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Abstract. Seeking for more accuracy and reliability, the hydrometeorological community has devel-

oped several tools to decipher the different sources of uncertainty in relevant modeling processes.

Among them, the Ensemble Kalman Filter, multimodel approaches and meteorological ensemble

forecasting proved to have the capability to improve upon deterministic hydrological forecast. This

study aims at untangling the sources of uncertainty by studying the combination of these tools and5

assessing their respective contribution to the overall forecast quality. Each of these components is

able to capture a certain aspect of the total uncertainty and improve the forecast at different stages

in the forecasting process by using different means. Their combination outperforms any of the tools

used solely. The EnKF is shown to contribute largely to the ensemble accuracy and dispersion, indi-

cating that the initial conditions uncertainty is dominant. However, it fails to maintain the required10

dispersion throughout the entire forecast horizon and needs to be supported by a multimodel ap-

proach to take into account structural uncertainty. Moreover, the multimodel approach contributes

to improving the general forecasting performance and prevents from falling into the model selection

pitfall since models differ strongly in their ability. Finally, the use of probabilistic meteorological

forcing was found to contribute mostly to long lead time reliability. Particular attention needs to15

be paid to the combination of the tools, especially in the Ensemble Kalman Filter tuning to avoid

overlapping in error deciphering.

1 Introduction

The complexity of hydrometeorological systems is such that it is not possible to perfectly repre-

sent their "true" descriptive physical processes, and even less to integrate them forward in time with20
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mathematical models. These models are only an approximation of varying quality to represent and

predict variables of interest, yet they proved to be skillful and useful for water resource management

and hazard prevention (e.g. Bartholmes et al., 2009; Pagano et al., 2014; Demargne et al., 2014).

Inadequacies between simulation or predictions and observations can be largely attributed to the25

many sources of uncertainty that are located along the hydrometeorological chain (e.g. Walker et al.,

2003; Beven and Binley, 2014). Hence, it is admitted that improvement of the forecast ought to go

through understanding and reducing the sources of uncertainty (e.g. Liu and Gupta, 2007). These

sources have a different nature that ranges from epistemic uncertainty due to the imperfection of our

knowledge to variability uncertainty where the imperfections are due to the inherent system vari-30

ability (e.g. Walker et al., 2003; Beven, 2008). They also differ in location, i.e. where they lay in

the hydrometeorological modeling chain: meteorological forcing, model parameters and structure,

hydrological initial conditions, and, to a lesser extent, observations (Walker et al., 2003; Vrugt and

Robinson, 2007; Ajami et al., 2007; Salamon and Feyen, 2010).

35

As all models are exposed to these sources of uncertainty, they necessarily lead to forecasts with

imperfections. It is thus possible – and frequent – that several models can simulate the process of

interest with the same accuracy. These simulations are equally likely in the mathematical sense; it is

referred as the principle of equifinality (Beven and Binley, 1992).

40

Ensembles provide a probabilistic answer to the equifinality problem. They are a collection of de-

terministic predictions issued by different models to simulate the same event and attempt to produce

a representative sample of the future. They can be built by a suitable method wherever a source of

uncertainty needs to be put under scrutiny. Additionally, in general, the ensemble mean is more skill-

ful than deterministic systems and offers a better ability to forecast extreme events (e.g. Wetterhall45

et al., 2013).

As the sources of uncertainty differ in their location, nature and statistical properties, they need

specific tools to be deciphered efficiently (Liu and Gupta, 2007). A wide range of methods have been

developed in the past year to cater hydrological forecast needs.50

At the beginning of the 90s, meteorologists pioneered the operational use of ensembles by con-

structing Meteorological Ensemble Prediction Systems (MEPS), mostly to take into account imper-

fect initial conditions that are a prime importance uncertainty source in view of the chaotic nature of

the atmospheric physics. Several methods have been proposed to tackle this issue. For instance, to55

define the initial condition uncertainty, the European Center for Medium-Range Weather Forecasts

(ECMWF) generates an ensemble by initiating their model with singular vectors (Molteni et al.,
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1996) to which a stochastic scheme is added to deal with the model physical parametrization uncer-

tainty (Buizza et al., 1999).

60

The increasing accessibility of MEPS benefited to the hydrology community to issue probabilistic

hydrological forecasts that take into account meteorological uncertainty forcing with Hydrological

Ensemble Prediction Systems (HEPS, e.g. Cloke and Pappenberger, 2009; Brochero et al., 2011;

Boucher et al., 2012; Abaza et al., 2014). Since 2007, The Observing System Research and Pre-

dictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) allows free access65

to meteorological ensemble forecasts for hydrologists and other researchers. This database regroups

the outputs from nine operational atmospheric models around the world, which can be downloaded

in grib2 format.

A lot of attention has been paid to the identification of hydrological model parameters and the70

non-uniqueness of the solutions. Among other techniques, Vrugt et al. (2003) proposed the Shuffled

Complex Evolution Metropolis Algorithm (SCEM-UA), a calibration technique that retains several

sets of parameters instead of a single one for a more realistic assessment of parameter uncertainty.

Beven and Binley (1992) suggested a more comprehensive approach for model acceptance or rejec-

tion with the Generalized Likelihood Uncertainty Estimation (GLUE) that allows to include different75

forms of competing models.

Gourley and Vieux (2006) assert that dealing only with input and parameter uncertainty is likely

to issue unreliable forecasts and that hydrological model structural uncertainty should be deciphered

explicitly. This statement is substantiated by Clark et al. (2008) who compares 79 unique model80

structures and concludes that a single structure is unlikely to perform better than the others in all

situations. Poulin et al. (2011) adds that the structural uncertainty is larger than the parameter es-

timation uncertainty and provides more diverse outputs. Combining dissimilar hydrological model

structures proved to possess a great potential (Breuer et al., 2009) even with simple combination

patterns (Ajami et al., 2006; Velázquez et al., 2011; Seiller et al., 2012).85

Initial condition uncertainty has also aroused scientific interest. Many studies using various data

assimilation techniques to incorporate observations within the simulation processes demonstrated

that the specification of catchment descriptive states is a crucial aspect of short and medium range

forecasting (DeChant and Moradkhani, 2011; Lee et al., 2011). Among them, sequential data as-90

similation technique such as the Particle Filter (e.g. DeChant and Moradkhani, 2012; Thirel et al.,

2013), the Ensemble Kalman Filter (e.g. Weerts and El Serafy, 2006; Rakovec et al., 2012) and vari-

ants (Noh et al., 2013; Chen et al., 2013; McMillan et al., 2013; Noh et al., 2014) can substantially

improve forecasting skills over the open loop scheme (i.e. no data assimilation is performed), by
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reducing and characterizing the uncertainty in initial conditions.95

Considerable efforts have been made in the development of these sophisticated techniques and

this gave rise to many tools that have been individually tested useful. As Bourdin et al. (2012) points

out, "To date, applications of ensemble methods in streamflow forecasting have typically focused

on only one or two error sources [...] A challenge will be to develop ensemble streamflow forecasts100

that sample a wider range of predictive uncertainty". As underlined, the forecasting tools frequently

tackle different sources of uncertainty and therefore do not exclude each other but can be seen as

complementary, combining their assets to compose an overall better system.

The present study identifies three efficient tools, namely a hydrological multimodel approach,105

Ensemble Kalman Filter, and MEPS forcing that are used together to decipher the traditional hy-

drometeorological sources of uncertainty. The paper scope is to identify how they complement each

other, to assess their individual contribution to the hydrological forecast reliability and accuracy, and

to eventually evaluate the possibility of achieving reliability without resorting to post-processing.

110

This is achieved by issuing hindcasts on 20 catchments using the aforementioned techniques, ei-

ther individually or combined, to investigate their specific role in the forecasting process. Each of

them produces an ensemble that can be cascaded through the next ensemble technique in order to

produce a larger ensemble that possesses a more comprehensive error handling. Finally, if all sources

of error are accounted for, the ensemble should generate a forecast that is reliable (Bourdin et al.,115

2012).

This paper is organized as follows: section 2 presents the catchments, models, the Ensemble

Kalman Filter basics and scores, section 3 sums up the systems specificities and their respective

performances followed by a conclusion in section 4120

2 Material and methodology

2.1 Catchments and hydrometeorological data

20 catchments located in the south of the Province of Québec have been selected for this study

(Fig. 1). The catchments experience a mixed hydrological regime with a spring freshet resulting

from the important winter snow cover and a lesser second peak in autumn. There is little or no hu-125

man intervention on the catchments.

The climatology of the catchments is varied (Table 1), particularly in terms of annual snow fall and

annual total precipitation. The differences in the catchments’ physical characteristics (area, length,
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Table 1. Main characteristics of the 20 catchments. Q and P are, respectively, the observed streamflow and

precipitation

River name Area

(km2)

River

length

(km)

Average

slope (%)

Mean

ann. Q

(m3/s)

Coeff. of

variation

of Q

Mean

ann. P

(mm)

Mean

ann.

snow

(cm)

Trois Pistoles 923 52 0.52 18 1.81 1109 382

Du Loup 512 45 0.78 10 1.47 1050 378

Gatineau 6796 190 0.12 127 1.08 1023 332

Dumoine 3743 145 0.13 50 0.81 968 297

Kinojévis 2572 83 0.12 39 1.12 921 324

Matawin 1383 68 0.29 24 1.11 1025 328

Croche 1551 102 0.33 29 1.24 996 360

Vermillon 2650 145 0.20 39 1.10 957 312

Batiscan 4483 167 0.45 96 1.03 1162 381

Saint-Anne 1539 84 0.81 51 1.20 1412 502

Bras du Nord 643 77 0.82 19 1.21 1385 499

Du loup 767 57 0.78 12 1.27 1020 332

Aux Ecorces 1107 54 1.04 28 1.09 1236 450

Métabetchouane 2202 155 0.43 48 1.19 1168 420

Péribonka 1010 101 0.50 19 1.16 1000 376

Ashuapmushuan 15342 342 0.16 300 0.92 984 379

Ashuapmushuan 11200 232 0.12 227 0.88 1001 394

Au Saumon 586 69 0.65 8 1.36 877 334

Mistassini 9534 278 0.20 200 1.08 1004 409

Valin 761 59 1.06 24 1.13 1123 453

slope,...) and climatology are reflected in their streamflow statistics (e.g. average streamflow, coeffi-130

cient of variation).

Daily total precipitation, maximum and minimum temperature and streamflows were provided

by the Centre d’Expertise Hydrique du Québec. They performed kriging on the observations over a

0.1◦ resolution grid to which a temperature correction with an elevation gradient of -0.005◦C/m is135

added. The data base is split into three periods: 1990-2000 for the calibration of the models, Octo-

ber 2005-October 2008 for the spin up, while November 2008-December 2010 is committed to the

hydrological forecast assessment.

The MEPS used as inputs to the hydrological model were retrieved from the TIGGE database.140

The temperatures and precipitation forecasts from the European Center for Medium range Weather
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Forecasts (ECMWF) were chosen for this study. They are formed by 50 exchangeable members

(Fraley et al., 2010) with a 6 hours time-step and a 10-day horizon. However, after conversion from

Greenwich time to local Quebec time, the horizon reduces to 9 days. For the sake of the study and

to match the common framework of the hydrological models, weather forecasts are aggregated at a145

daily time step starting at 6 EST (12 UTC). The ECMWF raw forecasts are provided on a regular

grid with a 0.5◦ horizontal resolution (N200 Gaussian grid), which is too coarse for this application,

especially for the smallest catchments. To ensure that several representative grid points are situated

within each catchment boundaries, meteorological forecasts are downscaled to a 0.1◦ resolution dur-

ing data retrieval by using bilinear interpolation (e.g. Gaborit et al., 2013). Also, the interpolation150

allows to take into account the contribution of the grid points that are close but not directly situated

within catchment boundaries and thus allows for a better description of each catchments’ meteoro-

logical conditions. As the rainfall-runoff models are lumped, a single representative point forecast is

obtained for each MEPS member by averaging the downscaled grid points situated within the catch-

ment boundaries.155

The weather forecasts display acceptable performance over the 20 selected catchments. In fact, in

the initial group of 38 catchments, 18 displayed unsatisfactory performances so they were withdrawn

from the experiment from the beginning, as pre-processing the meteorological inputs falls outside

the scope of the project. When compared to the meteorological observations, precipitation and tem-160

perature MCRPS over the 9 days (see sect. 2.4) remain below 3 mm and 3◦C respectively for the

remaining 20 catchments. Other scores have been evaluated (Nash-Sutcliffe efficiency, root-mean-

square error, mean absolute error, normalized root-mean-square error ratio) and are in agreement

with the MCRPS values, confirming the exclusion of the aforementioned 18 catchments.

165

An alternative to the ECMWF ensemble forecasts is used to simulate a deterministic meteorolog-

ical forcing with equivalent theoretical skill. For this purpose, a single member is drawn randomly

among the 50 exchangeable members.

2.2 Models, snow module and evapotranspiration

The multimodel ensemble is composed of 20 conceptual lumped models. In this study, their outputs170

are pooled together with equal weights or studied individually. Models have been initially selected

by Perrin (2000) for their conceptual and structural diversity and revised by Seiller et al. (2012).

They present various degrees of complexity: 4 to 10 calibrated parameters and 2 to 7 reservoirs to

describe the main hydrological processes (Table 2). Model selection is a key element for an effi-

cient multimodel ensemble as the diversity among them contributes to encompassing the error in175

model conceptualization and structure (Viney et al., 2009). A close attention has been paid to the

diversity of the different components of the models, especially regarding the representation of the
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different storages and flows. This maximizes the chance to encompass the most effective way to

describe storage and routing by providing an ensemble of likely descriptions of the processes. All

models were derived from existing ones, keeping their main specificities but adapting them to match180

a common framework where every snow module-model sets share the same inputs, namely precipi-

tation and potential evapotranspiration. The models, in their original form, are either lumped (GR4J,

GARDENIA, HBV, MOHYSE,...) or use a spatial discretization of the catchment (CEQUEAU, TOP-

MODEL, SACRAMENTO,...). For the models that were initially semi-distributed, they have been

converted into lumped models (Perrin, 2000). This has been done in order to facilitate their integra-185

tion in the common framework used in this study and for computational requirements.

The 20 conceptual lumped models are applied in a traditional way, i.e. no subsequent spatial

discretization has been done, hydrological processes are computed at the catchment scale and the

parameterization is uniform over the entire catchment. Despite their simplicity and the approxima-190

tions they rely on, they have shown to perform well and are competitive with more complex ones,

especially when combined together (Thiboult and Anctil, 2015).

The snow accumulation and melt module, as well as the evapotranspiration formulation, have

also been omitted in the case they had their own to be replaced by Cemaneige and Oudin’s poten-195

tial evapotranspiration formulation respectively. Thus, for all hydrological models the same snow

accumulation and melting module and evapotranspiration formulation have been used. A detailed

description of the models’ structure can be found in Perrin (2000).

Cemaneige, a degree day snow accounting routine, is used to model the catchment snow processes200

(Valery et al., 2014). It divides the catchment into 5 elevation bands and requires 2 parameters to be

calibrated: a snowmelt and a cold-content factor. As it is calibrated conjointly with individual models

and according to an objective function based on streamflow observations, its parameter values de-

pend on the hydrological model with which it is coupled. The 20 hydrological models have therefore

precipitation inputs that are driven by the same snow accounting routine but differently parametrized.205

Thus, part of the uncertainty related to the snowmelt module is taken into account through dissimilar

parameter sets that drives the state of the snow pack accumulation and melting.

All models were given the same potential evapotranspiration input which is computed following

Oudin et al. (2005) formula that relies on the mean air temperature and the calculated extraterrestrial210

radiation.
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Table 2. Main characteristics of the 20 lumped models (Seiller et al., 2012)

Model Number of optimized. Number of Derived from

acronym parameters reservoirs

M01 6 3 BUCKET (Thornthwaite and Mather, 1955)

M02 9 2 CEQUEAU (Girard et al., 1972)

M03 6 3 CREC (Cormary and Guilbot)

M04 6 3 GARDENIA (Thiery, 1982)

M05 4 2 GR4J (Perrin et al., 2003)

M06 9 3 HBV (Bergström and Forsman, 1973)

M07 6 5 HYMOD (Wagener et al., 2001)

M08 7 3 IHACRES (Jakeman et al., 1990)

M09 7 4 MARTINE (Mazenc et al., 1984)

M10 7 2 MOHYSE (Fortin and Turcotte, 2007)

M11 6 4 MORDOR (Garçon, 1999)

M12 10 7 NAM (Nielsen and Hansen, 1973)

M13 8 4 PDM (Moore and Clarke, 1981)

M14 9 5 SACRAMENTO (Burnash et al., 1973)

M15 8 3 SIMHYD (Chiew et al., 2002)

M16 8 3 SMAR (O’Connell et al., 1970)

M17 7 4 TANK (Sugawara, 1979)

M18 7 3 TOPMODEL (Beven et al., 1984)

M19 8 3 WAGENINGEN (Warmerdam et al., 1997)

M20 8 4 XINANJIANG (Zhao et al., 1980)

2.3 Forecasting approaches

Two approaches are used and compared for forecasting: the open loop and the Ensemble Kalman

Filter. Regardless of the method used, the meteorological observations over the three years preced-215

ing the forecast period are used for model spin up to provide better estimates of initial catchment

conditions.

2.3.1 Open loop forecasting

When the open loop forecast is activated, the state variables are obtained in simulation mode and220

used as starting point to initiate the hydrological forecast. The simulation and forecast steps then

alternate as follows: 1) the models are forced with observations up to the first day t of the forecast

and 2) the models are next forced with meteorological forecasts to issue the hydrological predictions
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until t+9. The procedure is repeated as the models are brought forward in time with the observations

from t.225

2.3.2 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is a sequential data assimilation technique that uses a recursive

Bayesian estimation scheme to provide an ensemble of possible model reinitializations. The model

state variable vector X is updated according to its likelihood probability density function that is230

inferred by the observations z, p(Xt|z1:t) with the indices t referring to the time.

When an observation becomes available, model states are updated (X+, the a posteriori esti-

mation) as a combination of the predicted (X−, also called the a priori states) and the difference

between the prior estimate of the variable of interest HX− and the corresponding observation zt.235

X+
t =X−t +Kt(zt−HX−t ) (1)

where H is the observation model that relates the state vectors and observations, and K is the Kalman

gain matrix that defines the relative importance given to the output error and prior estimate, respec-

tively.

240

The Kalman gain is defined with the model error covariance matrix Pt and the covariance of

observation noise Rt as:

Kt =PtH
T (HPtH

T +Rt)
−1 (2)

A detailed explanation of the EnKF mathematical background and concepts can be found in

Evensen (2003). In this study, the filter has been implemented in its traditional form following Man-245

del (2006).

The EnKF is able to decipher catchment initial condition as it acts on variables after the spin up

time, i.e. at the very start of the hydrological forecast. Thus, it is frequently presented as a tool that

describes catchment descriptive state uncertainty such as soil moisture but it also implicitly takes250

into account model parameters and structural uncertainty as these are reflected in the model states

and output errors. The forecasting system comprises inaccuracies at several levels and consequently

the error statistics that the EnKF uses to update state variables are not only due to the variability

uncertainty (the uncertainty due to the inherent variability of the values of interest) but also to the

epistemic uncertainty (the uncertainty related to the imperfect knowledge of the processes) that lay255

in the value of the state variables as well.
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The EnKF performance is highly influenced by its setting, in particular by the required noise spec-

ification of inputs and outputs (Noh et al., 2014) and also by the choice of the updated state variables

(Li et al.). This affects directly the spread of the ensemble and the corresponding uncertainty de-260

scription (Thiboult and Anctil, 2015a). As the level of uncertainty varies from the model used and

the simulated catchment, the optimal EnKF implementation also depends to a great extent on these

aspects (Thiboult and Anctil, 2015a).

In practice, it is complex to untangle uncertainties through the use of the EnKF. The filter, in its265

traditional form, can decipher the overall predictive uncertainty but does not distinguish between

input-output, structural, and parameter uncertainty. By artificially and deliberately overestimating

the input uncertainty, it is possible to compensate for uncertainties that are not explicitly addressed

and achieve reliability in simulation and possibly during forecast for the first lead times.

270

In this study, the EnKF is tuned to optimize reliability and accuracy per catchment and per model.

The retained specifications are identified after extensive testing has been carried out. More precisely,

two or three noise levels for each input and output were tested (a 25-50-75% standard deviation of

the mean value with a gamma law for precipitation, 10-25-50% standard deviation of the mean value

with the normal law for streamflow observations and 2-5◦ standard deviation with a normal law for275

the temperature). Additionally, as the choice of updated state variables is also a key component of

the EnKF, all possible combinations of updated state variables were tested with the 12 noise combi-

nations described above. The retained EnKF settings were based on a two-step criterion; firstly the

3 settings that presented the best reliability were kept and then the one among them that led to the

lowest bias. Therefore, the optimal settings may use unrealistically high perturbations that compen-280

sate partially for the structural error. A detailed description of the EnKF optimization with the 20

models is provided in Thiboult and Anctil (2015a)

In this study where the EnKF is meant to be combined with the multimodel approach, dual state-

parameter updating was not considered since it is expected that the multimodel accounts for struc-285

tural and parameter uncertainty simultaneously (Poulin et al., 2011), releasing the need to modify

(update) model time-invariant parameters.

2.4 Scores

The Continuous Ranked Probability Score (CRPS, Matheson and Winkler, 1976) is a common

verification tool for probabilistic forecasts that assesses accuracy and resolution. A cumulative dis-290

tribution function is built based on the raw predictive ensemble, i.e. the collection of deterministic

forecasts and then compared to the observation. It is defined as
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CRPS(Ft,xobs) =

+∞∫
−∞

(Ft(x)−H(x≥ xobs))
2
dx (3)

where Ft(x) is the cumulative distribution function at time t, x the predicted variable, and xobs is295

the corresponding observed value. The function H is the Heaviside function which equals O for

predicted values smaller than the observed value, 1 otherwise. The CRPS shares the same unit as

the predicted variable x.

As the CRPS assesses the forecast for a single time step, the MCRPS is defined as the average300

CRPS over the entire period. The MCRPS can reduce to the Mean Absolute Error (MAE) if a

single member is considered and thus it allows to compare deterministic and probabilistic forecasts

(Hersbach, 2000; Gneiting and Raftery, 2007). Finally, a value of 0 indicates a perfect forecast and

there is no upper bound.

305

The reliability diagram (Stanski et al., 1989) is a graphical method to assess the reliability of a

predictive ensemble by plotting forecasted against observed event frequencies. A perfectly reliable

forecast is represented by a 45◦ line that indicates that forecasted and observed frequencies are equal.

If the joint distribution curve differs from the perfect reliability line, it indicates that the spread of

the ensemble does not perfectly match its predictive skills. If the curve is situated above the perfect310

reliability line, this denotes an overdispersion of the ensemble, and an underdispersion in the oppo-

site case.

The reliability is twofold. Since the reliability curve assesses the dispersion regarding the predic-

tive skills of the ensemble, it is possible to have a perfectly reliable system with a low predictive315

capability in the case the dispersion is very high. For disambiguation, the ensemble spread is added

to the plots.

Practically, one can define the deviation from perfect reliability by estimating a measure of dis-

tance between the forecast reliability curve and the perfect reliability line by computing the Mean320

Absolute Error (MAE) or Mean Square Error (MSE, Brochero et al., 2013). This dimensionless

score allows to reduce the measure of reliability to a scalar. In the case where the MAE is used, it

can be easily interpreted as the average distance between forecasted frequencies and the observed

frequencies over all quantiles of interest. This verification score is henceforth referred to as the Mean

absolute error of the Reliability Diagram, MaeRD.325

Additional information about reliability can be obtained from the Spread Skill Plot (SSP , Fortin

et al., 2014). It compares the Root Mean Square Error RMSE and the square root of average ensem-
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ble variance that is a measure of the ensemble spread. The reliability is thus somehow decomposed

into an accuracy error part and a spread component. Ideally, the spread should match the RMSE.330

3 Results

Table 3 summarizes the specificities of the nine variants of the hydrometeorological forecasting

framework according to the three "forecasting tools": multimodel, EnKF, and ensemble meteorolog-

ical forcing. Each of these switches may be activated or not and are marked accordingly as on/off in335

the table.

The multimodel switch dictates if the members issued by the 20 individual models are pooled

together to create a single probabilistic forecast. In the case where the multimodel approach is not

used, the models’ outputs are kept individually and 20 distinct ensembles – one per model – are340

considered.

The EnKF switch indicates if sequential data assimilation or the open loop procedure is applied.

When EnKF updating is used, an ensemble of 50 members is created from 50 likely initial condi-

tions sets identified by the filter. Otherwise, a single set of state variable values determined from the345

simulation is provided to the forecasting step. Note that the H and H’ system differ by the EnKF

perturbations magnitude, where H uses perturbations that aim at optimizing the combined criterion

while H’ uses lower perturbations that are deemed to be more realistic.

Lastly, the meteorological forcing employed during the forecasting step can be either determinis-350

tic or probabilistic, using one randomly picked member or all 50 MEPS members.

These tools can be used alternatively or combined. For instance, if the EnKF and the meteorologi-

cal ensemble forcing are used collectively, each of the 50 initial conditions sets will serve as starting

point for each of the 50 meteorological forecast members creating a larger hydrometeorological en-355

semble that contains 2500 members.

We chose to disregard more complex or "hybrid" cases in this study, where for example, the final

ensemble is composed with some models that benefit EnKF state updating while others are used in

an open loop forecasting mode as these setups do not add additional information about the role of the360

tools, increase the degree of freedom for the system optimization and would increase computational

costs considerably.
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Table 3. Description of the nine forecasting systems

Systems A B C D E F G H H’

Multimodel Off Off Off Off On On On On On

EnKF Off Off On On Off Off On On On

Met. ensemble Off On Off On Off On Off On On

Nb of members (20x)1 (20x)50 (20x)50 (20x)2500 20 1000 1000 50000 50000

The results for each of the nine systems applied to every catchment, lead time and possibly every

model are not systematically detailed and compared to each other. The following graphs are deemed365

sufficient to interpret the role and benefits that the system components play on the forecast quality.

Additional graphs representing the resolution and reliability of each system are provided online for

readers who are interested in a specific set up.

To picture an overview of the results, Figure 2 represents the accuracy in terms of MCRPS (or370

MAE for system A that is fully deterministic) and MaeRD. For graphical convenience, the full

distribution of performance according to various factors is not displayed but only a single repre-

sentative value. To reduce the whole of the results to a single scalar, the median performance has

been considered. In the case where a multimodel approach is used, the median performance over

the 20 catchments is displayed on the figure. Otherwise, when individual models are considered, the375

median performing model is first identified and then the median performance over the catchment is

represented. This implies that the performance of individual models systems (A, B, C, and D) may

refer to a different model for each lead time.

The four radar plots situated on the top of the figure illustrate the MCRPS performance. As a380

reference, the center of the disk consists of the median MCRPS value of the climatology over the

20 catchments while the perimeter represents a perfect MCRPS equal to 0. The radius lines repre-

sent the nine systems described in Table 3 and are referred by their corresponding letter.

The nine systems present varying performance but all decrease logically with lead time. System385

A, which is deterministic, undoubtedly performs worse for every lead time. It is challenged from the

3rd day and is outperformed for medium range forecast by the hydrological climatology. System B

presents quite a similar behavior to system A but with a lower decrease of accuracy with lead time.

System C may be considered as competitive for shorter lead times but loses quickly its edge. These

preliminary results tend to indicate that simpler HEPS may not be appropriate to accurately forecast390

streamflows over a nine-day horizon. However, all versions, including the simplest versions (except

system A) are more informative than the climatology for all lead times. Systems G, H and H’ stand
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out from the others for all lead times.

The second row in Figure 2 illustrates the reliability of each system. The center of the disk cor-395

responds to a MaeRD equal to 0.5. System A is artificially placed at the center of the radar plot to

denote that no reliability information is communicated since it is deterministic.

The reliability result shares similarities with the accuracy assessment. Simpler systems face dif-

ficulties in providing a reliable forecast. Despite the use of the meteorological ensemble forcing,400

system B is far from providing the right dispersion. Systems C and D provide some information for

short lead times but experience a substantial loss with increasing lead time. Once again, G, H and

H’ are performing best.

3.1 Multimodel approach and structural uncertainty405

To assess the gain related to the multimodel approach, Figure 3 presents a comparison of the indi-

vidual model MAE (A) and the MCRPS that pools all model output together (E). At this step,

only the structural uncertainty is taken into account as the meteorological forcing is kept determin-

istic and no initial condition uncertainty estimation is provided for both cases. These systems are

computationally cheap as they contain either 20x1 member or 20 members.410

In Figure 3, each boxplot represents the distribution of performance (minimum, quantiles 0.25,

0.5, and 0.75, and maximum) of the 20 models while the curve details the multimodel accuracy. On

the x axis, the 20 test catchments are sorted according to increasing multimodel MCRPS for the

first lead time. This allows to notice that certain catchments exhibit a faster growing error.415

The multimodel performs consistently better than the median performance of the models but also

better than any model in the large majority of cases. Exceptions can be occasionally observed for

catchments 3 and 17 where only one or two models outperform the ensemble. However, the best

performing models differ from a catchment to another while the multimodel presents the advantage420

of being more robust than any of the models. This is explained by the varied individual model behav-

iors. Each model may grasp different specificities of the hydrograph by focusing more specifically

on different (conceptual) hydrological processes. Consequently, the ensemble members – the mod-

els – have disparate errors. Whenever the mismatch between forecast members and observation is

poorly correlated, their errors tend to cancel out each other.425

Figure 4 presents the reliability of system E. Each curve refers to one of the 20 catchments. As

mentioned, the structural uncertainty of the hydrological models is solely explicitly taken into ac-
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count by the combination of the models.

430

System E is generally slightly over confident for all lead times and this trend becomes more appar-

ent as the lead time increases. This is expected as the meteorological forcing uncertainty increases

with time while the deterministic forcing does not support that aspect. One can notice that the reli-

ability also depends on the catchments. For the first lead time, most of the catchments are close to

reliability while there are two outliers for which accuracy skills do not match their corresponding435

spread. In fact, these catchments exhibit a constant hydrological bias partially explained by an inac-

curate meteorological forcing that is not captured by any of the models. Consequently, the models’

errors are highly correlated and this prevents the members to form a performing ensemble. This bias

indicates that the aggregation of the other sources of uncertainty drive the system toward an inaccu-

rate state.440

3.2 Data assimilation and initial condition uncertainty

Figure 5 illustrates the increase of performance related to the data assimilation by comparing sys-

tems E and G. System G improves upon E as it benefits from the EnKF data assimilation to handle

the initial condition uncertainty. The models’ states are updated according to the last available ob-445

servations and an ensemble is created for each model based on the probabilistic estimation of best

initial conditions.

The EnKF provides considerable gain over open loop forecasts for all catchments and reduces the

number of lower performance catchments. This indicates that inaccuracies accumulated and stored450

during the spin up period in the state variable as the results of structural and forcing errors can be

significantly reduced by providing adequate model reinitialization.

As the EnKF acts on model state variables right after the spin up period, it is not surprising to see

its efficiency decreasing with lead time. This clarifies why the EnKF is beneficial for all lead times455

but that its skill decreases faster than that of the open loop scheme. Moreover, the EnKF provides

satisfactory initial condition distribution to minimize the error at the time the observation becomes

available but does not sample the posterior states to be optimally integrated through time.

Figure 6 details the reliability of system G. There is a considerable increase of spread in compar-460

ison to system E for shorter lead times that goes beyond adequate dispersion and lead to a slightly

overdispersed forecast for the first lead time. This was expected as the EnKF was initially imple-

mented to maximize individual model reliability for system G (see section 2.3.2). As the EnKF

also takes into account the parameter and structural uncertainties and is combined with a multi-

15



model approach, there may be a redundancy in the error deciphering. The structural error and the465

corresponding ensemble spread that it should describe may be somewhat accounted twice in that

particular case. However, the overestimation of the ideal spread diminishes as the EnKF influence

fades away quickly and the system goes back toward a better reliability for medium range forecast

and underdispersion from days 4-5.

470

To explain the rapid decrease in reliability, Figure 7 displays the ensemble mean RMSE and

the square root of average ensemble variance. This individual spread skill plot (one model and one

catchment) is typical. The spread and the RMSE are close to a perfect match for the first day

indicating an appropriate dispersion, yet, they diverge rapidly. The reliability deterioration of the

system is twofold: the increase of the ensemble mean bias and the decrease of the spread. The loss of475

hydrological predictive skill is coherent regarding that the meteorological accuracy diminishes with

increasing lead time. Concerning the second point, in most cases, the ensemble of initial conditions

that EnKF provides often differ little from each other – few percent – indicating that the posterior

distribution of each parameter is rather narrow (DeChant and Moradkhani, 2012; Abaza et al., 2015).

These dissimilarities are not large enough to provoke a divergence in the behavior of EnKF members480

during the forecasting step as the model are resilient. The different initial conditions thus tend to

merge toward a certain value – often close the open loop one – which may not be accurate. This

behavior is attributed to the EnKF rather than to the model structures as it has been also observed by

others, for example with a three-hour time step and spatially distributed model in Abaza et al. (2014).

Alternatives to the traditional EnKF (e.g. dual state-parameter, additional direct perturbations of state485

variables) may possibly contribute to slightly maintain the spread for longer lead times but they may

not be consistent with the use of the multimodel, as it may imply to take into account the same source

of uncertainty twice.

3.3 Contribution of the meteorological ensemble forcing

One step further in terms of system complexity is taken as the MEPS forcing is introduced. In this490

study, meteorological forcing was not processed as the investigation of such technique was deemed

out of scope. It is expected that a successful pre-processing would enhance the MEPS forecast and

that these improvements could possibly be cascaded through the hydrological components to the

final hydrological forecast. Counter-intuitively, recent attempts demonstrated that no or minor im-

provements were obtained in the hydrological forecast (Kang et al., 2010; Verkade et al., 2013;495

Zalachori et al., 2012; Roulin and Vannitsem, 2015).

Figure 8 compares the MCRPS of systems G and H. They differ only in their meteorologi-

cal forcing as the latter uses the 50-member probabilistic forecast. The difference between them is

negligible until the 7th or 8th day where an improvement in performance can be noticed on some500
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catchments. For these longer lead times, the probabilistic forcing is slightly more efficient for the

MCRPS but the main difference lies in the reliability (Figure 9). In fact, the reliability is substan-

tially improved for the longest lead times when the meteorological uncertainty is provided to the

system. The influence of the season is rather weak since the comparison of these systems with re-

spect to seasonality leads to the same conclusions (see supplementary materials).505

The ECMWF MEPS dispersion grows with lead time and logically contributes to the HEPS spread

accordingly. This is confirmed by comparing the spread of the G and H systems as they decrease at

a different pace. While they are almost identical with a value of 0.58 mm day-1 and 0.59 mm day-1

respectively for day 3, G spread drops to 0.45 mm day-1 for day 9 while the use of the MEPS main-510

tains the spread to 0.59 mm day-1. This also indicates that the tool that contributes the most to the

HEPS dispersion is the EnKF since the raw MEPS forcing is not able to fully balance the decrease

of the spread induced by the EnKF. Further improvement in the reliability could perhaps be achieved

through bias removal and suitable pre-processing technique.

515

The main sources of uncertainty – hydrological model structure, initial conditions, and meteoro-

logical forcing – are cascaded through the different components of the forecasting system to provide

better forecast than any of the systems previously described. Yet the system reliability is not perfect

as the forecast for day 1 and day 9 are respectively slightly overdispersive and underdispersive in

addition to present sensitivity to the catchments. To realistically represent the uncertainty of the sys-520

tem, the spread should grow with lead time as the future is more uncertain. This suggests that further

improvement of this setup and particular application could be obtained with a more dispersed mete-

orological forcing.

3.4 Simplification of the framework525

A potential drawback for operational use of such system is that it is computationally expensive as

50000 members are exploited to build it. The efficiency of a simpler system is assessed on Fig-

ure 10. Eight typical catchments are displayed in the sub plots to illustrate the conclusion. The box

plots represent the MCRPS distribution of the 20 models results from system D that benefits EnKF

state updating and MEPS forcing. Each of these models can be considered as a sub-ensemble of the530

large ensemble H driven by a single model instead of using a multimodel approach. This is a more

consistent approach with the EnKF individual optimization that is carried out to aim for reliability

for each model one at a time. The numbers at the top of the subplots refer to the model number that

outperform the multimodel for each lead time.

535
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In Figure 10, sub-ensembles are more skillful than the hydrological climatology for all lead times

but rarely outperform the multimodel forecast. More precisely, the median performing sub-ensemble

is always poorer than the multimodel and only the best models among the 20 occasionally exhibit

lower MCRPS. Individual models that outperform the multimodel frequently differ from a catch-

ment to another and from a lead time to another. This emphasizes the difficulty to choose a priori540

a single model as half of the 20 models never behave better than the multimodel and only model

1, 5, and 17 perform better than the multimodel for several catchments. Choosing a sub-ensemble

doubtlessly enhances the system computational requirements and eases operational implementation

but relying on a single model may be misleading or, at least, minimize the expectation that one can

have from the HEPS.545

Figure 11 assesses the reliability of the same system with the MaeRD score. Like for the previ-

ous plots, the box plots contain the 20 ensembles that correspond to the 20 models and are sorted

by catchment with increasing multimodel MaeRD. Note that the MaeRD does not provide pre-

cise information about dispersion but only about the distance from perfect reliability. Nevertheless,550

individual model ensemble may be either slightly over or underdispersive for the first lead time but

are systematically underdispersive for longer lead times. However, system H can be either over or

underdispersive depending on the catchment. Overdispersive forecasts, like for catchment 20, can be

recognized as they tend to become more reliable for longer lead times.

555

For the first lead time, the best individual model ensembles may be competitive with the multi-

model but are already less efficient from day 3 and are drastically underdispersive for day 9. Even

if the EnKF takes into account the structural uncertainty at t= 0, it loses its efficiency during the

forecast. The information that the updated state sets contain about the structural uncertainty vanishes

when the sets converge toward a common value. The multimodel approach, by its nature, allows to560

take over the role of the EnKF by dynamically preserving the required diversity.

3.5 Required EnKF perturbations

If the different sources of uncertainty along the hydrometeorological modeling chain are not explic-

itly accounted for by dedicated tools, the EnKF has to compensate for them. One way to achieve565

reliability is to increase the level of perturbation to the input. However, there is no obvious way to

know by which amount the uncertainty on input should be overestimated to compensate for the other

uncertainties (Zhang et al., 2015). Thus, to ensure hydrological reliability, one needs to perform a

fastidious calibration of the EnKF hyper-parameters to identify the required noise magnitude (Thi-

boult and Anctil, 2015a).570
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H’ is identical to system H except that it relies on a different optimization of the EnKF. Instead of

maximizing the combined criterion for individual models (see section 2.3.2), the EnKF noise speci-

fication is set lower to values that are more consistent with real uncertainties estimations of observed

climatological and streamflow observations at catchment scale. Namely, precipitation is perturbed575

with a gamma law with a standard deviation of 25% of the mean value, temperatures with a normal

law with a 2◦ standard deviation and streamflow observations with normal law with a 10% standard

deviation.

These noise magnitudes are therefore meant to describe the real uncertainties in forcing and obser-580

vations in the EnKF but do not implicitly account for model error any longer. Also, in a perfect-model

environment, i.e. without any model error, it has been shown that the EnKF spread is representative

of the ensemble mean error with respect to a truth integration (Houtekamer et al., 2009). In other

words, the implementation of the EnKF with realistic input and output perturbations corresponds to

a potential ’perfect’ EnKF implementation if the total uncertainty could be summarized to the input585

and output error and were perfectly identified, i.e. in a perfectly controlled environment with a neg-

ligible model structural error. Consequently, with the system H’, the structural error is theoretically

only deciphered through the multimodel pooling. Yet this needs to be qualified as it is practically

hard to untangle the sources of uncertainty within the actual configuration of the EnKF but it reduces

the risk that the tools’ effects overlap. By choosing these perturbations, the user also gets rid of a590

fastidious EnKF tuning by screening adequate perturbation (e.g. Moradkhani et al., 2005; Thiboult

and Anctil, 2015a) and hence simplifies the system implementation.

In Figure 12, system H’ improves reliability for first lead times by reducing the overdispersion

with a sensible decrease in the ensemble spread from 0.72 mm day-1 to 0.57 mm day-1 for day 1595

without any degradation of the MCRPS (except for 2 catchments; all results are shown on addi-

tional figures online). System H’ maintains a more constant spread and reliability with increasing

lead time as the main sources of uncertainty are more accurately deciphered specifically by their

corresponding tool, leading to an overall better forecast.

600

Finally, it is unreasonable to assume that uncertainties are invariant from one catchment to another.

The comparison of the MEPS forecast and meteorological observations shown that the quality over

the 20 catchments remains close and indicates that the misfit probably originates from the structures

composing the multimodel ensemble that can be maladapted to simulate these particular catchments

or from doubtful streamflow measurements. This leads us think that further improvements in very605

uncertain environments are limited by a preliminary accurate quantification of error.
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Also, considerable efforts have been paid to link performance with estimated times of concentra-

tion, size of catchments, and river slope without any clear results. The authors were not able to relate

any catchment feature to particular results.610

4 Conclusions

This work investigates the contribution of three different probabilistic tools commonly used in hy-

drometeorological sciences. They are used conjointly and alternatively to identify their effect on the

hydrological predictive ensemble and to untangle sources of uncertainty that are aggregated in the615

outputs.

Each of these tools is dedicated to capture a certain aspect of the total uncertainty. A multi-

model approach is used to quantify and reduce explicitly the hydrological model error, the Ensemble

Kalman Filter to decipher the uncertainty related to initial conditions and the meteorological ensem-620

ble to account for the forcing uncertainty.

The experiment shows that important gain may be achieved in terms of accuracy and reliability by

adequately using these techniques. Their action differ substantially by their mean and range of action.

625

The EnKF provides accurate quantification of initial error but fails to maintain reliability as its

effect fades out quickly after model spin up. The information about the structural uncertainty deci-

phered by the EnKF, which is contained in the state variable posterior distribution, is not propagated

with time integration during the forecast step. However, the EnKF remains a key component of

the system as it is the one that provides the most dispersion for the first lead times. This also indi-630

cates that the accumulation of past errors in the initial conditions is a dominant source of uncertainty.

The multimodel approach is able to partially compensate for the EnKF decreasing action by taking

over the structural uncertainty. Moreover, the combination of independent models improve accuracy

as their errors may cancel each other. Lastly, the use of ensemble meteorological forecast contributes635

to the reliability of medium range forecast by representing the meteorological forcing errors.

Their action are complementary as they decipher different nature of uncertainty at different loca-

tions by acting at particular stages in the forecasting process. When combined, they need to be set

according to the tools they are juxtaposed with to prevent overlapping actions. This is particularly640

the case for the EnKF that has important degree of freedom in its implementation. It can eventu-

ally be tuned with more realistic input perturbations by coupling with the multimodel ensemble and
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therefore, facilitate its implementation by relaxing the constraints of optimal perturbation screening.

Possible avenues for further improvements may be achieved through a multimodel state updating645

rather than individual models updating, i.e. by treating initial condition in a single step as a whole.

Lastly, the meteorological forecast shown to be a little underdispersed for this application and could

possibly be improved by applying suitable pre-processing techniques.
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Figure 2. Synthetic results of the 9 systems that are referred by their code letter (see Table 3). The 4 top

radar plots illustrate the MCRPS with the center indicating the climatology reference performance, and the

perimeter representing a perfectly accurate simulation. The 4 bottom plots describe the measure of distance

from perfect reliability, with the center indicating a MaeRD=0.5 while the perimeter corresponds to a perfect

reliability.
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Figure 4. Reliability of the multimodel ensemble (system E) for all individual catchments. The spread repre-

sents the square root of mean ensemble variance averaged over all catchments.
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Figure 6. Reliability of the EnKF multimodel ensemble (system G) for all individual catchments. The spread

represents the square root of mean ensemble variance averaged over all catchments.
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Figure 9. Reliability of the EnKF multimodel ensemble with MEPS forcing (system H)
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Figure 10. Comparative examples of the MCRPS on 8 catchments of the EnKF individual models and the

EnKF multimodel, both using MEPS forcing (system D vs H)
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Figure 11. Comparison of the deviation from perfect reliability of EnKF individual models and the EnKF

multimodel, both using MEPS forcing sorted by increasing EnKF multimodel MaeRD for the first day (system

D vs H)
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Figure 12. Reliability of the EnKF multimodel ensemble with MEPS forcing and lower input-output perturba-

tions (system H’)

31


