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Abstract 12 

Estimating evaporation is important when managing water resources and cultivating crops. 13 

Evaporation can be estimated using land surface heat flux models and remotely sensed land 14 

surface temperatures (LST), which have recently become obtainable in very high resolution 15 

using light weight thermal cameras and Unmanned Aerial Vehicles (UAVs). In this study a 16 

thermal camera is mounted on a UAV and applied into the field of heat fluxes and hydrology 17 

by concatenating thermal images into mosaics of LST and using these as input for the two 18 

source energy balance modelling scheme (TSEB). Thermal images are obtained with a fixed-19 

wing UAV overflying a barley field in western Denmark during the growing season of 2014 20 

and a spatial resolution of 0.20 m is obtained in final LST-mosaics. Two models are used: the 21 

original TSEB model (TSEB-PT) and a dual-temperature-difference model (DTD). In contrast 22 

to the TSEB-PT model, the DTD model account for the bias that is likely present in remotely 23 

sensed LST. TSEB-PT and DTD have been well tested, however only during sunny weather 24 

conditions and with satellite images serving as thermal input. The aim is to assess whether a 25 

lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to 26 

constitute as model input and thus attain accurate and high spatial and temporal resolution 27 
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surface energy heat fluxes, with special focus on latent heat flux (evaporation). Furthermore, 1 

this study evaluates the performance of the two source energy balance scheme during cloudy 2 

and overcast weather conditions, which is feasible due to the low data retrieval altitude (due 3 

to low UAV flying altitude) compared to satellite thermal data that are only available during 4 

clear sky conditions. TSEB-PT and DTD fluxes are compared and validated against eddy 5 

covariance measurements and the comparison show that both TSEB-PT and DTD simulations 6 

are in good agreement with eddy covariance measurements with DTD obtaining the best 7 

results. The DTD model provides results comparable to studies estimating evaporation with 8 

similar experimental setups, but with LST retrieved from satellites instead of a UAV. Further, 9 

systematic irrigation patterns on the barley field provide confidence to the veracity of the 10 

spatially distributed evaporation revealed by model output maps. Lastly, this study outlines 11 

and discusses the thermal UAV image processing that result in mosaics suited for model 12 

input. This study shows that the UAV platform and the lightweight thermal camera provide 13 

high spatial and temporal resolution data valid for model input and for other potential 14 

applications requiring high resolution and consistent LST.  15 

 16 

1 Introduction 17 

Evaporation (latent heat flux) serves as a key component in both hydrological and land-18 

surface energy processes. However, it is often estimated indirectly because spatially 19 

distributed, physical measurements of evaporated water are cumbersome. Provided 20 

information on net solar radiation (Rn), sensible- (H) and soil heat flux (G), the latent heat flux 21 

(LE) can be estimated as a residual using the assumption of surface energy balance in cases 22 

with no significant heat advection: 23 

𝑅𝑛 = 𝐻 + LE + 𝐺     (1) 24 

All terms in the above equation are related to the land surface temperature (LST). Since the 25 

1980s estimates of evaporation have been obtained through remotely sensed LST and 26 

advanced land surface heat flux models accounting for vegetation, soil and atmospheric 27 

conditions (Anderson et al., 1997; Kalma et al., 2008) and a large number of heat flux models 28 

exist with significant variations in physical system conceptualisation and input requirements 29 

(Boulet et al., 2012; Kustas and Norman, 1996; Stisen et al., 2008). Norman et al. (1995) 30 

applied the two source energy balance model (TSEB) (Shuttleworth and Wallace, 1985) to 31 

remotely sensed data and this modelling scheme has proven to estimate reliable surface heat 32 
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fluxes over cropland, rangeland and forest at various spatial scales (Anderson et al., 2004; 1 

Norman et al., 2003). The TSEB modelling scheme generates robust estimates of surface heat 2 

fluxes despite a simple solution scheme demanding relatively few input data. It was 3 

developed to be operational using thermal satellite images (Anderson et al., 2011) which 4 

serves as a key boundary condition in simulations. The TSEB modelling scheme partitions the 5 

remotely sensed LST into two layers; a soil temperature and a canopy temperature, using a 6 

Priestley-Taylor approximation (Priestley and Taylor, 1972). This enables a partition of heat 7 

flux estimations into its components from soil and canopy respectively. This approach is 8 

hereafter referred to as TSEB-PT in order to differentiate it from other TSEB approaches, 9 

such as TSEB-LUE (Houborg et al., 2012), based on the Light Use Efficiency concept, or 10 

TSEB-2ART, which utilizes dual angle LST observations for direct retrieval of soil and 11 

canopy temperatures (Guzinski et al., 2015).  12 

Remotely sensed LST may deviate from the actual surface temperature by several degrees 13 

Kelvin due to atmospheric and surface emissivity effects. Consequently thermal-based models 14 

utilizing remotely sensed LST that do not address this issue are prone to producing less 15 

accurate results. Trying to overcome this issue, Norman et al. (2000) developed the Dual-16 

Temperature-Difference model (DTD) by incorporating two temperature observations into the 17 

TSEB modelling scheme; one conducted an hour after sunrise and another conducted later the 18 

same day when flux estimations are desired. One hour after sunrise, the surface heat fluxes are 19 

neglectable and observations acquired at this time represent a ‘starting point’ for the 20 

temperatures collected later the same day.  For agricultural and some hydrological purposes, 21 

there is a shortcoming in spatial and temporal resolution of satellite observations (Guzinski et 22 

al., 2014). This is especially true in areas where overcast weather conditions often occur, such 23 

as in northern Europe where the present study is conducted, as satellite thermal infrared and 24 

visible observations cannot penetrate clouds (Guzinski et al., 2013). Unmanned aerial vehicles 25 

(UAVs) (or Remotely Piloted Aircraft System, RPAS, in its most recent terminology) enable 26 

a critical improvement for spatial and temporal resolution of remotely sensed data. UAVs can 27 

operate at any specific time of day and year provided that strong wind and rainfall are absent. 28 

The relative low flying height enable both data collection during overcast conditions (Hunt Jr 29 

et al., 2005) and data with higher spatial resolution than what can be obtained from satellite 30 

data. Here we hypothesis that UAV data can substitute satellite images and in combination 31 

with the presented heat flux models, can be used to generate spatially detailed heat flux maps 32 

that provide insight to different evaporation rates and plant stress at decimeter scale. There is 33 
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rapidly growing interest in the potential of data collection with UAVs, particularly in the 1 

science of precision agriculture but also in a range of different scientific and commercial 2 

communities (Díaz-Varela et al., 2015; Gonzalez-Dugo et al., 2014; Swain et al., 2010; 3 

Zarco-Tejada et al., 2013, 2014). As scientists strive to understand the potential of UAVs and 4 

the new applications to which they are suited, the development of efficient workflows, 5 

operational systems and improved software that capture and process UAV data are continuing 6 

(Harwin and Lucieer, 2012; Lucieer et al., 2014; Turner et al., 2012; Wallace et al., 2012). 7 

However, research in possibilities and limitations of UAV platforms is still at an early stage 8 

and the present paper introduces the usage of UAV platforms into the fields of heat fluxes and 9 

hydrology.  10 

In this study, surface energy balance components are estimated using LST retrieved with a 11 

UAV and used as input for the physically-based, two source energy balance models: TSEB-12 

PT and DTD.  The aim is to assess whether a lightweight thermal camera installed on board a 13 

UAV is able to provide data of sufficient quality to attain high spatial and temporal resolution 14 

surface energy heat fluxes. Besides facilitating high resolution LST, the UAV platform enable 15 

the application of TSEB-PT and DTD models in cloudy and overcast weather conditions. 16 

Model outputs are quantitatively validated with data from an eddy covariance system located 17 

at the same barley field over which the UAV flights were conducted and known irrigation 18 

patterns provide confidence to the spatially distributed evaporation variations revealed within 19 

the barley field. Additionally, this study outline thermal UAV image processing which result 20 

in mosaics suited for model input. 21 

 22 

2 Materials and methods 23 

2.1 Site 24 

The TSEB models are applied in the HOBE (Hydrological OBsErvatory) agricultural site 25 

within the Skjern River catchment, western Denmark, see Fig. 1. The 400 x 400 m site is 26 

located in the maritime climate zone where mild winters and cold summers result in a mean 27 

annual temperature of 8.2˚C and a mean annual precipitation of 990 mm. The prevailing 28 

winds are westerly and windy conditions are common; with 30% of wind in 2014 coming 29 

from westerly direction and an average wind speed of 3.8 ms
-1

. Cloudy and overcast weather 30 

conditions are frequent with 1727 hours of sunshine in 2014, which is 16% above normal 31 
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(Cappelen, 2015). The site is cultivated with barley during UAV campaign and a plow layer 1 

of homogeneous sandy loam soil constitutes the upper layer of the soil profile.  Course sand is 2 

found from 0.25 m and downwards. Soil porosity of the upper 1 m range between 0.35 and 3 

0.40 and the available soil water [pF 2.0–4.2, suction pF = log10(suction in centimeters of 4 

water)] is 19% (vwater/vsoil) in the upper 0.20 m of the plow layer and only 6% (vwater/vsoil) in 5 

the remaining part of the root zone, necessitating frequent irrigation to maintain crop growth 6 

during growing seasons (Ringgaard et al., 2011). The overall area is somewhat heterogeneous 7 

consisting of three barley fields separated by a gravel road to the south and a row of conifers 8 

to the west. Conifers are bordering the barley fields at several places. A meteorological tower 9 

with an eddy covariance system consisting of a Gill R3-50 sonic anemometer and a LI-7500 10 

open path infrared gas analyser, is located in the middle of the site (black square in Fig. 1). 11 

Meteorological data used as input to the models and as heat flux-validation are measured at 12 

this tower.  13 

2.2 UAV campaign 14 

UAV data was collected on seven days distributed evenly during spring and summer 2014 15 

(Table 1). In total 19 flights were conducted, of which 7 were flown early in the morning, 16 

constituting the additional input data for the DTD model. The entire airborne campaign thus 17 

resulted in 12 sets of input data for the TSEB-PT and DTD model. Dates with (c) in Table 1 18 

mark days where the UAV flights were conducted in cloudy or overcast conditions. 19 

A fixed-wing UAV (Q300, QuestUAV, UK) with a wingspan of 2.2 m was used as platform 20 

for the airborne operations. It was able to carry a payload of 2 kg for approximately 25 min in 21 

the air. With a speed of 60 km h
-1

 and flying height of 90 m above ground, the 400×400 m site 22 

area was covered in a single flight. The UAV was controlled by the SkyCircuits Ltd SC2 23 

autopilot in a dual redundant system with separate laptop and transmitter control. 24 

Communication between autopilot and ground was performed by a radio link that transmits 25 

position and attitude. Landing was conducted manually using the transmitter. SkyCircuits 26 

Ground Control Station software was used for generating the flight route and for visual 27 

inspection of the UAV, while it was is in the air.   28 
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2.3 Thermal data and image processing 1 

An Optris PI 450 LightWeight infrared camera of 380 g was mounted on the UAV. The 2 

camera detects infrared energy in the 7.5-13 µm thermal spectrum and surface temperatures 3 

were computed automatically using a fixed emissivity of unity. Thermal images were stored 4 

at 16 bit radiometric resolution. According to manufacturer specifications, the system has an 5 

accuracy of +/- 2°C or +/- 2% at an ambient temperature of 23+/-5 °C. The thermal detector 6 

within the camera collects an image array of 382×288 pixels with a nadir viewing footprint of 7 

50×40 m per image at 90 m flying height, resulting in an effective ground resolution of 8 

approx. 0.13 m per pixel.  9 

Time synchronization between camera and autopilot was necessary in order to link the logged 10 

GPS and rotation position with each image. This was performed before launching the UAV 11 

with a USB GPS connected to the camera thus synchronizing the timestamp on each image 12 

with the GPS clock. Timestamps were recorded in UTC time and accurate to within 1 second. 13 

Re-calculation of camera position was therefore necessary and performed using a self-14 

calibrating bundle adjustment in Agisoft PhotoScan software (Professional Edition version 15 

1.0.4). No ground control points were used, nor needed, during camera alignment and bundle 16 

adjustment.  Images were converted into unsigned 16 bit data to enable processing in 17 

Photoscan. 18 

Between 700 and 1000 images were collected for each flight with camera recording in 19 

continuous mode, triggering an image every second. Generally half of the images were 20 

suitable for further processing. Non-suitable images occur due to strong gusts of wind 21 

affecting flight velocity which causes poor quality recording and blurry images. Images 22 

collected during take-off and landing were likewise discarded before post-processing. In 23 

addition to re-calculating the camera positions, the self-calibrating bundle adjustment 24 

computed three dimensional point clouds from which thermal ortho-mosaics were built using 25 

a mean value composition. The view zenith angle of ortho-mosaics was set to 0° for all pixels, 26 

hence the largest possible amount of soil was assumed visible.  27 

The thermal mosaics served as key boundary conditions to TSEB-PT and DTD. Resulting 28 

resolution on thermal mosaics from midday flights was 0.20 m. However, the software was 29 

not able to mosaic the early morning data, presumably because temperatures were too 30 

homogeneous to enable the detection of common features between images needed for the 31 

bundle adjustment. Consequently, LST from early morning flights were extracted manually 32 
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and only the average LST for the barley fields was used as the additional data input for DTD 1 

model runs. This average was a satisfying representation of sunrise LST because of its 2 

homogenous nature. 3 

2.4 Heat flux models 4 

The original TSEB model developed by Norman et al. (1995) is a two-layer model of 5 

turbulent heat exchange. Observations of remotely sensed LST are split into two layers: a 6 

canopy (TC) and a soil (TS) temperature. This is performed with the Priestley-Taylor 7 

approximation that partitions the divergence of net radiation in the canopy into sensible and 8 

latent heat fluxes. The initial estimate of canopy sensible heat flux is used to split LST into 9 

canopy and soil temperatures, enabling separation of sensible and latent heat flux between 10 

canopy and soil. Further it enables a simpler parameterisation of resistances compared to 11 

single layer models (Monteith, 1965) as no empirical excess resistance adjustment is needed 12 

for the calculation of the bulk sensible heat flux (Norman et al. 1995). The excess resistance 13 

term is used in single-layer models in order to correct for a substitution of directional 14 

radiometric temperature for aerodynamic temperature when calculating sensible heat fluxes 15 

(Eq. 5, 8 and 9 in Norman et al. (1995)).  The TSEB modelling scheme uses directional 16 

radiometric temperature (collected with the thermal camera and UAV) and therefore no 17 

substitution of temperatures or correction via the excess resistance is needed. Section 2.2.1 18 

and 2.2.2 contain equations of relevance for the present study and highlight the difference 19 

between TSEB-PT and DTD computations. 20 

2.4.1 TSEB-PT 21 

Net radiation (Rn) and the three resistances in this soil-canopy-atmosphere heat flux network: 22 

the aerodynamic resistance to heat transfer (RA), the resistance to heat transport from soil 23 

surface (RS) and the total boundary layer resistance of leaf canopy (RX) (all in s m
-1

)
 
remain 24 

constant during the individual model runs. For calculations of RA and RS, see Norman et al. 25 

(2000) Eq. 10 and 11, for calculations on RX see Norman et al. (1995) Eq. A8.  26 

Rn is calculated as a sum of short- and long wave radiation: 27 

𝑅𝑛 = (𝑅𝑠,𝑖𝑛 − 𝑅𝑠,𝑜𝑢𝑡) + (𝑅𝑙,𝑖𝑛 − 𝑅𝑙,𝑜𝑢𝑡)    (2) 28 

𝑅𝑠,𝑖𝑛 − 𝑅𝑠,𝑜𝑢𝑡 = 𝑅𝑠,𝑖𝑛(1 − 𝛼)    (3) 29 

𝑅𝑙,𝑖𝑛 − 𝑅𝑙,𝑜𝑢𝑡 = 𝜖𝑠𝑢𝑟𝑓𝜖𝑎𝑡𝑚𝜎𝑇𝐴
4 − 𝜖𝑠𝑢𝑟𝑓𝜎𝑇(𝜃)𝑅

4)    (4) 30 
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where Rs, Rl is short- and long wave radiation respectively and in and out refers to the direction 1 

of the radiation, α is the combined vegetation and soil albedo which was estimated from 2 

incoming and outgoing short wave radiation from a four-component radiation sensor (NR01, 3 

Hukseflux Thermal Sensor). Albedo for bare soil was measured before the first barley shouts 4 

appeared on the surface and was kept fixed (although some changes are expected with soil 5 

humidity) whereas albedo for vegetation was retrieved for each flying day and hence varied 6 

between individual model runs. Combined vegetation and soil albedo for each flying day is 7 

shown in Table 2. 𝜎 is Stefan-Boltzman constant, TA is air temperature (K) attained from the 8 

meteorological tower (section 2.1), T(θ)R is radiometric land surface temperature (K) which in 9 

the present study is collected with a UAV. 𝜖surf is combined vegetation and soil emissivity 10 

obtained under similar conditions from Guzinski et al. (2014) and 𝜖atm is atmosphere 11 

emissivity computed as in Brutsaert (1975): 12 

 ϵatm = 1.24(
𝑒𝑎

𝑇𝐴
)0.14286      (5) 13 

where ea is water vapor pressure (mb) attained from meteorological tower.  14 

Assuming neutral atmospheric stability and the Monin-Obukhov length tending to infinity, the 15 

iterative part of the model is then initiated.  16 

During first iteration the net radiation divergence, partitioning Rn into radiation reaching the 17 

soil (Rn,S) and the canopy (Rn,C) respectively, is computed as in (Norman et al., 2000): 18 

∆𝑅𝑛 = 𝑅𝑛 [1 − exp(
−ĸ𝐹Ω0

√2cos(𝜃𝑠)
)]    (6) 19 

Where Ω0 is the nadir view clumping factor that depends on the ratio of vegetation height to 20 

plant crown width which is set to 1.0,  θs is the sun zenith angle calculated by model from 21 

time of the day, ĸ is an extinction coefficient varying smoothly from 0.45 for LAI more than 2 22 

to 0.8 for LAI less than 2, and F is the total Leaf Area Index (LAI). Measurements of LAI 23 

were obtained with a canopy analyzer LAI2000 instrument three times during the UAV 24 

campaign: 21 May 2014, 3 June 2014 and 18 June 2014 and an average from six locations in 25 

the northern and southern barley fields were computed for each day. LAI values for each 26 

model run were extrapolated from these measurements taking canopy height and fraction of 27 

green vegetation into account.  28 

Sensible heat flux of the canopy can thus be estimated using the Priestley-Taylor 29 

approximation: 30 
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𝐻𝐶 = ∆𝑅𝑛 (1 − 𝛼𝑃𝑇𝑓𝑔
𝑠𝑝

𝑠𝑝+𝛾
)    (7) 1 

Where αPT is the Priestley-Taylor parameter set to an initial value of 1.26 assuming unstressed 2 

vegetation transpiration (Priestley and Taylor, 1972), fg is fraction of vegetation that is green 3 

which was estimated in situ for each flying day (Table 2), sp is the slope of saturation 4 

pressure curve and γ is the psychometric constant, both obtained from Allen et al. (1998). 5 

Using the sensible heat flux from canopy, canopy temperature (TC) can be computed using 6 

Eq. A7, A11, A12 and A13 from Norman et al. (1995). Calculations of soil temperature (TS) 7 

can thus be performed:  8 

𝑇𝑆 = (
𝑇𝑅
4−𝑓𝜃𝑇𝐶

4

1−𝑓𝜃
)
0.25

     (8) 9 

Where fθ is fraction of view of radiometer covered by vegetation calculated as 𝑓𝜃 = 1 −10 

exp(
−0.5Ω𝜃𝐹

cos(𝜃)
), where Ωθ is the clumping factor at view zenith angle (θ). 11 

With known resistances and temperatures, fluxes are then calculated in the following 12 

sequence (all in W m
-2

): 13 

𝐻𝐶 = 𝜌𝑐𝑝
𝑇𝐶−𝑇𝐴𝐶

𝑅𝑋
     (9) 14 

Where HC is sensible heat flux from canopy, ρ is air density (kg m
-3

), cp is specific heat of air 15 

(J kg
-1

 K
-1

) and TAC is inter-canopy air temperature (K) computed with TA, TS, TC, and 16 

resistances. 17 

Canopy latent heat flux: 18 

LEC = ∆𝑅𝑛 − 𝐻𝐶     (10) 19 

Sensible heat flux from soil: 20 

𝐻𝑆 = 𝜌𝑐𝑝
𝑇𝑆−𝑇𝐴𝐶

𝑅𝑆
     (11) 21 

Soil heat flux is computed following Liebethal and Foken (2007): 22 

𝐺 = 0.3𝑅𝑛,𝑠 − 35      (12) 23 

Where Rn,S is net radiation that reaches the soil surface computed as 𝑅𝑛,𝑆 = 𝑅𝑛 − ∆𝑅𝑛. 24 

LES = 𝑅𝑛,𝑆 − 𝐺 − 𝐻𝑆     (13) 25 
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Now it is possible to calculate the total sensible (H) and latent heat fluxe (LE) as a summation 1 

of their canopy and soil components: 𝐻 = 𝐻𝐶 + 𝐻𝑆 and LE = LEC + LES. 2 

The Monin-Obukhov length is then re-calculated according to Brutsaert (2005) Eq. 2.46 and 3 

the iterative part of the model is re-run until the Monin-Obukhov length converges to a stable 4 

value, at which point the final flux values are attained. 5 

2.4.2 DTD 6 

The DTD model described in Norman et al. (2000) is a further development of the TSEB-PT 7 

model. DTD similarly divides the observed LST into vegetation and soil temperatures and 8 

computes surface energy balance components following virtually the same procedure. 9 

However, DTD accounts for the discrepancy between the fact that the TSEB modelling 10 

scheme is sensitive to the temperature difference between land surface and air, and that 11 

absolute LST retrieved from remote sensing data are regarded as inaccurate. This is accounted 12 

for by adding an additional input dataset: LST retrieved one hour after sunrise when energy 13 

fluxes are minimal. The modelled fluxes are hence based on a temperature difference between 14 

the two observations, which is assumed to be a more robust parameter compared to a single 15 

retrieval of remotely sensed temperature as it minimizes consistent bias in the temperature 16 

estimates. The essential equation that differs between TSEB-PT and DTD is the one 17 

computing sensible heat flux. In the series implementation of DTD the linear approximation 18 

of Eq. (2) is taken together with Eq. (7) to (9) and applied at midday and one hour after 19 

sunrise and subsequently subtracted from each other to arrive at the following: 20 

𝐻𝑖 = 𝜌𝑐𝑝 [
(𝑇𝑅,𝑖(𝜃𝑖)−𝑇𝑅,0(𝜃0))−(𝑇𝐴,𝑖−𝑇𝐴,0)

(1−𝑓(𝜃𝑖))𝑅𝑆,𝑖+𝑅𝐴,𝑖
] + 𝐻𝐶,𝑖 [

(1−𝑓(𝜃𝑖))𝑅𝑆,𝑖−𝑓(𝜃𝑖)𝑅𝑋,𝑖

(1−𝑓(𝜃𝑖))𝑅𝑆,𝑖+𝑅𝐴,𝑖
] (14) 21 

where subscripts i and 0 refer to observations at midday and one hour after sunrise 22 

respectively. Since the early morning (time 0) sensible heat fluxes are negligible they are 23 

omitted in the above equation. 24 

Computations of soil heat flux (G) also differ because the difference in radiometric 25 

temperature between sunrise and midday observations can be used as an approximation of the 26 

diurnal variation in soil surface temperature. Soil heat flux computations are derived from the 27 

soil heat flux model of Santanello and Friedl  (2003): 28 

𝐺 = 𝑅𝑛,𝑆𝐴cos(2π
t+10800

B
)    (15) 29 
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Where t is time in seconds between the observation time and solar noon, 𝐴 = 0.0074∆𝑇𝑅 +1 

0.088,  𝐵 = 1729∆𝑇𝑅 + 65013 and ΔTR is an approximation of the diurnal variation in the 2 

soil surface temperature from UAV data. 3 

For an in-depth review of the TSEB-PT and DTD models including all equations, see 4 

Guzinski et al., (2014) and Guzinski et al. (2015). 5 

2.5 Footprint extraction from model output maps  6 

In order to compare modelled Rn, H, G and LE to measurements from the eddy covariance 7 

system, a single representative value from each TSEB-PT and DTD output map has to be 8 

extracted in accordance with the coverage of eddy covariance footprints. Each eddy flux 9 

measurement represents an area for which the size, shape and location are determined by 10 

surface roughness, atmospheric thermal stability and wind direction at a given time – in this 11 

case UAV flight times. Sensible and latent heat fluxes are extracted from TSEB-PT and DTD 12 

maps using a two-dimensional footprint analysis approach as described in Detto et al. (2006). 13 

The twelve footprint outputs were applied to corresponding maps of sensible and latent heat 14 

fluxes by weighing each modelled pixel according to the contribution of that pixel’s location 15 

to the measured flux. Approximations of the 70 % eddy flux footprint-coverages are shown in 16 

Appendix B. Net radiation and soil heat flux measurements have footprints that are much 17 

smaller than sensible and latent heat flux measurements and values from Rn and G output 18 

maps were extracted from a 5×5 m area on the barley field next to the eddy flux tower. 19 

2.6 Validation data 20 

An eddy covariance system consisting of a Gill R3-50 sonic anemometer and a LI-7500 open 21 

path infrared gas analyzer was mounted 6 m above ground in the middle of the site (see Fig. 22 

1).  Wind components in three dimensions and concentrations of water vapor were measured 23 

at 10 Hz. Sensible and latent heat fluxes for validation of model outputs were computed from 24 

the eddy covariance system using EddyPro 5.1.1 software (Fratini and Mauder, 2014). 25 

Computations include two dimensional coordinate rotation, block averaging of measurements 26 

in 30 min windows, corrections for density fluctuations (Webb et al., 1980), spectral 27 

corrections (Moncrieff et al., 2005; Moncrieff, J B et al., 1997) and measurement quality 28 

checking according to Mauder and Foken (2006). Furthermore, the computed heat fluxes were 29 

subject to an outlier quality control following procedures described in Papale et al. (2006). 30 
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Short- and long wave, incoming and outgoing radiation and soil heat fluxes were measured 1 

with a Hukseflux four component net radiometer (model NR01) and heat flux plate (model 2 

HFP01). Gap-filling of the validation data was not required because no gaps in the data 3 

occurred during the twelve flights. When applying the surface energy balance expression any 4 

residual was assigned to latent heat flux, as recommended by Foken et al. (2011). This 5 

ensures energy balance closure and comparability with TSEB-PT and DTD modelled fluxes. 6 

The average-size of residuals from the twelve datasets was 9 %. 7 

 8 

3 Results and discussion 9 

TSEB-PT and DTD models are executed twelve times with data collected on seven days 10 

during the spring and summer of 2014. Spatially distributed maps of net radiation, soil-, 11 

sensible- and latent heat fluxes are attained with resolutions of 0.20 m.  12 

3.1 Comparison between fluxes from UAV data and eddy covariance 13 

Modelled fluxes attained with thermal UAV data and measured fluxes from the eddy 14 

covariance system are shown in Table 3. As expected, there are large variations throughout 15 

the season determined primarily by time of year and time of day – dates and hours with 16 

potentially large incoming solar radiation (summer and midday) contain potential for largest 17 

evaporation. Figure 2A-C show modelled versus measured fluxes and a statistical comparison 18 

is presented in Table 4. Calculations for Rn are alike in TSEB-PT and DTD and generally in 19 

good agreement with measured Rn with a RMSE value of 44 W m
-2

 (11 %) and a correlation 20 

coefficient (r) of 0.98 (Table 4). Simulated Rn from 10 April and 2 July 2014 are in less good 21 

agreement with measured Rn and are underestimated with 88 W m
-2

 and 96 W m
-2

 22 

respectively. Modelled Rn consists of short- and longwave incoming and outgoing radiation 23 

(Rs,in, Rs,out, Rl,in, Rl,out) of which Rs,in is provided as model input from eddy tower 24 

measurements.  This contributes positively to the agreement between modelled and measured 25 

Rn but it cannot be assigned to model performance or the quality of collected temperature data. 26 

Therefore a comparison is also conducted between modelled and measured net longwave 27 

radiation (Rl), which as opposed to modelled and measured Rn, are entirely independent of 28 

each other. The TSEB modelling scheme produce Rl estimates to a satisfactory level if results 29 

from 10 April and 2 July are not regarded, see appendix A. Rl estimates depend on 30 

atmospheric emissivity which in the TSEB modelling scheme are calculated with Eq. 5 (from 31 
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Brutsaert (1975)). Eq. 5 builds on the assumption of exponential atmospheric profiles for 1 

temperature, pressure and humidity. The stability of atmosphere is affected by relative 2 

humidity (RH) (Herrero and Polo, 2012) and errors between measured and modelled Rl are 3 

related to RH in second graph in appendix A. It is seen that there’s a correlation between the 4 

highest errors and the highest RH. This suggests that assumptions behind Eq. 5 might not be 5 

met on 10 April and 2 July. Different approaches for estimating Rl could have been chosen for 6 

these two dates (e.g. Brutsaert (1982)) but for simplicity the approach presented in Brutsaert 7 

(1975) is maintained for all dates. Appendix A show that if algorithm-assumptions are met, 8 

UAV collected surface temperatures can be satisfactorily used to estimate Rl using the TSEB 9 

scheme. Eq. 5 also builds on the assumption of clear skies. Since poor simulations of Rl is not 10 

significant in data collected in overcast conditions, the larger incoming longwave radiation 11 

due to clouds might compensate for the smaller path between UAV and surface, compared to 12 

between satellite and surface.  13 

Sensible heat fluxes (H) are generally well estimated by both models. TSEB-PT sensible heat 14 

fluxes are consistently underestimated, however r is better (in contrast to RMSE and MAE) 15 

than r calculated for DTD. This implies a better linear relation between measured and 16 

modelled sensible heat flux from TSEB-PT, see Fig. 2B. The DTD model computes slightly 17 

more scattered sensible heat fluxes but results do not show any systematic errors – they are 18 

centered around measured values and are generally in better accordance with measured fluxes 19 

with RMSE and MAE values of 59 W m
-2

 (64 %) and 49 W m
-2 

(52 %), compared to TSEB-20 

PT RMSE and MAE values of 85 W m
-2 

(91 %) and 75 W m
-2 

(81 %).  21 

Soil heat fluxes (G) are generally underestimated by both algorithms and RMSE and MAE 22 

values of 48 W m
-2

 (91 %) and 45 W m
-2 

(86 %), and 38 W m
-2 

(72 %) and 35 W m
-2

 (66 %) 23 

are obtained from DTD and TSEB-PT respectively. G was measured from two heat flux 24 

plates located approximately 3 cm below the surface. Heat flux plates might not provide the 25 

best estimate of energy partitioning at the surface (Jansen et al., 2011) which could lead to 26 

uncertainties in measured G. Further, the difference between heat conduction of soil and air 27 

create a discrepancy between measured G and H and LE, since fast changes in Rn (as a 28 

consequence of intermittent cloud cover) will have a faster response in H and LE than in G 29 

(Gentine et al., 2012). The TSEB modelling scheme does not account for the delay in G 30 

response and therefore also a discrepancy between measured and modelled G will occur. 31 

However the magnitude of G is small compared to the remaining surface energy fluxes and 32 
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therefore has a comparably small impact on LE estimations even though it is computed as a 1 

residual of Rn, H and G. 2 

Modelled latent heat flux (LE) is in good agreement with measured latent heat fluxes. As a 3 

consequence of underestimation of sensible heat flux in TSEB-PT simulations, a small 4 

overestimation of TSEB-PT latent heat flux is seen (Fig. 2C). DTD latent heat flux is again 5 

more scattered but with lower RMSE and MAE values of 67 W m
-2

 (26 %) and 57 W m
-2

 (22 6 

%), compared to TSEB-PT RMSE and MAE values of 94 W m
-2

 (37 %) and 84 W m
-2 

(33 %).  7 

The DTD algorithm generally produces results in better accordance with measurements and is 8 

concluded to be a better algorithm when simulating heat fluxes with present experimental 9 

setup. This suggests a consistent bias in the UAV derived LST which can be corrected by 10 

subtracting the early morning observations from the midday ones and demonstrates the 11 

robustness and added utility of the DTD approach. A calibration of the camera with in situ 12 

temperatures would likely have improved TSEB-PT heat flux computations. Further a 13 

conversion of brightness temperature to actual LST using a spatially distributed emissivity 14 

would presumably improve both TSEB-PT and DTD results. In average there was a 95 % 15 

overlap between the coverage of eddy flux footprints and the model output maps from all 16 

twelve datasets. The lacking percentages of fluxes from maps were simply added from the 17 

flux values obtained from overlapping eddy flux footprints and maps. This introduces a small 18 

uncertainty to the extraction of flux values from model output and thus also to the comparison 19 

between measured and modelled H and LE.  20 

Guzinski et al. (2014) applied their TSEB-PT study to the same field site as the present study 21 

but they used thermal satellite images from Landsat as boundary conditions as opposed to 22 

thermal UAV images. A comparison between the two studies shows similar accurate results. 23 

Guzinski et al. (2014) achieve RMSEs of 46 W m
-2 

for Rn, 56 W m
-2

 for H and 66 W m
-2

 for 24 

LE (Table 2, column NDH in Guzinski et al. (2014)). This study achieves RMSEs of 44 W m
-2 

25 

for Rn, 59 W m
-2

 for H and 67 W m
-2

 for LE, using the DTD model. r is likewise similar 26 

between the two studies. However, when Guzinski et al. (2014) uses both MODIS and 27 

Landsat data to disaggregate DTD fluxes, modelled sensible and latent heat fluxes were in 28 

better agreement with the observed fluxes (Table 2, column EF in Guzinski et al. (2014)). 29 

Further, a comparison between this study and other studies seeking to estimate surface fluxes 30 

from remotely sensed data (such as Colaizzi et al. (2012); Guzinski et al. (2013); Norman et 31 

al. (2000)) show that measured and modelled fluxes are in same order of agreement. 32 
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Contrary to studies using satellite images, the majority of data in this study is retrieved under 1 

cloudy or overcast conditions. Data collected during sunny conditions are enclosed by black 2 

circles in Fig. 2A-C and Table 5 shows statistical parameters calculated using only data from 3 

days with cloudy or overcast weather conditions. Based on Fig. 2A-C and on a comparison 4 

between statistical parameters in Table 4 and 5, no significant difference can be seen between 5 

data collected during cloudy, overcast and sunny weather conditions. Thus it is concluded that 6 

the TSEB modelling scheme can be applied to data obtained in all three weather types. 7 

However, it is worth mentioning that data collected during conditions with scattered clouds, 8 

and hence quickly changing irradiance, would lead to large variations in retrieved LST during 9 

a single flight. LST collected with UAVs are instantaneous but also a mosaic of instantaneous 10 

LST collected in a time span of 20 min. Comparing this kind of measurement to a 30 min flux 11 

average from the eddy covariance system can lead to disagreement between measured and 12 

modelled fluxes (Kustas et al., 2002).  13 

The view zenith angle of ortho-mosaics was set to 0° (section 2.3). However the maximum 14 

view zenith angle of the thermal camera is 15° and setting a theoretical view zenith angle to 15 

0° could lead to a small overestimation of latent heat flux. Any bias due to the 0° view zenith 16 

angle in models could maybe have been accommodated using a maximum value composition 17 

(instead of a mean value composition) when generating LST-mosaics. However, a mean value 18 

composition was used because the mosaics produced with this method compared well with 19 

mosaics produced manually in which the edges of each image were removed. Edges were 20 

removed in order to eliminate the vignetting effect, which generally affects thermal images in 21 

particular and therefore also the images collected in this study.  Using a mean value 22 

composition is thus assumed to enable the usage of entire images without eliminating or 23 

correcting for vignetting effects. Using entire images allow a larger image overlap which is 24 

crucial when images are mosaicked in Photoscan. The difference between using a mean and a 25 

maximum value composition was approx. 0.3° Kelvin and 5 W m
-2

 latent heat flux for mosaic 26 

from 10 April 2014. 27 

Disagreement between measured and modelled fluxes may also be due to the presented 28 

approach of handling the residual between eddy covariance surface energy fluxes. The 29 

average-size of residuals from the twelve datasets was as mentioned 9 % (section 2.6). A 30 

different approach to handling the energy balance residual (e.g Foken, 2008) would lead to 31 

slightly different results in the comparison between measured and modelled fluxes.   32 
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3.2 Spatial patterns in evaporation maps 1 

The TSEB modelling scheme, with input of high spatial resolution temperatures, produce 2 

spatially distributed heat flux maps which reveal patterns in the evaporation which could not 3 

have been quantified through more established techniques, such as eddy covariance systems 4 

or when using satellite data. Twelve evaporation maps computed with DTD are shown in 5 

Appendix B.  Patterns of evaporation within the barley fields are the same for TSEB-PT and 6 

DTD maps. The maps differ in size due to different flight routes, which are determined by 7 

wind direction and velocity on the given day. This study does not have access to data with 8 

same spatial resolution that could have validated the evaporation patterns. However the 9 

irrigation system applied to the barley field constitute valid explanation for patterns seen in 10 

maps from the late growing season, which provides confidence on spatial patterns seen in all 11 

maps:   12 

During the UAV campaign the barley field was irrigated five times: 23 May, 29 May, 5 June, 13 

15 June and 25 June, 2014. On each occasion 25 mm of water was applied. Irrigation is 14 

performed with a traveling irrigation gun that is automatically pulled across the field in 15 

tramlines that run in north-south direction on northern field and east-west direction on 16 

southern field, Fig. 3. The irrigation tubing has to be moved manually to a new tramline when 17 

the distance of one tramline has been traveled and the pattern of which water is irrigated 18 

remains the same during entire growing season. 19 

The evaporation maps from 18 June 2014 and onwards (when irrigation would plausible have 20 

made its mark on plant health) reveal significant differences within the barley fields: patterns 21 

of approx. 20 m wide blueish areas running parallel to the tramlines. The blueish color 22 

illustrate that these areas produce less evaporation than the surrounding field. The location of 23 

these areas corresponds well with areas where irrigators running in tramline trails have not 24 

been able to irrigate as intensively as areas closer to the tramlines (Fig. 3). These areas likely 25 

consist of less healthy plants which will generate higher LST and lower rates of evaporation. 26 

Recognition of very likely patterns of evaporation within the barley field demonstrates a high 27 

degree of confidence in the veracity of the spatially distributed model output. 28 

 29 
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4 Conclusions and outlook 1 

Land surface temperatures (LST) were obtained with a lightweight thermal camera mounted 2 

on a UAV with the ability to cover a 400 x 400 m barley field in both sunny, cloudy and 3 

overcast weather conditions. Thermal images were successfully concatenated into LST-4 

mosaics that served as key boundary condition to the two source energy balance models: 5 

TSEB-PT and DTD. Simulated net radiation, soil-, sensible- and latent heat fluxes were in 6 

good agreement with flux measurements from an eddy covariance system located at same 7 

barley field at which the UAV flights were conducted, with the DTD simulations showing 8 

better agreement with measurements.  In contrast to TSEB-PT, the DTD model accounts for 9 

the bias in remotely sensed LST, likely to be present in images from the lightweight thermal 10 

camera. Systematic irrigation patterns on the barley field support the confidence in the 11 

veracity of the spatially distributed evaporation patterns produced by the models. A 12 

comparison between present results and results from other studies estimating surface energy 13 

fluxes from heat flux models and remotely sensed LST, reveal that the UAV platform and the 14 

lightweight thermal camera provide good quality, high spatial and temporal resolution data 15 

that can be used to generate surface energy fluxes with similar accuracy as can be generated 16 

using satellite data. LST-mosaics can be used for model input and for other potential 17 

applications requiring high resolution and consistent LST. Additionally, the UAV platform 18 

accommodated validation of the applicability of the TSEB modelling scheme in cloudy and 19 

overcast weather conditions which was possible due to the low altitude retrieval of LST 20 

compared to satellite retrievals of LST which are only feasible during clear sky conditions.  21 

Future improvements will incorporate spatially distributed optical data into the two source 22 

energy balance models in order to estimate spatially varying ancillary variables such as 23 

albedo, leaf area index and canopy height. This will enable flux estimations in areas with 24 

heterogeneous vegetation types and have a positive effect on estimations over maturing crops 25 

when differences in irrigation may have impacted their developmental stage.  26 

Extending the present setup to other land cover types would further strengthen the 27 

applicability of thermal UAV data and presented model scheme. A calibration of the thermal 28 

camera with in situ temperatures should improve TSEB-PT results with a potential positive 29 

effect on DTD results as well.  30 

Adjustments in the TSEB modelling scheme that consider differences between satellite and 31 

UAV images might be valuable. The atmospheric path from the ground to satellites and from 32 
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the ground to UAVs, differs greatly and a comparison between measured and modelled 1 

longwave radiation reveal that a different approach for estimating atmospheric emissivity 2 

(when using UAV data) might influence results positively. 3 

 4 
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Appendix A 1 

 2 

First graph show measured and modelled net longwave radiation (Rl). Rl from 10 April and 2 3 

July 2014 are enclosed by black stars. Second graph show the error between measured and 4 

modelled Rl as percent of measured Rl compared to relative humidity at the time of UAV 5 

flights. Again measurements from 10 April and 2 July 2014 are enclosed by black stars. 6 

 7 
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Appendix B 1 

Evaporation maps from the DTD model. Black star represent location of eddy flux tower and 2 

black circles mark location of eddy covariance footprint. 3 

 4 



21 

 

 1 



22 

 

 1 



23 

 

Acknowledgements 1 

This work has been carried out within the HOBE project, funded by the Villum Foundation. 2 

Also thanks to Lars Rasmussen and Anton Thomsen for their work in the field that among 3 

others ensure flux tower measurements. Further, we are grateful to the Quantalab team at IAS, 4 

especially Alberto Hornero Luque, for helping out with thermal camera settings and to Gorka 5 

Mendiguren González for providing technical support for footprint applications. Lastly, 6 

thanks to Arko Lucieer and his team at University of Tasmania for their willingness to 7 

provide general UAV supervision. 8 

 9 

References 10 

Allen, R. G., Pereira, L. S., Raes, D., Smith, M. and others: Crop evapotranspiration-11 

Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, 12 

FAO Rome, 300(9), D05109, 1998. 13 

Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P. and Mecikalski, J. R.: A two-14 

source time-integrated model for estimating surface fluxes using thermal infrared remote 15 

sensing, Remote Sens. Environ., 60(2), 195–216, doi:10.1016/S0034-4257(96)00215-5, 1997. 16 

Anderson, M. C., Norman, J. M., Mecikalski, J. R., Torn, R. D., Kustas, W. P. and Basara, J. 17 

B.: A multiscale remote sensing model for disaggregating regional fluxes to 18 

micrometeorological scales, J. Hydrometeorol., 5(2), 343–363, 2004. 19 

Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., 20 

González-Dugo, M. P., Cammalleri, C., d’Urso, G., Pimstein, A. and Gao, F.: Mapping daily 21 

evapotranspiration at field to continental scales using geostationary and polar orbiting satellite 22 

imagery, Hydrol. Earth Syst. Sci., 15(1), 223–239, doi:10.5194/hess-15-223-2011, 2011. 23 

Boulet, G., Olioso, A., Ceschia, E., Marloie, O., Coudert, B., Rivalland, V., Chirouze, J. and 24 

Chehbouni, G.: An empirical expression to relate aerodynamic and surface temperatures for 25 

use within single-source energy balance models, Agric. For. Meteorol., 161, 148–155, 26 

doi:10.1016/j.agrformet.2012.03.008, 2012. 27 

Brutsaert, W.: On a derivable formula for long-wave radiation from clear skies, Water Resour. 28 

Res., 11(5), 742–744, doi:10.1029/WR011i005p00742, 1975. 29 

Cappelen, J.: Danmarks klima 2014 - with English Summary. DMI Tech. Rep. 15-01. Danish 30 

Meteorol. Inst., Copenhagen, 2015. 31 

Colaizzi, P. D., Kustas, W. P., Anderson, M. C., Agam, N., Tolk, J. A., Evett, S. R., Howell, 32 

T. A., Gowda, P. H. and O’Shaughnessy, S. A.: Two-source energy balance model estimates 33 

of evapotranspiration using component and composite surface temperatures, Adv. Water 34 

Resour., 50, 134–151, doi:10.1016/j.advwatres.2012.06.004, 2012. 35 



24 

 

Detto, M., Montaldo, N., Albertson, J. D., Mancini, M. and Katul, G.: Soil moisture and 1 

vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on 2 

Sardinia, Italy, Water Resour. Res., 42(8), W08419, doi:10.1029/2005WR004693, 2006. 3 

Díaz-Varela, R. A., de la Rosa, R., León, L. and Zarco-Tejada, P. J.: High-Resolution 4 

Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo 5 

Reconstruction: Application in Breeding Trials, Remote Sens., 7(4), 4213–4232, 6 

doi:10.3390/rs70404213, 2015. 7 

Foken, T.: The Energy Balance Closure Problem: An Overview, Ecol. Appl., 18(6), 1351–8 

1367, 2008. 9 

Foken, T., Aubinet, M., Finnigan, J. J., Leclerc, M. Y., Mauder, M. and Paw U, K. T.: Results 10 

Of A Panel Discussion About The Energy Balance Closure Correction For Trace Gases, Bull. 11 

Am. Meteorol. Soc., 92(4), ES13–ES18, doi:10.1175/2011BAMS3130.1, 2011. 12 

Fratini, G. and Mauder, M.: Towards a consistent eddy-covariance processing: an 13 

intercomparison of EddyPro and TK3, Atmospheric Meas. Tech., 7(7), 2273–2281, 14 

doi:10.5194/amt-7-2273-2014, 2014. 15 

Gentine, P., Entekhabi, D. and Heusinkveld, B.: Systematic errors in ground heat flux 16 

estimation and their correction, Water Resour. Res., 48(9), n/a–n/a, 17 

doi:10.1029/2010WR010203, 2012. 18 

Gonzalez-Dugo, V., Goldhamer, D., Zarco-Tejada, P. J. and Fereres, E.: Improving the 19 

precision of irrigation in a pistachio farm using an unmanned airborne thermal system, Irrig. 20 

Sci., 33(1), 43–52, doi:10.1007/s00271-014-0447-z, 2014. 21 

Guzinski, R., Anderson, M. C., Kustas, W. P., Nieto, H. and Sandholt, I.: Using a thermal-22 

based two source energy balance model with time-differencing to estimate surface energy 23 

fluxes with day–night MODIS observations, Hydrol. Earth Syst. Sci., 17(7), 2809–2825, 24 

doi:10.5194/hess-17-2809-2013, 2013. 25 

Guzinski, R., Nieto, H., Jensen, R. and Mendiguren, G.: Remotely sensed land-surface energy 26 

fluxes at sub-field scale in heterogeneous agricultural landscape and coniferous plantation, 27 

Biogeosciences, 11(18), 5021–5046, doi:10.5194/bg-11-5021-2014, 2014. 28 

Guzinski, R., Nieto, H., Stisen, S. and Fensholt, R.: Inter-comparison of energy balance and 29 

hydrological models for land surface energy  flux estimation over a whole river catchment, 30 

Hydrol Earth Syst Sci, 19(4), 2017–2036, doi:10.5194/hess-19-2017-2015, 2015. 31 

Harwin, S. and Lucieer, A.: Assessing the Accuracy of Georeferenced Point Clouds Produced 32 

via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery, Remote Sens., 33 

4(6), 1573–1599, doi:10.3390/rs4061573, 2012. 34 

Herrero, J. and Polo, M. J.: Parameterization of atmospheric longwave emissivity in a 35 

mountainous site for all sky conditions, Hydrol. Earth Syst. Sci., 16(9), 3139–3147, 36 

doi:10.5194/hess-16-3139-2012, 2012. 37 



25 

 

Houborg, R., Anderson, M., Gao, F., Schull, M. and Cammalleri, C.: Monitoring water and 1 

carbon fluxes at fine spatial scales using HyspIRI-like measurements, in Geoscience and 2 

Remote Sensing Symposium (IGARSS), 2012 IEEE International, pp. 7302–7305., 2012. 3 

Hunt Jr, E. R., Cavigelli, M., Daughtry, C. S., Mcmurtrey III, J. E. and Walthall, C. L.: 4 

Evaluation of digital photography from model aircraft for remote sensing of crop biomass and 5 

nitrogen status, Precis. Agric., 6(4), 359–378, 2005. 6 

Jansen, J. H. A. M., Stive, P. M., Van De Giesen, N. C., Tyler, S. W., Steele-Dunne, S. C. and 7 

Williamson, L.: Estimating soil heat flux using Distributed Temperature Sensing, IAHS Publ. 8 

343: 140-144, 2011. 9 

Kalma, J. D., McVicar, T. R. and McCabe, M. F.: Estimating Land Surface Evaporation: A 10 

Review of Methods Using Remotely Sensed Surface Temperature Data, Surv. Geophys., 11 

29(4-5), 421–469, doi:10.1007/s10712-008-9037-z, 2008. 12 

Kustas, W. P. and Norman, J. M.: Use of remote sensing for evapotranspiration monitoring 13 

over land surfaces, Hydrol. Sci. J., 41(4), 495–516, doi:10.1080/02626669609491522, 1996. 14 

Kustas, W. P., Prueger, J. H. and Hipps, L. E.: Impact of using different time-averaged inputs 15 

for estimating sensible heat flux of riparian vegetation using radiometric surface temperature, 16 

J. Appl. Meteorol., 41(3), 319–332, 2002. 17 

Liebethal, C. and Foken, T.: Evaluation of six parameterization approaches for the ground 18 

heat flux, Theor. Appl. Climatol., 88(1/2), 43–56, doi:10.1007/s00704-005-0234-0, 2007. 19 

Lucieer, A., Malenovský, Z., Veness, T. and Wallace, L.: HyperUAS—Imaging Spectroscopy 20 

from a Multirotor Unmanned Aircraft System, J. Field Robot., 31(4), 571–590, 21 

doi:10.1002/rob.21508, 2014. 22 

Mauder, M. and Foken, T.: Impact of post-field data processing on eddy covariance flux 23 

estimates and energy balance closure, Meteorol. Z., 15(6), 597–609, doi:10.1127/0941-24 

2948/2006/0167, 2006. 25 

Moncrieff, J., Clement, R., Finnigan, J. and Meyers, T.: Averaging, detrending, and filtering 26 

of eddy covariance time series, in Handbook of micrometeorology, pp. 7–31, Springer. 27 

[online] Available from: http://link.springer.com/chapter/10.1007/1-4020-2265-4_2 28 

(Accessed 3 June 2015), 2005. 29 

Moncrieff, J B, Massheder, J.M., Bruin, de H., Elbers, J. A., Friborg, T. and Heusinkveld, B.: 30 

A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon 31 

dioxide, J Hydrol 188189 1997 1-4 589-611, doi:10.1016/S0022-1694(96)03194-0, 1997. 32 

Monteith, J. L.: Evaporation and environment, in Symp. Soc. Exp. Biol, vol. 19, p. 4. [online] 33 

Available from: http://www.unc.edu/courses/2007fall/geog/801/001/www/ET/Monteith65.pdf 34 

(Accessed 17 June 2015), 1965. 35 

Norman, J. M., Kustas, W. P. and Humes, K. S.: Source approach for estimating soil and 36 

vegetation energy fluxes in observations of directional radiometric surface temperature, 37 

Agric. For. Meteorol., 77(3–4), 263–293, doi:10.1016/0168-1923(95)02265-Y, 1995. 38 



26 

 

Norman, J. M., Kustas, W. P., Prueger, J. H. and Diak, G. R.: Surface flux estimation using 1 

radiometric temperature: A dual-temperature-difference method to minimize measurement 2 

errors, Water Resour. Res., 36(8), 2263–2274, doi:10.1029/2000WR900033, 2000. 3 

Norman, J. M., Anderson, M. C., Kustas, W. P., French, A. N., Mecikalski, J., Torn, R., Diak, 4 

G. R., Schmugge, T. J. and Tanner, B. C. W.: Remote sensing of surface energy fluxes at 101-5 

m pixel resolutions, Water Resour. Res., 39(8), 1221, doi:10.1029/2002WR001775, 2003. 6 

Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., 7 

Rambal, S., Valentini, R., Vesala, T. and Yakir, D.: Towards a standardized processing of Net 8 

Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty 9 

estimation, Biogeosciences, 3(4), 571–583, 2006. 10 

Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Surface Heat Flux and 11 

Evaporation Using Large-Scale Parameters, Mon. Weather Rev., 100(2), 81–92, 12 

doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972. 13 

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., 14 

Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., 15 

Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., 16 

Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, 17 

J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D. and Valentini, R.: On the separation of net 18 

ecosystem exchange into assimilation and ecosystem respiration: review and improved 19 

algorithm, Glob. Change Biol., 11(9), 1424–1439, doi:10.1111/j.1365-2486.2005.001002.x, 20 

2005. 21 

Ringgaard, R., Herbst, M., Friborg, T., Schelde, K., Thomsen, A. G. and Soegaard, H.: 22 

Energy Fluxes above Three Disparate Surfaces in a Temperate Mesoscale Coastal Catchment, 23 

Vadose Zone J., 10(1), 54, doi:10.2136/vzj2009.0181, 2011. 24 

Santanello, J. A. and Friedl, M. A.: Diurnal Covariation in Soil Heat Flux and Net Radiation, 25 

J. Appl. Meteorol., 42(6), 851, 2003. 26 

Shuttleworth, W. J. and Wallace, J. S.: Evaporation from sparse crops-an energy combination 27 

theory, Q. J. R. Meteorol. Soc., 111(469), 839–855, 1985. 28 

Stisen, S., Sandholt, I., Nørgaard, A., Fensholt, R. and Jensen, K. H.: Combining the triangle 29 

method with thermal inertia to estimate regional evapotranspiration — Applied to MSG-30 

SEVIRI data in the Senegal River basin, Remote Sens. Environ., 112(3), 1242–1255, 31 

doi:10.1016/j.rse.2007.08.013, 2008. 32 

Swain, K. C., Thomson, S. J. and Jayasuriya, H. P.: Adoption of an unmanned helicopter for 33 

low-altitude remote sensing to estimate yield and total biomass of a rice crop, Trans. ASAE 34 

Am. Soc. Agric. Eng., 53(1), 21, 2010. 35 

Turner, D., Lucieer, A. and Watson, C.: An Automated Technique for Generating 36 

Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, 37 

Based on Structure from Motion (SfM) Point Clouds, Remote Sens., 4(5), 1392–1410, 38 

doi:10.3390/rs4051392, 2012. 39 



27 

 

Wallace, L., Lucieer, A., Watson, C. and Turner, D.: Development of a UAV-LiDAR System 1 

with Application to Forest Inventory, Remote Sens., 4(6), 1519–1543, 2 

doi:10.3390/rs4061519, 2012. 3 

Webb, E. K., Pearman, G. I. and Leuning, R.: Correction of flux measurements for density 4 

effects due to heat and water vapour transfer, Q. J. R. Meteorol. Soc., 106(447), 85–100, 5 

doi:10.1002/qj.49710644707, 1980. 6 

Zarco-Tejada, P. J., González-Dugo, V., Williams, L. E., Suárez, L., Berni, J. A. J., 7 

Goldhamer, D. and Fereres, E.: A PRI-based water stress index combining structural and 8 

chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI 9 

thermal index, Remote Sens. Environ., 138, 38–50, doi:10.1016/j.rse.2013.07.024, 2013. 10 

Zarco-Tejada, P. J., Diaz-Varela, R., Angileri, V. and Loudjani, P.: Tree height quantification 11 

using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and 12 

automatic 3D photo-reconstruction methods, Eur. J. Agron., 55, 89–99, 13 

doi:10.1016/j.eja.2014.01.004, 2014. 14 

  15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 



28 

 

Table 1 - UAV retrievals of LST, constituting 12 sets of input data to TSEB-PT and DTD. 1 

Early morning flights conducted one hour after sunrise are only used in DTD. (c) means data 2 

were collected during cloudy or overcast conditions. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 

 Early flights  

(TR,0(θ)) 

Daylight flights 

(TR,i(θ)) 

Date  Time (UTC) 

    10 April 2014   (c) 07:00     11:30     

22 April 2014   (c) 06:00 

    

14:30 

15 May 2014   05:30 

  

11:00 12:00 

 22 May 2014   (c) 05:00 08:00 09:00 11:30 12:00 

 18 June 2014   (c) 05:00 

  

11:00 12:00 

 02 July 2014   (c) 07:30 

  

11:30 

  22 July 2014   06:30 

   

12:30 
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Table 2 – Changing input parameters for each flying day. 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

Date LAI Canopy height (m) Green veg. fraction Albedosoil+veg. 

10 April 2014 0.48 0.02 1 0.142 

22 April 2014 0.88 0.08 1 0.181 

15 May 2014 1.49 0.12 1 0.182 

22 May 2014 3.90 0.30 1 0.226 

18 June 2014 4.03 0.95 0.7 0.181 

02 July 2014 3.43 1.10 0.3 0.202 

22 July 2014 3.02 1.20 0.02 0.189 
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Table 3 – Measured and modelled net radiation (Rn), sensible heat flux (H), latent heat flux 1 

(LE) and soil heat flux (G). Dates marked with (c) represent days with cloudy or overcast 2 

conditions. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

  

   
                                     Measured (W m

-2
)           TSEB-PT (W m

-2
)               DTD (W m

-2
) 

 

Date, time (UTC)  Rn H LE G Rn H LE G Rn H LE G 

10 April 2014 11:30  
(c) 

243 87 105 50 155 15 134 2 155 20 121 8 

22 April 2014 14:30  
(c) 

203 73 81 49 180 1 181 4 180 62 118 -2 

15 May 2014 11:00 
 

453 124 241 88 401 
42 330 

27 401 75 295 25 

15 May 2014 12:00 
 

619 132 385 102 600 
49 492 

54 600 97 472 26 

22 May 2014 08:00  
(c) 

270 33 206 31 284 -20 296 2 284 95 179 -1 

22 May 2014 09:00  
(c) 

306 -26 290 43 301 -48 337 10 301 63 231 1 

22 May 2014 11:30  
(c) 

406 -16 367 55 397 -33 418 14 397 101 287 6 

22 May 2014 12:00  
(c) 

440 14 365 61 436 -51 465 21 436 42 387 4 

18 June 2014 11:00  
(c) 

538 158 326 55 505 89 397 27 505 191 309 9 

18 June 2014 12:00  
(c) 

631 200 378 52 612 54 514 43 612 156 450 7 

02 July 2014 11:30  
(c) 

217 54 152 11 121 -9 135 -8 121 52 68 1 

22 July 2014 12:30 
 

479 282 161 36 511 
125 335 

52 511 211 293 6 
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Table 4 – Root mean square error (RMSE), mean absolute error (MAE) and correlation 1 

coefficient (r) computed for TSEB-PT and DTD results. Values in parenthesis are RMSE and 2 

MAE respectively as percentage (%) of measured fluxes. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

              TSEB-PT                                                   DTD 

 RMSE 

(W m
-2

) 

MAE 

(W m
-2

) 

r  RMSE 

(W m
-2

) 

MAE 

(W m
-2

) 

r 

Rn 44 (11) 33 (8) 0.98  44 (11) 33 (8) 0.98 

G 38 (72) 35 (66) 0.58  48 (91) 45 (86) 0.86 

H 85 (91) 75 (81) 0.96  59 (64) 49 (52) 0.74 

LE 94 (37) 84 (33) 0.92  67 (26) 57 (22) 0.85 
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Table 5 – Statistical parameters based on data that was collected during only cloudy and 1 

overcast weather conditions (9 dates). Root mean square error (RMSE), mean absolute error 2 

(MAE) and correlation coefficient (r) computed for TSEB-PT and DTD results. Values in 3 

parenthesis are RMSE and MAE respectively as percentage (%) of measured fluxes. 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

           TSEB-PT                            DTD 

 RMSE 

(W m
-2

) 

MAE  

(W m
-2

) 

r  RMSE 

(W m
-2

) 

MAE 

(W m
-2

) 

r 

Rn 40 (11) 32 (8) 0.99  40 (11) 32 (8) 0.99 

G 30 (66) 33 (72) 0.66  38 (83) 42 (92) 0.61 

H 63 (99) 64 (100) 0.84  53 (83) 50 (78) 0.69 

LE 69 (27) 71 (28) 0.98  46 (18) 46 (18) 0.95 
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 1 

Figure 1 - HOBE agricultural site in western Denmark (56.037644°N, 9.159383°E). The black 2 

square represents location of the eddy flux tower. The green square represents location for 3 

zoom inset on the right (RGB image obtained with Lumix camera mounted on UAV).  4 
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 1 

Figure 2 - Modelled vs measured net radiation (Rn), soil- (G), sensible- (H) and latent heat 2 

fluxes (LE). Data collected in sunny weather conditions are enclosed by black circles. 3 
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 5 
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 1 

 2 

Figure 3 – Grey lines highlight tramlines in which irrigation guns are placed at all five 3 

irrigation events in 2014. The underlying map shows evaporation patterns on 18 June 2014. 4 

Red colors are high evaporation and blue colors are low evaporation. Patterns of lower 5 

evaporation correspond well with areas being furthest away from irrigation guns. 6 

 7 

 8 

 9 


