The Editor/Reviewer's comments are in italic and our response in normal font. The line and the
page numbers, we indicate below are provided within the latexdiff version of the manuscript, which
can be found at the end of this document.

Response to Editor’s (Prof. Gregor Laaha) comments

1. Thank you for your interesting manuscript. Your paper has been carefully read by three
referees. All of them find your paper well suited for HESS bus suggest a number of correc-
tions/modifications which need to be carefully considered before publication. The authors
are therefore invited to prepare a author’s response which includes a revised version of the
manuscript indicating all changes. The revised version shall address all points raised by the
referees.

We thank the editor Prof. Gregor Laaha for his kind assessment and providing us the oppor-
tunity to revise the manuscript.

2. On concern of the second referee (that was not fully addressed in the responses so far) was
why to use an empirical approach to calculate the SPI, when a well-established and widely
accepted methodology (based on fitting a theoretical distribution function) exists. Although |
think this point is only of subordinate relevance for the scope of your study, | share the concern
of the referee. Proposing a new approach without carefully evaluating its merits and possible
pitfalls relative to a standard method would be dangerous, but | understand that this is likely
not the scope of your paper. Authors should therefore clarify in the MS that the approach will
likely not have the full skill of the standard method, but is deemed suitable to get a sufficient
approximation on a regional scale.

With all due respect to the Editor's comment, we do not agree that our non-parametric
approach of fitting distribution function is by any means inferior to a commonly used approach
of fitting a theoretical distribution function for estimating SPI. Indeed, several recent studies
have pointed out difficulties with the (a priori) selection of suitable theoretical distribution
functions for the SPI estimation, including other problems such as difficulties when handing the
multi-modality of observed datasets using a univariate distribution function. As also detailed
in the reviewer #2 response (to this particular comment), that a non-parametric approach to
estimate SPI is used here to avoid the problem of assigning a unique distribution function to
all datasets (as mentioned above), and to ensure the consistency in the estimation of drought
indices for the precipitation and groundwater time series (i.e., both variables use a similar
approach so that the resulting drought indices fall within a same range [0, 1]).

We would also like to emphasise that a non-parametric approach used in this study is not
new, and certainly not the first time we are proposing (and neither do we claim so). The
use of empirical approach to estimate quantile-based drought indices has been the basis for
several recent drought related studies (e.g., from the group of D.P. Lettenmaier, J. Sheffield, A.
AghaKouchak, J. P. Vidal, J. P. Bloomfield, among others). Furthermore, if deemed necessary
the quantile based drought indices can be easily transformed to the unbounded range of the
standard normal distribution (commonly used for the SPI detection) based on the mapping
of values across the two cumulative density functions. Moreover the empirical approach to
estimate SPI is also justified considering that the approach does not influence the ordering of
drought events. In this study, we explored the agreement between SPI and SGI for matching
drought/no drought events based on the contingency table based skill scores for which the
ordering of drought events is an important aspect. We have included these notes in the revised
manuscript to avoid any further confusion. See P9, L22-26 and P10, L1-10.

3. | also share the view of this referee that the role of evaporation is so obvious that one would
tend to use the SPEI rather than SPI for assessing hydrological impacts. | acknowledge that
the scope of the paper is on a different index, but at least a rough indication should be given
(either from additional analyses, or from literature) how far using an index which integrates



evaporation loss would make atmospheric drought indices a suitable indicator for groundwater
drought.

Initially, we were hesitant to comment on the skill of SPEI since our focus in this work was
to assess the SPI skill as mentioned explicitly in the title of the paper (and also throughout
the manuscript). But based on the Editor and the Reviewer #2 suggestions, we performed
additional analyses to assess the skill of SPEI for characterising the groundwater droughts.
We, however, wished not to include these results in the present manuscript as it would greatly
extend (and modify) the scope of the presented work, and will very likely deviate the readers
from the key message of this paper. Therefore we retain the SPEI results in this rebuttal only.

We repeated all our drought analyses using the monthly SPEI estimated at different accu-
mulation periods using the precipitation and potential evapotranspiration (PET) data. The
multiscale evaluation was conducted for both point and gridded scales using data of German
wells for the illustration purpose. PET is estimated based on the the Hargreaves and Samani
(1985) method that uses average, maximum and minimum temperatures.

We find no significant improvement in the skill of SPEI over SPI for characterising ground-
water droughts. Indeed both meteorological based drought indices (SPI and SPEI) exhibited
similar behaviour when contrasted against the respective SGls at both point and gridded scales
(compare the results shown below in Figures Al to A5 for the SPEI with those of the SPI in
the manuscript - the corresponding manuscript figure number is also mentioned in the caption
of the following figures to ease comparison).

Similar to the results of the SPI (presented in the manuscript), we found a large spatial
variability in the optimal accumulation period, required to achieve a maximum correlation
between SPEI and SGI. Consequently, the application of uniform accumulation period (of
SPEI) over the study region would significantly deteriorate the correspondence between SPEI
and SGI. On average, the mean absolute errors between SGI and SPEI at different accumulation
periods were also high (0.15-0.25) similar to those noticed between SPI and SGI.

The visual inspection of the monthly SPEI timeseries (e.g., for 6 and 12 months of accumula-
tion periods) show almost similar temporal pattern as that of the SPI - and both meteorological
drought indices could not adequately capture the higher variability exhibited by the SGI time-
series at both point and gridded scales. Furthermore, the majority of wells and grid cells
exhibited low scores of hit rate and high false alarm ratio again demonstrating the low relia-
bility of groundwater drought predictions using the SPEI. In summary, based on our analysis
we do not find any substantial improvement in using SPEI over SPI for groundwater drought
predictions. Overall our analysis indicated that both atmospheric drought indices (SPI and
SPEI) are not suitable indictors for characterising groundwater droughts.

. I would also add one comment, that the methodology of assessing the agreement between
meteorological and hydrological drought indices is not completely new. It was recently used in
a similar context, for assessing the link of SPI and other atmospheric indices to detect low flow
events. Because of this similarity a citation to that study would be appropriate: Haslinger, K.,
Koffler, D., Schéner, W. and Laaha, G.: Exploring the link between meteorological drought and
streamflow: Effects of climate-catchment interaction, Water Resour. Res., 50(3), 2468-2487,
doi:10.1002/2013WR015051, 2014.

Thank you for pointing out this issue. We have included the reference of this study in the
revised manuscript. See P12, L22-25.
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Figure Al: The (@) optimal accumulation A (month) and (b) lag periods L (month) required to
obtain the (c) maximum correlation 7y, (-) between the SGI and SPEI at point and gridded (0.5°)

scale. Similar to Figure 2 for the SPI in the manuscript.
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Figure A2: The correlation r (top) and the mean absolute error E (bottom) estimated between the
SGI and SPEI of the 1, 3, 6, 12, 24, and 48 months of uniform accumulations for the point and the
gridded data sets. Their respective maximum (r,,) and the minimum (E,,) estimates corresponding
to the optimal accumulation periods of SPEI are also shown in the leftmost of the panels. Results
are summarized here as average £ one standard deviation. Similar to Figure 4 for the SPI in the
manuscript.
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Figure A3: The monthly time series of the 6 and 12-month point (light blue) and gridded (light
pink) SPEI and the respective spatial averages (dark blue and dark red). The bottom plots are the
corresponding SGI time series and their spatial averages. The black dashed line depicts the drought
threshold 7 of 0.2. Similar to Figure 5 in the manuscript.
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Figure A4: The (top) hit rate H and the (bottom) false alarm ratio F' to detect SGI based ground-
water droughts using the SPEI with the (a) optimal accumulation period and (b and c) 6 and 12
months of uniform accumulation periods at the point and gridded scales. A threshold value 7 of 0.2
is used to identify drought events. Similar to Figures 6 and 7 for the SPI in the manuscript.
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Figure A5: The hit rate (H) and the false alarm ratio (F') averaged over all investigated (a) wells and
(b) grid cells to detect SGI based groundwater droughts using the SPEI with the optimal accumulation
and 6 and 12 months of uniform accumulation periods for varying levels of threshold value 7 (0.2,
0.1, and 0.05) used to identify drought events. Similar to Figure 8 for the SPI in the manuscript.



Response to Reviewer #1 (Dr. J. P. Bloomfield)

1. Kumar et al investigate the suitability of a version of the standard precipitation index (SPI) to
characterise groundwater droughts, as defined by standardised groundwater level hydrographs
(5Gl), at point and regional scales. This is done using monthly groundwater level data from
2000 relatively shallow wells from southern Germany and central Netherlands. The study first
characterises the relationships between SPI and SGI for a variety of SPI accumulation periods,
including identification of optimal SPI accumulation periods, and then assesses the skill of SPI
in predicting groundwater droughts using an assessment of the hit rate and false alarm ratios.
The authors find that in the absence of prior information about the hydrogeology of a point or
region SPI is a poor indicator of groundwater drought at both scales. The paper is well written,
with a clear description of the aims and methods. The results and discussion are combined
in a single section. Although generally this is not to be recommended, because the combined
results and discussion section is well structured the combined presentation does not detract
from the central arguments of the paper.

We thank the reviewer Dr. J. P. Bloomfield for the positive summary and the constructive and
helpful comments.

2. The papers main finding is essentially a negative one, i.e. that SPIl when used in isolation is a
poor indicator of groundwater drought, and consequently the authors should be applauded on
reporting this based on a systematic and well argued analysis. Although the authors empha-
sise that the study focuses on the statistical skill of SPI in predicting groundwater droughts
(P7409,L1-4), given the negative findings it would have been interesting to see what effect
additional prior information may have had on the correlations between SPI and SGI. For exam-
ple, information about the geology or aquifer type of each site and some equivalent averaged
descriptor for each 0.5 degree grid cell should be available based on even relatively coarse-
scale mapping. Would bringing this sort of information into the analysis improve the SP1/SGI
correlations, and if so by how much?

We appreciate the encouraging words of the reviewer about our analysis. We also understand
that performing additional analyses that take into account other geological characteristics might
improve the correspondence between SPI and SGI. In fact, prior to putting up this paper, we
had a similar discussion amongst ourselves and decided to omit that kind of detailed exploratory
analysis from this manuscript for the following reasons:

i. To keep the focus of the paper simple (easily conveyable) and avoid diverting the readers’
attention from the main message. Also noting that the scope and objective of this paper is
not to develop a well-functioning drought indicator for two specific regions in Germany and
the Netherlands but to assess the statistical skill of commonly used SPI and its feasibility
for characterizing groundwater drought.

ii. Due to the lack of detailed geological data sets at each site to carry out such exploratory
analysis.

Nevertheless based on the reviewer suggestion, we made an attempt and present here the results
of our preliminary analysis investigating the role of geological characteristics on the spatial vari-
ability of optimal accumulation period (A) and maximum correlation (ry,) between the SPI and
SGI. For this purpose, the underlying hydraulic conductivity values of the uppermost aquifer
were extracted from the available large-scale hydro-geological map of Germany (HUEK200;
available at a scale of 1:200 000). The wells were grouped into four dominant conductivity
classes: High (>1073 m/s), medium (1073-107° m/s), low (10°~10~" m/s), and very low
(<1077 m/s). Results of this analysis indicate that there is no clear trend in the optimal accu-
mulation period (A) between SPI and SGI over these classes (Figure A6). The correspondence
between optimal SPI and SGI appears to be relatively weaker at wells located in aquifers with
lower conductivity as indicated by a relatively lower value of the maximum correlation (7).



The optimal accumulation periods (A) appear on average higher for the wells located in the
medium to low type of aquifer permeability class as compared to that noted for the very low
conductivity class for which one could have expected the largest smoothing (or attenuation) of
precipitation signals. These seemingly contradictory results indicate that the influence of local
geological conditions on the propagation of precipitation signals to groundwater flows cannot
be assessed by looking single factors (here aquifer conductivity) alone. We note that other
geological parameters such as transmissivity and horizontal extent of an aquifer, which are not
readily available, would have been more adequate in characterizing the aquifer response time
(e.g., Kraijenhoff van de Leur, 1958, Gelhar 1993). Also other local factors such as depth to
the groundwater, properties of the unsaturated zone, etc. play an important role and their
contribution is neither linear nor independent. It adds to the complexity of this problem that
data on local conditions are only available from rather coarse large scale hydro-geological maps
(e.g., HUEK200 map) with possible large deviations from the actual well-specific conditions.
These issues thus require careful and detailed analyses which are beyond the scope of this
study. We have now included these aforementioned results in the revised manuscript. See P14,
L4-29, and Figure 3 (middle column).

We note that the results presented for this analysis are for the (well specific) point-scale data
sets only because:

i. This would better fit to the current analysis and the storyline of the presented study (similar
in line of results shown in Figure 3).

ii. We wished to avoid the complications associated with aggregation of hydraulic conductivity
fields (given here as categorical values). We are convinced that Dr. Bloomfield is well
aware that the aggregation of extremely heterogeneous hydrogeological information to a
representative 0.5° cell value is in itself a research topic for which no standard solution
exists. To do and to discuss this would have resulted in many more pages, if not in several
more papers. Not only this, it would also have distracted to the clear message we wanted
to convey in this paper.
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Figure A6: Box-and-whisker plots of the optimal accumulation period (A) and the maximum corre-
lation (7,,) estimated for a group of wells with varying aquifer hydraulic conductivity classes: High
(>1073 m/s), medium (1073-107° m/s), low (1075-10~7 m/s), and very low (< 10~7 m/s).



[1] D.A. Kraijenhoff van de Leur. A study of non-steady groundwater flow with special reference
to a reservoir coefficient. Ingenieur, 70 (1958), pp. B87-B94.

[2] Gelhar, L.W., 1993. Stochastic Subsurface Hydrology. Prentice-Hall, NJ, USA, 390 pp.

. P7408, L12: re-order Peters et al references to 2003, 2005, 2006

Thank you for pointing this out. We have re-ordered this list in the revised manuscript (see
P4, L24).

. Section 2.1 states that the study was performed using monthly groundwater observations. Are
these averaged from more dense observations or are all observations on the same day of each
month? Is there any missing data in the time series, if so how has this been handled, e.g. left
missing, or infilled and if so how? If there is missing data how much is acceptable?

The sampling time interval of groundwater available varied from well to well and also within
a single well from one time period to another, at daily, weekly, and monthly time intervals.
For example, the original data from German was measured at at least weekly time intervals
until about 1990, from then on a steadily increasing number of observations switched to
daily measurements. Roughly from 2000 on, all stations provide daily data. To harmonize
these disrate data sets at a common time scale, we performed our analysis at monthly time
scale by averaging shorter time scale data set. In any case, we would like to emphasis that the
aggregation method hardly plays a role in the vast majority of cases, since groundwater is slowly
evolving process and much of a (seasonal) signal is well captured by monthly observations.
There were missing values and they were left out from the analysis (i.e., left missing). Finally,
we consider only those wells which have at least 10 years of valid monthly records (i.e. without
missing value). We have elaborated more clearly on these steps in the revised manuscript (see
P7, L14-24).

. P7412, L15-25 describes the method used to produce monthly estimates of SPI and SGI at 0.5
degree grid scales. What analysis has been undertaken to investigate the effect of sample size
on the relative confidence of estimated mean gridded SPI and SGI values and the consequent
implications for calculated hit rates and false alarms (Figs. 6 and 7)? For example, some
of the grid cells for the Dutch study area contain only 2 or 3 sites, whereas some grids cells
in Germany appear to have many 10s of sites. Also, it appears that the better hit rates for
Optimal SPI in Fig. 6 are associated with grid cells with the most sites. Is this correct? If so,
what are the implications for the analysis?

As a preliminary investigation towards the regional assessment of groundwater droughts, we
used a well adopted approach to estimate the ensemble mean of 0.5° gridded SPI and SGI
values based on their corresponding point estimates (i.e., well specific SPI and SGI). In this
approach we simply used data of all available wells that fall within a particular grid cell to
create the gridded estimates at regular intervals of 0.5°. As a consequence the number of
underlying wells varied from cell to cell, as rightly pointed out by the reviewer - we have also
mentioned this in the manuscript (see P11, L5-7). Since this is a simple approach, we do not
account for the differences in sample size (i.e., the number of wells falling in a given cell) when
estimating the ensemble mean. We have added a note on this in the revised manscript (see
P11, L7-13).

Based on the reviewers concern, we also conducted a posteriori investigation to analyze the
effect of sample size on the gridded SPI and SGI relationships. Specifically, we analyze the
variation in the gridded estimates of the Spearman rank correlation, Hit rate, and False alarms
of the optimal SPI and SGI with the number of wells in every grid cell (see Figure A7 below).
The results indicate a slight deterioration in correspondence between SPI and SGI for grid cells
with very few underlying wells (< 3). After this threshold (where the majority of grid cells fall),
there is no clear improvement in the correspondence of SPI and SGI with the increasing number
of wells. Consequently, it can be safely concluded that our results are not very much affected by
changes in sample size, beyond a certain threshold level as also seen from the moving average
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estimate plotted in Figure A7. For completeness, we have included these results in the revised
manuscript. See P20, L26-28 and P21, L1-5.

. P7413, L5 it is stated that "we consider the entire spectrum [0,1] of the SPI and the SGl,
without distinguishing between dry or wet regimes”. It would be helpful to add a brief discussion
of the implications of this statement. Also note a slight contradiction with the statement at
P7422, 124-25 that "here we specifically aimed at analyzing the ability of the SPI to predict
groundwater drought conditions at different levels”. Consider a short clarification to reconcile
these statements.

We think there has been some misunderstanding here about these two statements. There is
no contradiction. We performed two sets of experiments to analyze the feasibility of the SPI
to characterize the SGI. In the first set, we took the entire range of quantile based drought
indices, SPI and SGl, varying between [0,1] for performing the cross-correlation analysis. Here
we investigated about the optimal accumulation and lag periods required to achieve a maximum
correlation between the monthly SPI and SGI time series. We have included a sentence in the
revised manuscript to better explain this experimental set-up (see P11, L17-19). In the second
set of analysis, we analyze the skill of SPI to predict groundwater droughts, i.e., when the SGlI
< 7, and we tested this for the 7 value of 0.2, 0.1, and 0.05 indicating different severity levels.
Here, we used the scores based on the hit rate and the false alarm ratio to assess the reliability
of groundwater drought predictions made by the SPI.

To avoid any further confusion, we revised the text to clearly state that our analyses in addition
to looking at the entire range of drought indices (SPI and SGI), focus on analysing the skill of
SPI to predict groundwater drought events at various severity levels (see P23, L17-22).

. P7419, L9-12. This is describing the well known phenomenon of drought attenuation in
the groundwater compartment of the terrestrial water cycle. It may be helpful to explicitly
acknowledge this here with a suitable reference.

We have revised the text to reflect this comment. See P19, L2-4.

. P7421, L12 should read "on the basis of this data-based exploratory analysis”
Thank you. We revised the text accordingly. See P22, L7.
. Please check all references. For example, a number have missing volume or page numbers,

e.g. AghaKouchak et al.; Hao et al; Li et al; Samaniego et al; Teuling et al; and Weider and
Boutt.

Thank you for this comment. We made our best possible effort to check all references for
missing information and updates.
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Response to Reviewer #2 (Dr. S. M. Vicente Serrano)

1. Review of “Multiple evaluation of the standardized precipitation index as a groundwater drought
indicator”. The manuscript analyses the relationship between precipitation and groundwater
droughts in South Germany and the Netherlands. The manuscript focusses in knowing on the
capacity of the Standardized Precipitation Index as a drought monitoring metric to determine
groundwater drought. The article is well-written and structured. The research topic is suitable
for HESS and it has great potential given the current interest of moving from the use of
climate drought indices (easy to calculate) to drought impacts (difficult to estimate). | would
recommend the acceptance of the manuscript in HESS but | would like to draw attention to
different issues that would be interesting that the authors consider or at least mention in the
discussion of the results.

We thank the reviewer Dr. S. M. Vicente Serrano for his encouraging words and helpful
comments.

2. Page 7407. Lines 11-13. | agree that drought monitoring based on precipitation data may have
advantages regarding data availability. Nevertheless, this approach may have also deficiencies
since it does not consider other key variables that affect drought severity, mainly the atmo-
spheric evaporative demand (AED). Although the AED effect could be considered negligible
for ground water recharge, we cannot forget that approximately 3/5 parts of the precipitation
returns to the atmosphere via evapotranspiration processes. Probably in the Netherlands and
Germany the AED is not a relevant stressing variable given high precipitation amounts (al-
though not negligible for drought impacts, e.g., the year 2003) but from sub-humid to arid
regions AED is a determining factor that affects water resources availability in a determining
manner. Thus, it is expected that AED does not only affect soil moisture and runoff but also
water infiltration and ground water since AED is affecting the vegetation respiration and the
water exchange between plants and the atmosphere. A comment or discussion about this issue
would be welcome. Page 7407. Line 22. Also the role of AED should be mentioned.

We fully understand and acknowledge the role of atmospheric evaporative demand (AED) in
a hydrologic drought propagation. Indeed we explicitly cited the work by Teuling et al., 2013
(in the same lines: P3, L22) that highlighted the role of evapotranspiration during the 2003
European drought event. Considering that the presented work focuses mainly on assessing
the skill of SPI for the groundwater drought, in our earlier manuscript we did not explicitly
consider putting more weight on the AED role which itself would be an interesting work,
but certainly beyond the scope of the present study. We have now amended the text in the
revised manuscript to reflect this issue. See e.g., P3, L22-28, P4, L1-7, P19, L9-29, and
P20, L1-4. Furthermore, based on yours and the Editor's comments, we made a preliminary
investigation on the assessment of the skill the Standardised Precipitation-Evapotranspiration
Index (SPEI) for characterising groundwater droughts (similar to those performed for the SPI in
the manuscript). Please refer above for more details on results of this analysis in our responses
to the Editor's comments.

3. Page 7408. Line 11 Some other references dealing directly with this topic: Climate Research.
58, 117-131; Journal of Hydrology. 477: 175-188; Earth Interactions 16, 1-27. Page 7408.
Line 16. There are previous studies analyzing the relationship between drought indices and
groundwater (e.g., Natural Hazards and Earth System Sciences 15: 1381-1397; Hydrology and
Earth System Sciences 19: 2353-2375; Water Resources Management 24: pp. 1867-1884).
These studies should be cited here.

Thank you for pointing out these studies. We have assimilated much of these references in the
revised manuscript wherever appropriate (see P4, L25-26, P5, L1-3).

4. Page 7409, Line 21. Is there any aquifer exploitation like pumping for water supply and
irrigation?, please detail.
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In this study, we screened and selected only those well records that did not exhibit obvious
signs of anthropogenic influences through visual inspection and some basic data analysis. We
would like to however note that the observational German wells are located in quite densely
populated regions (approx. 15 million population) and groundwater forms the main source of
drinking water. Irrigation is not widely applied. There are two reasons why this doesn't have
large impact on the presented analysis:

i. The observation wells used in this analysis are typically relatively far away from pumping
wells and thus the influence of pumping is in most cases negligible. It is estimated that only
about 3% of the potentially available water resources (Precipitations-Evapotranspiration)
in the region are used (Nickel et al. 2005, doi:10.1016/j.pce.2005.06.004). The regional
consequences of groundwater extraction are thus very low.

ii. The groundwater withdrawal in the region is relatively constant all year round as it is
mainly domestic and industrial use (no irrigation) without peak loads in specific seasons.
Thus, fluctuations in groundwater levels can be mainly attributed to weather/climate and
not to fluctuations of groundwater use.

We included these notes in the revised manuscript (see P6, L11-28).

. Page 7410. Lines 19-22. More details on the filtering analysis are needed. If only the months
with available groundwater are used to select precipitation months, what about previous months
needed to obtain longer time-scales?

We recognize that we had not been clear on this point (as also reflected in the Reviewer #3
comment). By filtering we mean, the months with missing groundwater values are also set to
missing in the precipitation time series. We however applied the filtering after the accumulation
of precipitation (for any selected time periods e.g., 3, 6, 12 months) had been performed. This
way, we ensured that the consistency of longer time scale SPI estimates was maintained and
not affected by the filtering procedure. We emphasise that the filtering step was necessary to
ensure the comparability between the (accumulated) precipitation and groundwater time series
so that both had the same sample size for the estimation of SPI and SGI. We have revised the
text detailing more clearly about the filtering procedure to avoid any further misunderstanding
(see P8, L7-13).

. Page 7411. Lines 4-6. The correct references to support this statement should be McKee et
al. 1993 and Guttman 1999.

Thank you for pointing this. We have revise the text accordingly (P8, L24).

. Page 7411. Line 8. Guttman (1999) suggested the Pearson Il distribution based on large
study in USA. In any case, the uncertainty associated to the selected distribution should be
minimal and there is a standard methodology to calculate the SPI by the World Meteoro-
logical Organization http: //www. wamis. org/ agm/pubs/SPI/WMO_ 1090_EN. pdf. For
this reason, | do not find suitable to use an empirical approach to calculate the SPI when a
well-established and widely accepted methodology exists. Empirical approximations to obtain
cumulative distribution functions are much more depending of the available sample than the
use of pdfs. | understand that groundwater data availability prevents of fitting a a pdf given
low data availability in some wells, but given high density of groundwater stations (which are
expected to be highly correlated among them), the regional analysis (Hosking, J.R.M., Wallis,
J.R., 1997. Regional Frequency Analysis, An Approach Based on L-Moments. Cambridge Uni-
versity Press, Cambridge, UK) could be a better approach to obtain the groundwater drought
index. In any case, since the statistical analysis are based on rank correlations, in which the
magnitude of the series is not taken into account, the procedure used to standardize of the
precipitation and groundwater is secondary. Thus, the authors could have used directly the
raw series of ground water and the series of precipitation accumulated on different time-scales
for the analysis.
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In our opinion, both the empirical approximation or the fitting of a theoretical distribution to
obtain pdfs (and corresponding cdfs) suffer from the problem of sample size, and there is no
unique solution to this problem. To maintain consistency we used a non-parametric kernel
density estimator to compute the cdfs of the precipitation and groundwater data. As was
mentioned in the text, the kernel also removes the problems related to multi-modality of the
data and the subjectivity in the a priori selection of the analytic pdf. Please aslo refer to our
response (above) to the Editor's comment on a similar issue. We have also now included a
note on this issue in the revised manuscript to avoid any further misunderstandings (see P9,
L22-26 and P10, L1-10).

. Page 7413. Line 16 and following. | think you could have used better approaches to com-
pare the agreement between groundwater and precipitation drought events (e.g., comparing
the duration, maximum intensity, total magnitude and spatial extent of droughts). Really a
categorical contingency table is useful but | think that more information could be extracted
from the available data, at least for the longest groundwater series in which individual drought
episodes can be identified.

We appreciate the reviewer advice. In this paper, we were mainly concerned with assessing the
statistical skill of the SPI for the groundwater drought predictions for which we used the skill
scores based on the categorical contingency table. Clearly the next step would be to look more
deeply into differences between drought characteristics such as magnitude, severity, duration,
intensity, etc. derived based on SPIl and SGI time series. However, such analysis would certainly
be beyond the scope of the current study. In our opinion, analyzing drought characteristics in
detail would divert the reader from the main message which comes with sufficient clarity from
the skill analysis based on a categorical contingency table. We therefore left such investigations

for future studies and pointed out this in the concluding part of the revised manuscript (see
P23, L11-16).

. Section 3.2 This stresses the diversity of relationships that are usually recorded between drought
time-scales and impacts, and the need of testing initially the best time scale of a drought index
to determine possible impacts. This is quite relevant and not specific for groundwater but also
for several hydrological and ecological systems (e.g., PNAS 110: 52-57; Climate Research. 58,
117-131; Journal of Hydrology, 386: 13-26; Agricultural and Forest Meteorology. 151: 1800-
1811; Journal of Hydrology. 477: 175-188, among others). | think this should be stressed
and discussed in more depth (see further discussion about this issue in Journal of Geophysical
Research-Atmosphere. 116, D19112, doi:10.1029/2011JD016410).

Thank you for outlining this issue which is now detailed in the revised manuscript (see P17,
L21-29, P18, L1-6).
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Response to Reviewer #3

1. The authors investigate the connection between groundwater levels expressed through the
standardized groundwater level index (SGI) and the standardized precipitation index (SPI) in
Southern Germany and the Netherlands. The study aims to characterize the relationship on
different accumulation time scales of both the SPI and the SGI as well as via evaluating the skill
of the SPI in predicting groundwater droughts using hit rates and false alarm rates. The general
message of the manuscript is that the SPI is a poor indicator for groundwater droughts in the
given areas. The manuscript is well written, clearly structured and the figures are suitable. The
science questions are clearly stated and | recommend publication in HESS after considering
some recommendations listed below. | also appreciate the publication of mainly “negative”
results which is unfortunately often avoided, although there may be potential to learn even
more from negative results than from positive ones.

We thank the reviewer for his/her encouraging words and helpful comments.

2. P7407, L22-23: Aren't there other reasons than “non-linearity” of the transformation of a
precipitation signal to a groundwater drought? What about the role of evapotranspiration as a
key process in the terrestrial water cycle? Some comments and references on that issue should
be added here.

There are several reasons for that non-linear transformation of the precipitation signal to
groundwater. Apart from the underlying (sub)-surface properties like terrain, soil, vegeta-
tion and geological properties, climatic properties such as precipitation seasonality, snowmelt
timing, availability of atmospheric water supply and demand as evapotranspiration plays a cru-
cial role. Specifically for the role of evapotranspiration in drought propagation, we acknowledge
the study by Teuling et al., 2013 (see P3, L22) which looked into this issue. We have now
amended the text in the revised manuscript to reflect this issue (see P3, L22-28, P4, L1-7).

3. P7408, L12: years in the reference of Peters et al. should be 2003, 2005, 2006.

Thank you for pointing this out. We have re-ordered this list in the revised manuscript (see
P4, L24).

4. P7409, L15: The climate of Southern Germany is not ?continental?. It is not as close to
the sea as the Netherlands and therefore less maritime, but the wording continental is not
appropriate in this respect. Suggestion: ?7...a region with hilly to mountainous terrain, less
oceanic influence on climate and a wide range...?

We have revised the text as suggested (see P6, L5).

5. P7410, L19-21: These lines are not clear to me. What do you mean by filtering the precipitation
time series? Are missing groundwater dates set missing in the precipitation time series? If yes,
how does this affect the accumulation on different time periods? Please clarify.

We recognize that we had not been clear on this point (as also reflected in the Reviewer #2
comment). By filtering we mean, the months with missing groundwater values are also set to
missing in the precipitation time series. We however applied the filtering after the accumulation
of precipitation (for any selected time periods e.g., 3, 6, 12 months) had been performed. This
way, we ensured that the consistency of longer time scale SPI estimates was maintained and
not affected by the filtering procedure. We emphasise that the filtering step was necessary to
ensure the comparability between the (accumulated) precipitation and groundwater time series
so that both had the same sample size for the estimation of SPI and SGI. We have revised the
text detailing more clearly about the filtering procedure to avoid any further misunderstanding
(see P8, L7-13).

6. Section 4: | think the manuscript would benefit if there is a more in depth discussion on why
the SPI is not a proper groundwater drought identifier. Particularly the role of the demand-side
of the water balance seams a critical point, as well as the underlying geology. Please add some
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discussion and reference dealing with these issues. See for example: Natural Hazards and
Earth System Sciences, 15, 138171397; Journal of Hydrology 477, 175-188, Water Resources
Research 50, doi:10.1002/2013WR015051

Based on your and other two reviewers' suggestions, we have amend the text in the revised
manuscript to reflect the possible role of geological properties and evapotranspiration in ground-
water drought evolution. We have also include much of the suggested references wherever
appropriate. See e.g., P14, L3-29, P17, L21-29, P18, L1-6, P19, L9-29, P20, L1-4. We
would also like to draw the attention of the reviewer to our responses (above) to the Editor's
comment where we show results of our preliminary investigation on the assessment of the skill
the Standardised Precipitation-Evapotranspiration Index (SPEI) for characterising groundwater
droughts (similar to those performed for the SPI in the manuscript). Please refer above for
more details on results of this analysis in our responses to the Editor's comments.

. P7421, L12: should be: "...on the basis of this data-based...”
Thank you for pointing this, we have revised the text (see P22, L7).
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Abstract

The lack of comprehensive groundwater observations at regional and global scales has
promoted the use of alternative proxies and indices to quantify and predict groundwater
droughts. Among them, the Standardized Precipitation Index (SPI) is commonly used
to characterize droughts in different compartments of the hydro-meteorological system.
In this study, we explore the suitability of the SPI to characterize local and regional
scale groundwater droughts using observations at more than 2000 groundwater wells
in geologically different areas in Germany and the Netherlands. A multiscale evaluation
of the SPI is performed using the station data and their corresponding 0.5° gridded
estimates to analyze the local and regional behavior of groundwater droughts, respectively.
The standardized anomalies in the groundwater heads (SGI) were correlated against
SPIs obtained using different accumulation periods. The accumulation periods to achieve
maximum correlation exhibited high spatial variability (ranges 3 to 36 months) at both
scales, leading to the conclusion that an a priori selection of the accumulation period (for
computing the SPI) would result in inadequate characterization of groundwater droughts.
The application of the uniform accumulation periods over the entire domain significantly
reduced the correlation between SPI and SGI (=~ 21-66 %) indicating the limited applicability
of SPI as a proxy for groundwater droughts even at long accumulation times. Furthermore,
the low scores of the hit rate (0.3—0.6) and high false alarm ratio (0.4-0.7) at the
majority of the wells and grid cells demonstrated the low reliability of groundwater drought
predictions using the SPI. The findings of this study highlight the pitfalls of using the SPI as
a groundwater drought indicator at both local and regional scales, and stress the need for
more groundwater observations and accounting for regional hydrogeological characteristics
in groundwater drought monitoring.
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1 Introduction

Drought as a natural hazard is often associated with high socio-economic losses and
damage to ecosystems (Wilhite, 2000). Many of these drought effects are not directly
caused by rainfall deficits, but are related to below-average storage conditions in surface
water, reservoirs, and groundwater that are the consequences of the propagation of
a meteorological drought into the hydrological system (Tallaksen and Van Lanen, 2004
Mishra and Singh, 2010; [Sheffield and Wood, [2011} |Seneviratne et al., 2012). Due to
a lack of large-scale groundwater and surface water observations, most scientists and water
resources managers interested in drought predictions have to rely on proxy data to quantify
storage conditions.

One widely-used approach is to use drought indices based solely on precipitation
(e.g. Standardized Precipitation Index; SPI), because precipitation records generally have
good spatial coverage and long observation periods required for drought analysis. It is
then assumed that by computing the SPI over longer time scales (e.g., 3, 6, 12 or
more months), it mimics the filtering effect of catchment storage conditions and hence
captures the smooth precipitation deficits typical for hydrological (groundwater) droughts
(Seneviratne et al., 2012; |Joetzjer et al., 2013; [Li and Rodell, 2015). Although the SPI
is recognized as an effective meteorological drought index (Hayes et al., |2010) due to
its relative ease of computation and comparability across climates, some studies have
questioned its application for groundwater drought monitoring because the translation
of precipitation deficits into hydrologic (groundwater) droughts is non-linear (Bloomfield
and Marchant, |2013; [Teuling et al., 2013; Van Loon et al., [2014). Both catchment

and climate characteristics such as the differences in underlying soil, terrain, vegetation

and geological properties, precipitation seasonality, snowmelt timing, and the availabilit
of atmospheric water supply and demand (evapotranspiration) control the development

hydrologic droughts and the resulting drought characteristics (Bloomfield and Marchant,
2013; Haslinger et al., 2014; Van Loon et al., 2014; |Stoelzle et al. 2014 Van Loon,

2015). Recently, (Vicente-Serrano et al., 2010) introduced the Standardised Precipitation-
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accounting for both the atmospheric water supply (precipitation) and evaporative demand
and thus it is better suited than SPI for drought studies under global warming _conditions.
In regions with high precipitation variability (e.g., humid areas), both the SPI and SPEI are

each other during a specific calendar month and time period (Vicente-Serrano et al., [2012).
Another approach to quantify drought is based on the use of large-scale gridded data

products, e.g., from hydrologic models or satellites (e.g., [Sheffield et al., 2004} /Andreadis
et al., [2005; Vidal et al., 2010} |Samaniego et al., [2013; van Huijgevoort et al., 2013}
Prudhomme et al., 2014;|Mo and Lettenmaier,2013;|Nijssen et al.,[2014};|Hao et al.,2014; |Li
and Rodell, [2015; |Damberg and AghaKouchakl, [2014; Wanders et al., [2015; /AghaKouchak
et al, [2015). An extensive multi-model study (Prudhomme et al. 2014) for example,
projected increases in hydrological drought severity in many areas around the world. This
approach also has limitations in its application at local to regional scale hydrological drought
monitoring because of scale mismatches and some issues in the correct representation
of storage in models (Gudmundsson et al., [2012; [Van Loon et al., [2012; [Tallaksen and
Stahl,[2014). The importance of spatial variation in groundwater drought conditions resulting
from complexity in subsurface conditions is increasingly recognized (Peters et al., 2006}
Bloomfield and Marchant, [2013; Stoelzle et al.| 2014).

While there are many studies that have focused on analyzing the propagation
of meteorological droughts through the hydrologic systems for improved process
understanding of the evolution of groundwater-droughts-hydrologic (groundwater) droughts
(e.g., [Eltahir and Yeh, [1999; |Peters et al.l 2003|2005, 2006; [Tallaksen et al., 2006 2009}
Weider and Boutt, |2010; |Vicente-Serrano et al., 2012} [Bloomfield and Marchant, 2013}
Haslinger et al., 2014} |Lopez-Moreno et al., 2013} Van Loon et al., 2014), there is still
lack of comprehensive observational-based studies to verify whether hydrological drought
proxies, like precipitation-based indices (SPI) and gridded data products, are suitable for
groundwater drought monitoring at regional to local scales relevant for water management.

4
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Reeently-In recent years there had been some efforts on analyzing the relationship between

meteorological and groundwater based drought indices (Bloomfield and Marchant, |2013;
Folland et al., 2015 [Bachmair et al., 2015). |Bloomfield and Marchant| (2013), for example,

introduced the Standardized Groundwater level Index (SGl), similar to the SPI, and found
a site specific relationship between the two indices. Their study was, however, limited to the
analysis of local scale behavior of groundwater droughts at 14 sites across the UK.

In this data-based exploratory study, we test the suitability of the SPI to characterize
groundwater droughts using observations at more than 2000 groundwater wells located
in Germany and the Netherlands. We used this large set of groundwater wells to
comprehensively analyze the local to regional behavior of groundwater droughts and
investigate the scale mismatch between local and regional scale estimates. A focus
on groundwater was preferred to other hydrological variables because of the immense
multi-sectoral importance of the resource (Famiglietti, 2014). Given the wide-spread
availability and usage of precipitation-based drought indices, we hypothesize that if
adequate accumulation periods and lead times are applied to the precipitation signal, the
observation-based SPI can predict groundwater droughts. In this maiden attempt we carry
out a quantitative evaluation of the performance of the widely-used SPI for groundwater
drought monitoring on a local to regional scale using a large collection of groundwater well
records, focusing on the statistical skill and not on the causing factors. The results of this
study will provide insight to the water-sector practitioners and managers on the precautions
demanded if they are to use local precipitation data or large-scale gridded estimates to
characterize groundwater droughts.

2 Method
2.1 Study area and data

The study was performed using monthly groundwater observations from two hydro-
geologically different regions located in southern Germany and central Netherlands (Dutch

5
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province of Gelderland) with 1991 and 49 groundwater wells, respectively (Fig. [1).
The Dutch region is characterized by the-maritime climate and the wells are located
on a relatively low terrain, but with large spatial differences in unsaturated zone
and groundwater conditions. The German wells are located in a region with hilly to
mountainous terrain, with-continental-less oceanic influence on climate and a wide range
of unconsolidated and consolidated geological formations. The monthly groundwater data
for the German wells were collected from the Bavarian Environment Agency (LfU Bayern)
and the State Institute for Environment, Measurements and Nature Conservation Baden-
Wirttemberg (LUBW). The data for the Dutch wells were acquired from the Dutch institute
TNO (www.dinoloket.nl/).

The-selected-wellsrecords-did-notexhibit-significant-To be able to attribute groundwater
level changes to climatic causes, it is necessary to exclude the possibility that these

changes are a consequence of anthropogenic influences such as pumping or hydraulic
W@msms of anthrOpogemc influences

WWM&%@MMW&@WWM@&
it can be expected that the effects of groundwater withdrawals are only local as water
resources (precipitation - evapotranspiration). In the German study area it is estimated that
only about 3% of the potentially available water are used (Nickel et al., 2005). Irrigation is
groundwater use.
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The majority of the selected wells (around 90 %) are located in shallow aquifers with an
average depth to the water table within 20 m below the ground surface (see Fig. [3a for the
well distribution). The length of records varied from well to well with a minimum of 10 years
(Fig. [1) starting from the year 1951 for the German wells and 1988 for the Dutch wells.
It should be noted that the 10-year criterion does not meet the recommended minimum
30 years (McKee et al., [1993; (Guttman, (1999) for estimating drought indices (i.e., SPI
or SGI). However, a longer cutoff of 30 years would lower the number of qualifying wells
significantly. For example, all the Dutch wells would have been excluded under this criterion
(Fig.[1). The limited availability of in situ groundwater data records as well as the variable
record lengths are inevitable problems in performing groundwater drought studies over
a large domain (see e.g., Peters et al., 2006}, \Weider and Boutt, 2010 [Li and Rodell, [2015).
We nevertheless have tested the reliability of our results to this data availability issue (as
discussed later in Sect. [3.1).

of observations switched to daily measurements. Roughly from 2000 onwards, all stations
roundwater observations were left out from the analysis (i.e., left missing). Finally, we

The daily precipitation time series at every well were extracted from their gridded

estimates computed based on the available rain-gageraingauge network (Samaniego et al.,
2013|;/ten Broek et al., 2014). The underlying point measurement data from about 5600 rain
gauges for Germany and 51 rain gauges for the Netherland were acquired from the German
Meteorological Service (DWD) and the Royal Netherlands Meteorological Institute (KNMI),

7
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respectively. Interested readers may refer to|Samaniego et al.| (2013) and ten Broek et al.
(2014) for more details on processing with the-precipitation data sets for the German and
the Dutch regions, respectively. The monthly total precipitation was then computed from
their respective daily estimates to match the temporal resolution of groundwater records.
Additionally, prior to the SPI calculations, the precipitation time series was filtered based on
the temporal availability of groundwater records to ensure the comparability between the

two time series. In other words, the months with missing groundwater records are also set
scales (accumulated) SPI estimates, as well as their compatibility with the availability of
the corresponding drought indices (i.e., SPl and SGI).

2.2 Drought indices

The Standardized Precipitation Index (SPI) was developed by McKee et al.| (1993) to
characterize the wetness and dryness conditions of a region based on the departure of the
monthly precipitation estimate from their (average) normal value. The SPI can be estimated
for different time scales by accumulating the monthly precipitation over different periods,
typically at 3, 6, 12, 24, or 36 months (see |McKee et al., [19983| for a detailed treatment).
In most applications of the SPI, an analytic distribution function (e.g., the gamma) is
fitted to the long-term precipitation record for a given accumulation period, and then
the corresponding cumulative probability distribution is computed. Finally, the cumulative
probability distribution is transformed to the standard normal distribution to estimate the
SPI (McKee et al, [1993; |Guttman, [1999). Any month with an SPI value below (above)
zero is assumed to reflect dry (wet) conditions. Fitting theoretical distribution functions to
data is potentially problematic because it is difficult to determine the structural form of the
distribution function in advance. For example, \Guttman| (1999) found for the SPI that the

gamma-Person Type lll distribution was the best universal model based on large set of US
8
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datasets, whereas Lana et al. (2001) found that data from Catalonia in Spain could best
be modeled with the Poisson-gamma distribution. Additional problems may arise if the data
exhibits multi-modality.

To avoid these problems and minimize the uncertainty associated with the selection
and estimation of parametric distribution functions, we used a non-parametric kernel
density estimator to compute the cumulative probability distributions of the precipitation
and groundwater data. The kernel density f(a:) is given as

f(x)zékzjff(ﬁ”) 0
=1

where h represents the bandwidth, K (z) the kernel smoothing function, z1, ...,z the set
of variable of interest (i.e., precipitation or groundwater level), and n the sample size. We
used the Gaussian kernel in this study because of its unlimited support and estimated the
pandwidth h by an optimization against a cross-validation error estimate (see |Samaniego
et al., 2013 for details). The distribution functions and the corresponding bandwidths were
estimated for each well and calendar month separately. The resulting quantiles, bounded on
[0,1], are denoted hereafter as SPI and SGil for precipitation and groundwater, respectively.
The quantile-based index has been used in several recent drought studies (Sheffield et al.,
2004}, /Andreadis et al., [2005; |Vidal et al., [2010;|Samaniego et al., 2013), and can be easily
transformed to the unbounded range of the standard normal distribution (Vidal et al., 2010).
The SPI and SGI values below (above) 0.5 denote dry (wet) conditions. Compared to
the absolute values of groundwater heads (precipitation estimates), the transformed SGl
(SPI) values facilitate better the comparison across space and season (Sheffield et al.,

2004). We note that our approach of estimating the SPI time series differs from a more
series and then estimating the corresponding SPI estimates (Guttman;, [1999; Hayes et al.,
2010). A non-parametric approach is used here to avoid the problem of assigning a unique

distribution function to all datasets (as mentioned above), and to ensure the consistency in
9
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the estimation of drought indices for the precipitation and groundwater time series (i.e., both

variables use a similar approach so that the resulting drought indices fall within the same
range [0,1]). We note that many recent drought studies have adopted a non-parameteric

approach for the estimation of drought indices (see, e.g.,|/Andreadis et al., 2005;|Vidal et al.,
2010; Bloomfield and Marchant, 2013;|Samaniego et al., 2013; Hao et al., 2014). Bloomfield
and Marchant| (2013), for example, had difficulties in identifying an unique best distribution
a fitted distribution function varied from one calendar month to another. Here we adopt
their approach and estimate precipitation and groundwater drought indices (SPI and SGi

through a non-parameteric method.

2.3 Experimental setup and evaluation criteria

In this study, we explore the ability of SPI to characterise the local and regional scale
behavior of groundwater droughts. Therefore, we carried out our analysis at two disparate
scales denoted hereafter as the point and the grid scales. The point scale analysis was
performed on well-by-well basis using their available SPI and SGI time series. We based
this analysis on the assumption that the zone of influence for changes in groundwater
levels is limited to the area directly surrounding the well as most of the wells are located
within shallow aquifers (see, Fig. [3|for the distribution of average depth to the water table
across the investigated wells). We note that the approach chosen here is consistent with
that commonly used in previous groundwater studies (e.g., Bloomfield and Marchant, 2013}
Li and Rodell, 2015). On the other hand, the grid scale analysis was carried out using the
monthly estimates of drought indices gridded at a 0.5° spatial resolution — the scale which
is commonly used in regional and global scale drought studies (e.g., [Sheffield et al., 2004;
Andreadis et al.| 2005 |Gudmundsson et al. [2012; |Seneviratne et al., 2012 Van Loon
et al., 2012 |Tallaksen and Stahl, 2014; Wanders et al.,|2015). The gridded fields of drought
indices were estimated using a procedure similar to the ones employed in creating multi-
model drought indices (see, e.g.,|[Mo and Lettenmaier, |[2013};Nijssen et al.,[2014). Following
this procedure, the individual estimates of well-specific drought index were combined into

10
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a single grid representative estimate by averaging the drought index from those wells
which lie within the selected grid cell. The resulting monthly estimates at each grid were
then converted into a percentile based drought index following the (non-parametric kernel)
density estimator approach illustrated in Sect. for the well-specific data sets. The
number of qualifying wells with at least 10 years of records per grid cell varied across
the study domain between (1 and 261) for Germany and (1 and 14) for the Netherlands
with a median value of around 21 and 5 wells, respectively. We note that as a preliminary

adopted ensemble mean approach to estimate 0.5° gridded fields of SPI and SGI. In this

cell), to create the gridded estimates of SPI and SGI. We have analyzed the differences in
sample size on the gridded SPI and SGI skill scores (reported in Sect. .

To provide a qualitative skill of the SPI to characterize the SGI, we first examine
the spatio-temporal relationship between the two indices based on the cross-correlation
analysis. Here we consider the entire speetrum-spectra [0, 1] of the SPI and the SGlI, without

distinguishing between dry or wet regimes. In other words, this part of the analysis was
conducted using the entire time series of SPI and SGI that covers the whole spectrum of

hydro-meterological conditions spanning from the extremely dry to very wet conditions. The
analysis was performed separately for both point and grid scale data sets, with different

accumulations and lags of SPI ranging from 1 to 48 months. In this analysis, we used
the Spearman rank correlation coefficient () as a non-parametric measure to quantify the
strength of a monotonic relationship between the SPI and SGI. Since the propagation
of precipitation signals to the groundwater is highly nonlinear, the rank correlation was
preferred over the traditional Pearson (linear) correlation coefficient in this analysis. The
goal here was to identify what accumulations and lags of SPI are required to align the
signals of precipitation with the groundwater heads; and how they vary in space for both
point and the gridded data sets.
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In the subsequent analysis, we focus on assessing the ability of SPI to detect
groundwater droughts based on SGI. A drought is defined when the indices (i.e., SPI
or SGI) fall below a certain threshold (7), taken here as 0.2 following previous studies
(Sheffield et al., 2004; |Andreadis et al., [2005; |Vidal et al., [2010; [Samaniego et al., 2013).
According to the drought classification scheme used by the U.S. Drought Monitor (USDM;
http://droughtmonitor.unl.edu), more severe and extreme drought conditions appear when
the indices fall below the 7 value of 0.1 and 0.05, respectively. The reliability of groundwater
drought predictions made by the SPI for different drought classes can be assessed using
probabilistic scores based on the probability of detection or hit rate (H) and the false alarm
ratio (F'). Following the (2 x 2) contingency table, the hit rate (H) is given by

a
a—+c

and the false alarm ratio () represented as

H

(@)

b
:a+b ®)

where a, b, and c are the hits, false alarms and misses, respectively (Wilks, |2011). In
our case, the hit rate H is the fraction of all groundwater drought events correctly predicted
by the SPI (i.e., the ratio of the number of times the SPI predicts a groundwater drought
when the SGI indicates the occurrence of one, to the total number of times the SGI
indicates drought conditions). The false alarm ratio F' represents the fraction of forecasted
drought events that were false alarms (i.e., the ratio of the number of times the SPI predicts
a groundwater drought when the SGI does not indicate one, to the total number of times
the SPI predicts droughts). The best scores for H and F' are 1 and 0, respectively; and
the worst values being 0 and 1, respectively. More recently, |[Haslinger et al.| (2014) used a
similar approach to assess the link between the SPI and other atmospheric indices (e.g.,

SPEl and PDSI) to detect low flow events in the Austrian catchments based on hit rates

(H).
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3 Results and discussion
3.1 Cross-correlation analysis between SPI and SGI

The results of the cross-correlation analysis between SGI and SPI at different
accumulations and lags reveal a large degree of spatial variability in the accumulation period
A required to achieve maximum correlation r, at both point and grid scales (Fig. [2). The
A value corresponding to the r, is referred hereafter as an “optimal” accumulation period.
The estimates of A across the majority of wells and grid cells (> 90 %) in both study regions
varied broadly between 3 and 36 months with an overall median value of around 6 to 12
months. The relatively large variation of A values across the investigated wells signifies the
importance of the underlying climate, soil, vegetation, and aquifer properties in modulating
the precipitation signals for groundwater flows.

Our preliminary analysis indicated that the wells located in comparatively very thick
unsaturated zones or deeper groundwater tables exhibited on average higher accumulation
periods, and vice-versa (Fig. [3p). For example, the higher accumulation values (> 24
months) in the middle of the (Gelderland) Dutch region are due to the presence of
a relatively thicker unsaturated zone going up to 30 m deep (Fig. [2). Consistent with the
theoretical expectation, a similar relationship between the accumulation periods and the
depth to the water table was reported recently by [Li and Rodell (2015) when analyzing
groundwater droughts at wells located in the Mississippi river basin and riear-by-nearby
regions. In general, deeper groundwater tables (or thicker unsaturated zone) cause more
attenuation of the high frequency precipitation signals, and require longer accumulations of
precipitation to properly align with the smoothed variability of groundwater signals (Barthel,
2011). On the other hand, the shallower groundwater table responds more quickly to high
frequency precipitation events and the variability of the groundwater anomalies is better
explained by the shorter timescale of the SPI. There are, however, exceptions to this
general behavior and the temporal dynamics of groundwater indices (SGI) at some wells in
shallower aquifers exhibited better correlation with a longer time scale SPI, going up to 48
months (Fig. [8g). This highlights the need to take into account other hydrogeological and
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well-specific information like aquifer release and storage characteristics, perforation type,
borehole location, among others (]Bloomfleld and Marchant| 2013 |Stoe|z|e et aI|, 2014).

W&WMWLQ@W
the spatial variability of optimal accumulation period (4) and maximum correlation (1)
between the SPI and SGI. For this purpose, the underlying hydraulic conductivity values
of the_uppermost aquifer were extracted from the available large-scale hydro-geological
map of Germany (HUEK200; available at a scale of 1:200 000). The wells were grouped
low (107°-10~" m/s), and very low (<10~ m/s). Results of this analysis indicate that
there is no clear trend in the optimal accumulation period (A) between SPI and SGI
by a relatively lower value of the maximum correlation (r,,). The optimal accumulation
aquifer permeability class as compared to that noted for the very low conductivity class
for which one could have expected the largest smoothing (or attenuation) of precipitation
conditions_on the propagation of precipitation signals to _groundwater flows_cannot be
geological parameters such as transmissivity and horizontal extent of an aquifer, which
response time (e.g., Kraijenhoff-van de Leur, [1958; |Gelhar, [1993). Also other local factors
problem that data on local conditions are only available from rather coarse large scale
hydro-geological maps (e.g., HUEK200 map) with possible large deviations from the actual

well-specific conditions. These issues thus require careful and detailed analyses which are
beyond the scope of this study. We note that the focus of this study is not on identifying
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potential factors or relationships explaining the spatial variability of accumulation periods.
Nevertheless, we emphasize here-that the results of this{limited)-exploratory—our above
presented analysis (Fig. ) show the opportunity for establishing a first-order regional
relationship between the accumulation period and the average depth to water table, for
which global estimates are now becoming available (Fan et al., 2013).

The lag times (L) leading to maximum correlation (r,) between the SPI and SGI show
a limited spatial variability across the majority of wells and grid cells with values generally
close to zero (Fig.[2b). This implies that the temporal anomalies of the groundwater heads
(SGI) at those locations are aligned to those of the (accumulated) precipitation (SPI).
Results of our analysis did indicate a substantial variation in the maximum correlation (r,)
across the investigated wells, pointing out the lack of a uniform strong relationship between
SPI and SGI (Fig. [2c). The rm values ranged between 0.40 and 0.87 for the majority of
German wells, and between 0.47 and 0.87 for the Dutch wells with the overall median r,
value of around 0.68 and 0.70, respectively. A relatively weaker correlation between SPI
and SGI was found for wells located in a shallower aquifer, where the average depth to the
water table is less than 5 m (Fig.[3p). The r, value estimated across these shallower wells
was on average around 0.64, whereas for wells located in a relatively deeper aquifer (with
water table depth > 5m) the average r,, was 0.72. This trend of the correlation (r,,) with
the average water table depth is, however, not so strongly pronounced as in a case of the
accumulation period (Fig. [3a and b).

We also tested the reliability of the above results against the data availability issue. The
A and r,,, obtained across all wells were grouped into three categories according to their
available record lengths (i.e., in 10-20, >20-30, and > 30 years). Both the spread and
the average behavior-behaviour of the optimal accumulation period (A) and the maximum
correlation (r,) were comparable across the group of wells with different record lengths
(Fig. and d). This shows that the above presented results are reliable and are not
contingent on the selection of wells with either short or long record lengths. We also
emphasize here that our results are not biased to the selected statistical criteria (i.e., rank
correlation). Similar results (not shown here) were obtained using other criteria such as the
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Pearson correlation coefficient and the mean absolute error; both exhibited substantially
large (small) variations in the accumulation (lag) periods across the analyzed wells and grid
cells.

3.2 SPI with spatially uniform accumulation periods

The spatial variation in the optimum accumulation periods shown in Fig. |2 demonstrates
that there exists no single representative value that is applicable over the entire domain.
A noticeable reduction in the correlation values (r) between SGI and SPI was observed
when a uniform accumulation period was applied to all wells or grid cells (Fig. [4). For
instance, the correlation estimated across the investigated wells on average reduced from
the r, value of 0.67 to 0.23, 0.46, 0.53, 0.50, 0.44, and 0.27 for the 1, 3, 6, 12, 24,
and 48 months of uniform accumulations, respectively. Around 10 to 65 % of the wells
exhibited a notably low correlation with r values less than 0.3. The gridded data sets
exhibited slightly better correspondence between SPI and SGI than the point ones, with
the maximum correlation being dropped from 0.73 to 0.26, 0.54, 0.62, 0.64, 0.56, and 0.35
for the 1, 3, 6, 12, 24, and 48 months of uniform accumulations, respectively. In this case,
nearly 5-60 % of the grid cells exhibited notably low correlation values below 0.3. Among
the different uniform accumulation periods, the strongest correlation between SGI and SPI
was observed for 6—12 months of accumulations, while the weakest link was found for the
one month precipitation accumulation (Fig. [4). These results suggest that the changes in
the monthly groundwater levels can not be explained by the month-to-month precipitation
variability, rather the smoothed response of groundwater requires the contribution from
seasonal to annual precipitation. These results are consistent with findings of other recent
studies performed in different regions (e.g., Bloomfield and Marchant, 2013}, |Li and Rodell,
2015), and the findings here assert to the general notion of the groundwater system acting
as a low pass filter, responding to moderate climate forcings (e.g., Eltahir and Yeh, |1999;
Weider and Boutt, [2010).

The discrepancy between SGI and SPI was further quantified using the mean absolute
error (E) criterion to provide a quantitative estimate of the error E in the units of the SPI or
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SGi (i.e., between 0 and 1). The resulting E value for both point and gridded data sets on
average ranged between 0.17 and 0.26 for different accumulation periods of the SP!I (Fig. [4).
These are quite substantial errors considering that the threshold used to classify between
a drought and a no-drought event is usually taken as 0.2 for the quantile based drought
indices (Sheffield et al., [2004; |Andreadis et al., 2005; Vidal et al., |2010; [Samaniego et al.,
2013). In this case, even the minimum mean absolute error (E) estimates corresponding
to the spatially varying optimal accumulation periods were fairly large with an average
estimate of around 0.15-0.16 for the point and the gridded data sets. These high degrees of
discrepancies between the SGI and the SPI clearly indicate the inability of the precipitation
based drought index to adequately characterize groundwater drought events.

Results of our analysis also show a relatively larger spread in both statistical criteria (i.e.,
r and E) estimated for the point data sets as compared to the gridded ones (Fig. [4). This
once again emphasizes the importance of local scale heterogeneities in propagating the
precipitation signals to groundwater. Clearly, the exhibited high variability of precipitation
and groundwater anomalies at a point scale are smoothed out at a grid scale due to the
spatial averaging that resulted in a better correspondence between the gridded indices at
a regional scale (Fig.[4). Despite the better agreement, the error between the gridded SGi
and SPI at any of the uniform or the optimal accumulation periods remained substantially
high with an average value of at least 0.15 — the error level that is comparable to a threshold
value (7 = 0.2) used to classify droughts.

levels indicating hydrological or groundwater drought indices). The application of a single
accumulation period over the entire domain or among different impact variables could
usually recorded between drought indices and impact variables stresses the need of testing
initially the best time-scales of a drought index to determine possible impacts. It is however
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for many regions for which we need reliable and accurate datasets (e.g., on groundwater
drought information) these observations are often not readily available. Nevertheless, the
issue of analysing an appropriate drought time scale is not only specific for the groundwater

system but also relevant for several other hydrological and ecological systems (e.g., Pasho
et al.,2010;Vicente-Serrano et al.,2011},2012;|Lopez-Moreno et al.,2013;|Vicente-Serrano
et al.,|2013; Haslinger et al, [2014;|Bachmair et al., 2015} |Van Loon, |2015).

3.3 Temporal evolution of SPl and SGiI

Figure [5| shows the exemplary time series of the SGI and SPI at 6 and 12 months of the
accumulation periods for all wells and grid cells and their respective spatial averages for an
overlapping period of 1995-2006. The SGI estimates for both point and gridded data sets
exhibited higher spatial variability that cannot be adequately represented by their respective
SPls regardless of the accumulation periods used. This points out the enhanced role of
soil, vegetation, and hydro-geological properties in propagating the precipitation signal
through the subsurface. These observations are consistent with the findings of [Weider
and Boutt (2010) who also found that groundwater levels in New England have higher
(spatial) variability in their responses than other hydro-meteorological variables including
precipitation and streamflows.

The SPI and the SGI for large-scale drought events like that of 1996 and 2003 show
a remarkable regional difference between German and Dutch wells (Fig. [5). A drought is
defined when the indices (e.g., SPI) fall below a threshold (7) value of 0.2. For instance,
the regionally averaged SPI estimates indicate the most severe and extended (prolonged)
droughts during the 1996 event for Dutch wells, which was not so strongly pronounced
at the German wells (Fig. [5). The opposite behavior was, however, noticed for the 2003
drought event, where the SPI pointed towards more severe drought situations at the
German wells than at the Dutch wells. The regional differences were also apparent
in the anomalies of groundwater heads (SGI) with German wells showing on average
a relatively smoother groundwater response compared to the highly fluctuating and variable
groundwater anomalies at the Dutch wells (Fig. [5). In comparison to the SPI, the regionally
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averaged SGI exhibited far less severe drought condtions, although there were some wells
at which the drought severity based on SGI and SPI were comparable (Fig. [5). This is in

accordance with a well known phenomena of the drought attenuation while propagatin

through sub-suface media and the groundwater compartment of the terrestrial water cycle
(H. Hisdal and L. M. Tallaksen, 2000; |Van Loon|, 2015). Notably, the 1996 and the 2003

drought events that appeared in the averaged SPI at the Dutch and the German wells,
respectively, were not strongly pronounced in their respective SGI estimates to characterize
these events as severe large-scale groundwater droughts.

‘Fhis—underpins—The above presented results underpin_the inability of the SPI
to satisfactorily characterize—droughts—track the drought events in the groundwater
compartment even when applied at longer time scales. The propagation of precipitation
snowmelt timing, and atmospheric water supply and evaporative demand. This results in
a pronounced spatial variation of hydrologic (groundwater) drought characteristics (see
e.9., [Peters et al. 2006} Bloomfield and Marchant, [2013; [Haslinger et al., 2014} |Vicente-|
'Serrano et al., 2012} Teuling et al., 2013 [Van Loon et al.| [2014] [Stoelzle et al., [2014;
the atmospheric water supply side does not include the effects of the evaporative water
(Vicente-Serrano et all, 2010; 2013). Another meterological index such as
the SPEI [Vicente-Serrano et al] (2010) which accounts for both the atmospheric water
indicated that there is not much benefit in using the SPEI over the SPI for the groundwater
of temperature variability (expressed in the evaporation term of the SPEI). We however

recognise that both meterological based drought indices may exhibit a slight difference
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during some specific (summer) months and time periods. We note that our study mainl
focuses on assessing the skill of SPI and the evaluation of other drought indices (like SPEI
or some model based indicators) which in itself would be an interesting research work is

beyond the scope of current study.
3.4 Skill of the SPI to predict groundwater droughts

The skill of the SPI to predict groundwater droughts is assessed using the probabilistic
scores based on the hit rate (H) and the false alarm ratio (F’) (see Sect.[2.3|for a description
of their estimation). The results shown in Fig. [6|for H indicate that for a drought threshold
7 of 0.2, the SPI was only able to correctly predict three out of five (H > 0.6) SGl-based
groundwater droughts at less than 12 % of the German and 16 % of the Dutch wells for
any of the two uniform accumulation periods (6 and 12 months) of SPI. Even in the case
of the SPI corresponding to the spatially varying optimal accumulation period (Fig. [6R),
only 21 and 18 % of the German and the Dutch wells exhibited an H score greater than
0.6, respectively. The low reliability of the groundwater drought predictions using the SPI
was also confirmed from the F' scores, shown in Fig. /] for which at least three in every
five events (F' > 0.6) were wrongly predicted at around 50 % of the wells for both uniform
accumulation periods (6 and 12 months) of SPI. In this case, around 30 % of the wells in
both regions exhibited a high false alarm ratio (£’ > 0.6) for groundwater drought predictions
using the SPI with the optimal accumulation periods (Fig. [7a).

Although the skill of the SPI for the gridded data sets was better than that of the well-
specific ones, both the H and the F scores for the gridded data were far from their best
scores (Figs.[6|and[7). Overall, the H score on average ranged between 0.52 and 0.58 for
the optimal and uniform accumulation periods of SPI, and the corresponding F' score varied
between 0.44 and 0.50. These results clearly highlight the limited skill of the gridded SPI
to capture regional scale groundwater droughts with either optimal or uniform accumulation
periods of SPI. Furthermore, the grid cells for which the SP1 and SGl is constructed based
on the point scale data of very few underlying wells (< 3) exhibited a slightly lower H (and
higher I") scores compared to the others. This lower correspondence between SPI (optimal)
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and SGI was noticed in a few grid cells (7 out of a total 69 cells). For the remaining grid

cells, there was no systematic pattern of improvement or deterioration in the skill scores with
the increasing number of underlying wells, which indicated that the difference in number of
underlying wells among the grid cells had a relatively minor to no effect on the results

resented here for the regional scale groundwater drought analysis.
Results of the further analysis for predicting more severe and extreme groundwater

drought conditions also revealed a significantly poor skill of the SPI at both point and grid
scales (Fig.[8). For example, the 6 and 12 months of uniform accumulation period based SPI
predictions for the severe groundwater drought conditions (7 = 0.1) exhibited an average hit
rate H of around 0.26 (i.e., only one in every four events is correctly predicted) for the point
data sets, and around 0.33 (i.e., only one in every three events is correctly predicted) for
the gridded data sets. The corresponding average F' score was quite high around 0.79 (i.e.,
nearly four in every five events predicted are false alarms) and 0.67 (i.e., two in every three
events predicted are false alarms), respectively. Even with the spatially varying optimal
accumulation period, the overall skill of the SPI was poor, with an average H score of 0.30
and 0.39 for the point and the gridded data sets, respectively. The corresponding F' score
was 0.72 and 0.60, respectively.

The performance of the SPI further deteriorated drastically for the predictions of the
extreme groundwater drought conditions (7 = 0.05), regardless of the accumulation periods
and spatial resolution of the data sets (Fig. [8). These results highlighted the limited
reliability of the SPI for predicting groundwater droughts at different severity levels. Among
other things, these levels are used for watching (or tracking) the onset, development, and
termination of drought events — essential elements to any effective drought monitoring
system (e.g., USDM). The skillful predictions of these drought conditions are of critical
importance because planners and water managers need to know for example the onset
of droughts to take appropriate drought mitigative actions to reduce damages (Hayes et al.,
2010).

21

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]



20

25

4 Conclusions

In this study we assessed the ability of the precipitation based drought index (SPI) to
characterize groundwater droughts at more than 2000 wells located in two regions in
Germany and the Netherlands. These two groundwater networks consisting of a large
number of wells and available records allowed us to quantitatively evaluate the skill of the
SPI for groundwater drought monitoring at a local and regional scale using the well-specific
and the 0.5° gridded data sets, respectively. On the basis or-of this data-based exploratory
analysis, we found that the precipitation needs to be accumulated over several (3—24)
months to (temporally) align the SPI with the SGI time series at both local and regional
scales, reflecting the significantly smoothed response of groundwater to precipitation
signals. Despite this alignment and with a relatively fair degree of correlation, the SPI
lacked the skill to predict groundwater droughts based on SGI. The necessary accumulation
periods varied considerably in space however and were not known beforehand. We found
that the thickness of the unsaturated zone (expressed here as the average depth to the
water table) partly but not entirely controlled the spatial variation of the accumulation
period. The groundwater levels at the wells located in relatively deeper aquifers exhibited
on average stronger correlation with longer time scale SPI, and vice-versa. There was,
however, a considerable noise in this relationship and further studies are required to
investigate the possible role of other land-surface and hydro-geological properties including
aquifer storage and transmission characteristics.

The application of the uniform accumulation periods over the entire domain significantly
reduces the correlation between SPI and SGI indicating the limited applicability of SPI as
a proxy for groundwater droughts even at long accumulation times. The differences between
the SGI and SPI at both point and gridded data sets were substantially high and generally
comparable to the often used threshold value (7 = 0.2) to classify droughts. Based on the
results of this multiscale analyses, the assumption of an average smoothing of precipitation
to mimic groundwater response during droughts is highly unrealistic.
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Depending on the region, the severity of SPI-based drought events differed greatly from
those based on the SGI. In some cases the SPI-based extreme droughts (e.g., 1996 or
2003) only showed up in some groundwater wells but not in the spatially-averaged SGil,
indicating the enhanced role of the subsurface medium in modulating the precipitation
signal. Future studies may look into disentangling the roles of the individual subsurface
medium attributes and climatic factors. The predictions of groundwater droughts at different
severity levels are crucial for water utilities and regulators for planning (e.g., management
of abstraction rates and tariffs, etc) and decision making (e.g., restricting water usage and
rationing). The results of the probabilistic scores based on the hit rate and the false alarm
ratio clearly indicated the inability of the SPI to capture these aspects of drought conditions,
and would therefore be inadequate for monitoring and planning purposes. While these
analyzing the differences among different drought characteristics (e.g., duration, severit
and maximum intensity) derived based on the SPI and SGI time series. Future studies may
therefore look into these aspects..

nal sis focusm on the corres ondence between SPI and SGI over M
[0,1], representing both dry and wet conditions, here-we-specifically-aimed-atanalyzingthe
ability-we put specific emphasis on assessing the skill of the SPI to predict groundwater

drought conditions at different severity levels —(i.e., SGI < 0.2 or 0.1 or 0.05). These
analyses have allowed us to gain more insights into the limitations of a precipitation-

based drought index to properly identify the groundwater droughts. Based on the results
obtained in this study, the hypothesis that the observation-based SPI can adequately predict
groundwater droughts could not be supported for the analyzed point and gridded data sets.

The evidence presented in this study regarding the inability of the SPI to characterize
groundwater drought events at both local and regional scales calls for a different
observation-based indicator like the SGI. If for data availability reasons, the precipitation-
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based drought indicator is used for groundwater drought studies, the aforementioned
limitations should be borne in mind. Finatty—we-We stress the need for putting more
efforts in the collection and collation of groundwater data, so that groundwater observations
become available on global scale to characterize groundwater drought and the availability
of subsurface water resources during drought, at spatial scales small enough to be relevant

for water resources management. Finally, in this study we screened our observational wells
changes in land use_and water use in most of the world today are contributing to
the discrepancy between SPI and SGI. This human influence can and should not be
false image of the drought situation on the ground and its impact on people (Van Loon
et al.,[2016).
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(a) German wells
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(b) Dutch wells
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Figure 1. The locations of (a) German and (b) Dutch wells overlaid on the respective terrains. The
marker colors show the number of months N, with available records during the periods 1950—-2013
and 1988-2013 for German and Dutch wells, respectively.
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(a) Accumulation period, A (month) (b) Lag period, L (month)
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Figure 2. The (a) optimal accumulation A (month) and (b) lag periods L (month) required to obtain
the (¢) maximum correlation r,, (—) between the SGI and SPI at point and gridded (0.5°) scales for

German (top) and Dutch (bottom) data sets.
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Figure 3. Box-and-whisker plots of the optimal accumulation period {A (top) and the maximum
correlation {rn, (bottom) estimated for a group of wells with varying depth to water table (tepleft: aand

, aquifer hydraulic conductivity classes (middle: b), and record lengths (betterright: c¢). Results

shown for the aqguifer hydraulic conductivity correspond to the German wells are grouped into four
distinct classes: high (> 102 m/s), medium (10_3-10-5 m/s), low (10~-5-10~" m/s), and dvery low

(<10~ " m/s). The percentage of wells falling within each group is indicated at the top of every plot.
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Figure 4. The correlation r (top) and the mean absolute error E (bottom) estimated between the
SGl and SPI of the 1, 3, 6, 12, 24, and 48 months of uniform accumulations for the point and the
gridded data sets. Their respective maximum (r,,) and the minimum (E,,,) estimates corresponding
to the optimal accumulation periods of SPI are also shown in the leftmost of the panels. Results
Summary statistics are summarizec-here-provided as an average + one standard deviation, and the

entire range is depicted as filled bars in the background.
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(a) Germany (b) The Netherlands

Point scale ------- Grid scale
!

Point scale ------- Grid scale

SPI-6
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Year Year

Figure 5. The monthly time series of the 6 and 12 month point (light blue) and gridded (light pink)
SPI and the respective spatial averages (dark blue and dark red) for (a) German and (b) Dutch data
sets. The bottom plots are the corresponding SGI time series and their spatial averages. The black
dashed line depicts the drought threshold 7 of 0.2.
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(a) [SPI-optimal,SGI]
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Figure 6. The hit rate (H) to detect SGI based groundwater droughts using the SPI with the
(a) optimal accumulation period and (b, ¢) 6 and 12 months of uniform accumulation periods at

the point and gridded scales for German (top) and Dutch (bottom) data sets. A threshold value 7 of
0.2 is used to identify drought events.
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Figure 7. The false alarm ratio (F) to detect SGI based groundwater droughts using the SPI with
the (a) optimal accumulation period and (b, ¢) 6 and 12 months of uniform accumulation periods at
the point and gridded scales for German (top) and Dutch (bottom) data sets. A threshold value 7 of
0.2 is used to identify drought events.
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Figure 8. The hit rate (H) and the false alarm ratio (F') averaged over all investigated (a) wells and
(b) grid cells to detect SGI based groundwater droughts using the SPI with the optimal accumulation
and 6 and 12 months of uniform accumulation periods for varying levels of threshold value 7 (0.2,

0.1, and 0.05) used to identify drought events.

38

1odeJ UOISSNOSI(]



	combined_response_letter
	manuscript_highlight

