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Abstract 12 

Estimating evaporation is important when managing water resources and cultivating crops. 13 

Evaporation can be estimated using land surface heat flux models and remotely sensed land 14 

surface temperatures (LST), which have recently become obtainable in very high resolution 15 

using light weight thermal cameras and Unmanned Aerial Vehicles (UAVs). In this study a 16 

thermal camera was mounted on a UAV and applied into the field of heat fluxes and 17 

hydrology by concatenating thermal images into mosaics of LST and using these as input for 18 

the two source energy balance modelling scheme (TSEB). Thermal images are obtained with 19 

a fixed-wing UAV overflying a barley field in western Denmark during the growing season of 20 

2014 and a spatial resolution of 0.20 m is obtained in final LST-mosaics. Two models are 21 

used: the original TSEB model (TSEB-PT) and a dual-temperature-difference model (DTD). 22 

In contrast to the TSEB-PT model, the DTD model account for the bias that is likely present 23 

in remotely sensed LST. TSEB-PT and DTD have already been well tested, however only 24 

during sunny weather conditions and with satellite images serving as thermal input. The aim 25 

of this study is to assess whether a lightweight thermal camera mounted on a UAV is able to 26 

provide data of sufficient quality to constitute as model input and thus attain accurate and 27 
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high spatial and temporal resolution surface energy heat fluxes, with special focus on latent 1 

heat flux (evaporation). Furthermore, this study evaluates the performance of the two source 2 

energy balance scheme during cloudy and overcast weather conditions, which is feasible due 3 

to the low data retrieval altitude (due to low UAV flying altitude) compared to satellite 4 

thermal data that are only available during clear sky conditions. TSEB-PT and DTD fluxes 5 

are compared and validated against eddy covariance measurements and the comparison show 6 

that both TSEB-PT and DTD simulations are in good agreement with eddy covariance 7 

measurements with DTD obtaining the best results. The DTD model provides results 8 

comparable to studies estimating evaporation with similar experimental setups, but with LST 9 

retrieved from satellites instead of a UAV. Further, systematic irrigation patterns on the 10 

barley field provide confidence to the veracity of the spatially distributed evaporation 11 

revealed by model output maps. Lastly, this study outlines and discusses the thermal UAV 12 

image processing that result in mosaics suited for model input. This study shows that the 13 

UAV platform and the lightweight thermal camera provide high spatial and temporal 14 

resolution data valid for model input and for other potential applications requiring high 15 

resolution and consistent LST.  16 

 17 

1 Introduction 18 

Evaporation (latent heat flux) serves as a key component in both hydrological and land-19 

surface energy processes. However, it is often estimated indirectly because spatially 20 

distributed, physical measurements of evaporated water are cumbersome. Provided 21 

information on net solar radiation (Rn), sensible- (H) and soil heat flux (G), the latent heat flux 22 

(LE) can be estimated as a residual using the assumption of surface energy balance in cases 23 

with no significant heat advection: 24 

𝑅𝑛 = 𝐻 + LE + 𝐺     (1) 25 

All terms in the above equation are related to the land surface temperature (LST). Since the 26 

1980s estimates of evaporation have been obtained through remotely sensed LST and 27 

advanced land surface heat flux models accounting for vegetation, soil and atmospheric 28 

conditions (Anderson et al., 1997; Kalma et al., 2008) and a large number of heat flux models 29 

exist with significant variations in physical system conceptualisation and input requirements 30 

(Boulet et al., 2012; Kustas and Norman, 1996; Stisen et al., 2008). Norman et al. (1995) 31 

applied the two source energy balance model (TSEB) (Shuttleworth and Wallace, 1985) to 32 
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remotely sensed data and this modelling scheme has proven to estimate reliable surface heat 1 

fluxes over cropland, rangeland and forest at various spatial scales (Anderson et al., 2004; 2 

Norman et al., 2003). The TSEB modelling scheme generates robust estimates of surface heat 3 

fluxes despite a simple solution scheme demanding relatively few input data. It was 4 

developed to be operational using thermal satellite images (Anderson et al., 2011) which 5 

serves as a key boundary condition in simulations. The TSEB modelling scheme partitions the 6 

remotely sensed LST into two layers; a canopy temperature and a soil temperature, using the 7 

Priestley-Taylor approximation (Norman et al., 2000). This enables a partition of heat flux 8 

estimations into its components from canopy and soil respectively. This approach is hereafter 9 

referred to as TSEB-PT in order to differentiate it from other TSEB approaches, such as 10 

TSEB-LUE (Houborg et al., 2012), based on the Light Use Efficiency concept, or TSEB-11 

2ART, which utilizes dual angle LST observations for direct retrieval of soil and canopy 12 

temperatures (Guzinski et al., 2015).  13 

Remotely sensed LST may deviate from the actual surface temperature by several degrees 14 

Kelvin due to atmospheric and surface emissivity effects. Consequently thermal-based models 15 

utilizing remotely sensed LST that do not address this issue are prone to producing less 16 

accurate results. Trying to overcome this issue, Norman et al. (2000) developed the Dual-17 

Temperature-Difference model (DTD) by incorporating two temperature observations into the 18 

TSEB modelling scheme; one conducted an hour after sunrise and another conducted later the 19 

same day when flux estimations are desired. One hour after sunrise, the surface heat fluxes are 20 

neglectable and observations acquired at this time represent a ‘starting point’ for the 21 

temperatures collected later the same day.  For agricultural and some hydrological purposes, 22 

there is a shortcoming in spatial and temporal resolution of satellite observations (Guzinski et 23 

al., 2014). This is especially true in areas where overcast weather conditions often occur, such 24 

as in northern Europe where the present study is conducted, as satellite thermal infrared and 25 

visible observations cannot penetrate clouds (Guzinski et al., 2013). Unmanned aerial vehicles 26 

(UAVs) (or Remotely Piloted Aircraft System, RPAS, in its most recent terminology) enable 27 

a critical improvement for spatial and temporal resolution of remotely sensed data. UAVs can 28 

operate at any specific time of day and year provided that strong wind and rainfall are absent. 29 

The relative low flying height enable both data collection during overcast conditions (Hunt Jr 30 

et al., 2005) and data with higher spatial resolution than what can be obtained from satellite 31 

data. Here we hypothesis that UAV data can substitute satellite images and in combination 32 

with the presented heat flux models, can be used to generate spatially detailed heat flux maps 33 
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that provide insight to different evaporation rates and plant stress at decimeter scale. There is 1 

rapidly growing interest in the potential of data collection with UAVs, particularly in the 2 

science of precision agriculture but also in a range of different scientific and commercial 3 

communities (Díaz-Varela et al., 2015; Gonzalez-Dugo et al., 2014; Swain et al., 2010; 4 

Zarco-Tejada et al., 2013, 2014). As scientists strive to understand the potential of UAVs and 5 

the new applications to which they are suited, the development of efficient workflows, 6 

operational systems and improved software that capture and process UAV data are continuing 7 

(Harwin and Lucieer, 2012; Lucieer et al., 2014; Turner et al., 2012; Wallace et al., 2012). 8 

However, research in possibilities and limitations of UAV platforms is still at an early stage 9 

and the present paper introduces the usage of UAV platforms into the fields of heat fluxes and 10 

hydrology.  11 

In this study, surface energy balance components are estimated using LST retrieved with a 12 

UAV and used as input for the physically-based, two source energy balance models: TSEB-13 

PT and DTD.  The aim is to assess whether a lightweight thermal camera installed on board a 14 

UAV is able to provide data of sufficient quality to attain high spatial and temporal resolution 15 

surface energy heat fluxes. Besides facilitating high resolution LST, the UAV platform enable 16 

the application of TSEB-PT and DTD models in cloudy and overcast weather conditions. 17 

Model outputs are quantitatively validated with data from an eddy covariance system located 18 

at the same barley field over which the UAV flights were conducted and known irrigation 19 

patterns provide confidence to the spatially distributed evaporation variations revealed within 20 

the barley field. Additionally, this study outline thermal UAV image processing which result 21 

in mosaics suited for model input. 22 

 23 

2 Materials and methods 24 

2.1 Site 25 

The TSEB models are applied in the HOBE (Hydrological OBsErvatory) agricultural site 26 

within the Skjern River catchment, western Denmark, see Fig. 1. The 400 x 400 m site is 27 

located in the maritime climate zone where mild winters and cold summers result in a mean 28 

annual temperature of 8.2˚C and a mean annual precipitation of 990 mm. The prevailing 29 

winds are westerly and windy conditions are common; with 30% of wind in 2014 coming 30 

from westerly direction and an average wind speed of 3.8 ms
-1

. Cloudy and overcast weather 31 
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conditions are frequent with 1727 hours of sunshine in 2014, which is 16% above normal 1 

(Cappelen, 2015). The site was cultivated with barley during UAV campaigns. The soil 2 

profile consists of an upper 0.25 m plow layer of homogeneous sandy loam soil and a lower 3 

layer of course sand. Soil porosity of the upper and lower layer range between 0.35 and 0.40 4 

and soil moisture content at field capacity is 26%. The ability of the sandy material to retain 5 

water is limited and frequent irrigation is necessary to maintain crop growth during growing 6 

seasons (Ringgaard et al., 2011). The overall area is somewhat heterogeneous consisting of 7 

three barley fields separated by a gravel road to the south and a row of conifers to the west. 8 

Conifers are bordering the barley fields at several places. A meteorological tower with an 9 

eddy covariance system consisting of a Gill R3-50 sonic anemometer and a LI-7500 open 10 

path infrared gas analyser, is located in the middle of the site (black square in Fig. 1). 11 

Meteorological data used as input to the models and as heat flux-validation are measured at 12 

this tower.  13 

2.2 UAV campaign 14 

UAV data was collected on seven days distributed evenly during spring and summer 2014 15 

(Table 1). In total 19 flights were conducted, of which 7 were flown early in the morning, 16 

constituting the additional input data for the DTD model. The entire airborne campaign thus 17 

resulted in 12 sets of input data for the TSEB-PT and DTD model. Dates with (c) in Table 1 18 

mark days where the UAV flights were conducted in cloudy or overcast conditions. 19 

A fixed-wing UAV (Q300, QuestUAV, UK) with a wingspan of 2.2 m was used as platform 20 

for the airborne operations. It was able to carry a payload of 2 kg for approximately 25 min in 21 

the air. With a speed of 60 km h
-1

 and flying height of 90 m above ground, the 400×400 m site 22 

area was covered in a single flight. The UAV was controlled by the SkyCircuits Ltd SC2 23 

autopilot in a dual redundant system with separate laptop and transmitter control. 24 

Communication between autopilot and ground was performed by a radio link that transmits 25 

position and attitude. Landing was conducted manually using the transmitter. SkyCircuits 26 

Ground Control Station software was used for generating the flight route and for visual 27 

inspection of the UAV, while it was is in the air.   28 
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2.3 Thermal data and image processing 1 

An Optris PI 450 LightWeight infrared camera of 380 g was mounted on the UAV. The 2 

camera detects infrared energy in the 7.5-13 µm thermal spectrum and surface temperatures 3 

were computed automatically using a fixed emissivity of unity. Thermal images were stored 4 

at 16 bit radiometric resolution. According to manufacturer specifications, the system has an 5 

accuracy of +/- 2°C or +/- 2% at an ambient temperature of 23+/-5 °C. The thermal detector 6 

within the camera collects an image array of 382×288 pixels with a nadir viewing footprint of 7 

50×40 m per image at 90 m flying height, resulting in an effective ground resolution of 8 

approx. 0.13 m per pixel.  9 

Time synchronization between camera and autopilot was necessary in order to link the logged 10 

GPS and rotation position with each image. This was performed before launching the UAV 11 

with a USB GPS connected to the camera thus synchronizing the timestamp on each image 12 

with the GPS clock. Timestamps were recorded in UTC time and accurate to within 1 second. 13 

Re-calculation of camera position was therefore necessary and performed using a self-14 

calibrating bundle adjustment in Agisoft PhotoScan software (Professional Edition version 15 

1.0.4). No ground control points were used, nor needed, during camera alignment and bundle 16 

adjustment.  Images were converted into unsigned 16 bit data to enable processing in 17 

Photoscan. 18 

Between 700 and 1000 images were collected for each flight with camera recording in 19 

continuous mode, triggering an image every second. Generally half of the images were 20 

suitable for further processing. Non-suitable images occur due to strong gusts of wind 21 

affecting flight velocity which causes poor quality recording and blurry images. Images 22 

collected during take-off and landing were likewise discarded before post-processing. In 23 

addition to re-calculating the camera positions, the self-calibrating bundle adjustment 24 

computed three dimensional point clouds from which thermal ortho-mosaics were built using 25 

a mean value composition. The view zenith angle of ortho-mosaics was set to 0° for all pixels, 26 

hence the largest possible amount of soil was assumed visible.  27 

The thermal mosaics served as key boundary conditions to TSEB-PT and DTD. Resulting 28 

resolution on thermal mosaics from midday flights was 0.20 m. However, the software was 29 

not able to mosaic the early morning data, presumably because temperatures were too 30 

homogeneous to enable the detection of common features between images needed for the 31 

bundle adjustment. Consequently, LST from early morning flights were extracted manually 32 
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and only the average LST for the barley fields was used as the additional data input for DTD 1 

model runs. This average was a satisfying representation of early morning LST because of its 2 

homogenous nature. 3 

2.4 Heat flux models 4 

The original TSEB model developed by Norman et al. (1995) is a two-layer model of 5 

turbulent heat exchange. Observations of remotely sensed LST are split into two layers: a 6 

canopy (TC) and a soil (TS) temperature. This is performed with the Priestley-Taylor 7 

approximation that enables calculations of canopy sensible heat flux using estimates of net 8 

radiation divergence. The initial estimate of canopy sensible heat flux thus permits separation 9 

of sensible and latent heat flux between canopy and soil. Further it eliminates the need for an 10 

empirical excess resistance term (Monteith, 1965) which address a substitution of directional 11 

radiometric temperature with aerodynamic temperature when calculating sensible heat fluxes 12 

(Eq. 5, 8 and 9 in Norman et al. (1995)). The TSEB modelling scheme uses directional 13 

radiometric temperature (collected with the thermal camera and UAV) and therefore no 14 

substitution of temperatures or correction via the excess resistance is needed. Section 2.2.1 15 

and 2.2.2 contain TSEB-equations of relevance for the present study and highlight the 16 

difference between TSEB-PT and DTD computations. 17 

2.4.1 TSEB-PT 18 

Net radiation (Rn) and the three resistances in this soil-canopy-atmosphere heat flux network: 19 

the aerodynamic resistance to heat transfer (RA), the resistance to heat transport from soil 20 

surface (RS) and the total boundary layer resistance of leaf canopy (RX) (all in s m
-1

)
 
remain 21 

constant during the individual model runs. For calculations of RA and RS, see Norman et al. 22 

(2000) Eq. 10 and 11, for calculations on RX see Norman et al. (1995) Eq. A8.  23 

Rn is calculated as a sum of short- and long wave radiation: 24 

𝑅𝑛 = (𝑅𝑠,𝑖𝑛 − 𝑅𝑠,𝑜𝑢𝑡) + (𝑅𝑙,𝑖𝑛 − 𝑅𝑙,𝑜𝑢𝑡)    (2) 25 

𝑅𝑠,𝑖𝑛 − 𝑅𝑠,𝑜𝑢𝑡 = 𝑅𝑠,𝑖𝑛(1 − 𝛼)    (3) 26 

𝑅𝑙,𝑖𝑛 − 𝑅𝑙,𝑜𝑢𝑡 = 𝜖𝑠𝑢𝑟𝑓𝜖𝑎𝑡𝑚𝜎𝑇𝐴
4 − 𝜖𝑠𝑢𝑟𝑓𝜎𝑇(𝜃)𝑅

4)    (4) 27 

where Rs, Rl is short- and long wave radiation respectively and in and out refers to the direction 28 

of the radiation, α is the combined vegetation and soil albedo, 𝜎 is Stefan-Boltzman constant, 29 
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TA is air temperature (K), T(θ)R is radiometric land surface temperature (K), 𝜖surf is combined 1 

vegetation and soil emissivity and 𝜖atm is atmosphere emissivity. α was estimated from 2 

incoming and outgoing short wave radiation from a four-component radiation sensor (NR01, 3 

Hukseflux Thermal Sensor). Albedo for bare soil was measured before the first barley shouts 4 

appeared on the surface and was kept fixed (although some changes are expected with soil 5 

humidity) whereas albedo for vegetation was retrieved for each flying day and hence varied 6 

between individual model runs. Combined vegetation and soil albedo for each flying day is 7 

shown in Table 2. TA was attained from the meteorological tower (section 2.1) and T(θ)R was 8 

collected with a UAV.  𝜖surf  was obtained under similar conditions from Guzinski et al. (2014) 9 

and 𝜖atm was computed as in Brutsaert (1975): 10 

 ϵatm = 1.24(
𝑒𝑎

𝑇𝐴
)0.14286      (5) 11 

where ea is water vapor pressure (mb) attained from meteorological tower.  12 

Assuming neutral atmospheric stability and the Monin-Obukhov length tending to infinity, the 13 

iterative part of the model is then initiated.  14 

During first iteration the net radiation divergence, partitioning Rn into radiation reaching the 15 

soil (Rn,S) and the canopy (Rn,C) respectively, is computed as in (Norman et al., 2000): 16 

∆𝑅𝑛 = 𝑅𝑛 [1 − exp⁡(
−ĸ𝐹Ω0⁡

√2cos(𝜃𝑠)
)]    (6) 17 

Where Ω0 is the nadir view clumping factor that depends on the ratio of vegetation height to 18 

plant crown width which is set to 1.0,  19 

 20 

θs is the sun zenith angle calculated by model from time of the day, ĸ is an extinction 21 

coefficient varying smoothly from 0.45 for LAI more than 2 to 0.8 for LAI less than 2, and F 22 

is the total Leaf Area Index (LAI). Measurements of LAI were obtained with a canopy 23 

analyzer LAI2000 instrument three times during the UAV campaign: 21 May 2014, 3 June 24 

2014 and 18 June 2014. A LAI-average from six measurement locations in the barley site was 25 

computed for each of the three dates: 3.9, 6.6 and 4.0 respectively. LAI values for each model 26 

run were extrapolated from the measurements taking canopy height and fraction of green 27 

vegetation into account.  28 
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Sensible heat flux of the canopy can thus be estimated using the Priestley-Taylor 1 

approximation: 2 

𝐻𝐶 = ∆𝑅𝑛 (1 − 𝛼𝑃𝑇𝑓𝑔
𝑠𝑝

𝑠𝑝+𝛾
)    (7) 3 

Where αPT is the Priestley-Taylor parameter set to an initial value of 1.26 assuming unstressed 4 

vegetation transpiration (Priestley and Taylor, 1972), fg is fraction of vegetation that is green 5 

which was estimated in situ for each flying day (Table 2), sp is the slope of saturation 6 

pressure curve and γ is the psychometric constant, both obtained from Allen et al. (1998). 7 

Using the sensible heat flux from canopy, canopy temperature (TC) can be computed using 8 

Eq. A7, A11, A12 and A13 from Norman et al. (1995). Calculations of soil temperature (TS) 9 

can thus be performed:  10 

𝑇𝑆 = (
𝑇(𝜃)𝑅

4−𝑓𝜃𝑇𝐶
4

1−𝑓𝜃
)
0.25

     (8) 11 

Where fθ is fraction of view of radiometer covered by vegetation calculated as 𝑓𝜃 = 1 −12 

exp⁡(
−0.5Ω𝜃𝐹

cos(𝜃)
), where Ωθ is the clumping factor at view zenith angle (θ). 13 

With known resistances and temperatures, fluxes are then calculated in the following 14 

sequence (all in W m
-2

): 15 

𝐻𝐶 = 𝜌𝑐𝑝
𝑇𝐶−𝑇𝐴𝐶

𝑅𝑋
     (9) 16 

Where HC is sensible heat flux from canopy, ρ is air density (kg m
-3

), cp is specific heat of air 17 

(J kg
-1

 K
-1

) and TAC is inter-canopy air temperature (K) computed with TA, TS, TC, and 18 

resistances. 19 

Canopy latent heat flux is computed as: 20 

LEC = ∆𝑅𝑛 − 𝐻𝐶     (10) 21 

Sensible heat flux from soil is computed as: 22 

𝐻𝑆 = ⁡𝜌𝑐𝑝
𝑇𝑆−𝑇𝐴𝐶

𝑅𝑆
     (11) 23 

Soil heat flux is computed following Liebethal and Foken (2007): 24 

𝐺 = 0.3𝑅𝑛,𝑠 − 35      (12) 25 

where Rn,S is net radiation that reaches the soil surface computed as 𝑅𝑛,𝑆 = 𝑅𝑛 − ∆𝑅𝑛. 26 
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Soil latent heat flux is computed as: 1 

LES = 𝑅𝑛,𝑆 − 𝐺 − 𝐻𝑆     (13) 2 

Now it is possible to calculate the total sensible (H) and latent heat fluxes (LE) as a 3 

summation of their canopy and soil components: 𝐻 = 𝐻𝐶 + 𝐻𝑆 and LE = LEC + LES. 4 

The Monin-Obukhov length is then re-calculated according to Brutsaert (2005) Eq. 2.46 and 5 

the iterative part of the model is re-run until the Monin-Obukhov length converges to a stable 6 

value, at which point the final flux values are attained. 7 

2.4.2 DTD 8 

The DTD model described in Norman et al. (2000) is a further development of the TSEB-PT 9 

model. DTD similarly split the observed LST into canopy and soil temperatures and computes 10 

surface energy balance components following virtually the same procedure. However, DTD 11 

accounts for the discrepancy between the fact that the TSEB modelling scheme is sensitive to 12 

the temperature difference between land surface and air, and that absolute LST retrieved from 13 

remote sensing data are regarded as inaccurate. This is accounted for by adding an additional 14 

input dataset: LST retrieved one hour after sunrise when energy fluxes are minimal. The 15 

modelled fluxes are hence based on a temperature difference between the two observations, 16 

which is assumed to be a more robust parameter compared to a single retrieval of remotely 17 

sensed LST as it minimizes consistent bias in the temperature estimates. The essential 18 

equation that differs between TSEB-PT and DTD is the one computing sensible heat flux. In 19 

the series implementation of DTD the linear approximation of Eq. (2) is taken together with 20 

Eq. (7) to (9) and applied at midday and one hour after sunrise and subsequently subtracted 21 

from each other to arrive at the following: 22 

𝐻𝑖 = 𝜌𝑐𝑝 [
(𝑇𝑅,𝑖(𝜃𝑖)−𝑇𝑅,0⁡(𝜃0))−(𝑇𝐴,𝑖−𝑇𝐴,0)

(1−𝑓(𝜃𝑖))𝑅𝑆,𝑖+𝑅𝐴,𝑖
] + 𝐻𝐶,𝑖 [

(1−𝑓(𝜃𝑖))𝑅𝑆,𝑖−⁡𝑓(𝜃𝑖)𝑅𝑋,𝑖

(1−𝑓(𝜃𝑖))𝑅𝑆,𝑖+𝑅𝐴,𝑖
] (14) 23 

where subscripts i and 0 refer to observations at midday and one hour after sunrise 24 

respectively. Since the early morning (time 0) sensible heat fluxes are negligible they are 25 

omitted in the above equation. 26 

Computations of soil heat flux (G) also differ because the difference in radiometric 27 

temperature between early morning and midday observations can be used as an approximation 28 

of the diurnal variation in soil surface temperature. Soil heat flux computations are derived 29 

from the soil heat flux model of Santanello and Friedl  (2003): 30 
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𝐺 = 𝑅𝑛,𝑆𝐴⁡cos⁡(2π
t+10800

B
)    (15) 1 

Where t is time in seconds between the observation time and solar noon, 𝐴 = 0.0074∆𝑇𝑅 +2 

0.088,  𝐵 = 1729∆𝑇𝑅 + 65013 and ΔTR is an approximation of the diurnal variation in the 3 

soil surface temperature from UAV data. 4 

For an in-depth review of the TSEB-PT and DTD models including all equations, see 5 

Guzinski et al., (2014) and Guzinski et al. (2015). 6 

2.5 Footprint extraction from model output maps  7 

In order to compare modelled Rn, H, G and LE to measurements from the eddy covariance 8 

system, a single representative value from each TSEB-PT and DTD output map has to be 9 

extracted in accordance with the coverage of the eddy covariance footprints. Each eddy flux 10 

measurement represents an area for which the size, shape and location are determined by 11 

surface roughness, atmospheric thermal stability and wind direction at a given time – in this 12 

case UAV flight times. Sensible and latent heat fluxes are extracted from TSEB-PT and DTD 13 

maps using a two-dimensional footprint analysis approach as described in Detto et al. (2006). 14 

The twelve footprint outputs were applied to corresponding maps of sensible and latent heat 15 

fluxes by weighing each modelled pixel according to the contribution of that pixel’s location 16 

to the measured flux. Approximations of the 70 % eddy flux footprint-coverages are shown in 17 

Appendix B. Net radiation and soil heat flux measurements have footprints that are much 18 

smaller than sensible and latent heat flux measurements and values from Rn and G output 19 

maps were extracted from a 5×5 m area on the barley field next to the eddy flux tower. 20 

2.6 Validation data 21 

An eddy covariance system consisting of a Gill R3-50 sonic anemometer and a LI-7500 open 22 

path infrared gas analyzer was mounted 6 m above ground in the middle of the site (see Fig. 23 

1).  Wind components in three dimensions and concentrations of water vapor were measured 24 

at 10 Hz. Sensible and latent heat fluxes for validation of model outputs were computed from 25 

the eddy covariance system using EddyPro 5.1.1 software (Fratini and Mauder, 2014). 26 

Computations include two dimensional coordinate rotation, block averaging of measurements 27 

in 30 min windows, corrections for density fluctuations (Webb et al., 1980), spectral 28 

corrections (Moncrieff et al., 2005; Moncrieff, et al., 1997) and measurement quality 29 

checking according to Mauder and Foken (2006). Furthermore, the computed heat fluxes were 30 
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subject to an outlier quality control following procedures described in Papale et al. (2006). 1 

Short- and long wave, incoming and outgoing radiation and soil heat fluxes were measured 2 

with a Hukseflux four component net radiometer (model NR01) and heat flux plate (model 3 

HFP01). Gap-filling of the validation data was not required because no gaps in the data 4 

occurred during the twelve flights. When applying the surface energy balance expression any 5 

residual was assigned to latent heat flux, as recommended by Foken et al. (2011). This 6 

ensures energy balance closure and comparability with TSEB-PT and DTD modelled fluxes. 7 

The average-size of residuals from the twelve datasets was 9 %. 8 

 9 

3 Results and discussion 10 

TSEB-PT and DTD models are executed twelve times with data collected on seven days 11 

during the spring and summer of 2014. Spatially distributed maps of net radiation, soil-, 12 

sensible- and latent heat fluxes are attained with resolutions of 0.20 m.  13 

3.1 Comparison between UAV-fluxes and fluxes from eddy covariance 14 

Modelled fluxes attained with thermal UAV data and measured fluxes from the eddy 15 

covariance system are shown in Table 3. As expected, there are large variations throughout 16 

the season determined primarily by time of year and time of day – dates and hours with 17 

potentially large incoming solar radiation (summer and midday) contain potential for largest 18 

evaporation. Figure 2A-C show modelled versus measured fluxes and a statistical comparison 19 

is presented in Table 4.  20 

Calculations for Rn are alike in TSEB-PT and DTD and generally in good agreement with 21 

measured Rn with a RMSE value of 44 W m
-2

 (11 %) and a correlation coefficient (r) of 0.98 22 

(Table 4). Simulated Rn from 10 April and 2 July 2014 are in less good agreement with 23 

measured Rn and are underestimated with 88 W m
-2

 and 96 W m
-2

 respectively.  24 

Sensible heat fluxes (H) are well estimated by both models (Table 3 and 4 and Fig. 2B). 25 

TSEB-PT sensible heat fluxes are consistently underestimated, however the correlation 26 

coefficient (r) is better (in contrast to RMSE and MAE) than r calculated for DTD. This 27 

implies a better linear relation between measured and modelled sensible heat flux from 28 

TSEB-PT, see Fig. 2B. The DTD model computes slightly more scattered sensible heat fluxes 29 

but results do not show any systematic errors – they are centered around measured values and 30 
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are generally in better accordance with measured fluxes with RMSE and MAE values of 59 1 

W m
-2

 (64 %) and 49 W m
-2 

(52 %), compared to TSEB-PT RMSE and MAE values of 85 W 2 

m
-2 

(91 %) and 75 W m
-2 

(81 %).  3 

Soil heat fluxes (G) are underestimated by both algorithms and RMSE and MAE values of 48 4 

W m
-2

 (91 %) and 45 W m
-2 

(86 %), and 38 W m
-2 

(72 %) and 35 W m
-2

 (66 %) are obtained 5 

from DTD and TSEB-PT respectively.  6 

Modelled latent heat flux (LE) is in good agreement with measured latent heat fluxes. As a 7 

consequence of underestimation of sensible heat flux in TSEB-PT simulations, a small 8 

overestimation of TSEB-PT latent heat flux appears (Fig. 2C). DTD latent heat flux is again 9 

more scattered but with lower RMSE and MAE values of 67 W m
-2

 (26 %) and 57 W m
-2

 (22 10 

%), compared to TSEB-PT RMSE and MAE values of 94 W m
-2

 (37 %) and 84 W m
-2 

(33 %).  11 

3.1.1 Method discussion 12 

The DTD algorithm generally produces results in better accordance with measurements and is 13 

concluded to be a better algorithm when simulating heat fluxes with present experimental 14 

setup. This suggests a consistent bias in the UAV derived LST which can be corrected by 15 

subtracting the early morning observations from the midday ones and demonstrates the 16 

robustness and added utility of the DTD approach.  17 

A poor agreement between modelled and measured Rn was found on 10 April and 2 July 18 

2014. Modelled Rn consists of short- and longwave incoming and outgoing radiation (Rs,in, 19 

Rs,out, Rl,in, Rl,out) of which Rs,in is provided as model input from eddy tower measurements.  20 

This contributes positively to the agreement between modelled and measured Rn but it cannot 21 

be assigned to model performance or the quality of collected LST data. Therefore a 22 

comparison is also conducted between modelled and measured net longwave radiation (Rl), 23 

which as opposed to modelled and measured Rn, are entirely independent of each other. The 24 

TSEB modelling scheme produce Rl estimates to a satisfactory level if results from 10 April 25 

and 2 July are not regarded, see appendix A. Rl estimates depend on atmospheric emissivity 26 

which in the TSEB modelling scheme are calculated with Eq. 5 (from Brutsaert (1975)). Eq. 5 27 

builds on the assumption of exponential atmospheric profiles for temperature, pressure and 28 

humidity. The stability of atmosphere is affected by relative humidity (RH) (Herrero and 29 

Polo, 2012) and errors between measured and modelled Rl are related to RH in second graph 30 

in appendix A. A coincidence  between the highest errors and the highest RH appears. This 31 
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suggests that assumptions behind Eq. 5 might not be met on 10 April and 2 July. Different 1 

approaches for estimating Rl could have been chosen for these two dates (e.g. Brutsaert 2 

(1982)) but for simplicity the approach presented in Brutsaert (1975) is maintained for all 3 

dates. Appendix A show that if algorithm-assumptions are met, UAV collected LST can be 4 

satisfactorily used to estimate Rl using the TSEB scheme. Eq. 5 also builds on the assumption 5 

of clear skies. Since poor simulations of Rl is not significant in data collected in overcast 6 

conditions, the larger incoming longwave radiation due to clouds might compensate for the 7 

smaller path between UAV and surface, compared to between satellite and surface.  8 

Further, a poor agreement between modelled and measured G was found. G was measured 9 

from two heat flux plates located approximately 3 cm below the surface. Heat flux plates 10 

might not provide the best estimate of energy partitioning at the surface (Jansen et al., 2011) 11 

which could lead to uncertainties in measured G. Further, the difference between heat 12 

conduction of soil and air create a discrepancy between measured G and H and LE, since fast 13 

changes in Rn (as a consequence of intermittent cloud cover) will have a faster response in H 14 

and LE than in G (Gentine et al., 2012). The TSEB modelling scheme does not account for 15 

the delay in G response and therefore also a discrepancy between measured and modelled G 16 

will occur. However, the magnitude of G is small compared to the remaining surface energy 17 

fluxes and therefore has a comparably small impact on LE estimations even though it is 18 

computed as a residual of Rn, H and G. 19 

In average there was a 95 % overlap between the coverage of eddy flux footprints and the 20 

model output maps from all twelve datasets. The lacking percentages of fluxes from maps 21 

were simply added from the flux values obtained from overlapping eddy flux footprints and 22 

maps. This introduces a small uncertainty to the extraction of flux values from model output 23 

and thus also to the comparison between measured and modelled H and LE.  24 

The view zenith angle of ortho-mosaics was set to 0° (section 2.3). However the maximum 25 

view zenith angle of the thermal camera is 15° and setting a theoretical view zenith angle to 26 

0° could lead to a small overestimation of latent heat flux. Any bias due to the 0° view zenith 27 

angle in models could maybe have been accommodated using a maximum value composition 28 

(instead of a mean value composition) when generating LST-mosaics. However, a mean value 29 

composition was used because the mosaics produced with this method compared well with 30 

mosaics produced manually in which the edges of each image were removed. Edges were 31 

removed in order to eliminate the vignetting effect, which generally affects thermal images in 32 
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particular and therefore also the images collected in this study.  Using a mean value 1 

composition is thus assumed to enable the usage of entire images without eliminating or 2 

correcting for vignetting effects. Using entire images allow a larger image overlap which is 3 

crucial when images are mosaicked in Photoscan. The difference between using a mean and a 4 

maximum value composition was approx. 0.3° Kelvin and 5 W m
-2

 latent heat flux for mosaic 5 

from 10 April 2014. 6 

Disagreement between measured and modelled fluxes may also be due to the presented 7 

approach of handling the residual between eddy covariance surface energy fluxes. The 8 

average-size of residuals from the twelve datasets was as mentioned 9 % (section 2.6). A 9 

different approach to handling the energy balance residual (e.g Foken, 2008) would lead to 10 

slightly different results in the comparison between measured and modelled fluxes.   11 

A calibration of the camera with in situ temperatures would likely have improved TSEB-PT 12 

heat flux computations. Further a conversion of brightness temperature to actual LST using a 13 

spatially distributed emissivity would presumably improve both TSEB-PT and DTD results. 14 

3.1.2 Comparison to other studies 15 

Guzinski et al. (2014) applied their TSEB-PT study to the same field site as the present study 16 

but they used thermal satellite images from Landsat as boundary conditions as opposed to 17 

thermal UAV images. A comparison between the two studies shows similar accurate results. 18 

Guzinski et al. (2014) achieve RMSEs of 46 W m
-2 

for Rn, 56 W m
-2

 for H and 66 W m
-2

 for 19 

LE (Table 2, column NDH in Guzinski et al. (2014)). This study achieves RMSEs of 44 W m
-2 

20 

for Rn, 59 W m
-2

 for H and 67 W m
-2

 for LE, using the DTD model. r is likewise similar 21 

between the two studies. However, when Guzinski et al. (2014) uses both MODIS and 22 

Landsat data to disaggregate DTD fluxes, modelled sensible and latent heat fluxes were in 23 

better agreement with the observed fluxes (Table 2, column EF in Guzinski et al. (2014)). 24 

Further, a comparison between this study and other studies seeking to estimate surface fluxes 25 

from remotely sensed data (such as Colaizzi et al. (2012); Guzinski et al. (2013); Norman et 26 

al. (2000)) show that measured and modelled fluxes are in same order of agreement. 27 

3.1.3 Cloudy and overcast situation 28 

Contrary to studies using satellite images, the majority of data in this study were retrieved 29 

under cloudy or overcast conditions. Data collected during sunny conditions are enclosed by 30 
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black circles in Fig. 2A-C and Table 5 shows statistical parameters calculated using only data 1 

from days with cloudy or overcast weather conditions. Based on Fig. 2A-C and on a 2 

comparison between statistical parameters in Table 4 and 5, no significant difference can be 3 

seen between data collected during cloudy, overcast and sunny weather conditions. Thus it is 4 

concluded that the TSEB modelling scheme can be applied to data obtained in all three 5 

weather types. However, it is worth mentioning that data collected during conditions with 6 

scattered clouds, and hence quickly changing irradiance, would lead to large variations in 7 

retrieved LST during a single flight. LST collected with UAVs are instantaneous but also a 8 

mosaic of instantaneous LST collected in a time span of 20 min. Comparing this kind of 9 

measurement to a 30 min flux average from the eddy covariance system can lead to 10 

disagreement between measured and modelled fluxes (Kustas et al., 2002).  11 

3.2 Spatial patterns in evaporation maps 12 

Combining the high spatial resolution LST with the TSEB modelling scheme, produces 13 

spatially distributed heat flux maps which reveal patterns in the evaporation which could not 14 

have been quantified through more established techniques, such as eddy covariance or when 15 

using satellite data. Twelve evaporation maps computed with DTD are shown in Appendix B.  16 

Patterns of evaporation within the barley fields are the same for TSEB-PT and DTD maps. 17 

The maps differ in size due to different flight routes, which are determined by wind direction 18 

and velocity on the given day. This study does not have access to data with same spatial 19 

resolution that could have validated the evaporation patterns. However, the irrigation system 20 

applied to the barley field constitute valid explanation for patterns seen in maps from the late 21 

growing season, which provides confidence on spatial patterns seen in all maps.   22 

During the UAV campaign the barley field was irrigated five times: 23 May, 29 May, 5 June, 23 

15 June and 25 June, 2014. On each occasion 25 mm of water was applied. Irrigation is 24 

performed with a traveling irrigation gun that is automatically pulled across the field in 25 

tramlines that run in north-south direction on northern field and east-west direction on 26 

southern field, Fig. 3. The pattern of which water is irrigated remains the same during the 27 

entire growing season. 28 

The evaporation maps from 18 June 2014 and onwards (when irrigation would plausible have 29 

made its mark on plant health) reveal significant differences within the barley fields: patterns 30 

of approx. 20 m wide blueish areas running parallel to the tramlines. The blueish color 31 
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illustrate that these areas produce less evaporation than surrounding areas. The location of 1 

areas with smaller evaporation rates corresponds well with areas where irrigation guns have 2 

not been able to irrigate as intensively as areas closer to the tramlines (Fig. 3). Areas furthest 3 

away from tramlines thus likely consist of less healthy plants which will generate higher LST 4 

and lower rates of evaporation. Recognition of very likely patterns of evaporation within the 5 

barley field demonstrates a high degree of confidence in the veracity of the spatially 6 

distributed model output. 7 

 8 

4 Conclusions and outlook 9 

Land surface temperatures (LST) were obtained with a lightweight thermal camera mounted 10 

on a UAV with the ability to cover a 400 x 400 m barley field in a single flight. Thermal 11 

images were successfully concatenated into high resolution LST-mosaics (0.2 m) that served 12 

as key boundary conditions to the two source energy balance models: TSEB-PT and DTD. In 13 

contrast to TSEB-PT, the DTD model accounts for biases in remotely sensed LST, likely to 14 

be present in images from the lightweight thermal camera. Simulated net radiation, soil-, 15 

sensible- and latent heat fluxes were in good agreement with flux measurements from an eddy 16 

covariance system, with the DTD algorithm showing superior results. Patterns from 17 

systematic irrigation on the barley field support the confidence in the veracity of the spatially 18 

distributed evaporation patterns produced by the models. A comparison between present 19 

results and results from other studies estimating surface energy fluxes from heat flux models 20 

and remotely sensed LST, reveal that data from the UAV platform and the lightweight 21 

thermal camera generates surface energy fluxes with similar accuracy as can be generated 22 

using satellite data. The UAV data can thus be used for model input and for other potential 23 

applications requiring good quality, consistent and high resolution LST.  24 

Additionally, the UAV platform accommodated validation of the applicability of the TSEB 25 

modelling scheme in cloudy and overcast weather conditions which was possible due to the 26 

low altitude of LST-retrievals compared to satellites that can only retrieve LST during clear 27 

sky conditions.  28 

Future improvements will incorporate spatially distributed optical data into the two source 29 

energy balance models in order to estimate spatially varying ancillary variables such as 30 

albedo, leaf area index and canopy height. This will enable flux estimations in areas with 31 

heterogeneous vegetation types and have a positive effect on estimations over maturing crops 32 
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when differences in irrigation may have impacted their developmental stage. Extending the 1 

present setup to other land cover types would further strengthen the applicability of thermal 2 

UAV data and presented model scheme. 3 

A calibration of the thermal camera with in situ temperatures should improve TSEB-PT 4 

results with a potential positive effect on DTD results as well.  5 

Adjustments in the TSEB modelling scheme that consider differences between satellite and 6 

UAV images might be valuable. The atmospheric path from the ground to satellites and from 7 

the ground to UAVs, differs greatly and a comparison between measured and modelled 8 

longwave radiation in this study (section 3.1) reveal that a different approach for estimating 9 

atmospheric emissivity (when using UAV data) might further improve the TSEB modelling 10 

results.  11 

 12 
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Appendix A 1 

 2 

First graph show measured and modelled net longwave radiation (Rl). Rl from 10 April and 2 3 

July 2014 are enclosed by black stars. Second graph show the error between measured and 4 

modelled Rl as percent of measured Rl compared to relative humidity at the time of UAV 5 

flights. Again measurements from 10 April and 2 July 2014 are enclosed by black stars. 6 
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Appendix B 1 

Evaporation maps from the DTD model. Black star represent location of eddy flux tower and 2 

black circles mark location of eddy covariance footprint. 3 
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Table 1 - UAV retrievals of LST, constituting 12 sets of input data to TSEB-PT and DTD. 1 

Early morning flights conducted one hour after sunrise are only used in DTD. (c) means data 2 

were collected during cloudy or overcast conditions. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 

 Early flights  

(TR,0(θ)) 

Daylight flights 

(TR,i(θ)) 

Date  Time (UTC) 

    10 April 2014   (c) 07:00     11:30     

22 April 2014   (c) 06:00 

    

14:30 

15 May 2014   05:30 

  

11:00 12:00 

 22 May 2014   (c) 05:00 08:00 09:00 11:30 12:00 

 18 June 2014   (c) 05:00 

  

11:00 12:00 

 02 July 2014   (c) 07:30 

  

11:30 

  22 July 2014   06:30 

   

12:30 
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Table 2 – Changing input parameters for each flying day. 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

Date LAI Canopy height (m) Green veg. fraction Albedosoil+veg. 

10 April 2014 0.48 0.02 1 0.142 

22 April 2014 0.88 0.08 1 0.181 

15 May 2014 1.49 0.12 1 0.182 

22 May 2014 3.90 0.30 1 0.226 

18 June 2014 4.03 0.95 0.7 0.181 

02 July 2014 3.43 1.10 0.3 0.202 

22 July 2014 3.02 1.20 0.02 0.189 
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Table 3 – Measured and modelled net radiation (Rn), sensible heat flux (H), latent heat flux 1 

(LE) and soil heat flux (G). Dates marked with (c) represent days with cloudy or overcast 2 

conditions. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

  

   
                                     Measured (W m

-2
)           TSEB-PT (W m

-2
)               DTD (W m

-2
) 

 

Date, time (UTC)  Rn H LE G Rn H LE G Rn H LE G 

10 April 2014 11:30  
(c) 

243 87 105 50 155 15 134 2 155 20 121 8 

22 April 2014 14:30  
(c) 

203 73 81 49 180 1 181 4 180 62 118 -2 

15 May 2014 11:00 
 

453 124 241 88 401 
42 330 

27 401 75 295 25 

15 May 2014 12:00 
 

619 132 385 102 600 
49 492 

54 600 97 472 26 

22 May 2014 08:00  
(c) 

270 33 206 31 284 -20 296 2 284 95 179 -1 

22 May 2014 09:00  
(c) 

306 -26 290 43 301 -48 337 10 301 63 231 1 

22 May 2014 11:30  
(c) 

406 -16 367 55 397 -33 418 14 397 101 287 6 

22 May 2014 12:00  
(c) 

440 14 365 61 436 -51 465 21 436 42 387 4 

18 June 2014 11:00  
(c) 

538 158 326 55 505 89 397 27 505 191 309 9 

18 June 2014 12:00  
(c) 

631 200 378 52 612 54 514 43 612 156 450 7 

02 July 2014 11:30  
(c) 

217 54 152 11 121 -9 135 -8 121 52 68 1 

22 July 2014 12:30 
 

479 282 161 36 511 
125 335 

52 511 211 293 6 
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Table 4 – Root mean square error (RMSE), mean absolute error (MAE) and correlation 1 

coefficient (r) computed for TSEB-PT and DTD results. Values in parenthesis are RMSE and 2 

MAE respectively as percentage (%) of measured fluxes. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

              TSEB-PT                                                   DTD 

 RMSE 

(W m
-2

) 

MAE 

(W m
-2

) 

r  RMSE 

(W m
-2

) 

MAE 

(W m
-2

) 

r 

Rn 44 (11) 33 (8) 0.98  44 (11) 33 (8) 0.98 

G 38 (72) 35 (66) 0.58  48 (91) 45 (86) 0.86 

H 85 (91) 75 (81) 0.96  59 (64) 49 (52) 0.74 

LE 94 (37) 84 (33) 0.92  67 (26) 57 (22) 0.85 
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Table 5 – Statistical parameters based on data that was collected during only cloudy and 1 

overcast weather conditions (9 dates). Root mean square error (RMSE), mean absolute error 2 

(MAE) and correlation coefficient (r) computed for TSEB-PT and DTD results. Values in 3 

parenthesis are RMSE and MAE respectively as percentage (%) of measured fluxes. 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

           TSEB-PT                            DTD 

 RMSE 

(W m
-2

) 

MAE  

(W m
-2

) 

r  RMSE 

(W m
-2

) 

MAE 

(W m
-2

) 

r 

Rn 40 (11) 32 (8) 0.99  40 (11) 32 (8) 0.99 

G 30 (66) 33 (72) 0.66  38 (83) 42 (92) 0.61 

H 63 (99) 64 (100) 0.84  53 (83) 50 (78) 0.69 

LE 69 (27) 71 (28) 0.98  46 (18) 46 (18) 0.95 
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 1 

Figure 1 - HOBE agricultural site in western Denmark (56.037644°N, 9.159383°E). The black 2 

square represents location of the eddy flux tower. The green square represents location for 3 

zoom inset on the right (RGB image obtained with Lumix camera mounted on UAV).  4 
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 1 

Figure 2 - Modelled vs measured net radiation (Rn), soil- (G), sensible- (H) and latent heat 2 

fluxes (LE). Data collected in sunny weather conditions are enclosed by black circles. 3 
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 5 
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 1 

 2 

Figure 3 – Grey lines highlight tramlines in which irrigation guns are placed at all five 3 

irrigation events in 2014. The underlying map shows evaporation patterns on 18 June 2014. 4 

Red colors are high evaporation and blue colors are low evaporation. Patterns of lower 5 

evaporation correspond well with areas being furthest away from irrigation guns. 6 
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