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Abstract 11 

Climate models project a much more substantial warming than the 2°C target under the more 12 

probable emission scenarios, making higher end scenarios increasingly plausible. Freshwater 13 

availability under such conditions is a key issue of concern. In this study, an ensemble of 14 

Euro-CORDEX projections under RCP8.5 is used to assess the mean and low hydrological 15 

states under +4 oC of global warming for the European region. Five major European 16 

catchments were analyzed in terms of future drought climatology and the impact of +2 oC 17 

versus +4 oC global warming was investigated. The effect of bias correction of the climate 18 

model outputs and the observations used for this adjustment was also quantified. Projections 19 

indicate an intensification of the water cycle at higher levels of warming. Even for areas 20 

where the average state may not considerably be affected, low flows are expected to reduce 21 

leading to changes in the number of dry days and thus drought climatology. The identified 22 

increasing or decreasing runoff trends are substantially intensified when moving from the +2 23 

to the +4 degrees of global warming. Bias correction resulted in an improved representation 24 

of the historical hydrology. It is also found that the selection of the observational dataset for 25 

the application of the bias correction has an impact on the projected signal that could be of the 26 

same order of magnitude to the selection of the GCM.  27 
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1 Introduction 1 

Global CO2 emission rates have been following high-end climate change pathways leading to 2 

a future global temperature that is likely to surpass the target limit of 2oC, despite the recent 3 

hiatus (England et al., 2015), and reach levels of +4 oC and higher at the end of the 21st 4 

century. By that time, the seasonality of river discharge is expected to get more pronounced 5 

for one-third of the global land surface, which translates to increased high flows and 6 

decreased low flows (Van Vliet et al., 2013). By the mid-century, the hydrological regime is 7 

projected to change considerably for a significant part of the global land surface (Arnell and 8 

Gosling, 2013). The effect that global warming can have on water resources raises serious 9 

concerns on future water availability, especially under the pressure of the growing global 10 

population and the consequent increased food production needs. It is projected that the 11 

number of people coping with significantly reduced water availability will increase by 15% 12 

globally due to climate change, while the percentage of the global population living under 13 

conditions of absolute water scarcity is also projected to increase (Schewe et al., 2014).  14 

In this framework, the future hydrological state needs to be assessed. The runoff production is 15 

the component of the hydrological cycle most representative to describe freshwater 16 

availability, as it expresses the amount of available water after the evapotranspiration and 17 

infiltration losses and before any stream formation process intervenes. Furthermore, 18 

ensembles of mean annual and seasonal runoff can provide information about the climate 19 

change impact on river flows (Döll and Schmied, 2012). Studies have shown that changes in 20 

runoff are not linearly correlated with changes in global mean temperature (Arnell and 21 

Gosling, 2013), neither are meteorological with hydrological droughts (van Huijgevoort et al., 22 

2013), concluding that for climate change impact assessments it is fundamental to use an 23 

impact model to translate the precipitation derived signal into runoff.  24 

A substantial number of large scale climate change impact studies that have been performed 25 

recently examine the future hydrological state analyzing projections of runoff or river flow. 26 

Fung et al. (2011) compared the projected future water availability under +2 oC and +4 oC of 27 

global warming, forcing the MacPDM Global Hydrological Model (GHM) with 22 GCMs 28 

from the CMIP3 experiment. Arnell & Gosling (2013) performed a global assessment of the 29 

climate driven changes in runoff based hydrologic indicators in mid-21st century, using 30 

multiple scenarios derived from the CMIP3 experiment. Schneider et al. (2013) focused on 31 

the impacts of climate change for the European river flows, using data from three bias 32 
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corrected GCM scenarios. Van Vliet et al. (2013) performed a global assessment of future 1 

river discharge and temperature under two climate change scenarios, forcing a GHM with an 2 

ensemble of bias corrected GCM output. They found that the combination of lower low flows 3 

with increased river water temperature can lead to water quality and ecosystem degradation in 4 

south-eastern United States, Europe, eastern China, southern Africa and southern Australia. 5 

An investigation of the future trends in flood risk at the global scale was performed by 6 

Dankers et al. (2014) and for the European region by Alfieri et al. (2015). Betts et al. (2015) 7 

performed a global assessment of the impact posed on river flows and terrestrial ecosystems 8 

by climate and land use changes described by four RCPs. Various multi-model hydrological 9 

simulations have been also performed, in an attempt to quantify the climate change analysis’ 10 

uncertainty resulting from the impact model (Hagemann et al., 2013; van Huijgevoort et al., 11 

2013; Dankers et al., 2014).  12 

Currently, global mean temperature has increased 0.85 oC relative to pre-industrial and 13 

already 18% of the moderate daily precipitation extremes is attributed to this warming. At +2 14 
oC the fraction of the global warming driven precipitation extremes is projected to rise up to 15 

40% (Fischer and Knutti, 2015). The effect of a 2 oC global warming for the European climate 16 

was examined by Vautard et al. (2014). The study revealed that warming in Europe is 17 

projected to be higher than the global average of 2 oC. Temperature increases of up to 3 oC 18 

were found for the winter season over north-western Europe and for the summer months over 19 

sourthern Europe. Heavy precipitation was found to increase over the whole continent for all 20 

seasons, with the exception of southern Europe during summer. Prospects of limiting the 21 

warming to the +2 oC target have become vanishingly small (Sanford et al., 2014) at the same 22 

time that many experts believe that we are on the +4°C path (Betts et al., 2011, 2015). The +4 23 
oC global warming scenario is also translated in more intense temperature increases in Europe, 24 

especially for the summer season (World Bank, 2014). 25 

Significant climate change induced alterations are projected for the flow regime in Europe, 26 

with the most pronounced changes in magnitude projected for the Mediterranean region and 27 

the northern part of the continent (Schneider et al., 2013). Moreover, considering that southern 28 

Europe is identified as a possible hotspot where the fraction of land under drought will 29 

increase substantially (Prudhomme et al., 2014), along with global temperature rise exceeding 30 

+2 oC, concerns for future water availability in Europe are raising. Prolonged water deficits 31 

during long-term droughts surpass the resilience of the hydrological systems and are a 32 
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significant threat to water resources security in Europe (Parry et al., 2012). In the Euro-1 

Mediterranean regions the severity of droughts has increased during the past 50 years, as a 2 

consequence of greater atmospheric evaporative demand resulting from temperature rise 3 

(Vicente-Serrano et al., 2014). Besides southern European areas, north-western and central-4 

eastern regions appear more drought prone than the rest of Europe (Bonaccorso et al., 2013). 5 

Streamflow projections indicate more severe and persistent droughts in many parts of Europe 6 

due to climate change, except for northern and north-eastern parts of the continent. The 7 

opposite is projected for the middle and northern parts with a highly significant signal of 8 

reduced droughts that may be reversed due to intensive water use (Forzieri et al., 2014). 9 

Consequently European cropland affected by droughts is projected to increase 7-fold (up to 10 

700,000 km2/year) at about +3oC of global warming (Ciscar et al., 2014) compared to the 11 

situation of the last decades. Similarly, under the same warming level, European population 12 

affected by droughts is expected to increase by a factor of seven, overcoming the 150 13 

million/year. 14 

GCM outputs, used as input in impact models to assess the effects of climate change, feature 15 

systematic errors and biases. To deal with these, several bias correction techniques have been 16 

developed to statistically adjust the GCM output against observations. This process adds 17 

another level of uncertainty in the chain of climate to impact modelling that has to be 18 

investigated and communicated to the impact research communities. Ehret et al. (2012) 19 

acknowledge the fact that inherent climate models’ biases render them unsuitable for direct 20 

use in climate change impact assessments but express scepticism towards adopting bias 21 

correction as a standard undisputed procedure. They argue that bias adjustment hides rather 22 

than reduces the uncertainty, as the narrowing of the uncertainty range is not supported by any 23 

physical explanation. Teutschbein & Seibert (2012) also accept the need for bias correction 24 

but raise awareness towards the increased uncertainty derived from adding this step to the 25 

modelling chain. Ehret et al. (2012) introduce the issue of how “correct” is the dataset used as 26 

baseline for the bias adjustment. Haerter et al. (2011) underline that the statistical adjustments 27 

applied to GCM data with bias correction are bounded to the timescale selected for the 28 

adjustment and might have adverse effects on the statistics of another timescale. Haerter et al. 29 

(2011) also accentuate that one significant assumption is made when present day based bias 30 

correction methods are applied to climate scenario simulations; that of the bias stationarity 31 

throughout the future decades. Teng et al. (2015) argue that errors in bias corrected 32 

precipitation are inherited and augmented in modelled runoff. 33 
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The major tools for the investigation of large scale hydrological changes due to climate 1 

change are Global Hydrological Models (GHMs) and/or Land Surface Models (LSMs).  2 

According to the classification proposed by Haddeland et al. (2011), the models that solve the 3 

water balance are considered as GHMs and the models that solve both the water and energy 4 

balance are categorized as LSMs. The LSM JULES (Joint UK Land Environment Simulator-5 

Best et al., 2011) has been implemented for many recent climate change impact and model 6 

inter-comparison studies (Hagemann et al. 2013; Davie et al. 2013; Dankers et al. 2014; 7 

Prudhomme et al. 2014; Harding et al. 2014). 8 

The scope of this work is to assess future water availability and identify drought conditions in 9 

the European region under high-end scenarios of climate change. Transient hydrological 10 

simulations for the period 1971 to 2100 were performed by forcing the JULES model with 11 

five Euro-CORDEX (Coordinated Downscaling Experiment over Europe) climate projections. 12 

Water availability is described by the output of runoff production. In our analysis the model 13 

results are mainly interpreted statistically, aiming to express the changes found in the 14 

projected future periods with respect to the historical baseline state rather than describing 15 

future regimes with absolute numbers. The research objectives set by this study are the 16 

following: 17 

i) To identify changes posed on the hydrological cycle (mean state and lower extremes) at 18 

+4 oC global warming compared to a baseline situation, and relative to the target of 2 ºC 19 

warming. 20 

ii) To analyse the effect of bias correction on projected hydrological simulations. To achieve 21 

this, both raw and bias corrected Euro-CORDEX data were used as input forcing in the 22 

impact model.  23 

iii) To assess the effect of the observational dataset used for bias correction. 24 

iv) To identify climate change induced changes in drought climatology at the basin scale. 25 

 26 

2 Data & Methods 27 

Hydrological simulations were performed with the JULES Land Surface Model driven by 28 

Euro-CORDEX climate scenarios. To warm-up the model, 10 spin-up cycles from 1955 to 29 

1960 were run. A daily time-step was employed for all the model runs. JULES was setup at 30 
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the spatial resolution of the forcing Euro-CORDEX data which was 0.44 degrees. The model 1 

output was regridded to match a 0.5x0.5 degree grid.  2 

Brief descriptions of the climate data and the impact model are included in the following 3 

sections. 4 

 5 

2.1 Climate data 6 

Projections from five Euro-CORDEX experiments under Representative Concentration 7 

Pathway RCP8.5 scenario were used as input to JULES. The climate models were selected so 8 

as to cover the range of model sensitivity, as expressed by the index of Equilibrium climate 9 

sensitivity (ECS) which spans from 2.1 to 4.7 K for the CMIP5 ensemble (Andrews et al., 10 

2012). ECS is a useful metric of the response of a climate model, in terms of air temperature 11 

change, to a doubling of the atmospheric CO2 concentration (Andrews et al., 2012). Another 12 

factor for selecting the participating climate models was the availability of GCM downscaled 13 

at the spatial resolution of 0.44 degrees.   14 

Historical and projected time-slices comprise of 30-years of simulations, for which one time-15 

slice average is extracted. The historical or baseline time-slice covers the period from 1976 to 16 

2005. The projected time-slice varies between the models. The definition for determining the 17 

projected time-slice here is to take the 30-year average of the slice centered on the year where 18 

the +4 (or +2) Specific Warming Level (SWL) is exceeded. The reference period for the 19 

calculation of the SWL is the pre-industrial state and specifically the period from 1861 to 20 

1880. For three of the selected scenarios the +4 SWL is achieved outside the temporal extend 21 

of this study, thus the last 30 year period available is considered instead (2071-2100). The 22 

SWL exceeded during that period for the models that reach +4 after 2100 is shown in Table 1. 23 

For reasons of consistency in terminology the time-slice of all models describing the greater 24 

SWL achieved will be referred to as +4 SWL time-slice.  25 

Using the SWL concept constitutes the results independent of the timing that the warming 26 

occurs. Although by definition of the SWL, the models reach the same level of warming in 27 

their time-slices, the different model sensitivity reflects on the evolution of temperature in the 28 

time-slice, as more sensitive models are expected to have higher rates of changes in the period 29 

before and after a specific SWL is achieved compared to the less sensitive models. Moreover,      30 
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considering models of different ECS is important to express the range of other than 1 

temperature forcing variables produced by the GCMs (eg. radiation).  2 

The five scenarios along with information on the time-slices extracted for our analysis and the 3 

corresponding exceeded warming levels and ECS indices are shown in Table 1. Two widely 4 

used observational datasets were used to adjust the biases of the RCMs precipitation and 5 

temperature data. The first dataset was a hybrid dataset created by the Inter-Sectoral Impact 6 

Model Integration and Intercomparison Project ISI-MIP (Warszawski et al., 2014) that 7 

consists of the WFD (Weedon et al., 2010) and WFDEI.GPCC. (Weedon et al., 2014) 8 

datasets. Additionally, the station data based European Climate Assessment & Dataset 9 

(ECA&D) and the ENSEMBLES Observations gridded dataset (E-OBS v10; Haylock et al. 10 

2008) was also used for the bias adjustment of the aforementioned climate variables. 11 

2.2 Bias correction method 12 

In the present study the multi-segment bias correction (MSBC) method is used to correct the 13 

precipitation and temperature data for their biases. A detailed description of the method can be 14 

found in Grillakis et al. (2013). This bias correction methodology has the ability to better 15 

transfer the observed precipitation statistics to the raw GCM data. The method utilizes 16 

multiple discrete segments on the cumulative density function (CDF) to fit multiple 17 

theoretical distributions, as opposed to the commonly used single transfer function at the 18 

entire CDF space. Pragmatically, the method eliminates to a large extent the bias in mean 19 

precipitation, while significantly reducing the bias of the higher quantile of the precipitation 20 

CDF associated with extreme precipitation events. 21 

2.3 The JULES land surface model 22 

JULES is a physically based land surface model that was established in 2006. It is comprised 23 

of two parts: the Met Office Surface Exchange Scheme (MOSES; Cox et al. 1998) and the 24 

Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID; 25 

Cox 2001) component. MOSES is an energy and water balance model which is JULES’ 26 

forerunner, and TRIFFID is a dynamic global vegetation model (Best et al., 2011; Clark et al., 27 

2011; Cox, 2001). In our model application for this study we do not examine vegetation 28 

dynamics thus we are focusing on the MOSES component of JULES. 29 
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The meteorological forcing data required for running JULES are: downward shortwave and 1 

longwave radiation, precipitation rate, air temperature, wind-speed, air pressure and specific 2 

humidity (Best et al., 2011). 3 

JULES has a modular structure, which makes it a flexible modelling platform, as there is the 4 

potential of replacing modules or introducing new modules within the model. The physics 5 

modules that comprise JULES include the following themes: surface exchange of energy 6 

fluxes, snow cover, surface hydrology, soil moisture and temperature, plant physiology, soil 7 

carbon and dynamic vegetation (Best et al., 2011), with the latter being disabled for this 8 

application.  9 

In JULES, each gridbox is represented with a number of surface types, each one represented 10 

by a tile. JULES recognises nine surface types (Best et al., 2011), of which five are vegetation 11 

surface types (broadleaf trees, needleleaf trees, C3 (temperate) grasses, C4 (tropical) grasses 12 

and shrubs) and four are non-vegetated surface types (urban, inland water, bare soil and ice). 13 

A full energy balance equation including constituents of radiation, sensible heat, latent heat, 14 

canopy heat and ground surface heat fluxes is calculated separately for each tile and the 15 

average energy balance for the gridbox is found by weighting the values from each tile (Pryor 16 

et al., 2012).  17 

In JULES the default soil configuration consists of four soil layers of thicknesses 0.1 m, 0.25 18 

m, 0.65 m and 2.0 m. This configuration however can be altered by the user. The fluxes of 19 

soil moisture between each soil layer are described by Darcy’s law and a form of Richards’ 20 

equation (Richards, 1931) governs the soil hydrology. Runoff production is governed by two 21 

processes: infiltration excess surface runoff and drainage through the bottom of the soil 22 

column, a process calculated as a Darcian flux assuming zero gradient of matric potential 23 

(Best et al., 2011).  There is also the option of representing soil moisture heterogeneity. In that 24 

case total surface runoff also includes saturation excess runoff. The model allows for two 25 

approaches to introduce sub-grid scale heterogeneity into the soil moisture: 1) use of 26 

TOPMODEL (Beven and Kirkby, 1979), where heterogeneity is taken into account 27 

throughout the soil column, or 2) use of PDM (Moore, 1985), which represents heterogeneity 28 

in the top soil layer only (Best et al., 2011). Calculation of potential evaporation follows the 29 

Penman-Monteith approach (Penman, 1948). Water held at the plant canopy evaporates at the 30 

potential rate while restrictions of canopy resistance and soil moisture are applied for the 31 

simulation of evaporation from soil and plant transpiration from potential evaporation.  32 
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JULES simulates fluxes at the vertical direction only. For hydrological applications this 1 

means that the model calculates runoff production in each gridbox which needs to be routed to 2 

estimate streamflow. The standard version of the JULES model until very recently (February 3 

2015) did not account for a routing mechanism. To overcome this model limitation, we use a 4 

conceptual lumped routing approach based on triangular filtering in order to delay runoff 5 

response. This is applied after discriminating the gridboxes that contribute to runoff 6 

production of a specific basin from the gridded model output.  Determination of gridboxes 7 

upstream of the gauging station location is implemented using the TRIP river routing scheme 8 

(Oki and Sud, 1998). 9 

JULES has been used in many recent studies as a tool for evaluating the exchange of water, 10 

energy and carbon fluxes between the land surface and the atmosphere. Van den Hoof et al. 11 

(2013) assessed JULES’ performance in simulating evaporative flux (and its partitions) and 12 

carbon flux in temperate Europe. Marthews et al. (2012) implemented JULES in tropical 13 

forests of Andes-Amazon to simulate all components of carbon balance and study possible 14 

flux variations between sites of different altitude. Zulkafli et al. (2013) implemented JULES 15 

in a humid tropical mountain basin of the Peruvian Andes-Amazon. MacKellar et al. (2013) 16 

evaluated JULES, implemented in a region of Southern Africa, concerning its ability to 17 

simulate the catchment streamflow. In the study of Bakopoulou et al. (2012), the sensitivity of 18 

the JULES outputs to the soil parameters of the model at a point scale was estimated. Dadson 19 

et al. (2010) sought to quantify the feedback between wetland inundation and heat and 20 

moisture fluxes in the Niger inland delta by adding an overbank flow parameterization into 21 

JULES. Burke et al. (2013) used JULES to simulate retrospectively the pan-arctic changes in 22 

permafrost and Dankers et al. (2011) assessed JULES’ performance in simulating the 23 

distribution of surface permafrost in large scale catchments. In a study by Jiménez et al. 24 

(2013) soil moisture modelled with JULES is evaluated against satellite soil moisture 25 

observations. 26 

Other studies give insight into the hydrological performance of JULES specifically. Blyth et 27 

al. (2011) extensively evaluated the JULES model for its ability to capture observed fluxes of 28 

water and carbon. Concerning discharge, their findings suggest that for the European region 29 

seasonality is captured well by the model. For temperate regions (like most of central Europe) 30 

to model exhibited a tendency towards underestimating river flows due to overestimation of 31 

evapotranspiration. Prudhomme et al. (2011) assessed JULES’ ability in simulating past 32 



 10 

hydrological events over Europe. In general terms the model was found to capture the timing 1 

of major drought events and periods with no large-scale droughts present were also well 2 

reproduced. The model showed a positive drought duration bias, more profoundly present in 3 

northwest Spain and East Germany-Czech Republic. Prudhomme et al. (2011) argue that this 4 

feature is related to overestimation of evaporation by the model. For regions where droughts 5 

tend to last longer, JULES exhibited a better ability of reproducing the drought events’ 6 

characteristics. Gudmundsson et al. (2012) compared nine large scale hydrological models, 7 

and their ensemble mean, based on their skill in simulating the interannual variability of 8 

observed runoff percentiles in Europe. According to the overall performance (accounting for 9 

all examined percentiles and evaluation metrics), JULES was ranked third best out of the 10 10 

models, after the multi-model ensemble mean and the GWAVA model. For low and 11 

moderately low flows, expressed as 5th and 25th percentile respectively, JULES is also in the 12 

top three models regarding the representation of interannual variability in runoff. In the study 13 

of Gudmundsson et al. (2012b), where an ensemble of hydrological models is evaluated for 14 

their ability to capture seasonal runoff climatology in three different hydroclimatic regime 15 

classes in Europe, JULES exhibits a good performance, comparable to that of the best 16 

performing multi-model ensemble mean. In other studies employing multi-model ensembles, 17 

focusing on the whole European region (Gudmundsson and Seneviratne, 2015) or a single 18 

basin in Europe (Harding et al., 2014; Weedon et al., 2015) JULES’ simulations also 19 

correspond with these of the other models. 20 

2.4 Identifying changing climate trends 21 

For the assessment of the impact of the +4 oC warming relative to pre-industrial, the projected 22 

time-slices are compared to the baseline period in terms of both absolute and percent change. 23 

This is done for each ensemble member individually in order to check the variability of the 24 

projected changes and also for the ensemble mean. Two hydrologic indicators are tested, the 25 

average and the 10th percentile of runoff production.  26 

Average runoff production is a good and widely used indicator of mean hydrological state of a 27 

region. The 10th percentile runoff is considered as a representative indicator of the low flow 28 

regime (Prudhomme et al., 2011). Consistent low flows (relative to the mean state) are 29 

connected with the formation of hydrological drought conditions. Thus the assessment of the 30 

changes in low flows could reveal trends towards more intense or/and often extreme lows in 31 

the future hydrological cycle. The impact of high-end climate scenarios on average and 10th 32 
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percentile runoff is presented both as gridded results at the pan-European scale and aggregated 1 

at the basin scale for five major European river basins.  2 

The two hydrological indicators were deduced from monthly runoff data. For the analysis of 3 

the gridded results at pan-European scale with the SWL time-slice approach, each indicator 4 

was computed from the monthly values of all years in the time-slice. For the analysis of basin 5 

aggregated runoff regime, the two hydrologic indicators were calculated per year, for all the 6 

years of the simulation. This resulted in time-series of basin aggregated average and 10th 7 

percentile runoff production, spanning from 1971 to 2100. The trend of the annual time-series 8 

was investigated employing a linear regression analysis to estimate the sign and the average 9 

rate of the trend. The significance of the trend was tested at the 95% confidence interval via a 10 

Student-t test.  11 

The Europe study domain along with information on the catchments tested and their 12 

corresponding gauging stations are shown in Figure 1. 13 

2.5 Examination of drought climatology 14 

Another aspect of our low flow analysis is to assess changes in drought climatology, i.e. the 15 

number of days per year that particular lows in flow occur. This is here done at the basin 16 

scale, following the threshold level method to identify days of discharge deficiencies. The 17 

threshold level method is a widely used tool for drought identification applications (Fleig et 18 

al., 2006; Vrochidou et al., 2013). According to this method, drought conditions are 19 

characterized as the periods during which discharge falls below a pre-defined threshold level. 20 

In our application, the threshold is varying daily and is established as in Prudhomme et al. 21 

(2011): for each Julian day k, the 10th percentile of a 31-day window discharge centering at 22 

day k is derived, from data of all the years of the baseline period (1976-2005). The daily 23 

modelled time-series for the whole period simulated (1971-2100) is compared to the daily 24 

varying drought limit, and the number of days that fall below the threshold is summed up on 25 

an annual basis. The drought threshold is derived from the flows of the baseline period and is 26 

applied to both historical and projected flows, in order to capture the climate change induced 27 

changes in drought climatology. The regression analysis described in section 2.4 was also 28 

applied to the time-series of total drought days per year.  29 

 30 
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3 Results 1 

3.1 Hydrological simulation at Pan-European scale with raw Euro-CORDEX 2 

forcing data 3 

Figure 2 shows the average runoff production estimated by JULES forced with the five 4 

participating dynamical downscaled GCMs, for each model separately and for the ensemble 5 

mean. Measures of model agreement (coefficient of variation between the ensemble members 6 

and model agreement on a wetter change in the projected time-slice) are also shown in Figure 7 

2. The change in runoff in the +4 SWL projected time-slice with respect to the baseline period 8 

is expressed as both absolute and percent relative difference. It is interesting to observe the 9 

variations between the models for the historical time-slice, with the low climate sensitivity 10 

GFDL and NorESM1 exhibiting generally wetter patterns for northern Europe and 11 

Scandinavian Peninsula, and with IPSL describing drier patterns, especially for southern 12 

Europe. Concerning the overall agreement of the ensemble members in the baseline period the 13 

coefficient of variation is below 0.5 for most of the European region (Figure 2, bottom), 14 

indicating a good agreement of the models. In more detail, the coefficient of variation is lower 15 

for the Scandinavian region and is reduced towards the lower latitudes. 16 

For the projected time-slice, all models agree in a general pattern of increased runoff 17 

production in northern Europe and a small part in central Europe and decreased runoff 18 

production in Spain, Greece and parts of Italy. Especially for the negative trends shown in 19 

southern Europe it is important that though small in absolute terms they increase in magnitude 20 

when expressed as a percentage, meaning that small negative changes can pose severe stress 21 

in regions where water availability is already an issue.  22 

Concerning the ensemble mean, smoothing of the projected changes due to averaging has 23 

revealed clear patterns of change, which however have to be interpreted considering the full 24 

spread of the GCM-forced outcomes and the agreement between them in order to avoid 25 

misguided conclusions. Less extreme values are encountered in the ensemble mean of 26 

projected changes in runoff, compared to the change projected by each ensemble member 27 

individually (Figure 2). Especially for percent change a clear trend of runoff increase is 28 

revealed in northern Europe and decrease in southern Europe, with a mixed pattern for central 29 

Europe. Four or five out of the five ensemble members agree on the wetter response in the 30 

northern regions and the drier response in the southern part of Europe. The smaller cv value 31 



 13 

(cv<0.1) for the southern regions indicates that the models agree more on the value of the 1 

change compared to the changes in the Scandinavian region (0.11<cv<0.75). For central 2 

Europe there are areas of reduced agreement, with two models showing a change different in 3 

sign than the other three of the ensemble. For the same areas cv has values greater than 1, 4 

marking a large spread between the values of the five ensemble members. 5 

Figure 3 has the same features as Figure 2 but concerns the 10th percentile runoff production 6 

instead of the average. The 10th percentile limit is used to describe low flows that are related 7 

to the creation of hydrological drought conditions. For 10th percentile runoff, model 8 

agreement in the baseline period is notably reduced compared to agreement for average 9 

runoff, with the coefficient of variation for most regions exceeding 0.5 while it exceeds the 10 

unity for a large part of Europe. For the +4 SWL projected time-slice, according to Figure 3, 11 

all models agree in relative decreases in runoff production in western and southern Europe 12 

which are specifically pronounced in the western Iberian and Balkan Peninsulas. Another 13 

common trend between the models is the significant increase in runoff production in the 14 

Scandinavian Peninsula, with MIROC5 and HadGEM2 being the two ensemble member that 15 

expand this wetter climate down to central Europe. 16 

Regarding the ensemble mean changes, percent change in 10th percentile runoff (Figure 3) 17 

shows more significant reductions (up to 100%) compared to average runoff (for which 18 

changes range between -50% and 50%). It is thus deduced that the changes in low flows are 19 

more pronounced than the changes in the mean, a conclusion that points towards the overall 20 

intensification of the water cycle. The decreasing trend in 10th percentile runoff covers most 21 

of the west and south European area (with 80% to 100% agreement on the sign of the change) 22 

while all models agree in an increase in 10th percentile runoff in the Scandinavian region.  23 

3.2 Hydrological simulation at Pan-European scale with bias adjusted Euro-24 

CORDEX forcing data 25 

The ensemble mean of average runoff derived from the five participating downscaled GCMs, 26 

whose temperature and precipitation were bias adjusted according to the WFDEI dataset is 27 

presented in Figure 4. Bias adjustment of the forcing data resulted in a drier ensemble mean 28 

runoff for the baseline period for 70.40% of the pan-European land surface, in comparison to 29 

26.01% of the land area that had a wetter response after bias adjustment. The remaining 30 

3.59% of the European area had changes that were classified as insignificant (see ESM for 31 
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details). Projected changes from bias adjusted data exhibit very similar patterns and 1 

magnitudes with the raw data derived changes. For some regions in central Europe, where a 2 

small negative change is reported by the raw data run, a sign change of the projected 3 

difference is documented after bias correction. Lastly, bias correction has a strong positive 4 

effect on model agreement as it can be documented from the low values of the coefficient of 5 

determination all over Europe, with the exception of the Scandinavian Peninsula where model 6 

disagreement appears increased after bias correction.  7 

In Figure 5, the effect of bias correction on the representation of the 10th percentile runoff is 8 

shown. Some hotspots of pronounced negative changes in western Europe have been 9 

eliminated and replaced with milder projected absolute changes. There are areas where sign 10 

change is observed (central and central-west Europe) however it is difficult to interpret this 11 

result and correlate it with bias correction as these are also the areas where models show the 12 

lowest agreement (coefficient of variation exceeding one and agreement towards wetter 13 

change 40%-60%). Although the coefficient of variation for the baseline period is 14 

considerably reduced compared to the raw data runs, there are still areas of high model 15 

uncertainty in the representation of lower flows. 16 

3.3 Basin averaged runoff regime 17 

In Figure 6, annual time-series of basin averaged runoff production (average and 10th 18 

percentile) for five European basins are shown. These cover the whole length of historical and 19 

projected years simulated (1971-2100) in an attempt to identify general trends in average and 20 

low runoff, calculating 10-year moving averages from the ensemble mean. Results in Figure 6 21 

include both raw and bias adjusted output, thus an assessment of the effect of the bias 22 

correction on the basin scale hydrology can be made. A common observation for all the basins 23 

is that runoff decreases considerably for bias adjusted input forcing.  24 

For Danube and Guadiana, significantly important negative trends are identified for average 25 

runoff (-0.24 mm/year and -0.35 mm/year respectively for raw output, -0.11 mm/year and -26 

0.31 mm/year respectively for bias adjusted output) which are more pronounced for the 10th 27 

percentile runoff. For Rhine, the identified trends in average runoff production of both raw 28 

and bias corrected forcing are not statistically significant. In contrast, the 10th percentile 29 

runoff production in Rhine exhibits statistically significant decreasing trends, for both raw (-30 

0.74 mm/year) and bias corrected (-0.50 mm/year) outputs. For Elbe, raw output gives an 31 
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insignificant trend in average runoff and a slight decreasing trend for 10th percentile runoff. 1 

Bias corrected data result in a small but statistically significant increasing trend (0.18 2 

mm/year) in annual average runoff while for 10th percentile runoff the trend is decreasing (-3 

0.06 mm/year, statistically significant). For Kemijoki average and low flows, of raw and bias 4 

adjusted forcing, are all exhibiting statistically significant increasing trends.  5 

Basin scale average annual runoff production for raw and bias adjusted Euro-CORDEX data 6 

as well as the +4oC absolute and percent change for each ensemble member and ensemble 7 

mean is included in Table 2. Similar information but for low flows (10th percentile) are 8 

presented in Table 3. In Tables S1 and S2 of the ESM, the results of the linear regression 9 

applied to the average and 10th percentile runoff time-series for the estimation of the trend and 10 

its significance can be found.  11 

 12 

3.4 Drought climatology at basin scale 13 

Figure 7 shows the results of the drought threshold level method analysis for the five study 14 

basins, for raw and bias corrected output. For each year, the number of days under the 15 

historical drought threshold has been counted. This allows a comparison of the tendency 16 

towards the formation of drought conditions between the historical period and the projected 17 

period. As this is a statistically oriented interpretation of our data, we can see that the 18 

differences between raw and bias corrected time-series are very small, especially compared to 19 

the difference in the magnitude of their absolute values. For Danube, Rhine and Guadiana  20 

strong rising trends (all statistically significant) were identified in the time-series of ensemble 21 

mean of days under threshold per year. Before bias correction these were 0.43, 0.37 and 0.52 22 

days/year for the three basins respectively and changed to 0.39, 0.39 and 0.38 days/year 23 

respectively after bias correction. For Elbe, non-bias corrected data give a slight but 24 

statistically significant increasing trend (0.14 days/year) in contrast to bias corrected output 25 

that shows a statistically insignificant trend. For Kemijoki strong decreasing (statistically 26 

significant) trends are found for both for raw (-0.20 days/year) and bias corrected (-0.18 27 

days/year) data. Table S3 of the ESM, tabulates the results of the linear regression applied to 28 

time-series of ensemble mean of days under threshold per year for the estimation of the time-29 

series’ trend and its significance.  30 

 31 
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3.5 Impacts of 4ºC warming relative to 2ºC warming 1 

Figure 8 shows the basin average runoff production for raw and bias corrected Euro-2 

CORDEX data with respect to the corresponding SWL in degrees Celsius. This analysis 3 

considers the runoff values corresponding to the +2 oC and +4 oC SWLs, the latter ranging 4 

from 3.2 to 4 between the GCMs, and also the SWL achieved by each participating GCM in 5 

the baseline period (0.3-0.5 oC). It is thus allowing us to examine the changes in basin runoff 6 

as temperature increases and to compare the effect of different SWLs. 7 

Comparing the annual average runoff production for raw and bias corrected input forcing it is 8 

clear that bias corrected output exhibits a considerably reduced range, which translates in 9 

increased model agreement for the basins of Danube, Rhine, Elbe and Guadiana. In Kemijoki 10 

basin the bias adjusted output has a greater range than the raw output. Concerning the range of 11 

the low flows, an increase in model agreement for the bias corrected forcing is observed for 12 

all basins.  13 

Examining the changes in annual average runoff, a slight decreasing trend can be identified 14 

for Danube and a slight increasing trend for Elbe while for Rhine there is not a clear trend 15 

present. In contrast, Guadiana and Kemijoki exhibit strong decreasing and increasing trends 16 

respectively. The falling trend in Guadiana is marginally intensified between +2 and +4 SWL 17 

compared to 0 to +2 SWL. The rising trend in Kemijoki does not have evident differences 18 

between +2 and +4 oC. 19 

According to the results in Figure 8 the 10th percentile runoff in Danube and Rhine decreases 20 

as SWLs increase while the opposite trend is observed for the low flows in Kemijoki. For 21 

Elbe the raw results show an intense decreasing trend up to +2 SWL which continues more 22 

moderately until +4 SWL, in contrast with the bias corrected output that shows milder 23 

changes with temperature increase . For Guadiana it is difficult to observe a trend in the bias 24 

corrected low percentile runoff as the values are already very low. For the raw output however 25 

there is an abrupt decrease from 0 to +2 oC which continues with a milder trend up to +4 oC. 26 

Figure 9 illustrates the correlation between the percent projected change in annual average and 27 

10th percentile runoff production from bias corrected and raw forcing, for the +2 and +4 28 

SWLs. 29 

Concerning the effect of bias adjustment it can be observed that regardless the significant 30 

differences in magnitude between runoff from raw and bias corrected data discussed before, 31 
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the projected change in average flow by the two forcings almost coincide for the +2 SWL. For 1 

the +4 SWL the GCM range has increased for Kemijoki after bias adjustment while for the 2 

rest of the basins raw and bias corrected data result in very similar levels of same percent 3 

change. For the projected change in 10th percentile runoff, the larger spreading of the values in 4 

Figure 9 (right column) shows that the GCM uncertainty on this field is higher. Guadiana is 5 

the only basin where bias corrected data result in an improvement in GCM agreement, 6 

probably due to its very low values of 10th percentile runoff. Kemijoki is not included in the 7 

10th percentile scatterplots as its projected increase far exceeds the 100% limit selected. For 8 

the rest of the basins, the effect of the bias correction on the change of the 10th percentile 9 

runoff is not constant. For Guadiana and Elbe bias adjustment mostly increases percent 10 

change while for Rhine and Danube percent change is in general terms decreased after bias 11 

correction. 12 

Comparing the difference on percent projected change in average annual runoff from +2 to +4 13 

SWL it can be observed that temperature increase results in a slight decline in percent change 14 

for basins with small absolute values of change, causing sign changes for Danube and Rhine, 15 

and it intensifies the negative and positive changes of Guadiana and Kemijoki respectively. 16 

For the 10th percentile runoff there is a similar response to temperature increase. For Elbe 17 

there is positive percent change at +2 SWL which falls below zero at +4 SWL while for 18 

Danube, Rhine and Guadiana the already declining projected changes present are further 19 

intensified. 20 

 21 

3.6 Effect of observational datasets for bias correction on the output of the 22 

hydrological model 23 

The aspect of the impact posed by the observational dataset used for bias correction to the 24 

results of the hydrological simulations is introduced in this part of our analysis. Additional 25 

model runs performed with bias adjusted Euro-CORDEX precipitation and temperature, 26 

corrected against the E-OBS (instead of the WFDEI) dataset participate in a comprehensive 27 

comparison between all the outputs used in this study. The results are illustrated in Figure 10. 28 

Three different sets of outputs are compared: one driven by raw downscaled and two driven 29 

by Euro-CORDEX data bias corrected against two different datasets. The comparison 30 

considers both the mean and range of the ensembles and results are presented as basin 31 
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aggregates. The first part of the comparison concerns the long-term annual average for the 1 

period 1976 to 2005 (Figure 10, top row) and apart from the model results includes values 2 

corresponding to observations, derived from GRDC discharge measurements. Observations 3 

can serve as a baseline for this comparison, allowing us to evaluate which configuration can 4 

better simulate “true” water budget numbers and the effect of bias correction with respect to 5 

this baseline. 6 

For all basins the raw data result in overestimates of runoff production which is though 7 

significantly reduced after bias correction. E-OBS corrected data however produce values 8 

lower than the observations (with the exception of Guadiana) while the WFDEI-corrected data 9 

produce the best simulation in terms of approximating the observed values. From Figures S1 10 

and S2 of the ESM (showing the effect of bias correction on the forcing variables of 11 

precipitation and temperature) it can be deduced that that E-OBS corrected precipitation has 12 

lower values than precipitation adjusted against the WFDEI dataset. This explains the lower 13 

runoff produced by the E-OBS bias adjusted dataset, as it is reasonable for the differences in 14 

precipitation to reflect on the output of the hydrological model. As already has been revealed 15 

in previous stages of this analysis, it is again clear the positive impact that bias adjustment has 16 

on the increase of model agreement. The only exception is Kemijoki basin due to its high 17 

latitude position (coefficient of variation was increased after bias correction for the high 18 

latitude areas).  19 

Changes in annual average runoff production at the +4 SWL appear to be more intensified 20 

compared to the +2 SWL (Figure 10, middle and bottom). Although for percent change the 21 

differences of the distinctive configurations are less pronounced, variations can be observed 22 

between the two bias corrected data driven simulations. It is also interesting that the effect of 23 

bias correction on reducing the uncertainty is not that strong when looking the results from the 24 

more statistical perspective of percent projected change. The improvements in model 25 

agreement after bias adjustment however are still pronounced for all basins except for Rhine. 26 

From the application of the same analysis on 10th percentile runoff production (Figure S6 of 27 

the ESM), it is deduced that for the low flows the E-OBS corrected data again produce lower 28 

values of runoff compared to WFDEI. In this case, however, even the raw forced output 29 

(which is wetter than the bias corrected) underestimates the observed 10th percentile runoff 30 

values. Regarding the percent projected changes, results from bias corrected data produce 31 
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smaller values compared to the raw data while E-OBS adjusted data result in decreased 1 

changes compared to output from WFDEI adjusted forcing.  2 

 3 

4 Discussion 4 

4.1 Hydrological response to +4 oC global warming 5 

In our analysis we investigated the effects of climate change on the European hydrological 6 

resources, extracting time periods that correspond to an increase of 4 oC of the global 7 

temperature, rather than using pre-defined time-slices. The same approach was followed by 8 

Vautard et al. (2013), stating that reduced GCM induced uncertainty is achieved with this 9 

method and thus the regional patterns of change in the variables of study are strengthened. 10 

In our study only one impact model (JULES) was used. Hagemann et al. (2013) argue that 11 

impact model induced uncertainty in future hydrological simulations is larger than that of the 12 

GCMS for some regions of the land surface and suggest using multi-impact model ensembles 13 

to deal with this issue. However useful conclusions can be drawn also from studies employing 14 

a single GHM/LSM. Examples of such single model climate change impact assessments 15 

performed recently are the studies of  Schneider et al. (2013) and Laizé et al. (2013) with the 16 

WaterGAP GHM, the studies of Arnell and Gosling (2013), Gosling and Arnell (2013) and 17 

Arnell et al. (2013) with the GHM MacPDM and of Hanasaki et al. (2010) using the H08 18 

LSM. 19 

The findings of the study regarding the climate changed induced alterations of the mean 20 

hydrological state in Europe show decreasing trends for southern Europe, including the 21 

Mediterranean region, and strong increasing trends for northern and north-eastern Europe. 22 

These follow the same patterns as identified by previous studies. Schneider et al. (2013) found 23 

that the most pronounced changes in the magnitude of European river flows are projected for 24 

the Mediterranean region and the northern part of the continent. Hagemann et al. (2013) 25 

reported positive changes in projected runoff for the high latitudes and negative changes for 26 

southern Europe. For central Europe the projected changes are smaller (mostly in the range of 27 

-25% to 25%) and thus more easily obscured by GCM and bias correction uncertainty. Arnell 28 

& Lloyd-Hughes (2014) report that the main source of uncertainty in the projected climate 29 

impact stems from the GCMs, with a range of uncertainty for the CMIP5 ensemble that is 30 

similar to that of older climate model experiments. 31 
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The projected relative changes found for 10th percentile runoff are far more pronounced than 1 

the changes in average, even for the regions where changes in average-state annual runoff 2 

were negligible. This finding implies that seasonality in runoff is likely to intensify under 3 

climate change and is in accordance with the results of Fung et al. (2011) and Van Vliet et al. 4 

(2013) who also reported pronounced seasonality in their projected simulations. This may 5 

translate to increased dry spells and thus elevated drought risks in the future. Under the light 6 

of these findings (mean-state runoff changing slightly and low-state changing significantly), 7 

more extreme hydrological droughts are expected in the future. It should be noted however 8 

that projections of low flow bear higher uncertainty compared to average-state, as indicated 9 

by the higher values of the coefficient of variation. Similar results of increased model spread 10 

expressed as cv for low flows compared to average state flows were found by Koirala et al., 11 

(2014). 12 

Specifically for the Guadiana River, the close to zero values of 10th percentile runoff 13 

encountered even in the historical period indicate that the river exhibits intermittent flow 14 

regime. This is relevant for this particular river, as it is located in a semi-arid region and 15 

intermittent flows typically characterize its hydrological regime (Collares-Pereira et al., 2000; 16 

Filipe et al., 2002; Pires et al., 1999). Given the changes that are projected for the Iberian 17 

Peninsula at +4 SWL, it is expected that the intermittent flow regime in Guadiana might 18 

intensify. 19 

Concerning the effects of a +4 oC temperature increase on the European hydrological regime 20 

compared to a +2 oC increase, significant alterations posed by the +2 degrees of global 21 

warming are identified for south Europe and northern and north-eastern Europe, where the 22 

respective decreasing and rising trends are intensified. Fung et al. (2011) also found that 23 

changes in mean annual runoff identified at +2 are intensified at +4. More specifically, their 24 

study reports that regions where decreasing runoff trends have been found become even drier 25 

and, in contrast, areas where runoff is projected to increase are getting wetter. For most of the 26 

river basins examined by Fung et al. (2011), water stress is increased at +4 compared to +2, 27 

with the exception of a few basins where an increase in rainfall is projected thus decreasing 28 

water stress. In our study, the basins located at central Europe (Danube, Rhine and Elbe) do 29 

not exhibit significant changes in their annual average runoff values due to temperature 30 

increase from +2 to +4. For 10th percentile runoff, however, a temperature increase of +4 oC 31 
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from the pre-industrial baseline results in an aggravation of the lowering trends that are 1 

already significantly affecting the low runoff regime at +2 oC. 2 

Our analysis of drought climatology at the basin scale was based on the total number of days 3 

under a predefined daily varying drought threshold. We did not employ any buffering 4 

criterion for the days under threshold to be accounted for in the total sum (as discussed for 5 

example by Sung and Chung (2014) and Tallaksen et al. (1997)). The use of such a criterion 6 

would have decreased the calculated dry days. However, as the interpretation of the results of 7 

this study is mostly oriented in identifying trends of change rather than absolute numbers 8 

describing the future regime, the lack of a buffering criterion is not supposed to notably affect 9 

the extracted conclusions. Wanders et al. (2015) employed a transient variable threshold for 10 

the assessment of the drought conditions under climate change, considering a gradual 11 

adaptation of the ecosystem on the altered hydrological regime. This is an interesting 12 

alternative, especially for climate change mitigation and adaptation studies. In our study we 13 

aimed to identify global warming induced changes in the future hydrological state without 14 

considering adaptation, thus the same historically derived threshold was applied to the whole 15 

length of the simulated runoff time-series.        16 

From the analysis performed on drought climatology, increased number of days per year 17 

under the historically defined drought threshold are found for the basins of Danube, Rhine and 18 

Guadiana. Our results correspond with the findings of previous studies about drought regime 19 

under climate change. Giuntoli et al. (2015), investigating future high and low flow regimes at 20 

the global scale, using multiple impact models and climate scenarios, found increased number 21 

of low flow days in Southern Europe. In the study of Wanders & Van Lanen (2015) the 22 

impact of climate change on the hydrological drought regime of different climate regions was 23 

assessed, using a conceptual hydrological model forced with 3 GCMs. The study findings 24 

describe a decrease in the frequency of drought events in the future, which however does not 25 

point towards drought alleviation. In contrast, it relates to increased drought event duration 26 

and deficit volume. These effects are more pronounced for the arid climates that already face 27 

problems of water availability. 28 

 29 
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4.2 The effect of bias correction 1 

As proposed by Ehret et al. (2012), both raw and bias corrected data driven simulations are 2 

presented in our study, in order to comprehensively assess the effect of bias correction on our 3 

results. In four of the five study basins, raw data driven simulated runoff overestimates the 4 

corresponding observed values. After bias correction, the modelled results represent more 5 

accurately the past hydrological regime. Similar improvements in the bias corrected output 6 

have been reported by Hagemann et al. (2011), Muerth et al. (2013) and Harding et al. (2014). 7 

For some regions, the sign of the projected change in runoff shifted after bias correction. This 8 

finding was also encountered in the study of Hagemann et al. (2011). Hagemann et al. (2011) 9 

underline that these changes in the climate signal reveal another uncertainty aspect of the 10 

GCM to GHM modelling procedure, that is inherent to the GCM but becomes apparent after 11 

the bias adjustment of the climate model output. Teng et al. (2015) argue that signal changes 12 

are produced by bias correction errors in higher percentiles’ precipitation, thus adding another 13 

factor to the uncertainty of the runoff projections.  14 

Although the absolute values of raw and bias corrected simulations differ significantly, this 15 

does not apply to the projected relative changes. Liu et al. (2014) also found that raw and bias 16 

corrected data resulted in similar estimations of relative changes for a series a variables, 17 

including ET and runoff. The study of Muerth et al. (2013) investigates the effect of bias 18 

adjustment on hydrological simulations and their climate change induced alterations. 19 

Concerning the relative changes between baseline and future time-slices, it is reported that 20 

bias correction does not influence notably the hydrologic indicators, apart from the one 21 

describing flow seasonality.  22 

Chen et al. (2011) identify three uncertainty components in bias correction applications: the 23 

uncertainty of: the different GCM, the variable emission scenarios and that of the decade used 24 

for bias adjustment. From a comparison of the latter uncertainty source with the two former, 25 

concluded that the choice of correction decade has the smallest contribution to total 26 

uncertainty. In this paper we address another uncertainty source; that of the dataset used for 27 

correction. It was found that the WFDEI-bias corrected simulation captured better the past 28 

hydrological regime compared to the E-OBS-bias corrected configuration. The differences 29 

between the two simulations abate when results are expressed as percent change but still their 30 

variation are of the same magnitude as that between raw and bias corrected data. This implies 31 

that the selection of the observational dataset used for bias correction is not a trivial step of the 32 



 23 

modelling procedure and it should be treated as an extra factor that causes the uncertainty 1 

window of the projected hydrologic conditions to further open 2 

 3 

5 Conclusions 4 

In this paper, the future mean- and low- hydrological states under +4 oC of global warming 5 

were assessed for the European region, using the novel dataset of the Euro-CORDEX climate 6 

projections. An analysis of the changes in future drought climatology was performed for five 7 

major European basins and the impact of +2 oC versus +4 oC global warming was estimated. 8 

Concurrently, the effect of bias correction of the climate model outputs on the projected 9 

climate was also evaluated.  10 

The concluding remarks of this study are summarised below: 11 

Projections show an intensification of the water cycle at +4 SWL, as even for areas where the 12 

average state is not considerably affected, there are remarkable projected decreases of low 13 

flows. With the exception of the Scandinavian Peninsula and some small areas in central 14 

Europe, 10th percentile runoff production is projected to reduce all over Europe. This favours 15 

the formation of extreme hydrological events, thus more droughts compared to the current 16 

state could be expected in the future due to the warming climate. 17 

Drought climatology is projected to change to more dry days per year for the Danube, Rhine 18 

and Guadiana basins. Thus these areas are projected to experience more usual and more 19 

intense drought events in the future. 20 

For the areas where clear decreasing or increasing runoff trends are identified in the 21 

projections, these changes are considerably intensified when moving from the +2 SWL to the 22 

+4 SWL. Decreasing trends apply to southern Europe, including the Mediterranean region, 23 

while strong increasing trends are projected for northern and north-eastern Europe. For the 24 

rest of the European region where trends are not clear or ensemble members do not agree 25 

towards the change, the effect of the further warming from +2 SWL to +4SWL, does not seem 26 

to severely affect the hydrological state, which is however already significantly altered at +2 27 

SWL compared to pre-industrial. 28 

Bias correction results in an improved representation of the historical hydrological conditions. 29 

However, raw and bias corrected simulations exhibit minor variations for results of statistical 30 

interpretation (in our study: percent change, number of days under drought threshold).  31 
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The dataset used for bias correction can affect the quality of the projections in absolute terms 1 

to a great extent. The comparison performed here showed that the WFDEI-corrected dataset 2 

produces simulations that capture better the past observed hydrologic state compared to the E-3 

OBS-corrected dataset and should thus be preferred for bias correction applications over 4 

Europe. The selection of the “correct” dataset is an added uncertainty to the climate impact 5 

modelling chain, with magnitude similar to that of the bias correction procedure itself. 6 

 7 

 8 
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Table 1. Euro-CORDEX climate scenarios used to force JULES. 1 
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(K) 

1 GFDL-ESM2M 2040-2069 2 2071-2100 3.2 2.44 

2 NorESM1 2036-2065 2 2071-2100 3.75 2.80 

3 MIROC5 2037-2066 2 2071-2100 3.76 2.72 

4 IPSL-CM5A 2018-2047 2 2055-2084 4 4.13 

5 HadGEM2-ES 2024-2053 2 2060-2089 4 4.59 
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Table 2. Basin’s annual average runoff production for raw and bias adjusted Euro-CORDEX data. 1 

Basin's Annual Average Runoff Production [mm/year] 
  Raw Bias Corrected 

Historical average 1976-2005 Historical average 1976-2005 
Danube 462.05 362.35 383.78 304.02 266.21 355.68 219.37 249.80 201.95 226.70 229.00 225.36 
Rhine 794.21 845.83 616.94 710.16 495.99 692.63 426.67 503.68 415.00 439.11 470.29 450.95 
Elbe 371.88 356.72 219.68 337.42 174.41 292.02 148.70 203.39 135.98 174.79 202.12 173.00 
Guadiana 166.13 71.44 116.14 46.60 81.51 96.36 93.14 96.42 90.06 79.22 89.82 89.73 
Kemijoki 428.17 482.28 427.95 418.03 507.48 452.78 174.68 327.78 197.30 238.28 450.70 277.75 
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RCA4-
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ES +4 
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MEAN 

  Absolute change from baseline in the projected time-slice Absolute change from baseline in the projected time-slice 
Danube -54.57 3.36 -13.20 -42.04 -14.96 -24.28 -11.83 -1.38 3.61 -30.04 -11.48 -10.22 
Rhine 59.95 -19.81 -13.23 -39.31 -20.14 -6.51 53.83 -5.91 6.09 -44.17 -21.73 -2.37 
Elbe 2.05 33.91 30.00 -28.39 19.05 11.32 22.81 33.28 31.55 -5.57 25.71 21.55 
Guadiana -55.70 -37.02 -17.16 -14.09 -46.16 -34.03 -26.23 -48.81 -10.37 -28.52 -45.23 -31.83 
Kemijoki 146.86 67.46 67.48 174.94 108.26 113.00 149.69 97.38 89.71 179.15 119.97 127.18 

  Percent change from baseline in the projected time-slice Percent change from baseline in the projected time-slice 
Danube -11.81 0.93 -3.44 -13.83 -5.62 -6.83 -5.39 -0.55 1.79 -13.25 -5.01 -4.54 
Rhine 7.55 -2.34 -2.14 -5.54 -4.06 -0.94 12.62 -1.17 1.47 -10.06 -4.62 -0.53 
Elbe 0.55 9.51 13.66 -8.42 10.92 3.88 15.34 16.36 23.20 -3.19 12.72 12.46 
Guadiana -33.53 -51.82 -14.78 -30.24 -56.63 -35.31 -28.16 -50.63 -11.51 -36.00 -50.35 -35.47 
Kemijoki 34.30 13.99 15.77 41.85 21.33 24.96 85.69 29.71 45.47 75.19 26.62 45.79 
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Table 3. Basin’s 10th percentile of runoff production, derived on an annual basis, for raw and bias adjusted Euro-CORDEX data. 1 

Basin's 10th percentile on annual basis [mm/year] 
  Raw Bias Corrected 

Historical average 1976-2005 Historical average 1976-2005 
Danube 146.63 96.81 80.55 79.71 58.69 92.48 31.49 41.73 28.54 30.32 37.94 34.00 
Rhine 250.22 258.37 162.58 200.59 109.23 196.20 98.23 120.41 93.24 101.58 107.68 104.23 
Elbe 118.79 99.15 29.98 98.30 28.95 75.04 10.22 20.08 11.23 16.75 22.14 16.08 
Guadiana 0.74 0.00 0.12 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 
Kemijoki 0.80 4.50 1.10 1.47 10.79 3.73 0.25 5.91 0.53 1.00 11.60 3.86 
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  Absolute change from baseline in the projected time-slice Absolute change from baseline in the projected time-slice 
Danube -53.89 -23.89 -18.83 -38.22 -27.41 -32.45 -18.03 -15.89 -9.68 -22.28 -24.37 -18.05 
Rhine -89.38 -87.03 -20.39 -103.94 -43.25 -68.80 -31.43 -49.93 -19.49 -69.92 -52.57 -44.67 
Elbe -29.14 -21.01 1.21 -44.80 -9.96 -20.74 -2.03 -2.73 -0.91 -8.90 -8.52 -4.62 
Guadiana -0.73 0.00 -0.11 0.00 0.00 -0.17 0.00 0.00 0.00 0.00 0.00 0.00 
Kemijoki 16.77 53.16 36.71 56.80 72.44 47.18 3.24 3.12 5.05 22.55 16.79 10.15 

  Percent change from baseline in the projected time-slice Percent change from baseline in the projected time-slice 
Danube -36.75 -24.68 -23.38 -47.95 -46.71 -35.09 -57.26 -38.07 -33.90 -73.50 -64.22 -53.08 
Rhine -35.72 -33.68 -12.54 -51.82 -39.59 -35.07 -32.00 -41.46 -20.91 -68.83 -48.82 -42.86 
Elbe -24.53 -21.19 4.04 -45.57 -34.41 -27.64 -19.86 -13.58 -8.11 -53.15 -38.47 -28.71 
Guadiana -98.67 -73.37 -96.24 -26.22 -76.38 -98.01 -48.53 -50.67 -65.42 -32.31 -56.63 -53.36 
Kemijoki 2088.40 1181.25 3328.72 3877.01 671.51 1264.16 1283.66 52.88 946.08 2265.11 144.71 263.09 
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Figure 1. European study domain, tested basins as defined by the model’s 0.5 degree 2 

resolution, gauging stations and general information on the stations.  3 
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Figure 2. Average runoff production from raw Euro-CORDEX data for all dynamical 2 

downscaled GCMs and their ensemble mean. Runoff production averaged over the baseline 3 

period (1976-2005) (left column), absolute change in runoff in the +4 SWL projected time-4 

slice (middle column) and percent change in the +4 SWL projected time-slice (right column). 5 

Bottom row: coefficient of variation of the ensemble members for the baseline period (left 6 

column), coefficient of variation of the projected absolute changes in the +4SWL projected 7 

time-slice (middle column) and model agreement towards a wetter change in the +4 SWL 8 

projected time-slice. 9 

10 
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Figure 3. 10th percentile of runoff production from raw Euro-CORDEX data for all 2 

dynamical downscaled GCMs and their ensemble mean. 10th percentile runoff production 3 

derived on an annual basis and averaged over the baseline period (1976–2005), absolute 4 

change in 10th percentile runoff in the +4 SWL projected time-slice (middle column) and 5 

percent change in the +4 SWL projected time-slice (right column). Bottom row: coefficient of 6 

variation of the ensemble members for the baseline period (left column), coefficient of 7 

variation of the projected absolute changes in the +4SWL projected time-slice (middle 8 

column) and model agreement towards a wetter change in the +4 SWL projected time-slice. 9 
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Figure 4. Ensemble mean of average runoff production from Euro-CORDEX data bias 2 

adjusted against the WFDEI dataset. Top row: Runoff production averaged over the baseline 3 

period (1976-2005) (top row), absolute (middle row) and percent change (bottom row) in 4 

ensemble mean runoff in the +4 SWL projected time-slice. Bottom row: coefficient of 5 

variation of the ensemble members for the baseline period (left column), coefficient of 6 

variation of the projected absolute changes in the +4 SWL projected time-slice (middle 7 

column) and model agreement towards a wetter change in the +4 SWL projected time-slice. 8 

 9 

 10 

 11 
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Figure 5. Ensemble mean of 10th percentile runoff production from Euro-CORDEX data bias 2 

adjusted against the WFDEI dataset. Top row: 10th percentile runoff production derived on an 3 

annual basis averaged over the baseline period (1976-2005) (top row), absolute (middle row) 4 

and percent change (bottom row) in ensemble mean runoff in the +4 SWL projected time-5 

slice. Bottom row: coefficient of variation of the ensemble members for the baseline period 6 

(left column), coefficient of variation of the projected absolute changes in the +4 SWL 7 

projected time-slice (middle column) and model agreement towards a wetter change in the +4 8 

SWL projected time-slice. 9 
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Figure 6. Annual time-series of basin averaged runoff production (average and 10th percentile 2 

of annual runoff) for raw and bias adjusted Euro-CORDEX data. For both average and 10th 3 

percentile time-series, the ensemble range, mean and 10-year moving average is shown.  4 
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Figure 6 (continued) 2 

 3 

 4 
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Figure 6 (continued) 2 
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Figure 7.  Number of days under drought threshold per year for raw and bias adjusted Euro-2 

CORDEX data. Ensemble mean and 10-year moving average of the ensemble mean (top), 3 

ensemble range (bottom).  4 
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Figure 7 (continued) 2 

 3 
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Figure 7 (continued) 2 

 3 

 4 
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Figure 8. Variation of runoff production with respect to temperature change (+2 and +4 2 

SWLs) for raw (light blue) and bias adjusted (light red) Euro-CORDEX data, for both annual 3 

average (left column) and 10th percentile (right column) runoff production. Small markers 4 

represent the value of each individual model and bigger markers correspond to ensemble 5 

mean value. 6 
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Figure 9. Correlation between projected change in basin averaged runoff production derived 2 

from WFDEI-bias adjusted and raw Euro-CORDEX data, for both annual average (left) and 3 

10th percentile (right) runoff production. Correlation is examined at +2oC SWL (top) and at 4 

+4oC SWL (bottom). Small markers represent the value of each individual model and bigger 5 

markers correspond to ensemble mean value. 6 

 7 

 8 
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Figure 10. Comparison between the simulations of raw Euro-CORDEX data and bias adjusted 2 

against two different datasets (WFDEI and E-OBS) for five study basins. Bars show the 3 

ensemble means and error bars the minimum and maximum ensemble member values. (Top 4 

row) Annual average runoff production for the period 1976 to 2005.OBS values are derived 5 

from GRDC discharge measurements converted to basin averages at the annual time-scale. 6 

(Middle row) Percent change in annual average runoff production at the +2 SWL and (bottom 7 

row) at the +4 SWL. 8 
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