
The authors would like to thank the two anonymous referees for their careful
reading and the interesting comments they provided that will contribute to the
quality of the paper.

Shortly after initial submission, while working on the same database, we
realize that the streamflow measurements of two of the 20 catchments where of
dubious quality. Several clues led us conclude that they should not be longer
included in the catchment pool. We sincerely apologize for any inconvenience
this may have caused.

The two catchment that have been withdrawn from the initial submission
are the ones that often behaved like outliers and were the most unreliable. Thus,
the new results are more homogeneous. The two problematic catchments have
been substituted by two new. Also, Figures 3, 4, 5, 6, 8, 9, 10, 11, 12, 13 were
updated and are provided along this answer. Even if this does not affect any of
the conclusion, the author suggest several modifications of the text:

• page 7193, line 17-19: Exceptions can be occasionally observed for catch-
ment 3, 17, and 20 where only one or two models outperform the ensemble.
should be replaced by Exceptions can be occasionally observed for catch-
ment 3 and 17 where only one or two models outperform the ensemble.

• page 7194, line 5-6: we suggest to modify For the first lead time, most
of the catchments are close to reliability while there is a clear outlier for
which accuracy skills do not match its corresponding spread. In fact, this
low performing catchment exhibits a constant hydrological wet bias par-
tially explained by a meteorological forecast wet bias that over-forecasts
precipitations by 15% that is not captured by any of the models even if
the global tendency is respected. to For the first lead time, most of the
catchments are close to reliability while there are two outliers for which
accuracy skills do not match their corresponding spread. In fact, these
catchments exhibits a constant hydrological bias partially explained by
an inaccurate meteorological forcing that is not captured by any of the
models even if the global tendency is respected

• page 7194, line 20: (outlier) should be deleted.

• page 7194, line 20-23: Data assimilation is particularly effective on catch-
ments that present a systematic bias. For example, catchment number 11
that was problematic from the first lead time lies among the other catch-
ments in terms of performance. should be deleted, even if we think that
DA is particularly effective on catchment that have a systematic bias, but
this assertion is no longer explicitly supported by the new Figure.

• page 7196, line 12-13: values should be replaced from While they are
almost identical with a value of 0.55 and 0.57 mm day-1 respectively for
the day 3, G spread drops to 0.44 mm day-1 for day 9 while the use of the
MEPS maintains the spread to 0.55 mm day-1 to While they are almost
identical with a value of 0.58 mm day-1 and 0.59 mm day-1 respectively
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for the day 3, G spread drops to 0.45 mm day-1 for day 9 while the use of
the MEPS maintains the spread to 0.59 mm day-1.

• page 7197, line 18-19: and only model 1 and 5 perform should be replace
to and only models 1, 5, and 17 perform

• page 7198, line 3: catchment 19, should be replaced to catchment 20.

• page 7199, line 1: reducing the overdispersion with a sensible decrease
in the ensemble spread from 0.65 to 0.54 mm day-1 should be replaced
with reducing the overdispersion with a sensible decrease in the ensemble
spread from 0.72 to 0.57 mm day-1

• page 7199, line 8-11: The two outlier catchments that exhibit poorer reli-
ability present an underdispersed forecast that is a bit more pronounced
for the H system than the H system (see Fig. 9). This indicates that
uncertainties used to define the EnKF perturbations are under-estimated.
should be suppressed. We also suggest to replace by As a matter of fact
by Finally.

This manuscript investigated impacts of different uncertainty sources
on streamflow forecasting comparing various combinations including
multi-model ensemble, data assimilation, and meteorological ensem-
bles. It fits well the scope of Hydrology and Earth System Sciences
and the topic is of interest to a broad ranges of the scientific and
engineering community. Their research questions and methodologies
are of importance to better improve understanding on prediction un-
certainty. However, for some study materials, description and infor-
mation are not enough to convince general readers of their results.
Especially, I have concerns on excessively simplified application of
hydrologic models in terms of spatial and temporal scales and inter-
pretation of contribution of different uncertainty sources. Therefore,
revisions should be required to clarify several issues shown below be-
fore possible publication:

Major comments:

1. Multimodel ensemble:
Abstract: One of main findings of this manuscript is that the mul-
timodel approach to take into account structural uncertainty sup-
ports the streamflow forecasts to maintain the required dispersion
throughout the entire forecast horizon. However, such a statement
might mislead a conclusion as if structural uncertainty is a dominat-
ing factor rather than forcing uncertainty, which could not convince
readers with given results of this study. The fact that contribution of
the meteorological ensemble forcing was negligible compared to de-
terministic one (Fig. 8) could strengthen such misinterpretation. In
this study, as I understood correctly, input uncertainty (e.g. forecast
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forcing) seemed to be compensated by structural uncertainty (e.g.
multimodel) to enhance performance metrics. In addition, when we
recall one of aims of this study is to decipher the traditional hydrom-
eteorological sources of uncertainty (Page 7183), it is a bit doubtful
if their aim was achieved and demonstrated successfully. Please clar-
ify your findings and opinions on hydrologic prediction uncertainty
which can be concluded from your study results.

The authors do not claim that the meteorological uncertainty should be ne-
glected, far from it, and we agree that this source of uncertainty is among domi-
nant ones. Nevertheless, the authors also believe and show that the uncertainty
arising from the structure of hydrological model have to be taken into account.
If not, system outputs will clearly underestimate total predictive uncertainty.

In this article, rather than trying to compensate for unaddressed sources of
uncertainty (like overestimating structural uncertainty to balance a lack located
in inputs), the authors try to decipher the different sources of uncertainty explic-
itly and coherently with dedicated tools that are meant to prevent overlapping
in their respective action.

The contribution of meteorological ensemble forecasting may appear smaller
than it is in reality for two reasons:

• The superiority of MEPS over deterministic NWP systems has already
been demonstrated and MEPS are recognized particularly useful to esti-
mate uncertainties in rainfall prediction. Here, results are assessed on the
whole time period and this may contribute to dilute the importance of
rainy days. We attached to this answer a complementary plot to Figure
8. The same comparison between system G and H is carried out but with
5 sub-periods of assessment (spring, summer, fall, winter, and days for
which streamflow is higher than the yearly median streamflow). One can
notice that the benefits of ensemble forcing are clearer during time of the
year where streamflows are the higher (spring, Q > Q50).

• The meteorological ensemble was not post-processed and this may con-
tribute to underestimate its value. It is likely that HEPS performance
could have been enhanced with improved MEPS that benefited from a
suitable processing. Yet, we also would like to emphasize that the contri-
bution of meteorological ensemble forcing is not only about a subtitle gain
in the MCRPS metric but it provides a substantial improvement in reli-
ability for longer lead times (page 7196, line 6-9). Nevertheless, we agree
that removing the bias and correcting the dispersion of the meteorological
ensemble could improve the reliability further. Thus MEPS forcing is a
piece that cannot be overlooked for medium range forecasting.

2. Specification of individual model:
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• Line 7-8 at page 7186: It is not clear whether or not spatial dis-
cretization is considered to construct catchment applications by
20 conceptual lumped models. There are lots of ways and exam-
ples to apply lumped hydrologic models considering spatial het-
erogeneity. Please clarify this sentence and relevant comments
below:

• If spatial discretization IS considered related to 1st comment,
please clarify what spatial resolution was used. Additionally,
how spatial heterogeneity was resolved in parameterization using
lumped models?

• If spatial discretization is NOT considered, please clarify how
large catchments (¿10,000 square kilometers) were conceptual-
ized and parameterized.

• Regardless of spatial discretization, please clarify which flow
routing methods were used in each model.

To clarify line 7-8: The 20 models were derived from pre-existing models
found in the literature. The models, in their original form, are either lumped
(GR4J, GARDENIA, HBV, MOHYSE,...) or use a spatial discretization of the
watershed (CEQUEAU, TOPMODEL, SACRAMENTO,...). For the models
that are initially semi-distributed, they have been converted into lumped mod-
els. This has been done in order to facilitate their integration in a common
framework (which is the multimodel framework that is used in this study) and
for computational requirement. This is also why we emphasize line 4-5 that
they are not the original models but only derived from the original models.

The 20 conceptual lumped models are applied in a traditional way. No
spatial discretization has been done and hydrological processes are computed
at the catchment scale. Consequently, the parameterization is uniform over the
entire catchment, even for the largest one that spans over 15000 km.

We recognize that model spatial discretization can be useful and/or neces-
sary for many purposes in hydrological sciences. However, conceptual lumped
models are still very competitive, especially in the case where they are combined.
We recently published a paper where we compare the multimodel hydrological
forecast performance with a semi-distributed and physically based model. Re-
sults shown clearly that in our case, the multimodel was superior (Assessment of
a multimodel ensemble against an operational hydrological forecasting system.
A. Thiboult , F. Anctil Canadian Water Resources Journal / Revue canadienne
des ressources hydriques Vol. 40, Iss. 3, 2015).

We dedicated a particular attention to the structural diversity of the lumped
conceptual models, including the diversity of representation of flow routing as it
is a driving process in hydrology. This ensures, or at least maximizes the chance
to encompass the most effective way to achieve routing for a catchment by pro-
viding an ensemble of likely descriptions of the process. In depth description of
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the routing of each model may be too long for a discussion but these information
can be found in G. Seiller’s Ph.D. thesis annex (valuation de la sensibilit des
projections hydrologiques au choix des outils hydro-mtorologiques globaux con-
ceptuels, http://theses.ulaval.ca/archimede/) from page 288 to 312 (in English).

3. Meteorological ensemble

• In page 7185, rainfall forecasts seemed to be aggregated in space
(one point per catchment) and time (daily). Please clarify possi-
ble impacts of excessive aggregation of rainfall forecasts on study
results.

• For evaluating contribution of different uncertain sources on
forecasts, it is essential to check bias of input forcing forecasts for
varying lead times, while the manuscript only showed MCRPS.
Please clarify the detailed analysis on it.

• In Line 8-9 Page 7186, please clarify the sentence such as modi-
fications include their spatial discretization if they were initially
distributed and their evapotranspiration formulation.

It is expected that excessive spatial aggregation deteriorate the results with
the possibility to miss local but driving events. However, in the article, sev-
eral meteorological grid points are systematically situated within the catchment
boundaries. Consequently, it is unlikely that the contribution of local event to
the streamflow out the outlet is neglected, in the case that particular meteo-
rological event was predicted by the MEPS. Concerning temporal aggregation,
it is possible that there is some loss of information, especially for small catch-
ments, but the hydrological models used in this study are designed to work with
such time step. We are currently working on the conversion from a daily to a
hourly time step multimodel framework.

MEPS performance are mentioned (indeed in terms of CRPS) but their
performance respect to meteorological observations are not detailed in the paper.
Other scores have been evaluated (NSE, RMSE, MAE, Normalized Root-mean-
square error Ratio) and are in agreement with the CRPS values. The choice
of the CRPS metric relies on the fact that it is a popular score that is strictly
proper. Moreover, it has the advantage that it can be reduced to the MAE
and thus allows a straightforward comparison of deterministic (system A) and
probabilistic forecasts (system B to H’). Also, to prevent too inaccurate forcing,
a selection in the catchments has been carried out. As explained line 15-18
of page 7185, the meteorological forcing quality was too poor for 18 of the 38
catchments. Thus they have been withdrawn from the catchment pool. It is
likely that this could have been enhanced with meteorological post-processing
but this was deemed out of scope of this study.

Line 8-9. This belongs to the modification of hydrological model part. For
the same reason as previously mentioned, models are not the original models
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but were derived from these models. Only the hydrological component of the
model is kept. For the models that originally included a module to compute
PET or snowmelt, this module has been omitted and replaced by a common
one, CemaNeige for snow, and the formulation proposed by Oudin for the PET.

4. Information and analysis on catchments

• In Section 2.1, information on catchments is limited. A new table
showing information of each catchment such as catchment size,
river length, low and high flow, typical time of concentration of
flood, and etc, is required.

• Please clarify whether there are critical human intervention fa-
cilities such as dam reservoir, water gate, or weir in catchments.
If there are, please clarify how such intervention was considered
or affected in model configuration or results.

• Analysis on catchments in Results (e.g. Fig. 3, 5, 8, 10, 11, and
12) should be revised with additional analysis or figures regard-
ing catchment characteristics such as catchment size or human
intervention (e.g. Rakovec et al. 2015). References: Rakovec,
O., Kumar, R., Mai, J., Cuntz, M., Thober, S., Zink, M., At-
tinger, S., Schafer, D., Schron, M., Samaniego, L. (2015): Mul-
tiscale and multivariate evaluation of water fluxes and states over
European river basins, J. Hydrometeorol., in press,doi:10.1175/JHM-
D-15-0054.1.

The required table that describes some catchment characteristics is provided.
A criterion in the selection of the catchments was the absence or the very deem
influence of human intervention on streamflows. Considerable efforts have been
paid to link estimated time of concentration, size of catchments and other vari-
ables without any clear results. We were not able to relate any catchment
feature with particular results. This is a reason why catchments are presented
anonymously in the paper.

5. DA

• Please clarify how observation uncertainty was considered in
EnKF. In conventional EnKF, noise for observation is commonly
added to each ensemble which may lead to increase additional
uncertainty. Otherwise, square root formulation can be used to
avoid instability coming from observation noise.

• In Section 3.5, please clarify how EnKF perturbation was opti-
mized in details in the case of H. Please remind that authors al-
ready mentioned that the optimal setting may use unrealistically
high perturbations that compensate partially for the structural
error.
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• In Conclusion, authors described quick decrease of reliability
is found in EnKF. However, it might be accelerated by coarse
spatial and temporal resolution of models and input. Please
clarify this issue.

The formulation that was used is indeed the conventional EnKF. The addi-
tional noise to each member of the ensemble is not meant to increase uncertainty
but rather to take it into account, in particular the uncertainty related to the
catchment state. For the system H’, streamflow observations are perturbed with
random sampling from a normal law with a standard deviation equal to 10%
of the observed streamflow and 0 mean. Added perturbations for precipitation
are sampled from a gamma law with a standard deviation of 25% of the initial
precipitation and finally, temperatures with a normal law with a 2C standard
deviation, still with 0 mean (page 7198). For the system H, details on the per-
turbations added to streamflow, temperature and precipitation, but also about
coupling between individual model and the EnKF can be found in a recently
published article that was still under review at the time of initial submission of
this article (On the difficulty to optimally implement the Ensemble Kalman fil-
ter: An experiment based on many hydrological models and catchments, Journal
of Hydrology, Volume 529, Part 3, October 2015, Pages 1147-1160 A. Thiboult,
F. Anctil).

We do not think that the decrease of reliability is due to spatial or tem-
poral resolution but rather to the resilience of the models. Same results were
found with a semi-distributed models with a 3h time step (Abaza, M.; Anctil,
F.; Fortin, V. & Turcotte, R. Sequential streamflow assimilation for short-term
hydrological ensemble forecasting. Journal of Hydrology, 2014, 519, 2692-2706).
In the aforementioned article, the EnKF spread decreases quickly leading to un-
reliable forecast from day 2 but has been compensated by direct perturbations
of states variable and meteorological ensemble forcing.

6. Figures and analysis

• Model diagnostic metrics were drawn by aggregating results of
all simulation periods. Additional analysis and description on
conditional statistics of different flow regimes and seasons are
highly recommended.

• Similar figures on reliability and catchment comparison are sug-
gested to be removed or merged together.

We suggest to add the figure that assesses the MCRPS according to the time
of the year to the supplementary material of the article.

We would prefer to keep them separate. Even if the same metrics are pre-
sented, they represent the evolution and complexification of the systems and
follow the article progression.
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Minor comments:

1. Please use a consistent term between catchment and watershed
throughout the manuscript.

This will be corrected.

2. In Fig. 7, the legend of a dotted line is not shown.

We are not sure to understand the remark. The dotted line corresponds to
the RMSE of the ensemble as stated in the legend.
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The authors would like to thank the two anonymous referees for their careful
reading and the interesting comments they provided that will contribute to the
quality of the paper.

Shortly after initial submission, while working on the same database, we
realize that the streamflow measurements of two of the 20 catchments where of
dubious quality. Several clues led us conclude that they should not be longer
included in the catchment pool. We sincerely apologize for any inconvenience
this may have caused.

The two catchment that have been withdrawn from the initial submission
are the ones that often behaved like outliers and were the most unreliable. Thus,
the new results are more homogeneous. The two problematic catchments have
been substituted by two new. Also, Figures 3, 4, 5, 6, 8, 9, 10, 11, 12, 13 were
updated and are provided along this answer. Even if this does not affect any of
the conclusion, the author suggest several modifications of the text:

• page 7193, line 17-19: Exceptions can be occasionally observed for catch-
ment 3, 17, and 20 where only one or two models outperform the ensemble.
should be replaced by Exceptions can be occasionally observed for catch-
ment 3 and 17 where only one or two models outperform the ensemble.

• page 7194, line 5-6: we suggest to modify For the first lead time, most
of the catchments are close to reliability while there is a clear outlier for
which accuracy skills do not match its corresponding spread. In fact, this
low performing catchment exhibits a constant hydrological wet bias par-
tially explained by a meteorological forecast wet bias that over-forecasts
precipitations by 15% that is not captured by any of the models even if
the global tendency is respected. to For the first lead time, most of the
catchments are close to reliability while there are two outliers for which
accuracy skills do not match their corresponding spread. In fact, these
catchments exhibits a constant hydrological bias partially explained by
an inaccurate meteorological forcing that is not captured by any of the
models even if the global tendency is respected

• page 7194, line 20: (outlier) should be deleted.

• page 7194, line 20-23: Data assimilation is particularly effective on catch-
ments that present a systematic bias. For example, catchment number 11
that was problematic from the first lead time lies among the other catch-
ments in terms of performance. should be deleted, even if we think that
DA is particularly effective on catchment that have a systematic bias, but
this assertion is no longer explicitly supported by the new Figure.

• page 7196, line 12-13: values should be replaced from While they are
almost identical with a value of 0.55 and 0.57 mm day-1 respectively for
the day 3, G spread drops to 0.44 mm day-1 for day 9 while the use of the
MEPS maintains the spread to 0.55 mm day-1 to While they are almost
identical with a value of 0.58 mm day-1 and 0.59 mm day-1 respectively
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for the day 3, G spread drops to 0.45 mm day-1 for day 9 while the use of
the MEPS maintains the spread to 0.59 mm day-1.

• page 7197, line 18-19: and only model 1 and 5 perform should be replace
to and only models 1, 5, and 17 perform

• page 7198, line 3: catchment 19, should be replaced to catchment 20.

• page 7199, line 1: reducing the overdispersion with a sensible decrease
in the ensemble spread from 0.65 to 0.54 mm day-1 should be replaced
with reducing the overdispersion with a sensible decrease in the ensemble
spread from 0.72 to 0.57 mm day-1

• page 7199, line 8-11: The two outlier catchments that exhibit poorer reli-
ability present an underdispersed forecast that is a bit more pronounced
for the H system than the H system (see Fig. 9). This indicates that
uncertainties used to define the EnKF perturbations are under-estimated.
should be suppressed. We also suggest to replace by As a matter of fact
by Finally.

The paper analyses different descriptions of uncertainty for hy-
drological ensemble forecasting and discusses their relative merit. It
provides a valuable contribution to the research on probabilistic hy-
drological forecasting. However, different assumptions are made that
may have a significant impact on the results and the general conclu-
sions of the study. More elaborate discussions of the impact of these
assumptions are needed (see specific comments below).

Specific comments

Page 7183, line 15. The term open loop scheme may not be familiar
to all readers. It is explained later in Section 2.

Indeed, a short definition will be added in a future version.

Page 7185, line 7-8. Not clear why conversion to local time reduces
the forecast horizon?

The meteorological forecast retrieved from the database is issued from 12am
UTC up to ten days ahead with a 6-hour time step. Since the hydrometeoro-
logical day starts at 6am EST (or 12 UTC) for the catchments of the study, the
first 12 hours of forecast are not used. Consequently, only 9 and half days of
meteorological forecast are available. Lastly, because the time step is daily, the
remaining 12 hours of forecast of the last day have been discarded.

Page 7185, line 10-14. Why first downscale and then aggregate
to catchment rainfall? You could derive catchment rainfall directly
from the ECMWF forecast.

We believe that this is something that should be avoided. The raw res-
olution of the ECMWF is too coarse for this application and do not match

2



systematically catchment size, as 6 of them are smaller than 1000km2. With-
out interpolation, it is possible that only one meteorological forecast grid point
would fall within catchment boundaries, if any. Also, as most catchment strad-
dle several initial ECMWF grid points, interpolation allow to take into account
the contribution of each of these grid point. Finally, considering the influence
of more than one meteorological grid point allows for smoothing out individual
members occasional instability.

Page 7185, line 14-18. Pre-processing of meteorological forecasts
is widely used in hydrological forecasting systems to improve forecast
accuracy and reliability. Since this is not done in the study, the value
of the rainfall forecast will most probably be underestimated.

We agree on that point but it was not intended to investigate such pre-
processing in this article as we deemed that it is a step that is sufficiently
complex that it may require specific investigation. However, one can note that
recent attempts at pre-processing meteorological forecasts have been performed
without much success at improving streamflow forecasts, although the improve-
ment of the meteorological forcing was indeed successful (e.g. Verkade, J. S.;
Brown, J. D.; Reggiani, P. & Weerts, A. H. Post-processing ECMWF precipita-
tion and temperature ensemble reforecasts for operational hydrologic forecasting
at various spatial scales Journal of Hydrology, 2013, 501, 73-91). In the light of
the comments of both reviewers, we realize that we should remind the reader
and emphasize that no pre-processing is used and that the interpretation of the
results should be done accordingly, in particular in Section 3.3. It is expected
that a successful post-processing would enhance the MEPS capabilities to deci-
pher meteorological uncertainty and would be eventually cascade these benefits
through the hydrological systems, thus leading to better accuracy and reliability.

Page 7187, line 20. The H operator has an index t in the equation.
I would not expect H to be time varying.

Indeed, the index will be removed in the future version.

Page 7188, line 5-6. Different variants of the EnKF have been
proposed in literature. Which method is applied here, and why?

The EnKF has been implemented in its traditional form (Evensen, G. The
Ensemble Kalman Filter: theoretical formulation and practical implementation
Ocean Dynamics, 2003, 53, 343-367 ). We had the opportunity to developed our
expertise by studying in detail the interactions between the filter and the dif-
ferent models (On the difficulty to optimally implement the Ensemble Kalman
filter: An experiment based on many hydrological models and catchments, Jour-
nal of Hydrology, Volume 529, Part 3, October 2015, Pages 1147-1160 A. Thi-
boult, F. Anctil). This variant of the EnKF, if properly set, proved to be able
to efficiently reduce the initial condition uncertainty and thus to fulfill the ex-
pectations we have from it, in regards with to the hydrometeorological setup
that is presented here.
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Page 7188, line 21-22. How is reliability and accuracy evaluated
in the tuning of the EnKF?

The accuracy is assessed with the NSE that is computed on the median of
the ensemble and the Normalized Root-mean-square error Ratio (NRR) is used
for reliability assessment. Then, the 2-step criterion described page 7189 line
1-3 is applied. Results concerning the tuning of the EnKF can be found in the
article cited in the previous answer.

Page 7188, line 22-27. Only uncertainty in model forcing is as-
sumed, and hence this uncertainty should compensate also for other
model uncertainties such as parameter uncertainty. Model parameter
uncertainty could be included in the EnKF. This would most likely
improve the reliability of the EnKF since this would add uncertainty
in the forecast period by propagation of parameter uncertainty.

It is practically hard to untangle uncertainties through the use of EnKF only.
EnKF, it its traditional form, can decipher the overall predictive uncertainty
but does not distinguish between input-output, structural, and parameter un-
certainty. By artificially and deliberately overestimating the input uncertainty,
it is possible to compensate for the other uncertainties and achieve reliability
for simulation and possibly for the first (and sometimes second) forecast day.
This may be desirable only in a case where there is no other tool available to
handle the other sources.

We did not consider dual parameter-state variable updating since the multi-
model approach allows to take into account parameter uncertainty without the
need to modify (update) time invariant values. Thus, model parameter uncer-
tainty is treated outside of the EnKF through the multimodel approach. More-
over, it is shown that several dissimilar hydrological models bring much more
diversity than traditional parameter uncertainty estimations, thus indicating
that structural uncertainty, in some ways, encompasses parameter uncertainty
(Poulin, A., Brissette, F., Leconte, R., Arsenault, R., and Malo, J. S.: Uncer-
tainty of hydrological modelling in climate change impact studies in a Canadian,
snow-dominated river basin, J. Hydrol., 409, 626636, doi:10.1016/j.jhydrol.2011.08.057,
2011. 7183)

Page 7188, line 27-28. The definition of the state vector is not
clearly described. The state vector is uniquely defined by the system
model. Typically, for lumped, conceptual rainfall-runoff models it
will consist of storages of the different conceptual reservoirs.

By state vector we meant the ensemble of state variables that are updated.
It is indeed a mistake as the definition of state vector is the one you gave. This
will be changed.

Page 7194, line 7-8. This illustrates the problem of not pre-
processing rainfall forecasts cf. comment above.

We are aware of the limitations that are induced by not pre-processing rain-
fall forecast and we are currently carrying out research on the subject. The
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sentence line 7-8 was initially written to explain the behavior of one of the
catchment that has been withdrawn from the database but your remark about
pre-processing remains valid.

Page 7195. The results for the EnKF are due to an incomplete
description of the uncertainty. It provides a good description of the
initial uncertainty but this is quickly washed out of the system as
forecast lead time increases. Use of a more elaborate description of
the uncertainty in the EnKF would improve the reliability, e.g. by
including model parameter uncertainty cf. comment above.

This framework should be regarded as a possible way toward accurate and
reliable forecast but we strongly concur that it is not the only one. More sophis-
ticated version of the EnKF may indeed improve the description of uncertainties
for longer lead times. In a different study, we tested direct state variable pertur-
bations (Abaza, M.; Anctil, F.; Fortin, V. & Turcotte, R. Sequential streamflow
assimilation for short-term hydrological ensemble forecasting. Journal of Hy-
drology, 2014, 519, 2692-2706). It contributes to maintain the dispersion a little
longer (about 1 day longer) but the spread is at the end also maintained by
the MEPS forcing spread. However, these results should not be compared in
a very strict way with this paper since the hydrological models are different.
A secondary objective of the article is also to show that with the traditional
formulation of EnKF the spread (and the corresponding description of uncer-
tainty) is not sufficient but can be compensated by the use of multimodel. Also,
the combination of the multimodel and the traditional EnKF makes that is not
necessary to resort to dual state variable-parameter updating. By keeping the
parameters time invariant, the inner model dynamic is better preserved.

Page 7196. I think the lack of pre-processing of the rainfall forecast
ensemble can explain the small impact observed of using a probabilis-
tic rainfall forecast.

Despite the absence of pre-processing, the reliability is still better with prob-
abilistic forecast. The hydrological ensemble spread is substantially larger and
one could expect this spread to contribute more actively to reliability if the bias
of the forcing would be removed.

Page 7198, line 20-23. Not clear why this would correspond to an
optimal EnKF?

Traditional EnKF accounts for input and output uncertainty explicitly. It
could be optimal in a perfectly controlled environment where only the input
and output are subject to uncertainty (in a synthetic experiment for example).
Thus there shouldn’t be any uncertainty in the structure / parameter / concep-
tualization. It is suboptimal in real cases as it has to account for other sources
of uncertainty if used with a single model.

Page 7198, line 26-28. Not clear.
This assertion is closely related to the previous question. In the case where

5



the different sources are not explicitly accounted for by dedicated tools, the
EnKF has to compensate for them. One way to achieve reliability is to add per-
turbations to input. However, there is no obvious way to know by which amount
the uncertainty on input should be overestimated to compensate for the other
uncertainties. Thus, to ensure hydrological reliability, one needs to perform a
calibration of EnKF hyper parameters (research of required noise magnitude)
which is a fastidious step.

Page 7198. Figure 12 is not referred in Section 3.5.
Indeed, it was originally meant to be in the article but we finally decided to

put it only as supplementary material as the main changes concern reliability
and forgot to remove the corresponding figure from the manuscript.

Page 7200, line 5-10. There seems to a contradiction here. First,
it is stated that the EnKF does not provide a satisfactory uncertainty
propagation. And then it is stated that the EnKF is the component
that provides the most dispersion.

It requires indeed some clarifications. It should have been specified that it
is the component that provides the most dispersion, but only for the first lead
times.
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Abstract. Seeking for more accuracy and reliability, the hydrometeorological community has devel-

oped several tools to decipher the different sources of uncertainty in relevant modeling processes.

Among them, the Ensemble Kalman Filter, multimodel approaches and meteorological ensemble

forecasting proved to have the capability to improve upon deterministic hydrological forecast. This

study aims at untangling the sources of uncertainty by studying the combination of these tools and as-5

sessing their contribution to the overall forecast quality. Each of these components is able to capture

a certain aspect of the total uncertainty and improve the forecast at different stage in the forecast-

ing process by using different means. Their combination outperforms any of the tool used solely.

The EnKF is shown to contribute largely to the ensemble accuracy and dispersion, indicating that

the initial condition uncertainty is dominant. However, it fails to maintain the required dispersion10

throughout the entire forecast horizon and needs to be supported by a multimodel approach to take

into account structural uncertainty. Moreover, the multimodel approach contributes to improve the

general forecasting performance and prevents from falling into the model selection pitfall since mod-

els differ strongly in their ability. Finally, the use of probabilistic meteorological forcing was found

to contribute mostly to long lead time reliability. Particular attention needs to be paid to the com-15

bination of the tools, especially in the Ensemble Kalman Filter tuning to avoid overlapping in error

deciphering.

1 Introduction

The complexity of hydrometeorological systems is such that it is not possible to perfectly repre-

sent their "true" descriptive physical processes, and even less to integrate them forward in time with20

1



mathematical models. These models are only an approximation of varying quality to represent and

predict variables of interest, yet they proved to be skilful and useful for water resource management

and hazard prevention (e.g. Bartholmes et al., 2009; Pagano et al., 2014; Demargne et al., 2014).

Inadequacies between simulation or predictions and observations can be largely attributed to the25

many sources of uncertainty that are located along the meteorological chain (e.g. Walker et al., 2003;

Beven and Binley, 2014). Hence, it is admitted that improvement of the forecast ought to go through

understanding and reducing the sources of uncertainty (e.g. Liu and Gupta, 2007). These sources

have different nature that range from epistemic uncertainty due to the imperfection of our knowl-

edge to variability uncertainty where the imperfections are due to the inherent system variability (e.g.30

Walker et al., 2003; Beven, 2008). They also differ in location, i.e. where they lay in the hydrome-

teorological modeling process: meteorological forcing, model parameter and structure, hydrological

initial conditions, and, to a lesser extent, observations (Walker et al., 2003; Vrugt and Robinson,

2007; Ajami et al., 2007; Salamon and Feyen, 2010).

35

As all models are exposed to these sources of uncertainty, they necessarily lead to forecasts with

imperfections. It is thus possible – and frequent – that several models can simulate the process of

interest with the same accuracy. These simulation are equally likely in the mathematical sense; it is

referred as the principle of equifinality (Beven and Binley, 1992).

40

Ensembles provide a probabilistic answer to the equifinality problem. They are a collection of de-

terministic predictions issued by different models to simulate the same event and attempt to produce

a representative sample of the future. They can be built by a suitable method wherever a source of

uncertainty needs to be put under scrutiny. Additionally, the ensemble mean generally have better

skills than deterministic systems and offer a better ability to forecast extreme events (e.g. Wetterhall45

et al., 2013).

As the sources of uncertainty differ in their location, nature and statistical properties, they need

specific tools to be deciphered efficiently (Liu and Gupta, 2007). A wide range of methods have been

developed in the past year to cater hydrological forecast needs.50

At the beginning of the 90s, meteorologists pioneered the operational use of ensembles by con-

structing Meteorological Ensemble Prediction Systems (MEPS), mostly to take into account imper-

fect initial conditions that is a prime importance uncertainty source in view of the chaotic nature of

the atmospheric physics. Several methods have been proposed to tackle this issue. For instance, to55

define the initial condition uncertainty, the European Center for Medium-Range Weather Forecasts

(ECMWF) generates an ensemble by initiating their model with singular vectors (Molteni et al.,
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1996) to which a stochastic scheme is added to deal with the model physical parametrisation uncer-

tainty (Buizza et al., 1999).

60

The increasing accessibility of MEPS benefited to the hydrology community to issue probabilistic

hydrological forecasts that take into account meteorological uncertainty forcing with Hydrological

Ensemble Prediction Systems (HEPS, e.g. Cloke and Pappenberger, 2009; Brochero et al., 2011;

Boucher et al., 2012; Abaza et al., 2014). Since 2007, The Observing System Research and Pre-

dictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) allows free access65

to meteorological ensemble forecasts for hydrologists and other researchers. This database regroups

the outputs from nine operational atmospheric models around the world, which can be downloaded

in grib2 format.

A lot of attention has been paid to the identification of hydrological model parameters and the non70

uniqueness of the solutions. Among other technique, Vrugt et al. (2003) proposed the Shuffled Com-

plex Evolution Metropolis Algorithm (SCEM-UA), a calibration technique that retains several sets

of parameters instead of a single one for a more realistic assessment of parameter uncertainty. Beven

and Binley (1992) suggested a more comprehensive approach for model acceptance or rejection with

the Generalized Likelihood Uncertainty Estimation (GLUE) that allows to include different forms75

of competing models.

Gourley and Vieux (2006) assert that dealing only with input and parameter uncertainty is likely

to issue unreliable forecast and that hydrological model structural uncertainty should be deciphered

explicitly. This statement is substantiated by Clark et al. (2008) who compares 79 unique model80

structures and concludes that a single structure is unlikely to perform better than the others in all

situations. Poulin et al. (2011) adds that the structural uncertainty is larger than the parameter es-

timation uncertainty and provides more diverse outputs. Combining dissimilar hydrological model

structures proved to possess a great potential (Breuer et al., 2009) even with simple combination

patterns (Ajami et al., 2006; Velázquez et al., 2011; Seiller et al., 2012).85

Initial condition uncertainty has also aroused scientific interest. Many studies using various data

assimilation techniques to incorporate observations within the simulation processes demonstrated

that the specification of catchment descriptive states is a crucial aspect of short and medium range

forecasts (DeChant and Moradkhani, 2011; Lee et al., 2011). Among them, sequential data assimi-90

lation technique such as the Particle Filter (e.g. DeChant and Moradkhani, 2012; Thirel et al., 2013),

the Ensemble Kalman Filter (e.g. Weerts and El Serafy, 2006; Rakovec et al., 2012) and variants

(Noh et al., 2013; Chen et al., 2013; McMillan et al., 2013; Noh et al., 2014) substantially improve

forecast over the open loop scheme (i.e. no data assimilation is performed), by reducing and charac-
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terizing the uncertainty in initial conditions.95

Considerable efforts have been made in the development of these sophisticated techniques and

this gave rise to many tools that have been individually tested useful. As Bourdin et al. (2012) points

out, "To date, applications of ensemble methods in streamflow forecasting have typically focused

on only one or two error sources [...] A challenge will be to develop ensemble streamflow forecasts100

that sample a wider range of predictive uncertainty". As underlined, the forecasting tools frequently

tackle different sources of uncertainty and therefore do not exclude each other but can be seen as

complementary, combining their assets to compose an overall better system.

The present study identifies three efficient tools, namely a hydrological multimodel approach,105

Ensemble Kalman Filter, and MEPS forcing that are used together to decipher the traditional hy-

drometeorological sources of uncertainty. The paper scope is to identify how they are complemen-

tary to each other, to assess their individual contribution to the hydrological forecast reliability and

accuracy, and to eventually evaluate the possibility of achieving reliability without resorting to post-

processing.110

This is achieved by issuing a hindcast on 20 catchments using the aforementioned techniques,

either individually or combined, to investigate their specific role in the forecasting process. Each of

them produces an ensemble that can be cascaded through the next ensemble technique in order to

produce a larger ensemble that possesses a more comprehensive error handling. Finally, if all sources115

of error are accounted for, the ensemble should generate a forecast that is reliable (Bourdin et al.,

2012).

This paper is organized as follow: section 2 presents the catchments, models, the Ensemble

Kalman Filter basics and scores, section 3 sums up the systems specificities and their respective120

performances followed by a conclusion in section 4

2 Material and methodology

2.1 Catchments and hydrometeorological data

20 catchments situated in the south of the Province of Québec have been selected for this study

(Fig. 1). The catchments experience a mixed hydrological regime with a spring freshet resulting125

from the important winter snow cover and a lesser second peak in autumn. There is little or no hu-

man intervention on the catchments.
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Table 1. Main characteristics of the 20 catchments

River name Area

(km2)

River

length

(km)

Average

slope (%)

Mean

ann. Q

(m3/s)

Coeff. of

variation

of Q

Mean

ann. P

(mm)

Mean

ann.

snow

(cm)

Trois Pistoles 923 52 0.52 18 1.81 1109 382

Du Loup 512 45 0.78 10 1.47 1050 378

Gatineau 6796 190 0.12 127 1.08 1023 332

Dumoine 3743 145 0.13 50 0.81 968 297

Kinojévis 2572 83 0.12 39 1.12 921 324

Matawin 1383 68 0.29 24 1.11 1025 328

Croche 1551 102 0.33 29 1.24 996 360

Vermillon 2650 145 0.20 39 1.10 957 312

Batiscan 4483 167 0.45 96 1.03 1162 381

Saint-Anne 1539 84 0.81 51 1.20 1412 502

Bras du Nord 643 77 0.82 19 1.21 1385 499

Du loup 767 57 0.78 12 1.27 1020 332

Aux Ecorces 1107 54 1.04 28 1.09 1236 450

Métabetchouane 2202 155 0.43 48 1.19 1168 420

Péribonka 1010 101 0.50 19 1.16 1000 376

Ashuapmushuan 15342 342 0.16 300 0.92 984 379

Ashuapmushuan 11200 232 0.12 227 0.88 1001 394

Au Saumon 586 69 0.65 8 1.36 877 334

Mistassini 9534 278 0.20 200 1.08 1004 409

Valin 761 59 1.06 24 1.13 1123 453

The climatology of the catchments is varied, with a mean annual snow fall ranging from 3 meters

to 5 meters and total precipitation fluctuates between 877 mm to 1412 mm. The size of the water-130

sheds extends from 512 km2 to 15342 km2 and annual mean streamflow from 8 m3/s to 300 m3/s.

The climatology of the catchments is varied (Table 1), in particular in terms of annual snow fall

and annual total precipitation. The differences in the catchment physical characteristics (area, length,

slope,...) and in climatology are reflected in their streamflow statistics (e.g. average streamflow, co-135

efficient of variation).

Daily total precipitation, maximum and minimum temperature and streamflows are provided by

the Centre d’Expertise Hydrique du Québec. They performed kriging on the observations over a

0.1◦ resolution grid to which a temperature correction with an elevation gradient of -0.005◦C/m is140

added. The data base is split into three periods: 1990-2000 for the calibration of the models, Octo-
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ber 2005-October 2008 for the spin up, while November 2008-December 2010 is committed to the

hydrological forecast assessment.

The MEPS used as inputs to the hydrological model were retrieved from the TIGGE database.145

The temperatures and precipitation forecasts from the European Center for Medium range Weather

Forecasts (ECMWF) were chosen for this study. They are formed by 50 exchangeable members

(Fraley et al., 2010) with a 6 hours time-step and a 10 day horizon. However, after conversion from

Greenwich time to local Quebec time, the horizon reduces to 9 days. For the sake of the study and

to match the common framework of the hydrological models, weather forecast is aggregated at a150

daily time step. The forecast is provided on a regular grid with a 0.5◦ resolution (N200 Gaussian

grid) that is downscaled to a 0.1◦ resolution during data retrieval by using bilinear interpolation. The

ECMWF raw forecast is provided on a regular grid with a 0.5◦ resolution (N200 Gaussian grid),

which is too coarse for this application, especially for the smallest catchments. To ensure to have

several representative grid points situated within the catchment boundaries, meteorological forecast155

is downscaled to a 0.1◦ resolution during data retrieval by using bilinear interpolation (e.g. Gaborit

et al., 2013). Also, the interpolation allows to take into account the contribution of the grid points

that are close but not directly situated within catchment boundaries and thus allows a better descrip-

tion of the catchment meteorological conditions. As the rainfall-runoff models are lumped, a single

representative point forecast is obtained for each MEPS member by averaging the downscalled grid160

points situated within the catchment boundaries.

The weather forecast displays acceptable performance over the 20 selected catchments. In fact,

in the initial group of 38 catchments, 18 displayed unsatisfactory performances so they where with-

drawn from the experiment from the beginning, as pre-processing the meteorological inputs falls165

outside the scope of the project. When compared to the meteorological observations, rainfall and

temperature MCRPS over the 9 days (see sect. 2.4) remain below 3 mm and 3◦C respectively for

selected catchments. Other scores have been evaluated (Nash-Sutcliffe efficiency, root-mean-square

error, mean absolute error, normalized root-mean- square error ratio) and are in agreement with the

MCRPS values, confirming the exclusion of the catchments.170

An alternative to the ECMWF ensemble is used to simulate a deterministic meteorological forcing

with equivalent theoretical skill. For this purpose, a single member is drawn randomly among the 50

exchangeable members.

2.2 Models, snow module and evapotranspiration175

The multimodel ensemble is composed of 20 conceptual lumped models. In this study, their outputs

are pooled together with equal weights or studied individually. Models have been initially selected
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by Perrin (2000) for their conceptual and structural diversity and revised by Seiller et al. (2012).

They present various degrees of complexity: 4 to 10 calibrated parameters and 2 to 7 reservoirs to

describe the main hydrological processes (Table 2). The model selection is a key element for an180

efficient multimodel ensemble as the diversity of them contributes to encompass the error in model

conceptualization and structure (Viney et al., 2009). A close attention has been paid to the diversity

of the different components of the models, in particular to the representation of the different storages

and flows. This ensures, or at least maximizes the chance to encompass the most effective way to

describe storage and routing by providing an ensemble of likely descriptions of the processes. All185

models were derived from existing ones, keeping their main specificities but adapting them to match

a common framework where every snow module-model sets share the same inputs, namely precipi-

tation and potential evapotranspiration. The models, in their original form, are either lumped (GR4J,

GARDENIA, HBV, MOHYSE,...) or use a spatial discretization of the catchment (CEQUEAU, TOP-

MODEL, SACRAMENTO,...). For the models that were initially semi-distributed, they have been190

converted into lumped models (Perrin, 2000). This has been done in order to facilitate their integra-

tion in the common framework used in this study and for computational requirement.

The 20 conceptual lumped models are applied in a traditional way, i.e. no subsequent spatial

discretization has been done, hydrological processes are computed at the catchment scale and the195

parameterization is uniform over the entire catchment. Despite their simplicity and the approxima-

tions they rely on, they have shown to perform well and be competitive with more complex ones,

especially when combined together (Thiboult and Anctil, 2015). Modifications include their spatial

discretization if they were initially distributed and their evapotranspiration formulation. The snow

accumulation and melt module have been also omitted in the case they had their own to be replaced200

by Cemaneige.

The snow accumulation and melt module, as well as the evapotranspiration formulation, have

been also omitted in the case they had their own to be replaced by Cemaneige and Oudin’s potential

evapotranspiration formulation respectively. A detailed description of the models structure can be205

found in Perrin (2000).

Cemaneige, a degree day snow accounting routine, is used to model the catchment snow pro-

cesses (Valery et al., 2014). It divides the catchment into 5 elevation bands and requires 2 parameter

to be calibrated: a snowmelt and a cold-content factor. As it is calibrated conjointly with individual210

models and according to an objective function based on streamflow observations, its parameter val-

ues depend on the hydrological model with which it is coupled. The 20 hydrological models have

therefore precipitation inputs that are driven by the same snow accounting routine but differently

parametrized. Thus, part of the uncertainty related to the snowmelt module is taken into account
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Table 2. Main characteristics of the 20 lumped models (Seiller et al., 2012)

Model Number of optimized. Number of Derived from

acronym parameters reservoirs

M01 6 3 BUCKET (Thornthwaite and Mather, 1955)

M02 9 2 CEQUEAU (Girard et al., 1972)

M03 6 3 CREC (Cormary and Guilbot)

M04 6 3 GARDENIA (Thiery, 1982)

M05 4 2 GR4J (Perrin et al., 2003)

M06 9 3 HBV (Bergström and Forsman, 1973)

M07 6 5 HYMOD (Wagener et al., 2001)

M08 7 3 IHACRES (Jakeman et al., 1990)

M09 7 4 MARTINE (Mazenc et al., 1984)

M10 7 2 MOHYSE (Fortin and Turcotte, 2007)

M11 6 4 MORDOR (Garçon, 1999)

M12 10 7 NAM (Nielsen and Hansen, 1973)

M13 8 4 PDM (Moore and Clarke, 1981)

M14 9 5 SACRAMENTO (Burnash et al., 1973)

M15 8 3 SIMHYD (Chiew et al., 2002)

M16 8 3 SMAR (O’Connell et al., 1970)

M17 7 4 TANK (Sugawara, 1979)

M18 7 3 TOPMODEL (Beven et al., 1984)

M19 8 3 WAGENINGEN (Warmerdam et al., 1997)

M20 8 4 XINANJIANG (Zhao et al., 1980)

through dissimilar parameter sets that drives the state of the snow pack accumulation and melting.215

All models were given the same input potential evapotranspiration which is computed following

Oudin et al. (2005) formula that relies on the mean air temperature and the calculated extraterrestrial

radiation.

220

2.3 Forecasting approaches

Two approaches are used and compared for forecasting, the open loop and the Ensemble Kalman

Filter. Regardless of the method used, the meteorological observations over the three years preced-

ing the forecast period are used for model spin up to bring models states to values that estimates the

catchment conditions.225
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2.3.1 Open loop forecasting

When the open loop forecast is activated, the state variables are obtained in simulation mode and

used as starting point to initiate the hydrological forecast. The simulation and forecast steps then al-

ternate as follow: 1) the models are forced with observations up to the first day t of the forecast and230

2) the models are next forced with the meteorological forecast to issue the hydrological prediction

until t+9. The procedure is repeated as the models are brought forward in time with the observations

from t.

2.3.2 Ensemble Kalman Filter235

The Ensemble Kalman Filter (EnKF) is a sequential data assimilation technique that uses a recursive

Bayesian estimation scheme to provide an ensemble of possible model reinitializations. The model

state variable vector X is updated according to its likelihood probability density function that is

inferred by the observations z, p(Xt|z1:t) with the indices t referring to the time.

240

When an observation becomes available, model states are updated (X+, the a posteriori esti-

mation) as a combination of the predicted (X−, also called the a priori states) and the difference

between the prior estimate of the variable of interest HX− and the corresponding observation zt.

X+
t =X−t +Kt(zt−HX−t ) (1)

where H is the observation model that relates the state vectors and observations, and K is the Kalman245

gain matrix that defines the relative importance given to the output error respect to the prior state

estimate.

The Kalman gain is defined with the model error covariance matrix Pt and the covariance of

observation noise Rt as:250

Kt =PtH
T (HPtH

T +Rt)
−1 (2)

A detailed explanation of the EnKF mathematical background and concepts can be found in

Evensen (2003). In this study, the filter has been implemented in its traditional form following Man-

del (2006).

255

The EnKF is able to decipher catchment initial condition as it acts on variables after the spin up

time, i.e. at the very start of the hydrological forecast. Thus, it is frequently presented as a tool that

describes catchment descriptive states uncertainty such as soil moisture but it also implicitly takes

into account model parameter and structural uncertainty as these are reflected in the model states

and outputs errors. The forecast system comprises inaccuracies at several levels and consequently260
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the error statistics that the EnKF uses to update state variables are not only intrinsic variability but

also epistemic uncertainty that lay also in the value of the state variables.

The EnKF performance is highly influenced by its setting, in particular by the required noise spec-

ification of inputs and outputs (Noh et al., 2014) and also by the choice of the updated state variables265

vector (Li et al.). This affects directly the spread of the ensemble and the corresponding uncertainty

description (Thiboult and Anctil, 2015a). As the level of uncertainty varies from the model used and

the simulated catchment, the optimal EnKF implementation also depends to a great extent on these

aspects (Thiboult and Anctil, 2015a).

270

In practice, it is complex to untangle uncertainties through the use of the EnKF. The filter, in its

traditional form, can decipher the overall predictive uncertainty but does not distinguish between in-

put-output, structural, and parameter uncertainty. By artificially and deliberately overestimating the

input uncertainty, it is possible to compensate for uncertainties that are not explicitly addressed and

achieve reliability in simulation and possibly during forecast for the first lead times.275

In this study, the EnKF is tuned to optimize reliability and accuracy per catchment and per model.

The retained specification are identified after extensive testing has been carried out. More precisely,

two or three noise levels for each input and output were tested (a 25-50-75% standard deviation of

the mean value with a gamma law for precipitation, 10-25-50% standard deviation of the mean value280

with the normal law for streamflow observations and 2-5◦ standard deviation with a normal law for

the temperature). Additionally, as the choice of updated state variables is also a key component of

the EnKF, all possible combinations of the state vectorupdated state variables were tested with the 12

noise combinations described above. The retained EnKF setting were based on a two-step criterion;

firstly the 3 settings that presented the best reliability are kept and then the one among them that285

led to the lowest bias. Therefore, the optimal setting may use unrealistically high perturbations that

compensate partially for the structural error. A detailed description of the EnKF optimization with

the 20 models is provided in Thiboult and Anctil (2015a)

In this study where the EnKF is meant to be combined with the multimodel approach, dual state-290

parameter updating was not considered since it is expected that the multimodel takes simultaneously

into account structural and parameter uncertainty (Poulin et al., 2011), releasing the need to modify

(update) model time-invariant parameters.

2.4 Scores

The continuous ranked probability score (CRPS, Matheson and Winkler, 1976) is a common verifi-295

cation tool for probabilistic forecasts that assesses accuracy and resolution. A cumulative distribution

10



function is built based on the raw predictive ensemble, i.e. the collection of deterministic forecasts

and then compared to the observation.

CRPS(Ft,xobs) =

+∞∫
−∞

(Ft(x)−H(x≥ xobs))
2
dx (3)300

where Ft(x) is the cumulative distribution function at time t, x the predicted variable, and xobs is

the corresponding observed value. The function H is the Heaviside function which equals O for for

predicted values smaller than the observed value, 1 otherwise. The CRPS shares the same unit as

the predicted variable x.

305

As the CRPS assesses the forecast for a single time step, the MCRPS is defined as the average

CRPS over the entire period. The MCRPS can reduce to the Mean Absolute Error (MAE) if a

single member is considered and thus it allows to compare deterministic and probabilistic forecasts

(Hersbach, 2000; Gneiting and Raftery, 2007). Finally, a 0 valuea value of 0 indicates a perfect fore-

cast and there is no upper bound.310

The reliability diagram (Stanski et al., 1989) is a graphical method to assess the reliability of a

predictive ensemble by plotting forecasted against observed event frequencies. A perfectly reliable

forecast is represented by a 45◦ line that indicates that forecasted and observed frequencies are equal.

If the joint distribution curve differs from the perfect reliability lines, it indicates that the spread of315

the ensemble does not perfectly match its predictive skills. If the curve is situated above the perfect

reliability line, this denotes an overdispersion of the ensemble, and an underdispersion in the oppo-

site case.

The reliability is twofold. Since the reliability curve assesses the dispersion regarding the predic-320

tive skills of the ensemble, it is possible to have a perfectly reliable system with a low predictive

capability in the case the dispersion is very high. For disambiguation, the ensemble spread is added

to the plots.

Practically, one can define the deviation from perfect reliability by estimating a measure of dis-325

tance between the forecast reliability curve and the perfect reliability line by computing the Mean

Absolute Error (MAE) or Mean Square Error (MSE, Brochero et al., 2013). This dimensionless

score allows to reduce the measure of reliability to a scalar. In the case where the MAE is used, it

can be easily interpreted as the average distance between forecasted frequencies and the observed

frequencies over all quantiles of interest. This verification score is henceforth referred as Mean ab-330

solute error of the Realiability Diagram, MaeRD.
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Additional information about reliability can be obtained from the Spread Skill Plot (SSP , Fortin

et al., 2014). It compares the Root Mean Square Error RMSE and the square root of average ensem-

ble variance that is a measure of the ensemble spread. The reliability is thus somehow decomposed335

into an accuracy error part and a spread component. Ideally, the spread should match the RMSE.

3 Results

Table 3 summarizes the specificities of the nine variants of the hydrometeorological forecast frame-

work according to the three "forecasting tools": multimodel, EnKF, and ensemble meteorological340

forcing. Each of these switch may be activated or not and are marked as on/off in the table.

The multimodel switch dictates if the members issued by the 20 individual models are pooled to-

gether to create a single probabilistic forecast. In the case where the multimodel approach is not used,

the models outputs are kept individually and 20 distinct ensembles – one per model – are considered.345

The EnKF switch indicates if sequential data assimilation or the open loop procedure is applied.

When EnKF updating is used, an ensemble of 50 members is created from 50 likely initial condi-

tions sets identified by the filter. Otherwise, a single set of state variable values determined from the

simulation is provided to the forecasting step. Note that the H and H’ system differ by the EnKF350

perturbations magnitude, where H uses perturbations that aim at optimizing the combined criterion

while H’ uses lower perturbations that are deemed to be more realistic.

Lastly, the meteorological forcing employed during the forecast step can be either deterministic

or probabilistic, using one randomly picked member or all 50 MEPS members.355

These tools can be used alternatively or combined. For instance, if the EnKF and the meteorologi-

cal ensemble forcing are used collectively, each of the 50 initial conditions sets will serve as starting

point for each of the 50 meteorological forecast member creating a larger hydrometeorological en-

semble that contains 2500 members.360

We chose to disregard more complex or "hybrid" cases in this study, where for example, the final

ensemble is composed with some models that benefit EnKF state updating while others are used in

an open loop forecasting mode as these setups do not add additional information about the role of the

tools, increase the degree of freedom for the system optimization and would shoot up computational365

costs.

12



Table 3. Description of the nine systems

Systems A B C D E F G H H’

Multimodel Off Off Off Off On On On On On

EnKF Off Off On On Off Off On On On

Met. ensemble Off On Off On Off On Off On On

Nb of members (20x)1 (20x)50 (20x)50 (20x)2500 20 1000 1000 50000 50000

The results for each of the nine systems applied to every catchment, lead time and possibly every

model are not systematically detailed and compared to each other. The following graphs are deemed

sufficient to interpret the role and benefits that the system components play on the forecast quality.370

Additional graphs representing the resolution and reliability of each system are provided online for

readers who are interested in a specific set up.

To picture an overview of the results, Figure 2 represents the accuracy in terms of MCRPS (or

MAE for system A that is fully deterministic) and MaeRD. For graphical convenience, the full375

distribution of performance according to various factors is not displayed but only a single repre-

sentative value. To reduce the whole of the results to a single scalars, the median performance has

been considered. In the case where a multimodel approach is used, the median performance over the

20 catchments is displayed on the figure. Otherwise, when individual models are considered, firstly

the median performing model is identified and then the median performance over the catchment is380

represented. This implies that the performance of individual models systems (A, B, C, and D) may

refer to a different model for each lead time.

The four radar plots situated on the top of the figure illustrate the MCRPS performance. As a

reference, the center of the disk consist of the the median MCRPS value of the climatology over385

the 20 catchments while the perimeter represent a perfect MCRPS equals to 0. The radius lines

represent the nine systems described in Table 3 and are referred by their corresponding letter.

The nine systems present varying performance but all decrease logically with lead time. System

A, which is deterministic, undoubtedly performs worse for every lead time. It is challenged from the390

3rd day and is outperformed for medium range forecast by the hydrological climatology. System B

presents a quite similar behaviour to A but with a lower decrease of accuracy with lead time. Sys-

tem C may be considered as competitive for shorter lead times but looses quickly its edge. These

preliminary results tend to indicate that simpler HEPS may not be appropriate to accurately forecast

streamflows over a nine day horizon. However, all versions including the simpler version except395

system A are more informative than the climatology for all lead times. Systems G, H and H’ stand
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out from the others for all lead times.

The second row in Figure 2 illustrates the reliability of each system. The center of the disk corre-

sponds to a MaeRD equals to 0.5. System A is artificially placed at the center of the radar plot to400

denote that no reliability information is communicated since it is deterministic.

The reliability results shares similarities with the accuracy assessment. Simpler systems face dif-

ficulties to provide a reliable forecast. Despite the use of meteorological ensemble forcing, system

B is far from providing the right dispersion. Systems C and D provide some information for short405

lead times but experiences a substantial loss with increasing lead time. Once again, G, H and H’ are

performing best.

3.1 Multimodel approach and structural uncertainty

To assess the gain related to the multimodel approach, Figure 3 presents a comparison of the indi-410

vidual model MAE (A) and the MCRPS that pools all model output together (E). At this step,

only the structural uncertainty is taken into account as the meteorological forcing is kept determin-

istic and no initial condition uncertainty estimation is provided for both cases. These systems are

computationally cheap as they contain either 20x1 member or 20 members.

415

In Figure 3, each boxplot represents the distribution of performance (minimum, quantiles 0.25,

0.5, and 0.75, and maximum) of the 20 models while the curve details the multimodel accuracy. On

the x axis, the 20 test catchments are sorted according to increasing multimodel MCRPS for the

first lead time. This allows to notice that certain catchments exhibit a faster growing error.

420

The multimodel performs consistently better than the median performance of the model but also

better than any model in the large majority of cases. Exceptions can be occasionally observed for

catchment 3, 17, and 203 and 17 where only one or two models outpeform the ensemble. However,

the best performing models differ from a catchment to another while the multimodel presents the

advantage of being more robust than any of the models. This is explained by the varied individual425

model behaviours. Each model may grasp different specificities of the hydrograph by focussing more

specifically on different (conceptual) hydrological processes. Consequently, the ensemble members

– the models – have disparate errors. Whenever the mismatch between forecast members and obser-

vation is poorly correlated, their errors tend to cancel out each other.

430

Figure 4 presents the reliability of the system E. Each curves refers to one of the 20 catchments.

As mentioned, the structural uncertainty of the hydrological models is solely explicitly taken into
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account by the combination of the models.

System E is generally slightly over confident for all lead times and this trend becomes more appar-435

ent as the lead time increases. This is expected as the meteorological forcing uncertainty increases

with time while the deterministic forcing do not support that aspect. One can notice that the relia-

bility also depends on the catchments. For the first lead time, most of the catchments are close to

reliability while there is a clear outlier for which accuracy skills do not match its corresponding

spread. In fact, this low performing catchment exhibits a constant hydrological wet bias – partially440

explained by a meteorological forecast wet bias that over-forecasts precipitations by 15% – that is

not captured by any of the models even if the global tendency is respected. For the first lead time,

most of the catchments are close to reliability while there are two outliers for which accuracy skills

do not match their corresponding spread. In fact, these catchments exhibits a constant hydrological

bias partially explained by an inaccurate meteorological forcing that is not captured by any of the445

models even if the global tendency is respected. Consequently, the models errors are highly cor-

related and this prevents the members to form a performing ensemble. This bias indicates that the

aggregation of the other sources of uncertainty drive the system toward an inaccurate state.

3.2 Data assimilation and initial condition uncertainty450

Figure 5 illustrates the increase of performance related to the data assimilation by comparing sys-

tems E and G. System G improves upon E as it benefits from the EnKF data assimilation to handle

the initial condition uncertainty. The models states are updated according to the last available ob-

servations and an ensemble is created for each model based on the probabilistic estimation of best

initial conditions.455

The EnKF provides considerable gain over open loop forecasts for all catchments and reduces

the number of lower performance (outlier) catchments. Data assimilation is particularly effective on

catchments that present a systematic bias. For example, catchment number 11 that was problematic

from the first lead time lies among the other catchments in terms of performance. This indicates that460

inaccuracies accumulated and stored during the spin up period in the state variable as the results of

structural and forcing errors can be significantly reduced by providing adequate model reinitializa-

tion.

As the EnKF acts on model state variables right after the spin up period, it is not surprising to465

see its efficiency decreasing with lead time. This clarifies why the EnKF is beneficial for all lead

times but that its skill decreases faster than the open loop scheme one. Moreover, the EnKF provides

satisfactory initial condition distribution to minimize the error at the time the observation becomes
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available but does not sample the posterior states to be optimally integrated through time.

470

Figure 6 details the reliability of system G. There is a considerable increase of spread in compar-

ison to system E for shorter lead time that goes beyond adequate dispersion and lead to a slightly

overdispersed forecast for the first lead time. This was expected as the EnKF was initially imple-

mented to maximize individual model reliability for system G (see section 2.3.2). As the EnKF

also takes into account the parameter and structural uncertainties and is combined with a multi-475

model approach, there may be a redundancy in the error deciphering. The structural error and the

corresponding ensemble spread that it should describe may be somewhat accounted twice in that

particular case. However, the overestimation of the ideal spread diminishes as the EnKF influence

fades away quickly and the system goes back toward a better reliability for medium range forecast

and underdispersion from days 4-5.480

To explain the rapid decrease of reliability, Figure 7 displays the ensemble mean RMSE and

the square root of average ensemble variance. This individual spread skill plot (one model and one

catchment) is typical. The spread and the RMSE are close to a perfect match for the first day indi-

cating an appropriate dispersion, yet, they diverge rapidly. The reliability deterioration of the system485

is twofold: the increase of the ensemble mean bias and the decrease of the spread. The loss of hy-

drological predictive skill is coherent regarding that the meteorological accuracy diminishes with

increasing lead time. Concerning the second point, in most cases, the ensemble of initial conditions

that EnKF provides often differ little from each other – few percent – indicating that the posterior

distribution of each parameter is rather narrow (DeChant and Moradkhani, 2012; Abaza et al., 2015).490

These dissimilarities are not large enough to provoke a divergence in the behaviour of EnKF mem-

bers during the forecasting step as the model are resilient. The different initial conditions thus tend

to merge toward a certain value – often close the open loop one – which may not be accurate. This

behavior is attributed to the EnKF rather than to the model structures as it has been also observed

by others, for example with a three-hour time step and spatially distributed model in Abaza et al.495

(2014). Alternatives to the traditional EnKF (e.g. dual state-parameter, additional direct perturba-

tions of state variables) may possibly contribute to slightly maintain the spread for longer lead times

but they may not be consistent with the use of the multimodel, as it may imply to take into account

the same source of uncertainty twice.

3.3 Contribution of the meteorological ensemble forcing500

One step further in the system complexity is taken as the MEPS forcing is introduced. In this study,

meteorological forcing was not processed as the investigation of such technique was deemed out of

scope. It is expected that a successful pre-processing would enhance the MEPS forecast and that

these improvements could be possibly cascaded through the hydrological components to the final
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hydrological forecast. Counter-intuitively, recent attempts demonstrated that no or minor improve-505

ments were obtained in the hydrological forecast (Kang et al., 2010; Verkade et al., 2013; Zalachori

et al., 2012; Roulin and Vannitsem, 2015).

Figure 8 compares the MCRPS of systems G and H. They differ only in their meteorological

forcing as the latter uses the 50 member probabilistic forecast. Difference between them is negligible510

until the 7th or 8th day where an improvement in performance can be noticed on some catchments.

For these longer lead times, the probabilistic forcing is slightly more efficient for the MCRPS but

the main difference lies in the reliability (Figure 9). In fact, the reliability is substantially improved

for the longest lead times when the meteorological uncertainty is provided to the system. A compar-

ison of these systems with respect to the seasonality is provided in the supplementary material.515

The ECMWF MEPS dispersion grows with lead time and logically contributes to the HEPS spread

accordingly. This is confirmed by comparing the spread of the G and H systems as they decrease at a

different pace. While they are almost identical with a value of 0.55 mm day-1 and 0.57 mm day-10.58

mm day-1 and 0.59 mm day-1 respectively for the day 3, G spread drops to 0.44 mm day-10.45 mm520

day-1 for day 9 while the use of the MEPS maintains the spread to 0.55 mm day-10.59 mm day-1.

This also indicates that the tool that contributes the most to the HEPS dispersion is the EnKF since

the raw MEPS forcing is not able to fully balance the decrease of the spread induced by the EnKF.

Further improvement in the reliability could perhaps be achieved through bias removal and suitable

pre-processing technique.525

The main sources of uncertainty – structure, initial conditions, and meteorological forcing – are

cascaded through the different components of the forecasting system to provide better forecast than

any of the systems previously described. Yet the system reliability is not perfect as the forecast for

day 1 and day 9 are slightly overdispersive and underdispersive in addition to present sensitivity to530

the catchments. To realistically represent the uncertainty of the system, the spread should grow with

lead time as the future is more uncertain. This suggest that further improvement of this setup and

particular application could be obtained with a more dispersed meteorological forcing.

3.4 Simplification of the framework535

A potential drawback for operational use of such system is that it is computationally expensive as

50000 members are exploited to build it. The efficiency of a simpler system is assessed on Fig-

ure 10. Eight typical catchments are displayed in the sub plots to illustrate the conclusion. The box

plots represent the MCRPS distribution of the 20 models results from system D that benefits EnKF

state updating and MEPS forcing. Each of these models can be considered as a sub-ensemble of the540
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large ensemble H driven by a single model instead of using a multimodel approach. This is a more

consistent approach with the EnKF individual optimization that is carried out to aim for reliability

for each model one at a time. The numbers at the top of the sub-plots refer to the model number that

are better than the multimodel for each lead time.

545

In Figure 10, sub-ensembles are more skilful than the hydrological climatology for all lead times

but rarely outperform the multimodel forecast. More precisely, the median performing sub-ensemble

is always poorer than the multimodel and only the best models among the 20 occasionnally exhibit

lower MCRPS. Individual models that outperform the multimodel frequently differ from a catch-

ment to another and from a lead time to another. This emphasizes the difficulty to chose a priori a550

single model as half of the 20 models never behave better than the multimodel and only model 1 and

51, 5, and 17 perform better than the multimodel for several catchments. Choosing a sub-ensemble

doubtlessly enhances the system computational requirements and eases operational implementation

but relying on a single model may be misleading or, at least, minimize the expectation that one can

have from the HEPS.555

Figure 11 assesses the reliability of the same system with the MaeRD score. Like for the previ-

ous plots, the box plots contain the 20 ensembles that correspond to the 20 models and are sorted

by catchment with increasing multimodel MaeRD. Note that the MaeRD does not provides pre-

cise information about dispersion but only about the distance from perfect reliability. Nevertheless,560

individual model ensemble may be either slightly over or underdispersive for the first lead time but

are systematically underdispersive for longer lead times. On the other hand, system H can be either

over or underdispersive depending on the catchment. Overdispersive forecasts, like for the catch-

ment 1920, can be recognized as they tend to become more reliable for longer lead time.

565

For the first lead time, the best individual model ensembles may be competitive with the multi-

model but are already less efficient from day 3 and are drastically underdispersive for day 9. Even

if the EnKF takes into account the structural uncertainty at t= 0, it loses its efficiency during the

forecast. The information that the updated state sets contain about the structural uncertainty vanishes

when the sets converge toward a common value. The multimodel approach, by its nature, allows to570

take over the role of the EnKF by dynamically preserving the required diversity.

3.5 Required EnKF perturbations

If the different sources of uncertainty along the hydrometeorological modeling chain are not explic-

itly accounted for by dedicated tools, the EnKF has to compensate for them. One way to achieve575

reliability is to increase the level of perturbations to the input. However, there is no obvious way to
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know by which amount the uncertainty on input should be overestimated to compensate for the other

uncertainties. Thus, to ensure hydrological reliability, one needs to perform a fastidious calibration

of the EnKF hyper-parameters to identify the required noise magnitude (Thiboult and Anctil, 2015a).

580

H’ is identical to system H except that it relies on a different optimization of the EnKF. Instead of

maximizing the combined criterion for individual models (see section 2.3.2), the EnKF noise speci-

fication is set lower to values that are more consistent with real uncertainties estimations of observed

climatological and streamflow observations at catchment scale. Namely, precipitation is perturbed

with a gamma law with a standard deviation of 25% of the mean value, temperatures with a normal585

law with a 2◦ standard deviation and streamflow observations with normal law with a 10% standard

deviation.

These noise magnitudes are therefore meant to describe the real uncertainties in forcing and obser-

vations in the EnKF but do not implicitly account for model error any longer. Also, in a perfect-model590

environment, i.e. without any model error, it has been shown that the EnKF spread is representative

of the ensemble mean error with respect to a truth integration (Houtekamer et al., 2009). In other

words, the implementation of the EnKF with realistic input and output perturbations corresponds to

a potential ’perfect’ EnKF implementation if the total uncertainty could be summarized to the input

and output error and were perfectly identified, i.e. in a perfectly controlled environment with a negli-595

gible model structural error. This would corresponds to a potential optimal EnKF implementation if

the total uncertainty could be summarized to the input and output error and were perfectly identified,

i.e. in a perfectly controlled environment with a negligible model structural error. Consequently, with

the system H’, the structural error is theoretically only deciphered through the multimodel pooling.

Yet this needs to be qualified as it is practically hard to untangle the source of uncertainty within the600

actual configuration of the EnKF but it reduces the risk that the tools effects overlap. By choosing

these perturbations, the user also gets rid of a fastidious EnKF tuning by screening adequate pertur-

bation (e.g. Moradkhani et al., 2005; Thiboult and Anctil, 2015a) and hence simplifies the system

implementation.

605

In Figure 12, system H’ improves reliability for first lead times by reducing the overdispersion

with a sensible decrease in the ensemble spread from 0.65 mm day-1 to 0.54 mm day-10.72 mm

day-1 to 0.57 mm day-1 for day 1 without any degradation of the MCRPS (except for 2 catchments;

all results are shown on additional figures online). System H’ maintains a more constant spread and

reliability with increasing lead time as the main sources of uncertainty are more accurately deci-610

phered specifically by their corresponding tool, leading to an overall better forecast.
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The two outlier catchments that exhibit poorer reliability present an underdispersed forecast that

is a bit more pronounced for the H’ system than the H system (see Figure 9). This indicates that

uncertainties used to define the EnKF perturbations are under-estimated. As a matter of factFinally,615

it is unreasonable to assume that uncertainties are invariant from one catchment to another. The

comparison of the MEPS forecast and meteorological observations shown that the quality over the

20 catchments remains close and indicates that the misfit probably originates from the structures

composing the multimodel ensemble that can be maladapted to simulate this particular catchments

or from doubtful streamflow measurements. This lead us think that further improvements in very620

uncertain environments are limited by a preliminary accurate quantification of error.

Also, considerable efforts have been paid to link performance with estimated time of concentra-

tion, size of catchments, and river slope without any clear results. The authors were not able to relate

any catchment feature to particular results.625

4 Conclusions

This work investigates the contribution of three different probabilistic tools commonly used in hy-

drometeorological sciences. They are used conjointly and alternatively to identify their effect on the

hydrological predictive ensemble and to untangle sources of uncertainty that are aggregated in the630

outputs.

Each of these tools is dedicated to capture a certain aspect of the total uncertainty. A multi-

model approach is used to quantify and reduce explicitly the hydrological model error, the Ensemble

Kalman Filter to decipher the uncertainty related to initial conditions and the meteorological ensem-635

ble to account for the forcing uncertainty.

The experiment shows that important gain may be achieve in term of accuracy and reliability by

adequately using these techniques. Their action differ substantially by their mean and range of action.

640

The EnKF provides accurate quantification of initial error but fails to maintain reliability as its

effect fades out quickly after model spin up. The information about the structural uncertainty deci-

phered by the EnKF, which is contained in the state variable posterior distribution, is not propagated

with time integration during the forecast step. However, the EnKF remains a key component of

the system as it is the one that provides the most dispersion for the first lead times. This also indi-645

cates that the accumulation of past errors in the initial conditions is a dominant source of uncertainty.
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The multimodel approach is able to partially compensate for the EnKF decreasing action by taking

over the structural uncertainty. Moreover, the combination of independent models improve accuracy

as their errors may cancel each other. Lastly, the use of ensemble meteorological forecast contributes650

to the reliability of medium range forecast by representing the meteorological forcing errors.

Their action are complementary as they decipher different nature of uncertainty at different loca-

tions by acting at particular stages in the forecasting process. When combined, they need to be set

according to the tools they are juxtaposed with to prevent overlapping actions. This is particularly655

the case for the EnKF that has important degree of freedom in its implementation. It can eventu-

ally be tuned with more realistic input perturbations by coupling with the multimodel ensemble and

therefore, facilitate its implementation by relaxing the constraints of optimal perturbation screening.

Possible avenues for further improvements may be achieved through a multimodel state updating660

rather than individual model updating, i.e. by treating initial condition in a single step as a whole.

Lastly, the meteorological forecast shown to be a little underdispersed for this application and could

be possibly improved by applying suitable pre-processing techniques.
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Figure 2. Synthetic results of the 9 systems that are referred by their code letter (see Table 3). The 4 top

radar plots illustrate the MCRPS with the center indicating the climatology reference performance, and the

perimeter representing a perfectly accurate simulation. The 4 bottom plots describe the measure of distance

from perfect reliability, with the center indicating a MaeRD=0.5 while the perimeter corresponds to a perfect

reliability.
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MCRPS for the first day (version A vs E)
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Figure 4. Reliability of the multimodel ensemble (system E) for all individual catchments. The spread repre-

sents the square root of mean ensemble variance averaged over all catchments.
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Figure 6. Reliability of the EnKF multimodel ensemble (system G) for all individual catchments. The spread

represents the square root of mean ensemble variance averaged over all catchments.
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Figure 9. Reliability of the EnKF multimodel ensemble with MEPS forcing (system H)
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Figure 10. Comparative examples of the MCRPS on 8 catchments of the EnKF individual models and the

EnKF multimodel, both using MEPS forcing (system D vs H)
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Figure 11. Comparison of the deviation from perfect reliability of EnKF individual models and the EnKF
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D vs H)
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Figure 12. Reliability of the EnKF multimodel ensemble with MEPS forcing and lower input-output perturba-

tions (system H’)
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