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Abstract

Seeking for more accuracy and reliability, the hydrometeorological community has de-
veloped several tools to decipher the different sources of uncertainty in relevant model-
ing processes. Among them, the Ensemble Kalman Filter, multimodel approaches and
meteorological ensemble forecasting proved to have the capability to improve upon5

deterministic hydrological forecast. This study aims at untangling the sources of uncer-
tainty by studying the combination of these tools and assessing their contribution to the
overall forecast quality. Each of these components is able to capture a certain aspect
of the total uncertainty and improve the forecast at different stage in the forecasting
process by using different means. Their combination outperforms any of the tool used10

solely. The EnKF is shown to contribute largely to the ensemble accuracy and dis-
persion, indicating that the initial condition uncertainty is dominant. However, it fails
to maintain the required dispersion throughout the entire forecast horizon and needs
to be supported by a multimodel approach to take into account structural uncertainty.
Moreover, the multimodel approach contributes to improve the general forecasting per-15

formance and prevents from falling into the model selection pitfall since models differ
strongly in their ability. Finally, the use of probabilistic meteorological forcing was found
to contribute mostly to long lead time reliability. Particular attention needs to be paid to
the combination of the tools, especially in the Ensemble Kalman Filter tuning to avoid
overlapping in error deciphering.20

1 Introduction

The complexity of hydrometeorological systems is such that it is not possible to per-
fectly represent their “true” descriptive physical processes, and even less to integrate
them forward in time with mathematical models. These models are only an approxi-
mation of varying quality to represent and predict variables of interest, yet they proved25
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to be skilful and useful for water resource management and hazard prevention (e.g.
Bartholmes et al., 2009; Pagano et al., 2014; Demargne et al., 2014).

Inadequacies between simulation or predictions and observations can be largely at-
tributed to the many sources of uncertainty that are located along the meteorological
chain (e.g. Walker et al., 2003; Beven and Binley, 2014). Hence, it is admitted that im-5

provement of the forecast ought to go through understanding and reducing the sources
of uncertainty (e.g. Liu and Gupta, 2007). These sources have different nature that
range from epistemic uncertainty due to the imperfection of our knowledge to variabil-
ity uncertainty where the imperfections are due to the inherent system variability (e.g.
Walker et al., 2003; Beven, 2008). They also differ in location, i.e. where they lay in the10

hydrometeorological modeling process: meteorological forcing, model parameter and
structure, hydrological initial conditions, and, to a lesser extent, observations (Walker
et al., 2003; Vrugt and Robinson, 2007; Ajami et al., 2007; Salamon and Feyen, 2010).

As all models are exposed to these sources of uncertainty, they necessarily lead to
forecasts with imperfections. It is thus possible – and frequent – that several models15

can simulate the process of interest with the same accuracy. These simulation are
equally likely in the mathematical sense; it is referred as the principle of equifinality
(Beven and Binley, 1992).

Ensembles provide a probabilistic answer to the equifinality problem. They are a col-
lection of deterministic predictions issued by different models to simulate the same20

event and attempt to produce a representative sample of the future. They can be built
by a suitable method wherever a source of uncertainty needs to be put under scrutiny.
Additionally, the ensemble mean generally have better skills than deterministic systems
and offer a better ability to forecast extreme events (e.g. Wetterhall et al., 2013).

As the sources of uncertainty differ in their location, nature and statistical properties,25

they need specific tools to be deciphered efficiently (Liu and Gupta, 2007). A wide
range of methods have been developed in the past year to cater hydrological forecast
needs.
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At the beginning of the 90s, meteorologists pioneered the operational use of ensem-
bles by constructing Meteorological Ensemble Prediction Systems (MEPS), mostly to
take into account imperfect initial conditions that is a prime importance uncertainty
source in view of the chaotic nature of the atmospheric physics. Several methods have
been proposed to tackle this issue. For instance, to define the initial condition uncer-5

tainty, the European Center for Medium-Range Weather Forecasts (ECMWF) gener-
ates an ensemble by initiating their model with singular vectors (Molteni et al., 1996)
to which a stochastic scheme is added to deal with the model physical parametrisation
uncertainty (Buizza et al., 1999).

The increasing accessibility of MEPS benefited to the hydrology community to issue10

probabilistic hydrological forecasts that take into account meteorological uncertainty
forcing with Hydrological Ensemble Prediction Systems (HEPS, e.g. Cloke and Pap-
penberger, 2009; Brochero et al., 2011; Boucher et al., 2012; Abaza et al., 2014).
Since 2007, The Observing System Research and Predictability Experiment (THOR-
PEX) Interactive Grand Global Ensemble (TIGGE) allows free access to meteorologi-15

cal ensemble forecasts for hydrologists and other researchers. This database regroups
the outputs from nine operational atmospheric models around the world, which can be
downloaded in grib2 format.

A lot of attention has been paid to the identification of hydrological model parameters
and the non uniqueness of the solutions. Among other technique, Vrugt et al. (2003)20

proposed the Shuffled Complex Evolution Metropolis Algorithm (SCEM-UA), a cali-
bration technique that retains several sets of parameters instead of a single one for
a more realistic assessment of parameter uncertainty. Beven and Binley (1992) sug-
gested a more comprehensive approach for model acceptance or rejection with the
Generalized Likelihood Uncertainty Estimation (GLUE) that allows to include different25

forms of competing models.
Gourley and Vieux (2006) assert that dealing only with input and parameter uncer-

tainty is likely to issue unreliable forecast and that hydrological model structural uncer-
tainty should be deciphered explicitly. This statement is substantiated by Clark et al.
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(2008) who compares 79 unique model structures and concludes that a single struc-
ture is unlikely to perform better than the others in all situations. Poulin et al. (2011)
adds that the structural uncertainty is larger than the parameter estimation uncertainty
and provides more diverse outputs. Combining dissimilar hydrological model structures
proved to possess a great potential (Breuer et al., 2009) even with simple combination5

patterns (Ajami et al., 2006; Velázquez et al., 2011; Seiller et al., 2012).
Initial condition uncertainty has also aroused scientific interest. Many studies using

various data assimilation techniques to incorporate observations within the simulation
processes demonstrated that the specification of catchment descriptive states is a cru-
cial aspect of short and medium range forecasts (DeChant and Moradkhani, 2011; Lee10

et al., 2011). Among them, sequential data assimilation technique such as the Particle
Filter (e.g. DeChant and Moradkhani, 2012; Thirel et al., 2013), the Ensemble Kalman
Filter (e.g. Weerts and El Serafy, 2006; Rakovec et al., 2012) and variants (Noh et al.,
2013, 2014; Chen et al., 2013; McMillan et al., 2013) substantially improve forecast
over the open loop scheme, by reducing and characterizing the uncertainty in initial15

conditions.
Considerable efforts have been made in the development of these sophisticated

techniques and this gave rise to many tools that have been individually tested use-
ful. As Bourdin et al. (2012) points out, “To date, applications of ensemble methods in
streamflow forecasting have typically focused on only one or two error sources [. . . ]20

A challenge will be to develop ensemble streamflow forecasts that sample a wider
range of predictive uncertainty”. As underlined, the forecasting tools frequently tackle
different sources of uncertainty and therefore do not exclude each other but can be
seen as complementary, combining their assets to compose an overall better system.

The present study identifies three efficient tools, namely a hydrological multimodel25

approach, Ensemble Kalman Filter, and MEPS forcing that are used together to deci-
pher the traditional hydrometeorological sources of uncertainty. The paper scope is to
identify how they are complementary to each other, to assess their individual contribu-
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tion to the hydrological forecast reliability and accuracy, and to eventually evaluate the
possibility of achieving reliability without resorting to post-processing.

This is achieved by issuing a hindcast on 20 watersheds using the aforementioned
techniques, either individually or combined, to investigate their specific role in the fore-
casting process. Each of them produces an ensemble that can be cascaded through5

the next ensemble technique in order to produce a larger ensemble that possesses
a more comprehensive error handling. Finally, if all sources of error are accounted for,
the ensemble should generate a forecast that is reliable (Bourdin et al., 2012).

This paper is organized as follow: Sect. 2 presents the catchments, models, the
Ensemble Kalman Filter basics and scores, Sect. 3 sums up the systems specificities10

and their respective performances followed by a conclusion in Sect. 4.

2 Material and methodology

2.1 Catchments and hydrometeorological data

20 watersheds situated in the south of the Province of Québec have been selected
for this study (Fig. 1). The catchments experience a mixed hydrological regime with15

a spring freshet resulting from the important winter snow cover and a lesser second
peak in autumn.

The climatology of the catchments is varied, with a mean annual snow fall ranging
from 2.9 to 4.5 m and total precipitation fluctuates between 877 to 1236 mm. The size
of the watersheds extends from 512 to 15 342 km2 and annual mean streamflow from20

9 to 302 m3 s−1.
Daily total precipitation, maximum and minimum temperature and streamflows are

provided by the Centre d’Expertise Hydrique du Québec. They performed kriging on
the observations over a 0.1◦ resolution grid to which a temperature correction with an
elevation gradient of −0.005 ◦Cm−1 is added. The data base is split into three periods:25

1990–2000 for the calibration of the models, October 2005–October 2008 for the spin
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up, while November 2008–December 2010 is committed to the hydrological forecast
assessment.

The MEPS used as inputs to the hydrological model were retrieved from the TIGGE
database. The temperatures and precipitation forecasts from the European Center for
Medium range Weather Forecasts (ECMWF) were chosen for this study. They are5

formed by 50 exchangeable members (Fraley et al., 2010) with a 6 h time-step and
a 10 day horizon. However, after conversion from Greenwich time to local Quebec time,
the horizon reduces to 9 days. For the sake of the study and to match the common
framework of the hydrological models, weather forecast is aggregated at a daily time
step. The forecast is provided on a regular grid with a 0.5◦ resolution (N200 Gaussian10

grid) that is downscaled to a 0.1◦ resolution during data retrieval by using bilinear inter-
polation. As the rainfall–runoff models are lumped, a single representative point fore-
cast is obtained for each MEPS member by averaging the grid points situated within
the catchment boundaries. The weather forecast displays acceptable performance over
the 20 selected catchments. In fact, in the initial group of 38 catchments, 18 displayed15

unsatisfactory performances so they where withdrawn from the experiment from the
beginning, as pre-processing the meteorological inputs falls outside the scope of the
project. When compared to the meteorological observations, rainfall and temperature
MCRPS over the 9 days (see Sect. 2.4) remain below 3 mm and 3 ◦C respectively for
selected catchments.20

An alternative to the ECMWF ensemble is used to simulate a deterministic meteo-
rological forcing with equivalent theoretical skill. For this purpose, a single member is
drawn randomly among the 50 exchangeable members.

2.2 Models, snow module and evapotranspiration

The multimodel ensemble is composed of 20 conceptual lumped models. In this study,25

their outputs are pooled together with equal weights or studied individually. Models
have been initially selected by Perrin (2000) for their conceptual and structural diver-
sity and revised by Seiller et al. (2012). They present various degrees of complexity:
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4 to 10 calibrated parameters and 2 to 7 reservoirs to describe the main hydrological
processes (Table 1). The model selection is a key element for an efficient multimodel
ensemble as the diversity of them contributes to encompass the error in model con-
ceptualization and structure (Viney et al., 2009). All models were derived from existing
ones, keeping their main specificities but adapting them to match a common frame-5

work where every snow module-model sets share the same inputs, namely precipita-
tion and potential evapotranspiration. Modifications include their spatial discretization
if they were initially distributed and their evapotranspiration formulation. The snow ac-
cumulation and melt module have been also omitted in the case they had their own to
be replaced by Cemaneige. A detailed description of the models can be found in Perrin10

(2000).
Cemaneige, a degree day snow accounting routine, is used to model the watershed

snow processes (Valery et al., 2014). It divides the watershed into 5 elevation bands
and requires 2 parameter to be calibrated: a snowmelt and a cold-content factor. As
it is calibrated conjointly with individual models and according to an objective function15

based on streamflow observations, its parameter values depend on the hydrological
model with which it is coupled. The 20 hydrological models have therefore precipitation
inputs that are driven by the same snow accounting routine but differently parametrized.
Thus, part of the uncertainty related to the snowmelt module is taken into account
through dissimilar parameter sets that drives the state of the snow pack accumulation20

and melting.
All models were given the same input potential evapotranspiration which is computed

following Oudin et al. (2005) formula that relies on the mean air temperature and the
calculated extraterrestrial radiation.

2.3 Forecasting approaches25

Two approaches are used and compared for forecasting, the open loop and the En-
semble Kalman Filter. Regardless of the method used, the meteorological observations
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over the three years preceding the forecast period are used for model spin up to bring
models states to values that estimates the catchment conditions.

2.3.1 Open loop forecasting

When the open loop forecast is activated, the state variables are obtained in simulation
mode and used as starting point to initiate the hydrological forecast. The simulation5

and forecast steps then alternate as follow: (1) the models are forced with observa-
tions up to the first day t of the forecast and (2) the models are next forced with the
meteorological forecast to issue the hydrological prediction until t+9. The procedure
is repeated as the models are brought forward in time with the observations from t.

2.3.2 Ensemble Kalman Filter10

The Ensemble Kalman Filter (EnKF) is a sequential data assimilation technique that
uses a recursive Bayesian estimation scheme to provide an ensemble of possible
model reinitializations. The model state variable vector X is updated according to its
likelihood probability density function that is inferred by the observations z, p(xt |z1:t)
with the indices t referring to the time.15

When an observation becomes available, model states are updated (X+, the a pos-
teriori estimation) as a combination of the predicted (X−, also called the a priori states)
and the difference between the prior estimate of the variable of interest HX

− and the
corresponding observation zt.

X
+
t = X

−
t +Kt(zt −HtX

−
t ) (1)20

where H is the observation model that relates the state vectors and observations, and
K is the Kalman gain matrix that defines the relative importance given to the output
error respect to the prior state estimate.
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The Kalman gain is defined with the model error covariance matrix Pt and the co-
variance of observation noise Rt as:

Kt = PtH
T
t (HtPtH

T
t +Rt)

−1. (2)

A detailed explanation of the EnKF mathematical background and concepts can be
found in Evensen (2003). In this study, the filter has been implemented following Man-5

del (2006).
The EnKF is able to decipher catchment initial condition as it acts on variables after

the spin up time, i.e. at the very start of the hydrological forecast. Thus, it is frequently
presented as a tool that describes catchment descriptive states uncertainty such as
soil moisture but it also implicitly takes into account model parameter and structural10

uncertainty as these are reflected in the model states and outputs errors. The forecast
system comprises inaccuracies at several levels and consequently the error statistics
that the EnKF uses to update state variables are not only intrinsic variability but also
epistemic uncertainty that lay also in the value of the state variables.

The EnKF performance is highly influenced by its setting, in particular by the required15

noise specification of inputs and outputs (Noh et al., 2014) and also by the choice of the
state variable vector (Li et al., 2011). This affects directly the spread of the ensemble
and the corresponding uncertainty description. As the level of uncertainty varies from
the model used and the simulated watershed, the optimal EnKF implementation also
depends to a great extent on these aspects.20

In this study, the EnKF is tuned to optimize reliability and accuracy per catchment
and per model. The retained specification are identified after extensive testing has
been carried out. More precisely, two or three noise levels for each input and output
were tested (a 25–50–75 % standard deviation of the mean value with a gamma law
for precipitation, 10–25–50 % standard deviation of the mean value with the normal25

law for streamflow observations and 2–5◦ standard deviation with a normal law for
the temperature). Additionally, as the choice of updated state variables is also a key
component of the EnKF, all possible combinations of the state vector were tested with
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the 12 noise combinations described above. The retained EnKF setting were based on
a two-step criterion; firstly the 3 settings that presented the best reliability are kept and
then the one among them that led to the lowest bias. Therefore, the optimal setting may
use unrealistically high perturbations that compensate partially for the structural error.

2.4 Scores5

The continuous ranked probability score (CRPS, Matheson and Winkler, 1976) is
a common verification tool for probabilistic forecasts that assesses accuracy and reso-
lution. A cumulative distribution function is built based on the raw predictive ensemble,
i.e. the collection of deterministic forecasts and then compared to the observation.

CRPS(Ft,xobs) =

+∞∫
−∞

(Ft(x)−H(x ≥ xobs))2dx (3)10

where Ft(x) is the cumulative distribution function at time t, x the predicted variable,
and xobs is the corresponding observed value. The function H is the Heaviside function
which equals 0 for for predicted values smaller than the observed value, 1 otherwise.
The CRPS shares the same unit as the predicted variable x.

As the CRPS assesses the forecast for a single time step, the MCRPS is defined15

as the average CRPS over the entire period. The MCRPS can reduce to the Mean
Absolute Error (MAE) if a single member is considered and thus it allows to compare
deterministic and probabilistic forecasts (Hersbach, 2000; Gneiting and Raftery, 2007).
Finally, a 0 value indicates a perfect forecast and there is no upper bound.

The reliability diagram (Stanski et al., 1989) is a graphical method to assess the20

reliability of a predictive ensemble by plotting forecasted against observed event fre-
quencies. A perfectly reliable forecast is represented by a 45◦ line that indicates that
forecasted and observed frequencies are equal. If the joint distribution curve differs
from the perfect reliability lines, it indicates that the spread of the ensemble does not
perfectly match its predictive skills. If the curve is situated above the perfect reliability25
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line, this denotes an overdispersion of the ensemble, and an underdispersion in the
opposite case.

The reliability is twofold. Since the reliability curve assesses the dispersion regarding
the predictive skills of the ensemble, it is possible to have a perfectly reliable system
with a low predictive capability in the case the dispersion is very high. For disambigua-5

tion, the ensemble spread is added to the plots.
Practically, one can define the deviation from perfect reliability by estimating a mea-

sure of distance between the forecast reliability curve and the perfect reliability line
by computing the Mean Absolute Error (MAE) or Mean Square Error (MSE, Brochero
et al., 2013). This dimensionless score allows to reduce the measure of reliability to10

a scalar. In the case where the MAE is used, it can be easily interpreted as the av-
erage distance between forecasted frequencies and the observed frequencies over all
quantiles of interest. This verification score is henceforth referred as Mean absolute
error of the Realiability Diagram, MaeRD.

Additional information about reliability can be obtained from the Spread Skill Plot15

(SSP, Fortin et al., 2014). It compares the Root Mean Square Error RMSE and the
square root of average ensemble variance that is a measure of the ensemble spread.
The reliability is thus somehow decomposed into an accuracy error part and a spread
component. Ideally, the spread should match the RMSE.

3 Results20

Table 2 summarizes the specificities of the nine variants of the hydrometeorological
forecast framework according to the three “forecasting tools”: multimodel, EnKF, and
ensemble meteorological forcing. Each of these switch may be activated or not and are
marked as on/off in the table.

The multimodel switch dictates if the members issued by the 20 individual models25

are pooled together to create a single probabilistic forecast. In the case where the mul-
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timodel approach is not used, the models outputs are kept individually and 20 distinct
ensembles – one per model – are considered.

The EnKF switch indicates if sequential data assimilation or the open loop proce-
dure is applied. When EnKF updating is used, an ensemble of 50 members is created
from 50 likely initial conditions sets identified by the filter. Otherwise, a single set of5

state variable values determined from the simulation is provided to the forecasting step.
Note that the H and H′ system differ by the EnKF perturbations magnitude, where H
uses perturbations that aim at optimizing the combined criterion while H′ uses lower
perturbations that are deemed to be more realistic.

Lastly, the meteorological forcing employed during the forecast step can be either10

deterministic or probabilistic, using one randomly picked member or all 50 MEPS mem-
bers.

These tools can be used alternatively or combined. For instance, if the EnKF and the
meteorological ensemble forcing are used collectively, each of the 50 initial conditions
sets will serve as starting point for each of the 50 meteorological forecast member15

creating a larger hydrometeorological ensemble that contains 2500 members.
We chose to disregard more complex or “hybrid” cases in this study, where for exam-

ple, the final ensemble is composed with some models that benefit EnKF state updating
while others are used in an open loop forecasting mode as these setups do not add
additional information about the role of the tools, increase the degree of freedom for20

the system optimization and would shoot up computational costs.
The results for each of the nine systems applied to every catchment, lead time and

possibly every model are not systematically detailed and compared to each other. The
following graphs are deemed sufficient to interpret the role and benefits that the system
components play on the forecast quality. Additional graphs representing the resolution25

and reliability of each system are provided online for readers who are interested in
a specific set up.

To picture an overview of the results, Fig. 2 represents the accuracy in terms of
MCRPS (or MAE for system A that is fully deterministic) and MaeRD. For graphical
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convenience, the full distribution of performance according to various factors is not
displayed but only a single representative value. To reduce the whole of the results
to a single scalars, the median performance has been considered. In the case where
a multimodel approach is used, the median performance over the 20 catchments is dis-
played on the figure. Otherwise, when individual models are considered, firstly the me-5

dian performing model is identified and then the median performance over the catch-
ment is represented. This implies that the performance of individual models systems
(A, B, C, and D) may refer to a different model for each lead time.

The four radar plots situated on the top of the figure illustrate the MCRPS perfor-
mance. As a reference, the center of the disk consist of the the median MCRPS value of10

the climatology over the 20 catchments while the perimeter represent a perfect MCRPS
equals to 0. The radius lines represent the nine systems described in Table 2 and are
referred by their corresponding letter.

The nine systems present varying performance but all decrease logically with lead
time. System A, which is deterministic, undoubtedly performs worse for every lead time.15

It is challenged from the 3rd day and is outperformed for medium range forecast by the
hydrological climatology. System B presents a quite similar behaviour to A but with
a lower decrease of accuracy with lead time. System C may be considered as competi-
tive for shorter lead times but looses quickly its edge. These preliminary results tend to
indicate that simpler HEPS may not be appropriate to accurately forecast streamflows20

over a nine day horizon. However, all versions including the simpler version except sys-
tem A are more informative than the climatology for all lead times. Systems G, H and
H′ stand out from the others for all lead times.

The second row in Fig. 2 illustrates the reliability of each system. The center of
the disk corresponds to a MaeRD equals to 0.5. System A is artificially placed at the25

center of the radar plot to denote that no reliability information is communicated since
it is deterministic.

The reliability results shares similarities with the accuracy assessment. Simpler sys-
tems face difficulties to provide a reliable forecast. Despite the use of meteorological
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ensemble forcing, system B is far from providing the right dispersion. Systems C and
D provide some information for short lead times but experiences a substantial loss with
increasing lead time. Once again, G, H and H′ are performing best.

3.1 Multimodel approach and structural uncertainty

To assess the gain related to the multimodel approach, Fig. 3 presents a comparison of5

the individual model MAE (A) and the MCRPS that pools all model output together (E).
At this step, only the structural uncertainty is taken into account as the meteorological
forcing is kept deterministic and no initial condition uncertainty estimation is provided
for both cases. These systems are computationally cheap as they contain either 20×1
member or 20 members.10

In Fig. 3, each boxplot represents the distribution of performance (minimum, quan-
tiles 0.25, 0.5, and 0.75, and maximum) of the 20 models while the curve details the
multimodel accuracy. On the x axis, the 20 test catchments are sorted according to
increasing multimodel MCRPS for the first lead time. This allows to notice that certain
catchments exhibit a faster growing error.15

The multimodel performs consistently better than the median performance of the
model but also better than any model in the large majority of cases. Exceptions can
be occasionally observed for catchment 3, 17, and 20 where only one or two models
outpeform the ensemble. However, the best performing models differ from a catchment
to another while the multimodel presents the advantage of being more robust than any20

of the models. This is explained by the varied individual model behaviours. Each model
may grasp different specificities of the hydrograph by focussing more specifically on
different (conceptual) hydrological processes. Consequently, the ensemble members –
the models – have disparate errors. Whenever the mismatch between forecast mem-
bers and observation is poorly correlated, their errors tend to cancel out each other.25

Figure 4 presents the reliability of the system E. Each curves refers to one of the
20 catchments. As mentioned, the structural uncertainty of the hydrological models is
solely explicitly taken into account by the combination of the models.
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System E is generally slightly over confident for all lead times and this trend becomes
more apparent as the lead time increases. This is expected as the meteorological forc-
ing uncertainty increases with time while the deterministic forcing do not support that
aspect. One can notice that the reliability also depends on the catchments. For the first
lead time, most of the catchments are close to reliability while there is a clear outlier5

for which accuracy skills do not match its corresponding spread. In fact, this low per-
forming catchment exhibits a constant hydrological wet bias – partially explained by
a meteorological forecast wet bias that over-forecasts precipitations by 15 % – that is
not captured by any of the models even if the global tendency is respected. Conse-
quently, the models errors are highly correlated and this prevents the members to form10

a performing ensemble. This bias indicates that the aggregation of the other sources
of uncertainty drive the system toward an inaccurate state.

3.2 Data assimilation and initial condition uncertainty

Figure 5 illustrates the increase of performance related to the data assimilation by com-
paring systems E and G. System G improves upon E as it benefits from the EnKF data15

assimilation to handle the initial condition uncertainty. The models states are updated
according to the last available observations and an ensemble is created for each model
based on the probabilistic estimation of best initial conditions.

The EnKF provides considerable gain over open loop forecasts for all watersheds
and reduces the number of lower performance (outlier) watersheds. Data assimilation20

is particularly effective on catchments that present a systematic bias. For example,
catchment number 11 that was problematic from the first lead time lies among the other
catchments in terms of performance. This indicates that inaccuracies accumulated and
stored during the spin up period in the state variable as the results of structural and
forcing errors can be significantly reduced by providing adequate model reinitialization.25

As the EnKF acts on model state variables right after the spin up period, it is not
surprising to see its efficiency decreasing with lead time. This clarifies why the EnKF
is beneficial for all lead times but that its skill decreases faster than the open loop
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scheme one. Moreover, the EnKF provides satisfactory initial condition distribution to
minimize the error at the time the observation becomes available but does not sample
the posterior states to be optimally integrated through time.

Figure 6 details the reliability of system G. There is a considerable increase of spread
in comparison to system E for shorter lead time that goes beyond adequate dispersion5

and lead to a slightly overdispersed forecast for the first lead time. This was expected as
the EnKF was initially implemented to maximize individual model reliability for system
G (see Sect. 2.3.2). As the EnKF also takes into account the parameter and structural
uncertainties and is combined with a multimodel approach, there may be a redundancy
in the error deciphering. The structural error and the corresponding ensemble spread10

that it should describe may be somewhat accounted twice in that particular case. How-
ever, the overestimation of the ideal spread diminishes as the EnKF influence fades
away quickly and the system goes back toward a better reliability for medium range
forecast and underdispersion from days 4–5.

To explain the rapid decrease of reliability, Fig. 7 displays the ensemble mean RMSE15

and the square root of average ensemble variance. This individual spread skill plot
(one model and one catchment) is typical. The spread and the RMSE are close to
a perfect match for the first day indicating an appropriate dispersion, yet, they diverge
rapidly. The reliability deterioration of the system is twofold: the increase of the ensem-
ble mean bias and the decrease of the spread. The loss of hydrological predictive skill20

is coherent regarding that the meteorological accuracy diminishes with increasing lead
time. Concerning the second point, in most cases, the ensemble of initial conditions
that EnKF provides often differ little from each other – few percent – indicating that the
posterior distribution of each parameter is rather narrow (DeChant and Moradkhani,
2012; Abaza et al., 2015). These dissimilarities are not large enough to provoke a di-25

vergence in the behaviour of EnKF members during the forecasting step as the model
are resilient. The different initial conditions thus tend to merge toward a certain value –
often close the open loop one – which may not be accurate.

7195

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/7179/2015/hessd-12-7179-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/7179/2015/hessd-12-7179-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 7179–7223, 2015

Accounting for three
sources of
uncertainty

A. Thiboult et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.3 Contribution of the meteorological ensemble forcing

One step further in the system complexity is taken as the MEPS forcing is introduced.
Figure 8 compares the MCRPS of systems G and H. They differ only in their meteo-
rological forcing as the latter uses the 50 member probabilistic forecast. Difference be-
tween them is negligible until the 7th or 8th day where an improvement in performance5

can be noticed on some catchments. For these longer lead times, the probabilistic forc-
ing is slightly more efficient for the MCRPS but the main difference lies in the reliability
(Fig. 9). In fact, the reliability is substantially improved for the longest lead times when
the meteorological uncertainty is provided to the system.

The ECMWF MEPS dispersion grows with lead time and logically contributes to10

the HEPS spread accordingly. This is confirmed by comparing the spread of the G
and H systems as they decrease at a different pace. While they are almost iden-
tical with a value of 0.55 and 0.57 mmday−1 respectively for the day 3, G spread
drops to 0.44 mmday−1 for day 9 while the use of the MEPS maintains the spread to
0.55 mmday−1. This also indicates that the tool that contributes the most to the HEPS15

dispersion is the EnKF since the raw MEPS forcing is not able to balance the decrease
of the spread induced by the EnKF.

The main sources of uncertainty – structure, initial conditions, and meteorological
forcing – are cascaded through the different components of the forecasting system to
provide better forecast than any of the systems previously described. Yet the system20

reliability is not perfect as the forecast for day 1 and day 9 are slightly overdispersive
and underdispersive in addition to present sensitivity to the watersheds. To realistically
represent the uncertainty of the system, the spread should grow with lead time as
the future is more uncertain. This suggest that further improvement of this setup and
particular application could be obtained with a more dispersed meteorological forcing.25
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3.4 Simplification of the framework

A potential drawback for operational use of such system is that it is computationally
expensive as 50 000 members are exploited to build it. The efficiency of a simpler
system is assessed on Fig. 10. Eight typical catchments are displayed in the sub plots
to illustrate the conclusion. The box plots represent the MCRPS distribution of the 205

models results from system D that benefits EnKF state updating and MEPS forcing.
Each of these models can be considered as a sub-ensemble of the large ensemble
H driven by a single model instead of using a multimodel approach. This is a more
consistent approach with the EnKF individual optimization that is carried out to aim for
reliability for each model one at a time. The numbers at the top of the sub-plots refer to10

the model number that are better than the multimodel for each lead time.
In Fig. 10, sub-ensembles are more skilful than the hydrological climatology for all

lead times but rarely outperform the multimodel forecast. More precisely, the median
performing sub-ensemble is always poorer than the multimodel and only the best mod-
els among the 20 occasionnally exhibit lower MCRPS. Individual models that outper-15

form the multimodel frequently differ from a catchment to another and from a lead
time to another. This emphasizes the difficulty to chose a priori a single model as half
of the 20 models never behave better than the multimodel and only model 1 and 5
perform better than the multimodel for several catchments. Choosing a sub-ensemble
doubtlessly enhances the system computational requirements and eases operational20

implementation but relying on a single model may be misleading or, at least, minimize
the expectation that one can have from the HEPS.

Figure 11 assesses the reliability of the same system with the MaeRD score. Like
for the previous plots, the box plots contain the 20 ensembles that correspond to the
20 models and are sorted by catchment with increasing multimodel MaeRD. Note that25

the MaeRD does not provides precise information about dispersion but only about the
distance from perfect reliability. Nevertheless, individual model ensemble may be ei-
ther slightly over or underdispersive for the first lead time but are systematically un-
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derdispersive for longer lead times. On the other hand, system H can be either over
or underdispersive depending on the watershed. Overdispersive forecasts, like for the
catchment 19, can be recognized as they tend to become more reliable for longer lead
time.

For the first lead time, the best individual model ensembles may be competitive with5

the multimodel but are already less efficient from day 3 and are drastically underdis-
persive for day 9. Even if the EnKF takes into account the structural uncertainty at
t = 0, it loses its efficiency during the forecast. The information that the updated state
sets contain about the structural uncertainty vanishes when the sets converge toward
a common value. The multimodel approach, by its nature, allows to take over the role10

of the EnKF by dynamically preserving the required diversity.

3.5 Required EnKF perturbations

H′ is identical to system H except that it relies on a different optimization of the EnKF.
Instead of maximizing the combined criterion for individual models (see Sect. 2.3.2),
the EnKF noise specification is set lower to values that are more consistent with real15

uncertainties estimations of observed climatological and streamflow observations at
catchment scale. Namely, precipitation is perturbed with a gamma law with a standard
deviation of 25 % of the mean value, temperatures with a normal law with a 2◦ standard
deviation and streamflow observations with normal law with a 10 % standard deviation.

This would corresponds to a potential optimal EnKF implementation if the total uncer-20

tainty could be summarized to the input and output error and were perfectly identified,
i.e. in a perfectly controlled environment with a negligible model structural error. Con-
sequently, the structural error is theoretically only deciphered through the multimodel
pooling. Yet this needs to be qualified as it is practically hard to untangle the source of
uncertainty within the actual configuration of the EnKF but it reduces the risk that the25

tools effects overlap. By choosing these perturbations, the user also gets rid of a fas-
tidious EnKF tuning by screening adequate perturbation (e.g. Moradkhani et al., 2005)
and hence simplifies the system implementation.
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In Fig. 13, system H′ improves reliability for first lead times by reducing the overdis-
persion with a sensible decrease in the ensemble spread from 0.65 to 0.54 mmday−1

for day 1 without any degradation of the MCRPS (except for 2 catchments; all results
are shown on additional figures online). System H′ maintains a more constant spread
and reliability with increasing lead time as the main sources of uncertainty are more ac-5

curately deciphered specifically by their corresponding tool, leading to an overall better
forecast.

The two outlier catchments that exhibit poorer reliability present an underdispersed
forecast that is a bit more pronounced for the H′ system than the H system (see
Fig. 9). This indicates that uncertainties used to define the EnKF perturbations are10

under-estimated. As a matter of fact, it is unreasonable to assume that uncertainties
are invariant from one catchment to another. The comparison of the MEPS forecast
and meteorological observations shown that the quality over the 20 catchments re-
mains close and indicates that the misfit probably originates from the structures com-
posing the multimodel ensemble that can be maladapted to simulate this particular15

catchments or from doubtful streamflow measurements. This lead us think that further
improvements in very uncertain environments are limited by a preliminary accurate
quantification of error.

4 Conclusions

This work investigates the contribution of three different probabilistic tools commonly20

used in hydrometeorological sciences. They are used conjointly and alternatively to
identify their effect on the hydrological predictive ensemble and to untangle sources of
uncertainty that are aggregated in the outputs.

Each of these tools is dedicated to capture a certain aspect of the total uncertainty.
A multimodel approach is used to quantify and reduce explicitly the hydrological model25

error, the Ensemble Kalman Filter to decipher the uncertainty related to initial condi-
tions and the meteorological ensemble to account for the forcing uncertainty.
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The experiment shows that important gain may be achieve in term of accuracy and
reliability by adequately using these techniques. Their action differ substantially by their
mean and range of action.

The EnKF provides accurate quantification of initial error but fails to maintain reli-
ability as its effect fades out quickly after model spin up. The information about the5

structural uncertainty deciphered by the EnKF, which is contained in the state variable
posterior distribution, is not propagated with time integration during the forecast step.
However, the EnKF remains a key component of the system as it is the one that pro-
vides the most dispersion. This also indicates that the accumulation of past errors in
the initial conditions is a dominant source of uncertainty.10

The multimodel approach is able to partially compensate for the EnKF decreasing
action by taking over the structural uncertainty. Moreover, the combination of indepen-
dent models improve accuracy as their errors may cancel each other. Lastly, the use
of ensemble meteorological forecast contributes to the reliability of medium range fore-
cast by representing the meteorological forcing errors.15

Their action are complementary as they decipher different nature of uncertainty at
different locations by acting at particular stages in the forecasting process. When com-
bined, they need to be set according to the tools they are juxtaposed with to prevent
overlapping actions. This is particularly the case for the EnKF that has important de-
gree of freedom in its implementation. It can eventually be tuned with more realistic20

input perturbations by coupling with the multimodel ensemble and therefore, facilitate
its implementation by relaxing the constraints of optimal perturbation screening.

Possible avenues for further improvements may be achieved through a multimodel
state updating rather than individual model updating, i.e. by treating initial condition
in a single step as a whole. Lastly, the meteorological forecast shown to be a little25

underdispersed for this application and could be possibly improved by applying suitable
pre-processing techniques.
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The Supplement related to this article is available online at
doi:10.5194/hessd-12-7179-2015-supplement.
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Table 1. Main characteristics of the 20 lumped models (Seiller et al., 2012).

Model Number of optimized. Number of Derived from
acronym parameters reservoirs

M01 6 3 BUCKET (Thornthwaite and Mather, 1955)
M02 9 2 CEQUEAU (Girard et al., 1972)
M03 6 3 CREC (Cormary and Guilbot, 1973)
M04 6 3 GARDENIA (Thiery, 1982)
M05 4 2 GR4J (Perrin et al., 2003)
M06 9 3 HBV (Bergström and Forsman, 1973)
M07 6 5 HYMOD (Wagener et al., 2001)
M08 7 3 IHACRES (Jakeman et al., 1990)
M09 7 4 MARTINE (Mazenc et al., 1984)
M10 7 2 MOHYSE (Fortin and Turcotte, 2007)
M11 6 4 MORDOR (Garçon, 1999)
M12 10 7 NAM (Nielsen and Hansen, 1973)
M13 8 4 PDM (Moore and Clarke, 1981)
M14 9 5 SACRAMENTO (Burnash et al., 1973)
M15 8 3 SIMHYD (Chiew et al., 2002)
M16 8 3 SMAR (O’Connell et al., 1970)
M17 7 4 TANK (Sugawara, 1979)
M18 7 3 TOPMODEL (Beven et al., 1984)
M19 8 3 WAGENINGEN (Warmerdam et al., 1997)
M20 8 4 XINANJIANG (Zhao et al., 1980)
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Table 2. Description of the nine systems.

Systems A B C D E F G H H′

Multimodel Off Off Off Off On On On On On
EnKF Off Off On On Off Off On On On
Met. ensemble Off On Off On Off On Off On On

Nb of members (20×)1 (20×)50 (20×)50 (20×)2500 20 1000 1000 50 000 50 000
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Figure 1. Spatial distribution of the watersheds.
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Figure 2. Synthetic results of the 9 systems that are referred by their code letter (see Ta-
ble 2). The 4 top radar plots illustrate the MCRPS with the center indicating the climatology
reference performance, and the perimeter representing a perfectly accurate simulation. The 4
bottom plots describe the measure of distance from perfect reliability, with the center indicating
a MaeRD = 0.5 while the perimeter corresponds to a perfect reliability.
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Figure 3. Comparison of individual models MAE and multimodel MCRPS sorted by increasing
multimodel MCRPS for the first day (version A vs. E).
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Figure 4. Reliability of the multimodel ensemble (system E) for all individual catchments. The
spread represents the square root of mean ensemble variance averaged over all catchments.
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Figure 5. Comparison of open loop and EnKF multimodel MCRPS sorted by increasing EnKF
MCRPS (system E vs. G).
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Figure 6. Reliability of the EnKF multimodel ensemble (system G) for all individual catchments.
The spread represents the square root of mean ensemble variance averaged over all catch-
ments.
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Figure 8. Comparison of EnKF multimodel MCRPS with deterministic and ensemble meteoro-
logical forcing (system G vs. H).
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Figure 9. Reliability of the EnKF multimodel ensemble with MEPS forcing (system H).

7219

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/7179/2015/hessd-12-7179-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/7179/2015/hessd-12-7179-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 7179–7223, 2015

Accounting for three
sources of
uncertainty

A. Thiboult et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0

0.5

1

1 2 3 4 5 6 7 8 9

5 5

0

0.5

1

1 2 3 4 5 6 7 8 9

6

16

16

6

16

0

0.5

1

1 2 3 4 5 6 7 8 9

5

13

1

5

13

1

5

13

1

1

5

13

1

5

1 1 1 1

M
C

R
P

S
 (

m
m

/d
a
y
)

0

0.5

1

1 2 3 4 5 6 7 8 9

5

17

5 1 1 1 1

18

1

18

1

18

0

0.5

1

1 2 3 4 5 6 7 8 9

5

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

Day

5

12

10 10

M
C

R
P

S
 (

m
m

/d
a
y
)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

Day

5 5 17

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

Day

5

15

15

5

15 15 15 15 15 15 15

Individual models MCRPS

x
Code number of the model(s)
that surpass the multimodel

Streamflow climato. MCRPS

Multimodel MCRPS
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Figure 11. Comparison of the deviation from perfect reliability of EnKF individual models and
the EnKF multimodel, both using MEPS forcing sorted by increasing EnKF multimodel MaeRD
for the first day (system D vs. H).
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Figure 12. Comparison of EnKF multimodel MEPS systems using either individually optimized
EnKF perturbations or lower input-output perturbations (system H vs. H′).
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Figure 13. Reliability of the EnKF multimodel ensemble with MEPS forcing and lower input-
output perturbations (system H′).

7223

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/7179/2015/hessd-12-7179-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/7179/2015/hessd-12-7179-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Material and methodology
	Catchments and hydrometeorological data
	Models, snow module and evapotranspiration
	Forecasting approaches
	Open loop forecasting
	Ensemble Kalman Filter

	Scores

	Results
	Multimodel approach and structural uncertainty
	Data assimilation and initial condition uncertainty
	Contribution of the meteorological ensemble forcing
	Simplification of the framework
	Required EnKF perturbations

	Conclusions

