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Abstract. Two data assimilation (DA) methods are compared for their ability to produce an accurate

soil moisture analysis on the Météo-France land surface model: (i) SEKF, a Simplified Extended

Kalman Filter, which uses a climatological background-error covariance, (ii) EnSRF, the Ensemble

Square Root Filter, which uses an ensemble background-error covariance and approximates random

rainfall errors stochastically. In situ soil moisture observations at 5 cm depth are assimilated into5

the surface layer and 30 cm deep observations are used to evaluate the root-zone analysis on 12

sites in Southwest France (SMOSMANIA network). These sites differ in terms of climate and soil

texture. The two methods perform similarly and improve on the open loop. Both methods suffer from

incorrect linear assumptions which are particularly degrading to the analysis during water-stressed

conditions: the EnSRF by a dry bias and the SEKF by an over-sensitivity of the model Jacobian10

between the surface and the root zone layers. These problems are less severe for the sites with wetter

climates. A simple bias correction technique is tested on the EnSRF. Although this reduces the bias,

it modifies the soil moisture fluxes and suppresses the ensemble spread, which degrades the analysis

performance. However, the EnSRF flow-dependent background-error covariance evidently captures

seasonal variability in the soil moisture errors and should exploit planned improvements in the model15

physics.

Synthetic twin experiments demonstrate that when there is only a random component in the pre-

cipitation forcing errors, the correct stochastic representation of these errors enables the EnSRF to

perform better than the SEKF. It might therefore be possible for the EnSRF to perform better than

the SEKF with real data, if the rainfall uncertainty was accurately captured. However, the simple20

rainfall error model is not advantageous in our real experiments. More realistic rainfall error models

are suggested.
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1 Introduction

Soil moisture has a significant influence on heat and water exchanges between the land and the

atmosphere, which makes it an important factor in Numerical Weather Prediction (NWP) (Dharssi25

et al., 2011). It is also useful for a variety of other applications, including drought monitoring, crop

irrigation and water management.

An important application of data assimilation (DA) for land surface models is to assimilate ob-

served surface soil moisture to produce an analysis of root-zone soil moisture. Root-zone soil mois-

ture is usually of more interest than surface soil moisture because it has a much greater water capacity30

and a far longer memory. The interest in soil moisture DA is partly driven by the wealth of satellite

data available from low-frequency microwave instruments, which can be used to retrieve global-

scale surface observations. Recent satellite launches have considerably improved coverage over the

last decade, namely the Advanced Scatterometer (ASCAT) instrument on board the METOP satel-

lites (Wagner et al., 2007), the Soil Moisture and Ocean Salinity (SMOS) Mission (Kerr et al., 2001)35

and the Soil Moisture Active Passive (SMAP) Mission (Entekhabi et al., 2010). However, these in-

struments are subject to significant retrieval errors and can only measure the top few centimetres

of the soil. DA methods are used to account for the errors in the model and the observations. They

also distribute information from the surface observations to the deeper layers. In situ observations of

root-zone soil moisture do exist but are not dense enough over large areas.40

A Simplified Extended Kalman Filter (SEKF, Mahfouf et al., 2009) is embedded in the surface

externalized (SURFEX) modelling platform of Météo-France (Masson et al., 2013). The SEKF sim-

plifies the Extended Kalman Filter (EKF) by assuming that errors in the prior state (the background)

are climatological (i.e. there is no flow-dependence in the errors) and uncorrelated between layers

and gridpoints. The use of a linear model in the analysis update does extract information from the45

surface to the root zone. The SEKF is not yet coupled with an NWP model at Meteo-France. Instead

it is used to provide soil moisture analyses and carbon fluxes for a variety of other applications, in-

cluding hydrological models (see e.g. Draper et al., 2011), and the European Copernicus programme

(http://www.copernicus.eu/). An SEKF is currently coupled with the NWP model of the European

Centre for Medium range Weather Forecasts (ECMWF) for the assimilation of screen-level vari-50

ables (de Rosnay et al., 2013) and for the assimilation of ASCAT soil moisture observations since

April 2015 (Patricia de Rosnay, personal communication). Ensemble DA methods are becoming in-

creasingly popular for land surface models (see e.g. Reichle et al., 2002; Zhou et al., 2006; Muñoz

Sabater et al., 2007; Reichle et al., 2008; Draper et al., 2012; Carrera et al., 2015). There are four

main reasons at Météo-France for developing an Ensemble Kalman Filter (EnKF) for soil moisture55

assimilation: firstly, the EnKF uses a flow-dependent estimate of errors in the background, rather

than a climatological estimate. Secondly, the EnKF can stochastically represent random forcing and

model errors, which is not feasible with an SEKF. Thirdly, a diffusion-based multi-layer model

(Decharme et al., 2011) has been developed to replace the current 3 layer force-restore land surface
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model. Increasing the number of layers would substantially increase the cost of the SEKF Jaco-60

bian calculations, which require a model integration for each prognostic variable. Finally, the EnKF

may take into account background-error covariances between gridpoints, although each gridpoint is

assumed to be independent in this study.

The EnKF has extensively been compared with the EKF on land surface models for assimilating

soil moisture observations. Experiments have been conducted with both synthetic observations (e.g.65

Reichle et al. (2002)) and real observations (e.g. Muñoz Sabater et al. (2007)). In most cases the

EnKF delivered modest improvements over the EKF. It was not obvious beforehand which of these

methods would perform better, since they both make incorrect linear assumptions in the analysis

update: the EKF by using a linear model and the EnKF by using a linear combination of ensemble

members.70

The experiments in this paper are partly motivated by studying the results of the experiments by

Muñoz Sabater et al. (2007); Draper et al. (2009); Mahfouf et al. (2009). They performed compar-

isons of the SEKF and the EKF on previous versions of the land surface model used by Météo-

France. They found that not only is the SEKF less computationally expensive than the EKF, but that

it’s performance is slightly better. Muñoz Sabater et al. (2007) also demonstrated that a simple 1-D75

variational DA method (1DVar) (theoretically similar to the SEKF) performs similarly to an EnKF

with a large ensemble size (≈ 200 members). Their results may seem counter-intuitive since the

SEKF/1DVar methods cannot represent flow-dependent background errors, which can be estimated

by the EKF and the EnKF. However, as the authors ackowledge, when they implemented the EKF

and EnKF they did not use accurate specifications of model errors and forcing errors. The incor-80

rect specification of these errors leads to sub-optimal filter performance (Crow and Van Loon, 2006;

Reichle et al., 2008; Crow and Van den Berg, 2010).

Various formulations of the EnKF exist, which differ in the way they perform the analysis update.

This study examines an implementation called the Ensemble Square Root Filter (EnSRF, Whitaker

and Hamill, 2002). The EnSRF is chosen because it does not perturb the observations, which would85

incur sampling errors. In this paper, the EnSRF is compared with the SEKF in terms of their ability

to provide an accurate deterministic soil moisture analysis. The aim of this study is to compare and

analyze the performances of these DA methods by examining the impact of:

i. random errors in the precipitation forcing;

ii. the Gaussian assumptions made by the DA methods;90

iii. influences of climate and soil texture;

iv. a flow-dependent background-error covariance.

A linear rescaling technique is used in this study, which bias corrects the observations with respect

to the model simulation (Calvet and Noilhan, 2000; Scipal et al., 2008). However, ensemble pertur-

bations can introduce additional biases as a result of the nonlinear water fluxes (Ryu et al., 2009).95

3



A simple bias correction technique is also tested on the EnSRF as a means of reducing the biases

caused by ensemble perturbations (Ryu et al., 2009).

Twelve grassland sites over southwest France, where in situ observations are available (the SMOS-

MANIA network, Calvet et al., 2007; Albergel et al., 2008), are used to compare the methods. These

sites include various climates and soil textures that can influence soil water transfers. In situ 5 cm100

deep soil moisture observations are assimilated into the surface layer. The performance is validated

by comparing the root-zone soil moisture analysis (80 cm depth) with 30 cm deep in situ observa-

tions. The results are collected over a 3 year period (2008–2010).

The methods and materials are described in Sect. 2. In Sect. 3.1, the results of the experiments

without DA are presented. The objective here is to show the physical mechanisms behind the en-105

semble perturbation bias, and the impact of applying a bias correction scheme. In Sect. 3.2 the DA

methods are compared using a synthetic “identical twin” experiment designed to represent only ran-

dom errors in the precipitation forcing. This is a test of the ability of the DA methods to represent

these errors. Then in Sect. 3.3 the DA methods are tested using real in situ observations. Sect. 4

discusses the results and Sect. 5 summarises the main conclusions of the experiments.110

2 Methods and materials

The ISBA-A-gs model and the atmospheric forcing are introduced in Sections 2.1 and 2.2 respec-

tively. The DA methods are explained in Sect. 2.3. A list of the experiments that were performed is

summarised in Sect. 2.4. The experimental setup for the real and synthetic experiments are given in

Sect. 2.5 and 2.6 respectively. The experimental setups include a desciption of the observations and115

the calibration of the error representations of the DA methods. The performance diagnostics of the

DA methods are given in Sect. 2.7.

2.1 ISBA-A-gs model

The experiments were all conducted on version 7.2 of SURFEX, which incorporates the “Interactions

between Soil, Biosphere and Atmosphere” (ISBA) land surface model (Noilhan and Mahfouf, 1996).120

This model is based on the force-restore method of Deardorff (1977). The A-gs version of ISBA

accounts for leaf-scale physiological processes, including the effects of carbon dioxide concentration

and photosynthesis (Calvet et al., 1998). The simulated leaf biomass is used to compute the leaf area

index (LAI), a key variable governing plant transpiration. The “NIT” version of the model is applied

in this work, which can dynamically simulate LAI evolution (Gibelin et al., 2006). The seasonal125

variability in LAI has a significant impact on the soil moisture variables (Barbu et al., 2011). The

three-layer version of ISBA-A-gs is used in this study (Boone et al., 1999). The three soil moisture

variables are defined here with the depths used for the experiments:
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– The surface soil moisture (WG1), with depth d1 of 1 cm. But the effective depth is d1/C1,

where C1 is the surface restore coefficient, which depends on soil texture and soil moisture;130

– The root-zone soil moisture (WG2), with depth d2 of 0.8 m, which includes WG1;

– A recharge layer (WG3) with thickness d3 of 0.2 m, which exists below WG2 (see Fig. 1).

All the variables are measured in terms of volumetric soil moisture concentration (m3 m−3). A dia-

gram illustrating the soil moisture fluxes is presented in Fig. 1. The surface layer (WG1) and the root

zone (WG2) layers are forced by interactions with the atmosphere and restored towards an equilib-135

rium value. At equilibrium, the gravity forces match the capillary forces. The drainage from WG2

supplies water into a recharge zone (WG3), which conserves the total water volume.

In these experiments 12 model points were used, which are the closest points to the 12 grassland in

situ observation sites (introduced in Sect. 2.5). The model points were represented by the grassland

vegetation type and were located such that the nearest observation to each site was always less than140

6 km away.

2.2 Forcing

The “Système d’Analyse Fournissant des Renseignements à la Neige” (SAFRAN) forcing was used,

which is derived from a meso-scale analysis system with a horizontal resolution of 8 km (Durand

et al., 1993). This provides values of precipitation, wind, incoming short-wave and long-wave ra-145

diation, relative humidity and air temperature, mostly derived from a surface network of weather

stations. The hourly forcing values were input into the ISBA-A-gs model for the 12 gridpoints. We

have adopted a version of SAFRAN that enables the additional use of 3000 climatological observing

stations over France, including rain gauges (Quitana-Ségui et al., 2008; Vidal et al., 2010).

2.3 DA methods150

The DA methods employed in this work are derived from the Kalman Filter (Kalman, 1960). The

vector of prognostic variables is x = (WG1, WG2). The background state (xb(ti)) is a nonlinear

model propagation of the previous analysis:

xb(ti) =Mi−1(xa(ti−1)), (1)

where M is the (nonlinear) ISBA-A-gs model. The analysis and the observation time (ti) is at the155

end of the 24 hour assimilation window. The Kalman Filter analysis update is:

xa(ti) = xb(ti) + Ki(y
o
i −yi), (2)

where yo is the assimilated observation and yi =H(xb(ti)) is the model predicted value of the

observation (H = (1,0) in our case). The model state and the observations are weighted using the
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Kalman gain (K):160

Ki = BiHT
i (HiBiHT

i + Ri)
−1, (3)

where H is the linearized observation operator, B is the background-error covariance matrix and R

is the observation-error covariance matrix. These matrices measure the expected errors and the co-

variances are a measure of the correlations in the errors between the different variables (i.e. between

WG1 and WG2). The R matrix is assumed to be diagonal i.e. covariances equal to zero. It is also165

assumed that each gridpoint is independent i.e. the background-error covariance is assumed to be

zero between gridpoints. The observation is present at the end of the assimilation window, so the

background-error covariance needs to be propagated from the beginning to the end of the window.

This is implicitly calculated via H for the SEKF (Sect. 2.3.1) and via the ensemble perturbations for

the EnSRF (Sect. 2.3.2). A summary of the DA methods is given in Table 1.170

2.3.1 SEKF

The Simplified Extended Kalman Filter (SEKF, Mahfouf et al., 2009) is based on the EKF (Jazwin-

ski, 1970). The SEKF simplifies the EKF by using both a diagonal and climatological background-

error covariance at the start of the assimilation window.

The SEKF was originally designed to assimilate screen-level temperature and humidity, which175

are not prognostic variables and therefore cannot be assimilated directly (Hess, 2001; Balsamo et al.,

2007). For this reason the SEKF uses the linear observation operator H to relate the observed quantity

to the prognostic variables. Following the notation of Mahfouf (2010), there are two steps in the

calculation of H. The first step H1 is simply a transformation into observation space (H1 = (1,0) in

our case). The second step is the calculation of the Tangent linear version of the nonlinear model (M).180

This linear model is a finite difference approximation between a perturbed and reference nonlinear

model simulation:

Ml
i−1 =

Mi−1(x(ti−1) + ∆xli−1)−Mi−1(x(ti−1))

∆xli−1
, (4)

where ∆xl is a model perturbation applied to model variable l. Therefore the Jacobian between the

observation k and the model variable l is simply:185

Hkl
i = Hk

1Ml
i−1. (5)

Eq. (4) requires a model integration for each prognostic variable. This formulation of H implicitly

propagates the B matrix from the start of the assimilation window to the time of the observation

at the end of the window (HiBiHT
i = H1Mi−1Bi−1MT

i−1HT
1 ). Although screen-level temperature

and humidity observations are not assimilated in this study, the same formulation is applied to soil190

moisture observations.

The ∆xl size is important – it needs to be sufficiently small that the linear approximation in

deriving M is satisfactory but large enough to not incur significant computational round-off errors.
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A measure of the nonlinearity of the nonlinear model (M) can be calculated by the magnitude of the

difference between Hkl for positive and negative values of ∆xl (Walker and Houser, 2001; Balsamo195

et al., 2004; Draper et al., 2009), with values close to zero indicating quasi-linear model behaviour.

Draper et al. (2009); Duerinckx (2015) have demonstrated that over 6 and 24 hour windows, the

behaviour of the model is generally quasi-linear for other versions of ISBA. However, in both studies

there were occasions when the model behaviour was highly nonlinear and in these situations the

tangent linear approximation is inadequate. Following Draper et al. (2009), we use a perturbation size200

of 10−4(wfc−wwilt) and a 24 h assimilation window. Draper et al. (2009) demonstrated that during

dry periods the H12 values can become much larger than 1.0, which is unrealistic and indicates

highly nonlinear behaviour. For this reason we imposed a maximum limit on H12 of 1.0.

The validity of the tangent linear approximation was not tested explicitly in this study. Instead,

the WG2 Kalman gain was compared before and after imposing the 1.0 Jacobian limit. It was clear205

when the linear assumption broke down because the WG2 Kalman gain was noticeably reduced by

imposing the limit. The WG2 Kalman gain is defined by:

KWG2 = H12B(HBHT + R)−1

= H12
(
σb

WG2

)2((
H11σb

WG1

)2
+
(
H12σb

WG2

)2
+ (σo)2

)−1
, (6)

where σo and σb are the expected observation and background errors. The R matrix in our study is210

equal to the scalar (σo)2.

2.3.2 EnSRF

The EnKF (Evensen, 1994) is a way of representing the uncertainty in the prognostic variables by

using an ensemble of model trajectories. This circumvents the high computational cost of explicitly

storing and propagating the background-error covariance for a large model dimension. First, each215

ensemble member is propagated using the nonlinear model:

xb
j (ti) =Mi−1(xa

j (ti−1)), for j =1,...,m, (7)

where m is the ensemble size and j is the ensemble member The following steps then occur at the

analysis time (ti). The ensemble background-error covariance is defined as:

Pb =
1

m− 1
Xb(Xb)T. (8)220

and the perturbation matrix (of dimension n×m) is given by:

Xb =
1√
m− 1

[
δxb

1 . . . δxb
m

]
, (9)

where δxb
j = xb

j −xb are the perturbations from the ensemble mean (xb) and n is the model state

dimension. Note that B in Eq. (3) is expressed as Pb for the EnSRF. The deterministic analysis is
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calculated from the ensemble mean:225

xa = xb + K(yo−y) (10)

An additional step is required to avoid ensemble collapse. The traditional EnKF of Burgers et al.

(1998) maintains the ensemble spread by perturbing the observations. The serial ensemble square

root filter (EnSRF) was introduced by Whitaker and Hamill (2002) as a means of avoiding the sam-

pling error from the perturbed observations. The ensemble perturbations are updated by:230

xa
j = xa + δxb

j −αKyj , for j =1,...,m, (11)

where

α=
1.0

1.0 +
√

R
HPbHT+R

. (12)

Here R and HP bHT are scalars representing the variances at the observation location. The variable

of interest WG2 is linked to WG1 via the Kalman gain:235

KWG2 = Xb
WG1(Xb

WG2)T
(

Xb
WG1(Xb

WG1)T + (σo)2
)−1

, (13)

where XWG1XT
WG2 represents the cross-product between the WG1 and WG2 ensemble perturbations.

The WG1 and WG2 ensemble spreads are defined by Xb
WG1(Xb

WG1)T and Xb
WG2(Xb

WG2)T respec-

tively.

2.4 Experiment list240

The experimental setup for the DA experiments is summarised in Table 2. This includes the repre-

sentation of the truth, the observations, and the data used for evaluation. A description of the real

and synthetic experiments with DA are given in Sections 2.5 and 2.6 respectively.

A summary of the calibrated values and the results of each experiment are given in Table 3. The

first experiment (Ens) was performed by perturbing an ensemble without DA in order to investigate245

the cause of the perturbation bias. The bias correction scheme (Eq. 16) was then tested on this en-

semble, which is labelled as Ensbc. Thereafter the synthetic and real DA experiments are denoted

by the subscripts S and R respecively. For each experiment the calibrated error variances are speci-

fied. For the real experiments the EnSRF was tested with three different configurations: EnSRFR1 is

the baseline EnSRF without perturbed precipitation forcing nor bias correction. The EnSRFR2 and250

EnSRFR3 experiments include perturbed precipitation forcing and bias correction respectively. Bias

correction was not performed in the synthetic experiments. Note that in the synthetic experiments,

the EnSRFS was designed to capture the precipitation forcing uncertainty perfectly. The same pre-

cipitation error specification was used to estimate the precipitation errors in the real experiments

(EnSRFR2).255
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2.5 Experimental setup: DA with real observations

2.5.1 Observations

For the experiments with real observations, in situ observations at 12 grassland sites in Southwest

France were assimilated. These experiments are hereafter referred to as “real experiments”. These

grassland sites are part of the Soil Moisture Observing System Meteorological Automatic Network260

Integrated Application (SMOSMANIA) network (Calvet et al., 2007; Albergel et al., 2008). A map

of the sites is shown in Fig. 2. Also included in Fig. 2 is a bar chart of the average daily precipita-

tion for the sites (from west to east). The observations are spaced approximately 45 km apart. The

SMOSMANIA network was selected partly because of the large variability in the climatologies and

soil textures between the different sites. The more westerly sites are generally wetter as they are265

more exposed to weather systems arriving from the Atlantic ocean. The most westerly site (Sabres)

receives more than twice the average rainfall of the most easterly site (Narbonne), with a mean daily

rainfall of 3.5 mm, compared with 1.5 mm for Narbonne. Sabres also has a smaller clay to sand ratio

than Narbonne. For the interested reader, Table S1.1 of Supplement 1 shows modelled and observed

sand and clay percentages for each site. The larger sand particles have a smaller aggregate surface270

area than the finer clay particles, which means that sand can hold less water than clay. This leads

to faster water transfers for sandier soils. This study examines the influences of these factors on the

performance of the DA methods.

The 5 cm deep observations were simulated by WG1 and were assimilated daily at the end of a

24 hour assimilation window (06 UTC). The WG2 variable was represented by in situ observations275

at 30 cm depth, which were used to evaluate the performance of the DA methods. It is possible

to inter-compare in situ observations and model simulations, provided the observations are a good

representation of the depth of the layer. The observations and the model were well correlated for our

experiments. The average anomaly correlation coefficients (ACC, defined in Sect. 2.7) for the sites

between the simulated and observed WG1 (WG2) variable is 0.53 (0.68). Table S1.1 in Supplement280

1 shows the WG1 and WG2 ACC for each site.

A linear rescaling technique was employed in this study, which scales the observations such that

the mean and the variance match that of the model (Calvet and Noilhan, 2000; Scipal et al., 2008).

The rescaling was performed over 2007-2010. The results were calculated over 2008-2010 because

a one year spin-up was used in the experiments. The small bias that remained, as a result of the285

different time periods, is not significant. There were significant biases in the in situ observations

(relative to the model simulation) prior to rescaling. The rescaling reduced the site-averaged WG1

(WG2) RMSE between the model simulation and the observations from 0.089 (0.062) m3 m−3 to

0.060 (0.025) m3 m−3, without changing the ACC.

It was necessary to estimate the observation errors for the DA experiments. All the ThetaProbe290

sensors used to measure soil moisture in the SMOSMANIA network were calibrated using gravi-
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metric reference observations (Calvet et al., 2007). Overall, the RMSE after calibration was

0.038 m3 m−3. This error includes instrumental errors and local representativeness errors (gravi-

metric samples were collected a few meters around the probes). However, other representativeness

errors were also likely in this study, since the point observations were assumed to represent 8×8 km2295

model pixels. The observation error standard deviation (σo) for WG1 was tested with values of

λo(wfc−wwilt) m3 m−3, with λo equal to 0.5 or 0.35. The variable λo is a dimensionless scaling

coefficient for the observation error. The wfc and wwilt parameters are the field capacity and the wilt-

ing point respectively, and they depend on the soil texture and vegetation type of each site. With the

scaling by (wfc−wwilt) the two values of λo correspond to site averaged σo values of 0.030 m3 m−3300

and 0.044 m3 m−3, which are either side of the RMSE measured by Calvet et al. (2007). The scaling

by (wfc−wwilt) is based on the assumption of a linear relationship between the dynamic range of soil

moisture values and the errors (Mahfouf et al., 2009).

2.5.2 SEKF calibration

The represention of errors by the DA methods can significantly influence their performance (Reichle305

et al., 2008). The SEKF uses a climatological background-error covariance matrix. This matrix the-

oretically captures the total contribution from background errors and additive model/forcing errors.

In this study, the SEKF background-error standard deviations (σb) for WG1 and WG2 were tuned

to produce the best ACC, with sizes:

σb
WG1 = λb1 × (wfc−wwilt),310

σb
WG2 = λb2 × (wfc−wwilt), (14)

In the real experiments, λb1 and λb2 were tuned between 0.0 and 0.5, in steps of 0.05. The variable λb

is a dimensionless scaling coefficient for the calibration of the background errors. The background

error variances were scaled by (wfc−wwilt) for each site.

2.5.3 EnSRF calibration315

The background errors in the EnSRF are implicitly captured by the ensemble spread. Hamill and

Whitaker (2005) demonstrated that the addition of random perturbations to the model state (additive

inflation) at the start of each cycle can be used to represent model errors. For the real experiments,

Gaussian noise with zero mean and standard deviation ε was added to each ensemble member after

the daily analysis update. The values of ε for WG1 and WG2 were tuned to produce the largest ACC:320

εWG1 = λb1 × (wfc−wwilt),

εWG2 = λb2 × (wfc−wwilt), (15)

with λb1 varying between 0.0 and 0.5, in steps of 0.05, and λb2 varying between 0.0 and 0.05, in

steps of 0.005. Time-correlated additive inflation was implemented using a 1st order auto-regressive

10



model. It was decided to use time correlations of τ = 1 day for εWG1, and τ = 3 days for εWG2.325

This is similar to previous studies (Reichle et al., 2002; Mahfouf, 2007) and is consistent with the

longer time correlations of the WG2 variable compared with WG1. An ensemble size of 20 members

was chosen for the calibration of the additive inflation. The calibrated EnSRF was then tested with

ensemble sizes ranging from 3 to 200 in order to explore the effects of sampling errors.

The EnSRF ensemble used hourly perturbations of the precipitation forcing in order to estimate330

the precipitation uncertainty. The same perturbations were also used to capture precipitation errors

in the synthetic experiment and this technique is described in Sect. 2.6. The performance of the

EnSRF with perturbed precipitation was also compared with the performance without perturbed

precipitation.

2.5.4 EnSRF bias correction335

A bias correction technique was tested on the EnSRF as a means of correcting the biases caused by

the ensemble perturbations themselves (Ryu et al., 2009). The perturbation bias correction uses the

forecast from the previous analysis ensemble mean as an anchor to modify the background ensemble:

x̃b
j (ti) = xb

j (ti)−xb
j (ti) +M(xa(ti−1)), for j = 1, . . .,m. (16)

where x̃b
j is the bias-corrected xb

j . Equation (16) prevents the mean of the ensemble forecasts from340

becoming biased with respect to the forecast of the analysis ensemble mean. The perturbation bias

correction was implemented on all three layers before the analysis update step.

2.6 Experimental setup: DA with synthetic observations

For the synthetic experiments the in situ observations were not used, although the model was used

for the same 12 sites. The truth was generated from a single model simulation. The WG1 observa-345

tions were extracted from the truth with the addition of a random normally distributed observation

error with zero mean and standard deviation equal to to 10% of the higher value used in the real

experiments (σo = 0.05(wfc−wwilt)). The size of the observation error was small enough for the

observations to have a noticeable impact on the analysis. We also tested an observation error equiv-

alent to the value in the real experiments and the impact on the analysis was about 10 times less (not350

shown).

A perfect model was used for the DA. However, errors were introduced in the precipitation forcing

by adding random hourly perturbations εPr to the hourly precipitation accumulations (Pr):

Pr∗= Pr+ εPr, (17)

where Pr∗ is the perturbed hourly precipitation. The hourly perturbations were randomly sampled355

from a normal distribution with standard deviation equal to 50% of the hourly precipitation and zero

mean. The probability distribution function (pdf) was truncated in order to prevent negative values
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of Pr∗ and to maintain a mean of zero (−Pr ≤ εPr ≤ Pr). A single precipitation time series from

Eq. (17) was generated over 2007-2010. This was used to force the model. A standard deviation

of 50% of the hourly precipitation was judged as an appropriate order of magnitude by Reichle360

et al. (2002), by comparing the magnitude of the resulting errors with the difference between two

precipitation data sets. Other forcing parameters were not perturbed, since it was found through a

sensitivity study that perturbing these values had little impact on the model simulations. The results

for the sensitivity study are presented in Table S1.2 of Supplement 1.

The SEKF has no means of capturing the uncertainty in the precipitation forcing from Eq. (17)365

directly. Therefore it was necessary to calibrate the B matrix to capture the background errors that

resulted from the precipitation errors. The background-error variances (σb) were calibrated with

values a 10th of the values used for the real experiments (Eq. (14)), since the open loop errors in the

synthetic experiments were about 10% of the errors in the real experiments.

In the synthetic experiments, the EnSRF ensemble members used the single precipitation time370

series from Eq. (17) to force the model. However, each ensemble member was then perturbed using

Eq. (17) with different random seeds for each member. This enabled the EnSRF to capture the

uncertainty in the precipitation forcing directly.

2.7 Performance diagnostics

The Root Mean Square Error (RMSE), the Anomaly Correlation Coefficient (ACC) and the Bias for375

the WG2 variable were used to determine the performance of the DA methods:

– RMSE:
√∑N

i=0 (y
e
i−H(x(ti)))2

N ;

– ACC =
∑N

i=0(H(x(ti))
′−C(H(x)′))((ye

i)
′−C((ye)′))√∑

i(H(x(ti))′−C(H(x)′))2((ye
i)

′−C((ye)′))2
;

– Bias:
∑N

i=0
ye
i−H(x(ti))

N .

The time ti is the daily time, with t0 equal to 01/01/2008 and tN equal to 31/12/2010. The clima-380

tological (time) mean of x is defined as C(x). The observations used for evaluation are defined as

(ye). For the real experiments these are in situ observations of WG2 after rescaling. In the synthetic

experiments these are the true values of WG2. The anomaly x(ti)
′ is taken as the difference between

the variable and a 3-month moving average.

The RMSE is a measure of both the random and systematic components of the error. The ACC385

represents the seasonal correlations, which are unaffected by systematic errors, while the bias mea-

sures the systematic errors. The computational cost of the DA methods was not assessed because

the ensemble DA methods were not optimized to take advantage of parallel computing. Further-

more, Muñoz Sabater et al. (2007) already estimated the computational cost of similar algorithms

on a previous version of ISBA-A-gs. They found that the main wall-clock time constraints of the390

EKF and EnKF algorithms were the model simulations, rather than the DA. Indeed, in our study
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the SEKF (which requires three simulations for the model Jacobian calculations) did have about the

same wall-clock time as the EnSRF with 3 ensemble members.

In the experiments where DA is not applied, the perturbed model simulation is measured against

the unperturbed model simulation.395

3 Results

3.1 Investigating the perturbation bias (no DA)

An ensemble of model trajectories was perturbed by adding Gaussian perturbations to WG2 with

standard deviation 0.025m3 m−3 and zero mean. This is a similar order of magnitude to the values

used to calibrate the ensemble spread in the real experiments (see Sect. 2.5.3). The result for the400

perturbed 20 member ensemble is defined as experiment Ens in Table 3. The unperturbed simulation

is hereafter referred to as the open loop. The ensemble mean is compared with the open loop using the

performance diagnostics defined in Sect. 2.7. A bias of −4.9× 10−3 m3 m−3 has been introduced.

The origin of this bias is investigated by linking the physical processes that underpin the bias to

changes in the ensemble spread (Sect. 3.1.1). The influences of precipitation and soil clay content405

on the bias are then explored in Sect. 3.1.2.

3.1.1 Influence of model physics

The site-averaged (averaged over the 12 stations) and time-averaged water content of the total reser-

voir (WG1 + WG2 + WG3) is 243 mm for the open loop and 239 mm for Ens. This water loss of

4 mm (of Ens compared with the open loop) represents a small fraction of the total reservoir. The410

impact of the perturbed ensemble on each individual layer is demonstrated by Fig. 3, which shows

the monthly, annually and site-averaged net a WG1, b WG2 and c WG3 for Ens and the open loop.

The net water amount represents the concentration in m3 m−3 for the layer scaled by the depth of

the layer (in mm). The dry bias (Ens relative to the open loop) is evident in WG2 during the entire

period and it peaks between July and September. There also appears to be a dry bias in the winter in415

WG3, but there is no significant bias in WG1.

The seasonal water fluxes are investigated in order to explain the seasonal variabilities in the bias.

Water is depleted from the reservoir via either drainage, evaporation, transpiration or surface runoff.

Surface runoff is neglected in this investigation because it is relatively small compared with the other

processes. The site-averaged monthly evapotranspiration (evaporation + transpiration) and drainage420

are shown in Fig. 3d and 3e respectively. The bare-soil evaporation is most active during summer,

which corresponds with the maximum insolation. The transpiration is largest in spring and early

summer, when the vegetation is most developed and before the onset of water-stressed conditions in

late summer. Transpiration dominates over bare-soil evaporation, since the grassland vegetation type

covers 90% of the land surface. These two processes add up to an evapotranspiration curve which425
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peaks in May and June (Fig. 3d). In contrast to evapotranspiration, the drainage is most active during

the winter and is absent during the late summer/early autumn period (Fig. 3e); since drainage only

occurs when the soil moisture is near the field capacity.

The main effect of the ensemble perturbations (Ens) on evapotranspiration relative to the open

loop is an enhancement in July and August and then a reduction in September and October (Fig. 3d).430

This effect is also clearly evident in Fig. 3f, which shows the total difference in soil water depletion

between Ens and the open loop. The effect of perturbing the ensemble on drainage is a slight increase

relative to the open loop between February and June (Fig. 3e). The annually averaged discrepancy

between the Ens and open loop total soil water depletion is about 4mm, which accounts for the dry

bias in the Ens total reservoir.435

It is possible to link the seasonal changes in soil water depletion to changes in the ensemble spread.

The ensemble members, ensemble mean and the open loop for 2009 are shown for the Sabres site

and the Narbonne site in Fig. 4a and b respectively. Also shown are the wilting point and the field

capacity for the two sites. The larger water capacity of clay relative to sand explains the greater field

capacity and wilting point of Narbonne compared with Sabres. During prolonged wet periods, which440

tend to occur in winter, the ensemble members converge because the soil reservoir reaches the field

capacity. This corresponds to a reduction in the ensemble spread. Between the spring and autumn

the largest fluctuations in soil moisture occur due to changes in rainfall and insolation. During this

period the soil moisture simulation becomes sensitive to perturbations in the initial conditions, which

is reflected by the large WG2 ensemble spread. The Narbonne soil has a much larger ensemble spread445

than the Sabres soil, particularly in autumn. Separate experiments have confirmed that this is related

to the larger precipitation of Sabres compared with Narbonne, which acts to suppress the ensemble

spread (see Sect. 3.1.2).

Now the seasonal changes in the bias can be related to changes in the ensemble spread. The Ens

WG2 ensemble mean is clearly negatively biased (compared with the open loop) for Narbonne dur-450

ing much of the period (Fig. 4b), most especially when the open loop is near the wilting point during

summer and autumn. Near the wilting point the WG2 ensemble spread becomes negatively skewed,

which occurs because the negative perturbations remain almost unchanged, but the extra water from

the positive perturbations is removed rapidly by transpiration. This is evidenced in Fig. 5a for Nar-

bonne, which for clarity shows only 4 of the 20 ensemble members between June and September455

2009. The evapotranspiration for the same members is shown in Fig. 5b. The evapotranspiration is

very small for the open loop and for the ensemble members below the wilting point. The mem-

bers above the wilting point experience strong evapotranspiration. This effect is partly linked to the

phenology; under water-stressed conditions the vegetation roots readily absorb excess water that be-

comes available, which increases the transpiration and the LAI (not shown). The Ens negative bias460

is larger for Narbonne than Sabres because of the greater ensemble spread for Narbonne (compare

Fig. 4a with b).
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The impact of the ensemble perturbations on drainage is most significant near the field capacity.

Fig. 5c and Fig. 5d show the soil moisture and drainage respectively for Narbonne, between Febru-

ary and March 2009. For clarity only 5 of the ensemble members are shown. When the ensemble465

members are greater than the field capacity then the drainage rapidly increases, which suppresses the

ensemble spread. The ensemble members below the field capacity have a drainage near zero. This

implies that when the open loop is below the field capacity, and some ensemble members are above

the field capacity, the ensemble mean loses water relative to the open loop. This often occurs during

the spring and autumn months, which agrees with Fig. 3e.470

3.1.2 Influences of precipitation and clay content

We performed extra experiments to determine whether the differences in the ensemble perturbation

bias between the sites can be partly attributed to soil clay content or to precipitation. The clay content

is an important aspect of soil texture, while precipitation was the most important climate variable in

our sensitivity study (Table S1.2 of Supplement 1). Firstly, we compared the average perturbation475

bias (normalized by the RMSE) of the experiment Ens with the average precipitation for each site.

A scatter plot of the average daily precipitation against the normalized bias is shown in Fig. 6a. The

linear regression line shows a strong negative correlation between the precipitation amount and the

magnitude of the perturbation bias. The wettest site, Sabres, is labelled as ‘S’ and the driest site,

Narbonne, is labelled as ‘N’. These are the two sites that were compared in detail in Sect. 3.1.1.480

We then performed an experiment to determine the impact of clay content on the bias. In this

experiment we used the same atmospheric forcing of the wettest site (Sabres) for all the sites. This

eliminates the impact of different climate on the results and leaves only differences in soil class. The

clay percentage is plotted against the perturbation bias in Fig. 6b. We then repeated the experiment

in Fig. 6b but instead using the same atmospheric forcing of the driest site (Narbonne) for all the485

sites. The results are shown in Fig. 6c. Neither Fig. 6b nor 6c show a strong correlation between

the clay percentage and the bias. On the other hand, the perturbation bias for the drier climate in

Fig. 6c is much greater for all the sites than for the wetter climate 6b. These results demonstrate that

precipitation acts to suppress the perturbation bias, while clay content has little influence on the bias

for these 12 sites.490

3.1.3 Bias correction

The simple bias correction scheme (Eq. (16)) was tested on the ensemble and the results are also

shown in Table 3 (labelled as Ensbc). The bias has been reduced to less than a 10th of the size and

the RMSE reduced by half compared with the original Ens. Fig. 3 a-c show the net soil moisture

content of each layer for the bias corrected ensemble (Ensbc). The bias correction has effectively495

removed the bias from all three layers.
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The soil water depletion is shown in Fig. 3 d–f for Ensbc. It appears that the application of the

bias correction scheme has inadvertently increased the soil water depletion of Ensbc relative to the

open loop. A side-effect of the increase in water depletion processes is a reduction in the ensemble

spread. The monthly average spread is shown in Fig. 7 for (a) Sabres; and (b) Narbonne. The bias is500

much greater for Narbonne than Sabres (comparing Fig. 4a with 4b). Therefore the ensemble spread

is halved by the bias correction for Narbonne, but only slightly reduced for Sabres. The reduced

ensemble spread has important repercussions for DA, where the ensemble spread determines the

weight to give to the background. This is investigated in Sect. 3.3.

3.2 SEKF vs EnSRF: synthetic observations505

The EnSRF and the SEKF were first tested with only errors in the precipitation forcing. Recall that

the observations were taken from a single model simulation with a small random observation error

(Sect. 2.6). For this experiment the EnSRF used a perfect stochastic representation of the precipi-

tation uncertainty. The SEKF cannot capture the precipitation uncertainty directly, but instead the

climatological background-error variances were calibrated to produce the best performance.510

The time-averaged and site-averaged WG2 RMSE of the 20 member EnSRF is labelled as EnSRFS

in Table 3. The EnSRFS RMSE is about half the size of the open loop RMSE (OLS). The perfor-

mance of EnSRFS for various ensemble sizes is demonstrated in Table 4. A gradual improvement

in the EnSRFS is apparent in Table 4 as the ensemble size is increased from 3 to 20. The sampling

error in the perturbed forcing is the cause of the larger RMSE for the smaller ensemble sizes. The515

EnSRFS has an ACC close to 1.0. No significant bias was introduced because the ensemble spread

was small (not shown).

The SEKFS climatological background-error covariance needed to be calibrated in order to min-

imize the RMSE. The SEKFS with the optimal calibration is labelled as SEKFS in Table 3. The

SEKFS performs slightly better than the open loop, but not as well as the ensemble DA methods.520

This is expected because the SEKFS does not capture the uncertainty in the precipitation directly,

rather it uses larger variances in B to compensate for forcing errors. Table 5 shows the performance

of the SEKFS with various background-error covariance specifications, with the bold font showing

the optimal calibration.

The monthly average performances of the open loop and the DA methods are shown in Fig. 8 a-c.525

The open loop RMSE is greatest in the spring and autumn seasons (Fig. 8a). The soil moisture is

going through a transition from a wet to dry state in spring and from a dry to wet state in autumn,

which increases its sensitivity to perturbations in the precipitation. During the winter the WG2 reser-

voir is close to the field capacity. During the summer the soil moisture is close to the wilting point

and there is relatively little precipitation to perturb. Unlike the EnSRFS, the SEKFS climatological530

background-error covariance does not account for the seasonal variability in precipitation amounts.

This is evidenced by examining the Kalman gains.
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The monthly average WG2 Kalman gain for EnSRFS is displayed in Fig. 9. The EnSRFS Kalman

gain is closely correlated with the open loop RMSE, with peaks in late spring and autumn. The

SEKFS Kalman gain is plotted in Fig. 9 both before and after the 1.0 limit is imposed on the model535

Jacobian. In Sect. 2.3.1 it was explained that this limit is exceeded only when the model behaviour is

very nonlinear, during which time the SEKF tangent linear approximation is inadequate. In contrast

to the EnSRFS Kalman gain, the SEKFS Kalman gain peaks in July. By imposing the limit on

the over-sensitive Jacobian, the Kalman gain is notably reduced between May and October, which

shows that the SEKFS tangent linear approximation is poor during this period. This explains why the540

SEKFS WG2 RMSE and ACC are worse than the open loop between June and September (Fig. 8a

and b).

3.3 SEKF vs EnSRF: real observations

Firstly, the performance of the calibrated EnSRF is analyzed for the baseline experiment, where only

additive perturbations were applied to WG1 and WG2. This is labelled as EnSRFR1 in Table 3. The545

EnSRFR1 method does perform significantly better than the open loop (labelled as OLR in Table

3). But a dry bias has been introduced, which represents a large fraction of the RMSE (25%), and

is consistent with the size of the dry bias introduced by experiment Ens in Table 3. The EnSRFR1

method was tested with various ensemble sizes and the results are shown in Table 4. There is no

improvement beyond an ensemble size of 20 members.550

Fig. 4c and d are equivalent to Fig. 4a and b but instead show the EnSRFR1 ensemble, the open

loop and the observations for 2009. During December and January, the ensemble for Narbonne

(Fig. 4d) has a similar negatively skewed spread to Fig. 4b, which indicates that the perturbation

bias is present. The observations are wetter than the open loop during the summer and are therefore

offsetting the perturbation bias. The opposite is true in December and January, when the observations555

are drier than the open loop, which causes many of the ensemble members to dip well below the

wilting point.

The SEKFR performance is presented in Table 3. In terms of RMSE, SEKFR performs marginally

better than EnSRFR1, while EnSRFR1 has a slightly higher ACC than SEKFR. The SEKFR method

is also affected by a negative bias, which is about half the size of the EnSRFR1 bias. The SEKFR560

analysis increments themselves introduce a negative bias through the same mechanisms as the en-

semble perturbation bias. But the EnSRFR1 method is affected by the biases introduced by both the

ensemble perturbations and the analysis increments, and therefore the EnSRFR1 bias is greater than

the SEKFR bias.

Fig. 10 a and b show contour plots of the EnSRFR1 RMSE and ACC respectively, for the range of565

additive perturbations used to calibrate the method. Fig. 10 c and d show equivalent contour plots for

the SEKFR. Both performance metrics are much more sensitive to the WG2 perturbations than the

WG1 perturbations, which is logical given that the WG2 layer is much thicker than the WG1 layer.
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The SEKFR results are less noisy than the EnSRFR1 results (Fig. 10 a and b) because the SEKF

is not affected by the noise associated with the finite ensemble size of the EnSRF. The EnSRF and570

the SEKF were also tested with the smaller observation error of 0.35(wfc−wwilt), but this did not

significantly change the performance of the methods (not shown).

The monthly-averaged and station-averaged RMSE, the ACC and the bias are shown for the open

loop, SEKFR and EnSRFR1 in Fig. 8 d-f respectively. The RMSE in all cases is highest in June and

October (8d), as this corresponds with the greatest fluctuations in soil moisture. This is also when575

the most improvement over the open loop occurs. The EnSRFR1 RMSE is slightly degraded relative

to the SEKFR in July and August as a result of the perturbation bias during this period (evident in

Fig. 8f). The superior EnSRFR1 ACC from July to September is explained below.

The WG2 Kalman gains for EnSRFR1 and the SEKFR are shown in Fig. 9b. The SEKFR performs

better with a larger WG2 Kalman gain than EnSRFR1. The EnSRFR1 Kalman gain shows some580

seasonal variability, with the largest values occurring at the same times as the open loop in June and

October (Fig. 8d). The SEKFR Kalman gain is shown in Fig. 9b before and after the limit of 1.0

imposed on the Jacobian. The Kalman gain peaks in summer as a consequence of the over-sensitive

model Jacobian during water-stressed conditions. This problem with the model Jacobian appears to

explain why the EnSRFR1 ACC is higher than the SEKFR ACC during July, August and September585

(Fig. 8b).

The impact of precipitation forcing perturbations on the EnSRF is investigated. This experiment

is labelled as EnSRFR2 in Table 3. The perturbed precipitation does not modify the analysis per-

formance significantly compared with the unperturbed case (EnSRFR1). A slightly smaller additive

inflation is optimal with the perturbed forcing. This indicates that the perturbed forcing is having590

a similar effect to additive covariance inflation, but without the advantages demonstrated for the

idealized experiments (Sect. 3.2).

Finally, the bias correction scheme is tested on the EnSRF. This experiment is labelled as

EnSRFR3 in Table 3. The large bias in Table 3 for the EnSRF without bias correction (EnSRFR1)

has been approximately halved by applying bias correction. The bias correction technique cannot595

correct biases introduced by the analysis increments. Therefore EnSRFR3 is affected by a small neg-

ative bias. The ACC of EnSRFR3 is degraded relative to EnSRFR1, which is probably related to

unrealistic temporal changes in the ensemble spread that occur as a result of the bias correction (see

Fig. 7).

4 Discussion600

The discussion focusses on the knowledge gained from the experiments, refering to the four cri-

teria set out in the introduction. These are: the stochastic error representation of rainfall errors

(Sect. 4.1), the Gaussian assumptions (Sect. 4.2) the influence of climate and texture (Sect. 4.3)
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and flow-dependence of the DA methods (Sect. 4.4). Sect. 4.5 discusses the influence of the choice

of model on the results.605

4.1 Stochastic precipitation error representation

The experiments in Sect. 3.2 were designed to assess the advantage gained by a perfect stochas-

tic representation of precipitation uncertainty in the EnSRF over additive background errors in the

SEKF. Clearly the EnSRF benefited from the direct representation of the uncertainty. However, in

the real experiments the same perturbations gave no advantage to the EnSRF compared with additive610

covariance inflation alone (compare EnSRFR2 with EnSRFR1 in Table 3).

Maggioni et al. (2011) demonstrated that soil moisture simulations are less sensitive to rainfall un-

certainty information than the precipitation fields themselves. They attributed this loss of information

to two factors: (i) The nonlinear and integrating nature of soil moisture models; and (ii) The dissi-

pative behaviour of soil moisture dynamics, which dampens perturbations in the initial conditions.615

These conclusions agree with our findings. Furthermore, the transfer of precipitation uncertainty in-

formation to soil moisture depends on an accurate land surface model. Significant model errors were

likely in this study (see Sect. 4.5).

It is likely that the precipitation errors in this study were also underestimated. Hossain and Anag-

nostou (2005) estimated that rainfall errors represent between 20 and 60% of the uncertainty in soil620

moisture prediction. In this study the estimated rainfall errors only made up 10% of the total open

loop errors. The percentage scaling in this study could not take into account the nonstationary and

intermittent nature of precipitation errors, including the probability of missed precipitation or false

alarms. More comprehensive precipitation error models have been developed which can take these

factors into account (see e.g. (Clark and Slater, 2006; Hossain and Anagnostou, 2006; Maggioni625

et al., 2011, 2012, 2014; Carrera et al., 2015)). It is planned that one of these approaches will be

adopted for the Land Data Assimilation System (LDAS) at Météo-France. The calibration of the

various parameters for these rainfall error models requires considerable testing.

4.2 Gaussian assumptions

In the synthetic experiments, the EnSRF was applied with a perfect stochastic representation of630

the precipitation uncertainty, while the SEKF used climatological background errors. It is possi-

ble to determine how well the DA methods agreed with Kalman Filter theory by comparing the

pdfs of the innovations (y− yo) with the sum of the background and observation-error covariances

(HPbHT + R) (Desroziers et al., 2005). Fig. 11 shows the histograms of the innovations normalized

by
√

HPbHT + R for the EnSRFS a and the SEKFS b for the synthetic experiments. The pdf for635

EnSRFS agrees very well with Kalman theory, since it has a mean of zero and it closely fits the nor-

mal distribution (the green line). On the other hand, the pdf for the SEKFS is flatter than the normal

distribution and therefore agrees less well with Kalman theory. This demonstrates that without the
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correct specification of forcing errors, the optimum calibration of the background-error covariance

will not necessarily agree with Kalman filter theory.640

In the real experiment neither method had a perfect representation of the background errors. Both

methods used an average value of HPbHT + R about 4 times larger than (y− yo)2 (not shown),

which indicates that the Kalman filter assumptions were incorrect.

The nonlinearity problems manifested themselves in different ways for the SEKF and the EnSRF.

For the SEKF, the Jacobian between the surface and the root zone became too large. This over-645

sensitivity is partly related to an unrealistic feature of the modelled surface energy balance, since

one single surface temperature is used for bare soil and the vegetation layer (Draper et al., 2009;

Mahfouf, 2014). The EnSRF instead suffered from the perturbation bias. The explanation for the

perturbation bias was linked to the nonlinear behaviour of evapotranspiration and drainage. Similar

problems were encountered by Ryu et al. (2009) on the NOAH land surface model used by the650

National Center for Environmental Prediction (NCEP), where detailed explanations are given. It

should be noted that the nonlinear effects of water transfers on the ensemble perturbations are highly

sensitive to the model and the model regime (including the layer depths and vegetation content).

Indeed, Ryu et al. (2009) discovered a positive perturbation bias for their system, when our study

discovered a negative bias.655

Finally, a key assumption underpinning the EnSRF is that the ensemble size is sufficiently large to

represent the errors in the background state. An ensemble size that is too small results in inbreeding,

where the errors in the background state are underestimated (Houtekamer and Mitchell, 1998). We

investigated the impact of ensemble size on the EnSRF WG2 RMSE (see Table 4). It was found that

sampling errors were only significant with ensemble sizes less than 20 members, which is consistent660

with studies by Carrera et al. (2015) and Maggioni et al. (2012). However, in all these studies the

EnKF analysis is calculated independently for each gridpoint. It is likely that sampling errors would

be much more important for a 3D-EnKF approach, where background-error covariances between

gridpoints are taken into account, due to the much larger number of degrees of freedom.

4.3 Influences of climate and soil texture665

It was discovered in Sect. 3.1.2 that there was a strong correlation between average precipitation and

the magnitude of the perturbation bias. There are two reasons for this: Firstly, the soil saturates rather

quickly during precipitation events, which reduces the ensemble spread. This in turn reduces the

perturbation bias. Secondly, more frequent precipitation events reduce the occurrence of ensemble

members dipping below the wilting point in summer. This was confirmed by comparing the seasonal670

biases and the ensemble spread over the 12 sites (not shown). It is important to emphasize that these

results are limited to the 12 sites and other climate variables have not been considered.
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4.4 Flow-dependence

The flow-dependence of the DA methods was examined by comparing the WG2 Kalman gains.

When the background errors are larger, the Kalman gain should increase in order to give more weight675

to the observations. Given the assumption that there is no temporal evolution in the observation

errors, the Kalman gain and the open loop errors should peak at the same time. In the synthetic

experiments, the EnSRF Kalman gains showed a similar seasonal variability to the open loop RMSE,

unlike the SEKF Kalman gains. This showed that the EnSRF was able to capture seasonal variability

in the background errors. The EnSRF Kalman gains showed less seasonal variability in the real680

experiments, possibly because the model and forcing errors were not accurately represented. This

could explain why the EnSRF performed better than the SEKF in the synthetic experiments but not

in the real experiments.

4.5 Land surface model

In this study, the nonlinearity issues were most prevalent when the model descended below the wilt-685

ing point or ascended above the field capacity. For this reason it may seem intuitive to introduce

lower and upper bounds at these thresholds. However, water can be slowly lost through the leaves

by cuticular conductance below the wilting point or though incomplete closure of the stomata. Soil

moisture may also temporarily increase above the field capacity before it drains out (Mahfouf and

Noilhan, 1996). These features are part of the NIT version of the ISBA-A-gs model. Therefore,690

imposing bounds would not be realistic. Boundary problems can also affect the analysis. For exam-

ple, Ryu et al. (2009) used a bounded land surface model and found the model bounds were partly

responsible for the positive perturbation bias in their study.

The SEKF and the force-restore based ISBA-A-gs model are currently embedded in the SURFEX

platform of Météo-France. However, the diffusion-based multi-layer model (ISBA-DF) will soon be695

implemented (Decharme et al., 2011). The soil moisture evolution of ISBA-DF is determined by the

mixed form of the Richard’s equation, rather than the force-restore method. This is more realistic

than the force-restore method as it solves the heat and water diffusion equations explicitly over at

least 5 layers. Parrens et al. (2014) compared the SEKF for a two-layer version of the force-store

model with an 11-layer implementation of ISBA-DF. They found that the SEKF performance was700

enhanced by introducing multiple layers. In particular, the multi-layer model captured the vertical

profile of the root zone soil moisture better than the two-layer model. It will be interesting to test the

EnSRF with ISBA-DF and multiple layers. The EnSRF flow-dependent background-error covariance

may be able to exploit the improved vertical correlations between the layers.
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5 Conclusions705

Twelve sites in Southwest France were selected for soil moisture DA experiments. The different

sites were chosen, in particular, for their variability in climate and soil texture, which influence soil

water transfers. The SEKF and the EnSRF DA methods were compared in terms of their ability to

provide an accurate soil moisture analysis. The three-layer ISBA-A-gs land surface model (Noilhan

and Mahfouf, 1996; Calvet et al., 1998) was implemented in the experiments. This model is based710

on the force-restore method of Deardorff (1977).

In the real experiments, 5 cm deep in situ observations were assimilated and 30 cm deep ob-

servations were used to evaluate the root-zone soil moisture analysis. The two methods performed

similarly and improved on the open loop. This accords with Muñoz Sabater et al. (2007) who com-

pared similar methods. However, the synthetic “identical twin” experiments were designed to assess715

the advantage the EnSRF could gain over the SEKF by using a perfect stochastic representation of

precipitation uncertainty. The results clearly demonstrated an advantage in the EnSRF performance

for the idealized regime (with a perfect model and small observation errors). It might therefore be

possible for the EnSRF to perform better than the SEKF with real observations, if the rainfall errors

were accurately captured stochastically. However, this is challenging because the actual rainfall er-720

rors are unknown. Moreover, the transfer of precipitation uncertainty information to soil moisture

relies on the accuracy of the land surface model. These challenges could explain why the simple

rainfall error model did not improve the EnSRF soil moisture analysis in the real experiments. It is

recommended that a more realistic rainfall error model is tested on the EnSRF. This should use a

lognormal distribution and take into account the intermittent and non-stationary nature of precipi-725

tation errors. The EnSRF representation of model errors in this study could also be improved. We

employed the common approach of adding perturbations to the prognostic variables. Maggioni et al.

(2012) demonstrated that model errors are better represented by perturbing the model parameters

instead of the prognostic variables.

Both methods suffered from incorrect linear assumptions related to the nonlinear evapotranspira-730

tion and drainage functions: For the SEKF, the model Jacobian between the surface and the root-zone

was over-sensitive to soil moisture perturbations during dry conditions and this led to excessive anal-

ysis increments. For the EnSRF, a significant dry bias was found, largely as a result of the ensemble

perturbations causing excessive evapotranspiration near the wilting point. The perturbation bias was

less detrimental to the sites with wetter climates because precipitation forces the soil moisture above735

the wilting point and reduces the ensemble spread.

A bias correction scheme was tested on the EnSRF. Although this removed the perturbation bias, it

led to spurious increases in drainage and evapotranspiration water fluxes, induced by the wetter soil

moisture states. Consequently it reduced the ensemble spread and degraded the analysis. For many

applications, such as hydrology, the water fluxes can be as important as the soil moisture states.740
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Therefore it would be inappropriate to use this bias correction scheme when coupling LDAS with a

hydrological model, which requires accurate drainage inputs.

A disadvantage with the EnSRF is the computational burden and sampling error associated with

the ensemble. However, there is evidence to suggest that a large ensemble size is not necessary for

land surface models. In this study, there was no significant advantage gained by using more than 20745

members, which is consistent with studies by Carrera et al. (2015) and Maggioni et al. (2012).

Although this study was implemented on sites with various soil textures, only the grassland veg-

etation type was present, and the root-zone depth was relatively shallow. It will be important to test

the EnSRF over the French domain, which is much more variable in terms of vegetation, soil texture

and climate. The EnSRF will also be tested on a more realistic multi-layer diffusion-based model750

(Decharme et al., 2011). In our experiments the EnSRF flow-dependent background-error covari-

ance was able to capture the seasonal variability in the background errors, which was not evident

with the SEKF. The EnSRF covariance also has greater potential to exploit improvements in the

model physics.

Finally, the SEKF and the EnSRF methods in this study were calibrated using the same observa-755

tion source as the assimilated observations (albeit at different depths). Therefore we acknowledge

that the results in this study will not necessarily apply to sites where these observations are not avail-

able for calibration. In the case of independent data sources, the triple colocation approach might

be preferable to rescaling the observations to match the model mean and standard deviation, as this

rescales datasets using three independent estimates of the same variable (see e.g. Tugrul Yilmaz and760

Crow (2008)).

The Supplement related to this article is available online at

doi:10.5194/hess-0-1-2015-supplement.
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Table 1. Table summarising the different methods. Cov stands for covariance matrix.

Method Background

Cov source

Cov propagation Maintaining

ensemble

Spread

SEKF Climatological Implicitly via H NA

EnSRF Ensemble Implicitly via ensemble Eq. (11)

Table 2. Table showing the experimental setup for the synthetic and real DA experiments.

DA component Synthetic DA experiment Real DA experiment

Truth Model run Unknown

Model Model run + Eq. (17) Model run

Assimilated obs. WG1: Model run + obs. error WG1: 5 cm depth in situ obs. + linear rescaling

EnSRF calibration Eq. (17) Eq. (15) + Eq. (17)

SEKF calibration Eq. (14) Eq. (14)

Validation data WG2: Truth simulation WG2: 30 cm depth in situ obs. + linear rescaling

Table 3. Table showing the calibrations and the performances of the experiments (averaged over 2008–2010

and averaged over all sites). The open loop is abbreviated to OL. The first two experiments were perturbed en-

sembles performed without DA and compared with the open loop. The synthetic and real experiments (denoted

by subscripts S and R) were compared against the synthetic and real observations respectively. The variable

Pr stands for hourly accumulated precipitation and εPr is the standard deviation of the hourly precipitation

perturbation (defined in Eq. (17)).

Exp. Calibration: Add. WG2 RMSE WG2 WG2 Bias

Obs. λo WG1 λb
1 WG2 λb

2 criteria (m3 m−3) ×103 ACC (m3 m−3)×103

Ens – – 0.025 – 9 0.97 −4.9

Ensbc – – 0.025 Bias correct 4 0.99 0.6

OLS – – – εPr = 50%Pr 2.2 0.995 0.0

EnSRFS 0.05 – – εPr = 50%Pr 1.1 0.999 0.02

SEKFS 0.05 0.04 0.02 – 1.8 0.996 0.01

OLR – – – – 24.7 0.607 0.03

EnSRFR1 0.5 0.2 0.03 – 20.8 0.720 −5.32

EnSRFR2 0.5 0.1 0.03 εPr = 50%Pr 21.2 0.722 −5.82

EnSRFR3 0.5 0.25 0.035 Bias correct 21.3 0.690 −2.79

SEKFR 0.5 0.25 0.25 – 20.1 0.716 −2.21
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Table 4. Site-averaged and time-averaged WG2 performances for EnSRFS and EnSRFR1 for various ensemble

sizes. The calibrated EnSRF is shown in bold font.

Ens. size EnSRFS WG2 RMSE EnSRFR1 WG2 RMSE EnSRFS WG2 ACC EnSRFR1 WG2 ACC

(m3 m−3)×103 (m3 m−3)×103

3 1.6 24.2 1.00 0.647

6 1.4 22.5 1.00 0.687

20 1.1 20.8 1.00 0.720

50 1.1 20.9 1.00 0.719

200 1.1 20.9 1.00 0.719

Table 5. SEKFS performance for various calibrations of the background-error scaling coefficients (λb
1 and λb

2).

The optimal value is in bold font.

λb
1 λb

2 WG2 RMSE (m3 m−3)×103

0.03 0.01 2.2

0.04 0.02 1.8

0.08 0.04 2.3

0.16 0.015 2.1

Figure 1. The soil moisture fluxes for the three-layer version of ISBA. The variables Pg , Eg and Etr represent

the precipitation, bare soil evaporation and transpiration respectively. The fluxesK andD represent the drainage

and diffusion at the bottom of the layer.
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Figure 3. Monthly averaged and station averaged net water for a WG1, b WG2 and c WG3 and for the open

loop, the ensemble mean (Ens) and the bias corrected ensemble mean (Ensbc). Station averaged and monthly d

evapotranspiration; e drainage and f total soil water depletion differences between ensemble mean and the open

loop. Results are all averaged over the period 2008–2010.
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Figure 4. WG2 ensemble members, open loop and the ensemble mean for the sites (top) Sabres; and (bottom)

Narbonne, over 2009. a and b show the results for experiment Ens (no DA), while c and d show the analysis

ensemble members for the the experiment EnSRFR2 (with observations). The field capacity and the wilting

point are also shown for each site. The legends for the upper plots apply to the lower plots.
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Figure 5. Four of the Ens ensemble members, open loop and the Ens ensemble mean for a WG2; and b Evap-

otranspiration; for Narbonne between June and September 2009. c and d are equivalent to b and c but instead

show WG2 and drainage respectively, for February and March 2009.
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Figure 6. Average perturbation bias normalized by the RMSE against a average daily precipitation for each

site; and b against clay percentage for each site, with the climatological forcing of the Sabres site applied to all

the sites; and c same as b but the climatological forcing of the Narbonne site has been applied to all the sites.

The Sabres and Narbonne sites are labelled as ‘S’ and ‘N’ respectively. The line of best fit (linear regression) is

shown for each plot.
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Figure 7. WG2 monthly averaged Ens and Ensbc ensemble spread, for a Sabres; and b Narbonne. The results

are averaged over 2008–2010.
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Figure 8. Site averaged and monthly averaged a WG2 RMSE; b WG2 ACC; and c WG2 bias; for the open

loop, SEKFS and EnSRFS for the synthetic experiments. Plots (d–f) are equivalent to plots (a–c) but instead

show the results for the open loop, SEKFR and EnSRFR1 for the real experiments. The results are averaged

over 2008–2010.
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Figure 9. Station and monthly averaged WG2 Kalman gains for a EnSRFS and the SEKFS before (BL) and

after (AL) the Jacobian limit of 1.0 is imposed. Plot b is equivalent to plot a but instead shows the results for

EnSRFR1 and SEKFR. The results are averaged over 2008–2010.
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Figure 10. Contour plot showing the EnSRFR1 a WG2 RMSE; and b WG2 ACC; for the range of additive

inflation values used to calibrate the EnSRFR1. Plots c and d show the equivalent contour plots to a and b for

SEKFR, with the range of background-error variances used to calibrate SEKFR. The results are averaged over

2008–2010 and over the 12 sites.
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Figure 11. Histogram of normalized innovations for the 20 member EnSRFS a and the SEKFS b for the syn-

thetic experiments. The green line shows the normal distribution and the red dashed line shows the mean.
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