504 

where 𝑎 is a shortest distance measured from stream 1 to the end of a lateral of a RCW, and 505 

�̅� = 𝑎/𝑦0 = 1 in this study due to N = 2, 1 = 0 and 2 = . We investigate SDR in response to 506 

various 𝑧0̅ and 𝑧�̅� for unconfined and confined aquifers. The temporal SDR1 distributions 507 

predicted by Eq. (52) for stream 1 adjacent to an unconfined aquifer are shown in Fig. 5(a) for 508 

𝑧0̅ = 0.5 and 𝑧�̅�2= 0.01, 0.1, 1, 10, 20 and 30 and Fig. 5(b) for 𝑧�̅�2= 1 and 30 when 𝑧0̅ = 509 

0.1, 0.3, 0.5, 0.7 and 0.9. The curves of SDR1 versus 𝑡̅ is plotted in both panels by the present 510 

SDR solution for a confined aquifer. In Fig. 5(a), the present solution for an unconfined aquifer 511 

predicts a close SDR1 to that for the confined aquifer when 𝑧�̅�2= 0.01, indicating that the 512 

vertical flow in the unconfined aquifer is ignorable. The SDR1 for the unconfined aquifer with 513 

𝑧�̅�2= 30 behaves like that for a confined one, indicating the vertical flow is also ignorable. 514 

The SDR1 is therefore independent of well depths 𝑧0̅ when 𝑧�̅�2= 30 as shown in Fig. 5(b). 515 

We may therefore conclude that, under the condition of 𝑧�̅�2 0.01 or 𝑧�̅�2 30, a 2-D 516 
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horizontal flow model can give good predictions in SDR1 for unconfined aquifers. In contrast, 517 

SDR1 increases with decreasing 𝑧�̅�2 when 0.01 < 𝑧�̅�2 < 30 in Fig. 5(a), indicating that the 518 

vertical flow component induced by pumping in unconfined aquifers significantly affects SDR1. 519 

The effect of well depth 𝑧0̅ on SDR1 is also significant as shown in Fig. 5(b) when 𝑧�̅�2= 1. 520 

Obviously, the vertical flow effect should be considered in a model when 0.01 < 𝑧�̅�2 < 30 521 

for unconfined aquifers. 522 

It is interesting to note that the SDR1 or SDR2 induced by two laterals (i.e., 1 = 0 and 2 523 

= ) parallel to the streams adjacent to a confined aquifer is independent of 𝑧�̅�2 and 𝑧0̅ but 524 

depends on aquifer width of �̅�𝑦. The temporal SDR distribution curves based on Eqs. (52) and 525 

(53) with  = 0 for a confined aquifer with �̅�𝑦 = 2, 4, 6, 10 and 20 are plotted in Fig. 6. The 526 

dimensionless distance between the well and stream 1 is set to unity (i.e., �̅�0 = 1) for each 527 

case. The SDR1 predicted by Hunt (1999) solution based on a vertical well in a confined aquifer 528 

extending infinitely is considered. The present solution for each �̅�𝑦 gives the same SDR1 as 529 

the Hunt solution before the time when stream 2 contributes filtration water to the aquifer and 530 

influences the supply of SDR1. It is interesting to note that the sum of steady-state SDR1 and 531 

SDR2 is always unity for a fixed �̅�𝑦. The former and latter can be estimated by (�̅�𝑦 − 1)/�̅�𝑦 532 

and 1/�̅�𝑦, respectively. Such a result corresponds with that in Sun and Zhan (2007) which 533 

investigates the distribution of steady-state SDR1 and SDR2 induced by a vertical well. 534 

4. Concluding remarks 535 

This study develops a new analytical model describing 3-D flow induced by a RCW in a 536 

rectangular confined or unconfined aquifer bounded by two parallel streams and no-flow 537 

stratums in the other two sides. The flow equation in terms of the hydraulic head with a point 538 

sink term is employed. Both streams fully penetrate the aquifer and are under the Robin 539 

condition in the presence of low-permeability streambeds. A first-order free surface equation 540 
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(8) describing the water table decline gives good predictions when the conditions |ℎ|/𝐻 ≤ 0.1 541 

and |∂ℎ/ ∂𝑥| + |∂ℎ/ ∂𝑦| ≤ 0.01  are satisfied. The flux across the well screen might be 542 

uniform on a lateral within 150 m. The head solution for the point sink is expressed in terms of 543 

a triple series derived by the methods of Laplace transform and finite integral transform. The 544 

head solution for a RCW is then obtained by integrating the point-sink solution along the 545 

laterals and dividing the integration result by the sum of lateral lengths. The integration can be 546 

done analytically due to the aquifer of finite extent with Eqs. (3)  (6). On the basis of Darcy’s 547 

law and the head solution, the SDR solution for two streams can also be acquired. The double 548 

integrals of defining the SDR in Eqs. (50) and (51) can also be done analytically due to 549 

considerations of Eqs. (3)  (6). The sensitivity analysis is performed to explore the response 550 

of the head to the change in each of the hydraulic parameters and variables. New findings 551 

regarding the responses of flow and SDR to pumping at a RCW are summarized below: 552 

1. Groundwater flow in a region based on �̅�  < √1/𝑧  is 3-D, and temporal head 553 

distributions exhibit the unconfined behavior. A mathematical model should consider 3-D 554 

flow when predicting the hydraulic head in the region. Beyond this region, groundwater 555 

flow is horizontal, and temporal head distributions display the confined behavior. A 2-D 556 

flow model can predict accurate hydraulic head. 557 

2. The aquifer anisotropy of x >10 causes unidirectional flow in the strip region determined 558 

based on x(�̅� − 1)2> 2 for a horizontal well. Existing models assuming 2-D flow in a 559 

vertical plane with neglecting the flow component along the well give accurate head 560 

predictions in the region. 561 

3. The aquifer anisotropy of x <1 produces significant change in the head (i.e., |ℎ̅| > 10−5 562 

or |ℎ| > 1  mm) in the strip area determined by (�̅� − max �̅�𝑘)2 ≤ 52.9x and (�̅� −563 

min �̅�𝑘)2 ≤ 52.9x for a RCW with irregular lateral configurations.  564 

4. The hydraulic head in the whole domain is most sensitive to the change in Ky, second 565 
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sensitive to the change in Kx, and thirdly sensitive to the change in Sy. They are thus the 566 

most crucial factors in designing a pumping system. 567 

5. The hydraulic head is sensitive to changes in Kz, Ss, 𝑧0 and 𝐿𝑘  in the region of �̅� < 568 

√1/𝑧  and is insensitive to the changes of them beyond the region. 569 

6. The hydraulic head at observation points near stream 1 is sensitive to the change in K1 but 570 

away from the stream isn’t. 571 

7. The effect of the vertical flow on SDR is ignorable when 𝑧�̅�2  0.01 or 𝑧�̅�2  30 for 572 

unconfined aquifers. In contrast, neglecting the effect will underestimate SDR when 0.01 573 

< 𝑧�̅�2 < 30. 574 

8. For unconfined aquifers, SDR increases with dimensionless well depth 𝑧0̅ when 0.01 < z 575 

< 30 and is independent of 𝑧0̅ when z  0.01 or z  30. For confined aquifers, SDR is 576 

independent of 𝑧0̅ and z. For both kinds of aquifers, the distribution curve of SDR versus 577 

𝑡̅ is independent of aquifer anisotropy x. 578 
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 584 

Appendix A: Finite integral transform 585 

Latinopoulos (1985) provided the finite integral transform for a rectangular aquifer 586 

domain where each side can be under either the Dirichlet, no-flow, or Robin condition. The 587 

transform associated with the boundary conditions, Eqs. (12)  (15), is defined as 588 

ℎ̃(𝛼𝑚, 𝛽𝑛) = ℑ{ℎ̅(�̅�, �̅�)} = ∫ ∫ ℎ̅(�̅�, �̅�)  cos(𝛼𝑚 �̅�) 𝐾(�̅�)
�̅�𝑦

0

�̅�𝑥

0
𝑑�̅� 𝑑�̅� (A1) 589 

with 590 
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where cos(𝛼𝑚 �̅�)  𝐾(�̅�) is the kernel function. According to Latinopoulos (1985, Eq. (9)), the 592 

transform has the property of 593 
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The formula for the inverse finite integral transform can be written as (Latinopoulos, 1985, Eq. 595 

(14)) 596 
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Appendix B: Derivation of equation (31) 599 

The function of p in Eq. (28) is defined as 600 

𝐹(𝑝) =
cosh[(1+𝑎)𝜆][−z𝜆 cosh(𝑏𝜆)+𝑐𝑝𝛾 sinh(𝑏𝜆)]

𝑝 z𝜆(𝑝𝛾 cosh 𝜆+z𝜆 sinh 𝜆)
         (B1) 601 

Notice that the term cos(𝛼𝑚�̅�0)𝐾(�̅�0) in Eq. (28) is excluded because it is independent of p. 602 

𝐹(𝑝) is a single-value function with respect to p. On the basis of the residue theorem, the 603 

inverse Laplace transform for 𝐹(𝑝) equals the summation of residues of poles in the complex 604 

plane. The residue of a simple pole can be derived according to the formula below: 605 

Res|𝑝=𝑝𝑖
= lim

𝑝→𝑝𝑖

𝐹(𝑝) exp(𝑝𝑡̅) (𝑝 − 𝑝𝑖) (B2) 606 

where 𝑝𝑖 is the location of the pole in the complex plane.  607 

The locations of poles are the roots of the equation obtained by letting the denominator in 608 

Eq. (B1) to be zero, denoted as 609 

𝑝 𝜅𝑧 𝜆(𝑝 𝛾 cosh 𝜆 + 𝜅𝑧 𝜆 sinh 𝜆) = 0          (B3) 610 

where 𝜆 is defined in Eq. (29). Notice that 𝑝 = −𝜅𝑥𝛼𝑚
2 − 𝛽𝑛

2 obtained by 𝜆 = 0 is not a 611 

pole in spite of being a root. Apparently, one pole is at p = 0, and the residue based on Eq. (B2) 612 
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with 𝑝𝑖 = 0 is expressed as 613 

Res|𝑝=0 = lim
𝑝→0

cosh[(1+𝑎)𝜆][−z𝜆 cosh(𝑏𝜆)+𝑐𝑝𝛾 sinh(𝑏𝜆)]

z𝜆(𝑝𝛾 cosh 𝜆+z𝜆 sinh 𝜆)
exp(𝑝𝑡̅)      (B4) 614 

Eq. (B4) with 𝑝 = 0 and 𝜆 = 𝜆𝑠 reduces to 𝜓𝑚,𝑛 in Eq. (33).  615 

Other poles are determined by the equation of 616 

𝑝 𝛾 cosh 𝜆 + 𝜅𝑧 𝜆 sinh 𝜆 = 0            (B5) 617 

which comes from Eq. (B3). One pole is at p = p0 between p = 0 and  𝑝 = −𝜅𝑥 𝛼𝑚
2 − 𝛽𝑛

2 in 618 

the negative part of the real axis. Newton’s method can be used to obtain the value of 𝑝0. In 619 

order to have proper initial guess for Newton’s method, we let 𝜆 = 𝜆0 and then have 𝑝 =620 

𝜅𝑧 𝜆0
2 − 𝜅𝑥 𝛼𝑚

2 − 𝛽𝑛
2  based on Eq. (29). Substituting 𝜆 = 𝜆0 , 𝑝 = 𝜅𝑧 𝜆0

2 − 𝜅𝑥 𝛼𝑚
2 − 𝛽𝑛

2 , 621 

cosh 𝜆0 = (𝑒𝜆0 + 𝑒−𝜆0)/2 and sinh 𝜆0 = (𝑒𝜆0 − 𝑒−𝜆0)/2 into Eq. (B5) and rearranging the 622 

result leads to Eq. (40). Initial guess for finding root 𝜆0 of Eq. (40) is discussed in section 2.3. 623 

With known value of 𝜆0, one can obtain 𝑝0 = 𝜅𝑧  𝜆0
2 − 𝜅𝑥 𝛼𝑚

2 − 𝛽𝑛
2. According to Eq. (B2), 624 

the residue of the simple pole at 𝑝 = 𝑝0 is written as  625 

Res|𝑝=𝑝0
= lim

𝑝→𝑝0

cosh[(1+𝑎)𝜆][−z𝜆 cosh(𝑏𝜆)+𝑐𝑝𝛾 sinh(𝑏𝜆)]

𝑝z𝜆(𝑝𝛾 cosh 𝜆+z𝜆 sinh 𝜆)
exp(𝑝𝑡̅) (𝑝 − 𝑝0)  (B6) 626 

where both the denominator and nominator equal zero when 𝑝 = 𝑝0. Applying L’Hospital’s 627 

Rule to Eq. (B6) results in 628 

Res|𝑝=𝑝0
= lim

𝑝→𝑝0

2cosh[(1+𝑎)𝜆][−z𝜆 cosh(𝑏𝜆)+𝑐𝑝𝛾 sinh(𝑏𝜆)]

𝑝[(1+2𝛾)z𝜆 cosh 𝜆+(𝛾𝑝+z) sinh 𝜆]
exp(𝑝𝑡̅)  (B7) 629 

Eq. (B7) with 𝑝 = 𝑝0 and 𝜆 = 𝜆0 reduces to 𝜓𝑚,𝑛,0 in Eq. (34). 630 

On the other hand, infinite poles are at p = pi behind  𝑝 = −𝜅𝑥 𝛼𝑚
2 − 𝛽𝑛

2. Similar to the 631 

derivation of Eq. (40), we let 𝜆 = √−1𝜆𝑖 and then have 𝑝 = −𝜅𝑧 𝜆𝑖
2 − 𝜅𝑥 𝛼𝑚

2 − 𝛽𝑛
2 based 632 

on Eq. (29). Substituting 𝜆 = √−1𝜆𝑖 , 𝑝 = −𝜅𝑧 𝜆𝑖
2 − 𝜅𝑥 𝛼𝑚

2 − 𝛽𝑛
2 , cosh 𝜆 = cos 𝜆𝑖  and 633 

sinh 𝜆 = √−1 sin 𝜆𝑖  into Eq. (B3) and rearranging the result yields Eq. (41). The 634 

determination of 𝜆𝑖  is discussed in section 2.3. With known value 𝜆𝑖 , one can have 𝑝𝑖 =635 
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−𝜅𝑧 𝜆𝑖
2 − 𝜅𝑥 𝛼𝑚

2 − 𝛽𝑛
2. The residues of those simple poles at p=pi can be expressed as 𝜓𝑚,𝑛,𝑖 636 

in Eq. (35) by substituting 𝑝0 = 𝑝𝑖 , 𝑝 = 𝑝𝑖 , 𝜆 = √−1𝜆𝑖 , cosh 𝜆 = cos 𝜆𝑖  and sinh 𝜆 =637 

√−1 sin 𝜆𝑖 into Eq. (B7). Eventually, the inverse Laplace transform for 𝐹(𝑝) equals the sum 638 

of those residues (i.e., 𝜙𝑚,𝑛 = 𝜓𝑚,𝑛 + 𝜓𝑚,𝑛,0 + ∑ 𝜓𝑚,𝑛,𝑖
∞
𝑖=1 ). The time-domain result of 639 

(𝑎, 𝑏, 𝑐)  in Eq. (28) is then obtained as 𝜙𝑚,𝑛 cos(𝛼𝑚�̅�0)𝐾(�̅�0) . By substituting 640 

ℎ̃(𝛼𝑚, 𝛽𝑛) = 𝜙𝑚,𝑛 cos(𝛼𝑚�̅�0)𝐾(�̅�0)  and ℎ̃(0, 𝛽𝑛) = 𝜙𝑛𝐾(�̅�0)  into Eq. (A4) and letting 641 

ℎ̅(�̅�, �̅�) to be (𝑎, 𝑏, 𝑐), the inverse finite integral transform for the result can be derived as 642 

Φ(𝑎, 𝑏, 𝑐) =
1

�̅�𝑥
[∑ (𝜙𝑛 𝐾(�̅�0)𝐾(�̅�) +∞

𝑛=1643 

2 ∑ 𝜙𝑚,𝑛 cos(𝛼𝑚�̅�0)𝐾(�̅�0) cos(𝛼𝑚 �̅�) 𝐾(�̅�)∞
𝑚=1 )]  (B8) 644 

Moreover, Eq. (B8) reduces to Eq. (31) when letting the terms of 𝐾(�̅�0)𝐾(�̅�)  and 645 

cos(𝛼𝑚�̅�0)𝐾(�̅�0) 𝐾(�̅�) to be 2𝑋𝑛𝑌𝑛 and 2𝑋𝑚,𝑛𝑌𝑛, respectively.  646 
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Table 1. Symbols used in the text and their definitions. 774 

Symbol Definition 

a Shortest horizontal distance between stream 1 and the far end of lateral 

�̅� 𝑎/𝑦0 

b1, b2 Thicknesses of streambeds 1 and 2, respectively 

d Shortest horizontal distance between the far end of lateral and location of 

having only horizontal flow 

�̅� 𝑑/𝑦0 

H Aquifer thickness 

h Hydraulic head 

ℎ̅ (𝐾𝑦 𝐻 ℎ) 𝑄⁄  

Kx, Ky, Kz Aquifer hydraulic conductivities in x, y and z directions, respectively 

(K1, K2) Hydraulic conductivities of streambeds 1 and 2, respectively 

𝐿𝑘 Length of k-th lateral where k  (1, 2, … N) 

�̅�𝑘 𝐿𝑘/𝑦0 

N The number of laterals 

Q Pumping rate of point sink or radial collector well 

p Laplace parameter 

𝑝𝑖 −𝜅𝑧𝜆𝑖
2 − 𝜅𝑥𝛼𝑚

2 − 𝛽𝑛
2 

𝑝𝑖
′ −𝜅𝑧 𝜆𝑖

2 − 𝛽𝑛
2 

𝑝0 𝜅𝑧𝜆0
2 − 𝜅𝑥𝛼𝑚

2 − 𝛽𝑛
2 

𝑝0
′  𝜅𝑧 𝜆0

2 − 𝛽𝑛
2 

R Shortest horizontal distance between the far end of lateral and aquifer lateral 

boundary 

Ss, Sy Specific storage and specific yield, respectively 

t Time since pumping 

𝑡̅ (𝐾𝑦 𝑡) (𝑆𝑠 𝑦0
2)⁄  

wx, wy Aquifer widths in x and y directions, respectively 

�̅�𝑥, �̅�𝑦 𝑤𝑥 𝑦0⁄ , 𝑤𝑦 𝑦0⁄  

Xn Equaling Xm, n defined in Eq. (39) with 𝛼𝑚 = 0 

𝑋𝑛,𝑘 Defined in Eq. (45) 

x, y, z Cartesian coordinate system 

�̅�, �̅�, 𝑧̅ 𝑥 𝑦0⁄ , 𝑦 𝑦0⁄ , 𝑧 𝐻⁄  

�̅�𝑘 Coordinate �̅� of the far end of the k-th lateral 
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x0, y0, z0 Location of center of RCW 

�̅�0, �̅�0, 𝑧0̅ 𝑥0 𝑦0⁄ , 1, 𝑧0 𝐻⁄  

𝑥0
′ , 𝑦0

′ , 𝑧0
′  Location of point sink 

�̅�0
′ , �̅�0

′ , 𝑧0̅
′  𝑥0

′ /𝑦0, 𝑦0
′ /𝑦0, 𝑧0

′ /𝐻 

m 𝑚 𝜋 �̅�𝑥⁄  

n Roots of Eq. (19) 

𝜙𝑛 Equaling 𝜙𝑚,𝑛 defined in Eq. (32) with 𝛼𝑚 = 0 

 𝑆𝑦 (𝑆𝑠 𝐻)⁄  

x, z 𝐾𝑥 𝐾𝑦⁄ , (𝐾𝑧 𝑦0
2) (𝐾𝑦 𝐻2)⁄  

,  (𝐾1 𝑦0) (𝐾𝑦 𝑏1)⁄ , (𝐾2 𝑦0) (𝐾𝑦 𝑏2)⁄  

i Roots of Eqs. (40) and (41), respectively 

𝜆𝑠𝜆𝑠
′  √(𝜅𝑥𝛼𝑚

2 + 𝛽𝑛
2)/𝜅𝑧, 𝛽𝑛 √𝜅𝑧⁄  

𝜇𝑛,0 Equaling 𝜇𝑚,𝑛,0 defined in Eq. (36) with 𝛼𝑚 = 0

𝜈𝑛,𝑖 Equaling 𝜈𝑚,𝑛,𝑖 defined in Eq. (37) with 𝛼𝑚 = 0

𝜃𝑘 Counterclockwise angle from x axis to k-th lateral where k  (1, 2, … N) 

max �̅�𝑘, min �̅�𝑘 Maximum and minimum of �̅�𝑘, respectively, where k  (1, 2, … N) 
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Figures 776 

  777 

Figure 1. Schematic diagram of a radial collector well in a rectangular unconfined aquifer 778 



 

  779 

Figure 2. Equipotential lines predicted by the present solution for z= (a) 0.1, (b) 1 and (c) 10. 780 



 

 781 

Figure 3. Spatial distributions of the dimensionless head predicted by the present head solution for x = (a) 1, (b) 10 and 50, (c) 10-3 and (d) 10-4. 782 



 

  783 

Figure 4. Temporal distribution curves of the normalized sensitivity coefficients for parameters Kx, Ky, Kz, Ss, Sy, K1, 𝐿1 and 𝑧0 observed at 784 

piezometers (a) A of (400 m, 340 m, 10 m) and (b) B of (400 m, 80 m, 10 m). 785 



 

 786 

Figure 5. Temporal SDR1 distributions predicted by Eq. (52) for stream 1 with various values of (a) 𝑧�̅�2 and (b) 𝑧0̅. 787 



 

  788 

Figure 6. Temporal SDR distribution curves predicted by Eqs. (52) and (53) with  = 0 for confined aquifers when �̅�𝑦 = 2, 4, 6, 10 and 20. 789 


