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Response to Comment of S.P. Neuman

We thank S.P. Neuman for the valuable comments. His response shows that the derivation of the Radial
Coarse Graining (RCG) approach was not displayed sufficiently clear in the manuscript and previous
publications on that topic. Therefore the concept is displayed in more detail in the manuscript, including
theoretical background, approximations as well as heuristic steps.

The referee objects versus the publication of the work due to ”fundamental inconsistencies” in the basic
approach of RCG. In order to clarify that point, we start by a detailed description of the RCG approach
in general. Afterwards we give a point by point reply to the comments of the referee with reference to
the detailed concept description and changes in the manuscript.

Radial Coarse Graining Approach

The concept of Radial Coarse Graining can be best explained within five major steps:

1. Concept of Coarse Graining for uniform flow

2. Transfer of Coarse Graining to radial flow

3. Overcome non-locality for non-uniform flow

4. Derive effective hydraulic conductivity for well flow

5. Derivation of effective well flow head

Step 1: Coarse Graining for Uniform Flow

The basic concept of Coarse Graining for flow in porous media was introduced by Attinger [2003]. The
author describes the upscaling procedure for uniform flow. The result is an upscaled log-normally dis-
tributed hydraulic conductivity field KCG

λ (~x), which is coarsened according to a cut-off value λ. Fluctua-
tion smaller than λ are filtered out, fluctuation at a scale larger than the filter width λ are still resolved.
The derivation included multiple points:

1. Starting point is the steady state head distribution for single-phase, incompressible flow through
a heterogeneous medium: −∇ (K(~x)∇φ(~x)) = ρ(~x), with K(~x) being the hydraulic conductivity,
φ(~x) the hydraulic head and ρ(~x) the source/sink term in d-dimensional space.

2. Hydraulic conductivity is modelled as spatial random function with a log-normal distribution:
K(~x) = K0 exp f(~x), with f(~x) being normally distributed. It is further assumed, that K(~x) =
K̄ + K̃(~x) can be separated into a constant mean value K̄ and a spatially depending fluctuation
term K̃(~x) with zero mean.

3. A filter function 〈.〉λ is defined based on the parameter λ, which resolves all fluctuation larger than
λ and filters out those smaller than λ.

4. The filter is applied to the head equation and thus to the hydraulic head distribution, which results
from the stochastic description of the hydraulic conductivity. The filtered head equation is than
solved in Fourier space.

5. After mathematical treatment, the author results in an expression whose ”Fourier-back-transform
[...] yields a non-local resolution dependent hydraulic conductivity tensor as found as well by
Neuman and Orr [1993]”. The expression is simplified by evaluating the hydraulic conductivity
tensor at a specific point in Fourier space ~q = 0, ”which corresponds to localization in the work of
Neuman and Orr [1993].”

6. The Fourier back-transformation of the filtered head equation reads in real space after localization:

−∇
(
K̄ + 〈K̃(~x)〉λ

)
∇〈φ(~x)〉λ + δK̂eff(~q = 0, λ)∇〈φ(~x)〉λ = 〈ρ(~x)〉λ , (1)

where δK̂eff is the scale-dependent effective hydraulic conductivity tensor which is induced by small
scale heterogeneities varying on typical scales smaller than λ.

7. The upscaled hydraulic conductivity for the filtered head equation reads KCG
λ (~x) = Keff(λ) +

2



〈K̃(~x)〉λ, where the effective mean value is Keff(λ) = K̄ + δK̂eff(~q = 0, λ) in lowest order perturba-
tion.

8. Explicit results for δK̂eff are first evaluated in lowest order perturbation. Then, renormalization
group analysis is applied by extending the calculations to higher order perturbation theory. Attinger
[2003] results in the closed form expression for the effective mean value

Keff(λ) = KG exp

(
σ2

(
1

2
− 1

d

))
exp

(
1

d
σ2

(
`2

`2 + λ2/4

)d/2)
, (2)

where σ2 is the variance and ` is the correlation length of the unfiltered hydraulic conductivity
distribution K(~x); d is the dimension of space.

9. The filtered hydraulic conductivity distribution KCG
λ (~x) is still a log-normal distributed quantity.

Attinger [2003] showed, that the variance 〈σ2〉λ and the correlation length 〈`〉λ of the filtered
field KCG

λ (~x) can be expressed by the variance σ2 and the correlation length ` of the unfiltered
conductivity field K(~x):

〈σ2〉λ ≡ σ2

(
`2

`2 + λ2/4

)d/2
〈`〉λ ≡

(
`2 + λ2/4

)1/2
(3)

Step 2: Transfer of Coarse Graining Approach to Radial Flow and the Problem of Non-locality for
Non-uniform Flow

The basic concept of Coarse Graining can be applied to non-uniform flow straight ahead. The critical
step when transferring the results of Attinger [2003] to radial flow is the localization of the non-local
resolution dependent hydraulic conductivity tensor δK̂eff (point 5, step 1).

For uniform flow, the assumption of constant pressure gradient ∇φ(x) holds at least at the coarser scale.
The gradient term and the non-local resolution dependent hydraulic conductivity tensor can be separated.
And localization can be applied to δK̂eff . For non-uniform flow, the basic assumption of constant flux is
not valid any more.

Step 3: Heuristic Approach to Overcome Non-Locality

A heuristic approach is taken to overcome the limitation of non-locality. The basic idea it to ask, how
to achieve a quasi-constant pressure gradient, in order to allow a localization. For well flow, the answer
is given by adapting the size of the volume elements over which flow takes place, which corresponds to a
change in the coordinate system.

The head gradient in well flow is proportional to the reciprocal of the distance r to the well: ∇h(r) =
h(r)−h(r+∆r)

∆r ∝ 1
r . The gradient is constant for volumes of size proportional to r. Thus, a new coordinate

system with a constant head gradient must have cells with increasing volume relative to r. Figure 1 gives
an illustration of the modified coordinate system.

The changed coordinate system impacts on the scaling procedure and the parameter λ. For uniform flow,
λ is constant in a equidistant Cartesian coordinate system. Adapted to well flow, the scaling parameter
needs to be proportional to r, because the filter width increases with distance to the well.

Under the assumption of the adapted coordinate system the localization can be performed and so the fol-
lowing steps of the Coarse Graining procedure. The consequence for the upscaled hydraulic conductivity
field is a change in the scaling parameter λ = 2ζr, where ζ is a factor of proportionality. The mean value
Keff(r) is radially depending and the filtered log-normal distributed field in d-dimensions reads

KRCG
r (~x) = Keff(r)+〈K̃(~x)〉r = KG exp

(
σ2

(
1

2
− 1

d

))
exp

(
1

d
σ2

(
1

1 + ζ2r2/`2

)d/2)
+〈K̃(~x)〉r . (4)

The filtered field KRCG
r (~x) can be understood as an upscaled hydraulic conductivity, which gives the

same drawdown behaviour under well flow conditions as the originally unfiltered hydraulic conductivity
field K(~x). The filtered field KRCG

r (~x) still contains spatial heterogeneity and local fluctuations, but
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Figure 1: Right: Cartesian coordinate system representation; hydraulic head gradients can be assumed
constant at every cell for uniform flow; scaling parameter λ is constant. Left: Well flow adapted
coordinate system representation with increasing cell size relative to the distance to the well r;
hydraulic head gradients can be assumed constant at every cell for well flow.

reduced to the amount relevant to the pumping test. The coarsening is constructed to filter only those
information out, which are not seen by the pumping test.

The step was presented by Schneider and Attinger [2008]. It is not performed in a mathematically
straight way, but problem adapted to well flow conditions.

Step 4: From Spatially Variable towards Effective Hydraulic Conductivity

Spatial heterogeneity is still resolved in KRCG
r (~x), although reduced to the amount relevant to the pump-

ing test. Aiming at deriving an effective description of the hydraulic conductivity for well flow condition,
a further step of averaging is necessary. Thereby two different aspects are of interest: (i) an effective
description of well flow conductivity for an ensemble and (ii) effective description of well flow conductivity
for an individual field.

A result for an effective ensemble description can be derived by averaging KRCG
r (~x) appropriate to well

flow condition. The averaging rule is determined by the boundary condition at the well.

In the following, we focus on 2D since the manuscript refers to two-dimensional well flow. Hydraulic
conductivity is replaced by its depth average, the transmissivity T . The averaging rule at the well is
given by the harmonic mean [Dagan, 1989]. The harmonic mean RCG-transmissivity can be calculated
via the theoretical description making use of the variance of the coarsened transmissivity 〈σ2〉r from
Eq. (3) adapted to well flow with λ = 2ζr:

TRCG
H (r) = TG exp

(
−〈σ2〉r/2

)
= TG exp

(
−1

2

σ2

1 + ζ2r2/`2

)
. (5)

The general procedure is identical for three-dimensional anisotropic hydraulic conductivity as discussed
in Zech et al. [2012].

An effective description of well flow transmissivity for an individual field can be derived from TRCG
H (r).

The behaviour of individual fields is different especially at the well due to a lack of ergodicity there.
The local transmissivity at the well Twell is not identical to the harmonic mean TH as expected for the
ensemble, but refers to the specific value of transmissivity at the well location. An adapted radial coarse
graining transmissivity accounts for local effects by replacing the harmonic mean TH = TG exp

(
− 1

2σ
2
)

by Twell. In Eq. (5) this refers to substituting the variance by − 1
2σ

2 = lnTwell − lnTG.
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Step 5: Effective Well Flow Head

The final step of the RCG approach is the derivation of the effective well flow head hefw(r). The effective
RCG-transmissivity (Eq. 5) is inserted to the deterministic well head equation,

0 =

(
1

r
+

d lnTRCG
H (r)

dr

)
dh

dr
+

d2h

dr2
. (6)

The analytical solution of Eq. (6) for two-dimensional flow is given by

hefw(r) =− Qw
4πTG

exp
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2
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Γ
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2
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− Γ
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1 + ζ2R2/`2
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Qw
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Γ
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2

1
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σ2

2

1
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+ hR ,

(7)

where Qw is the pumping rate, TG is the geometric mean, σ2 is the log-transmissivity variance, and ` is the
correlation length; ζ is the factor of proportionality determined to be 1.6 and R is an arbitrary distance to

the well, where the hydraulic head h(R) = hR is known. Γ is the exponential integral Γ(x) =
∫ x
∞

exp(z)
z dz.

The effective well flow head for the ensemble behaviour can be adapted to single realizations similar to
the RCG transmissivity. The harmonic mean TH is replaced by the local transmissivity at the well Twell

by substituting − 1
2σ

2 = lnTwell − lnTG in Eq. (7).

Step 5 derived for two-dimensional well flow (Eq. 7) represents the achievement of the Technical Note
under consideration (manuscript section 2.3, appendix). Steps 1 is published in Attinger [2003], steps 2-4
are presented in the work of Schneider and Attinger [2008] for 2D. Steps 4 and 5 are discussed in the
work of Zech et al. [2012] for well flow in 3D. The latter were able to show the appropriateness of the
approach by comparison with numerical pumping test simulations. The same for 2D well flow is one
major issue of the current manuscript.

Detailed Response to Referee’s Comments

In this technical note the authors (a) develop an analytical solution for mean steady state draw-
down under horizontal flow to a well withdrawing water from a randomly heterogeneous aquifer
at a constant rate and (b) suggest ways to evaluate properties of aquifer transmissivity on the
basis of measured drawdowns. Their analysis is based on a Radial Coarse Graining (RCG)
approach described in Schneider and Attinger [2008]. It considers two versions of coarse
grained transmissivity, termed ensemble and local, given in parametric form as functions of
radial distance to the well. The authors then propose ways to determine the corresponding
parameters on the basis of measured drawdowns.

To properly review this note for HESS I found it necessary to study the above work of Schneider
and Attinger (SA). Here I discovered what appear to be fundamental inconsistencies in their
RCG approach. The development in SA starts with a stochastic representation of 2D steady
flow in a random transmissivity field toward the well, subject to deterministic inner and outer
boundary conditions. As we all know, this stochastic head equation embodies two physical
principles, conservation of (incompressible) water volume and Darcy’s law. RCG a la SA
consists of upscaling transmissivities through weighted spatial averaging with a weight function
that depends on radial distance. The resulting spatially averaged transmissivity is considered to
be deterministic. Replacing transmissivity in the original stochastic equation with its upscaled
version thus renders this equation deterministic in what the authors consider, and label, RCG
drawdown. It is this ”RCG” equation that Zech and Attinger rely on in the technical note
under review.

Unfortunately, the latter RCG equation is not consistent with the two physical principles
on which the original stochastic equation rests. To preserve these principles SA should have
applied RCG to the original stochastic head equation, not just to transmissivity. Averaging the
original equation would have resulted in a modified head equation, preserving the underlying
physics, but including a new integro-differential term with an integrand that contains both
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transmissivity and hydraulic gradient. This non-local cross term would be equivalent to the
residual flux term in the probabilistically averaged stochastic head equation of Neuman and Orr
[1993]. By (inadvertently?) dropping this mixed integro-differential term, SA have introduced
a bias into their resulting RCG head equation the magnitude of which could be large or small,
depending on circumstances. We know from subsequent numerical solutions of the Neuman
and Orr stochastic moment equations that ignoring their residual flux, as has been common
in the stochastic literature, may result in unjustifiably large biases.

With the detailed recapitalization of the concept of RCG we aim to elucidate the ”fundamental inconsis-
tencies” of the Radial Coarse Graining approach derived by Schneider and Attinger [2008] as mentioned
by the referee. As the referee describes, the derivation of the RCG-transmissivity starts with a stochastic
representation of transmissivity as spatial random function with a log-normal distribution. The major
step consists of upscaling transmissivities through weighted spatial averaging with a weight function that
depends on radial distance, resulting in a deterministic spatially averaged transmissivity.

As a first point, we want to specify that ”the spatially averaged transmissivity” is not replaced in the
original stochastic equation. The RCG-drawdown is the result of the deterministic head equation con-
sidering the transmissivity not constant, but radial depending. Thus, the ”RCG-equation” as called by
the referee, is an independent physical equation and thereby embodies the two physical principles, con-
servation of water volume and Darcy’s law. The equation is not meant to replace the original stochastic
equation.

The procedure of upscaling was applied to the head equation with spatially variable transmissivity
(step 1). As mentioned by the referee, the averaging procedure leads to a new non-local integro-differential
term (step 2). This term is not dropped, but treated in an heuristic way (step 3) to result in a filtered
transmissivity field, which still resolves spatial heterogeneity, but at coarser scale. In order to gain an
effective well flow transmissivity, spatial averaging is applied. The result is a mean RCG-transmissivity
depending on the distance to the well, but not containing local fluctuation (step 4). The mean RCG
transmissivity is not meant to fulfil the original head equation, but is constructed to reproduce the ensem-
ble mean drawdown of pumping tests in heterogeneous media, in dependence of the statistical parameters
of the underlying log-normally distributed hydraulic conductivity/transmissivity fields. This drawdown
description (effective well flow solution) is derived by solving the head equation under well flow condition
with the effective mean RCG-transmissivity (step 5 and section 2.4 in the manuscript). The closed form
description of the effective well flow head enables to estimate the parameters of aquifer statistics by
comparison with simulated and/or measured drawdowns.

We are aware that the adaption of Coarse Graining from uniform to radial flow conditions was not
performed in a rigorous mathematical way, but includes heuristics steps, which are well-considered and
adapted to the problem at hand. The assumptions made are physically motivated and verified by numeri-
cal proof. The effective well flow head is compared with ensemble mean drawdowns of simulated pumping
tests in heterogeneous media. The very well match confirmed the appropriateness of the conjectures taken
in the RCG-approach.

Since it appears that the derivation of the Radial Coarse Graining approach was not displayed sufficiently
clear in the manuscript and previous publications, the manuscript was extended by a condensed form
of the concept description as given in the previous section. Section 2 was expanded with an additional
subsection on the basic concept of coarse graining (section 2.2) and a modification of section ”Radial coarse
graining transmissivity” (section 2.3). Accordingly, minor adaption were performed in the introduction
and in subsection 2.4.

A lesser but not insignificant issue with RCG is the treatment of RCG transmissivity as
deterministic: there is nothing in the SA approach to guarantee that weighted volume averaging
of randomly varying transmissivity would itself not be random, albeit with a lesser variance
(but longer correlation scales).

We agree with the referee, that the weighted volume average of a randomly varying transmissivity is itself
random, with a lesser variance but longer correlation scales. This is exactly what is stated by Attinger
[2003] (step 1, point 9). A note on that is added to the manuscript (page 6, lines 70 – 72). The same is
valid for Radial Coarse Graining (step 3). However, the derivation of an effective mean transmissivity for
well flow includes averaging (step 4), which renders the RCG-transmissivity deterministic. An explanation
on this issue is added to the manuscript (page 6 and 7, first two paragraphs of section 2.3).
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On a minor note, it would have been fair for Zech and Attinger to juxtapose their proposed
pumping test interpretation method with that of Neuman et al. [2004].

We thank the referee for the advise to recapitulate the results of Neuman et al. [2004] and juxtapose the
work to ours. It helped to improve the manuscript significantly, especially with respect to the multi-point
strategy to analyze ’measured’ drawdown data. It inspired us to do a similar analysis, which is added to
the manuscript as section 4. Details are provided in the response to the other referee.

The work of Neuman et al. [2004] was juxtaposed to the proposed pumping test interpretation method
in the introduction by stating shortly the approach of Neuman et al. [2004] and the differences to our
approach (page 3, lines 94 – page 4, line 12). Furthermore, Neuman et al. [2004] stated similar regions of
impact for variance and correlation length. Their results support our findings, that T (r) = TG for r ≥ 2`
and T (r)→ TH for r → rw. A statement on that was added to section 2.5 (page 9, lines 89–90).

I regret that, given the above fundamental inconsistencies, I cannot recommend publication of
the technical note by Zech and Attinger in HESS.

We hope we could clarify the points mentioned by the referee as ”fundamental inconsistencies”. We
are aware of the fact, that the RCG-approach is not a mathematical rigorous one, but a problem-
adapted based on reasonable physical assumptions. The comparison with numerical simulations showed
an extremely good match between the RCG-hydraulic head solution and the simulated ensemble mean
drawdown, which we feel underlines, that our approach has its value for 2D pumping test interpretation.

Response to Comment of P. Trinchero

First, we thank the referee for his fruitful comments, which helped to improve the manuscript a lot.

This version of the paper is mostly focused on assessing the accuracy of the estimates obtained
when applying the solution over the ensemble. It is just a personal opinion, but I do not find
this part of the document particularly interesting as (i) effective flow parameters have been
extensively studied by lots of previous works (e.g. Sanchez-Vila et al. [2006] and references
therein) and (ii) the estimation of variance and correlation length from the ensemble is a nice
exercise but has no real applicability.

We agree with the reviewer, that the application of the solution to single realizations is more interesting
with regard to the interpretation of field pumping test. The part of the paper, where the solution is tested
against the ensemble mean, is rather of technical nature and therefore kept short. The corresponding
section 3.2 in the manuscript aims to confirm the appropriateness of the Radial Coarse Graining (RCG)
approach for interpreting pumping test in heterogeneous media by showing the agreement with well known
effective parameters for well flow. It can be understood as the numerical proof of the hypothesis taken
in the derivation of the RCG approach. We feel, that this is necessary, specifically with regard to the
comment of the other referee S.P. Neuman. It is further aimed to show how the stochastic parameters of
the log-normal distributed media can be directly estimated from drawdown data without going a detour
on effective or equivalent transmissivity descriptions or using type curves.

As I said, I think that the real added value of this work is when it is applied to single realiza-
tions. Thus, I think that the examples presented in the document are not really exhaustive.
For instance, the solution is tested only over a few realizations of set A (Table 1), which has
a relatively small variance. What would happen with more challenging realizations (e.g. set
C/D or even E/F)? Also, from the two selected realizations we observe some obvious (but
still interesting) effect; i.e. when the contrast of transmissivity between the near and far field
is modest, almost no information can be inferred whereas when this contrast increases, the
accuracy of the estimation also increases. I think that this need to be analyzed in a more
rigorous way for instance by using (individually) the whole set of realizations. Scatter plots

of Twell/TG vs. ˆ̀/` would help to get insight into the range of applicability of the solution and
its dependence on the contrasts of transmissivity.

As recommended by the reviewer, we expanded the analysis of single realizations, in particular for highly
heterogeneous media (Ensemble D with σ2 = 2.25 and Ensemble E with σ2 = 4). Inspired by the analysis
of virtual pumping test campaigns as done e.g. by Neuman [2004], Copty and Findikakis [2004], Firmani
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[2006], we developed and tested a sampling strategy. Additional pumping test simulations were conducted
to test the feasibility of the effective well flow method for interpreting a series of steady state pumping
tests within a single aquifer.

The procedure as well as results are presented in the newly created section 4, including new Figures 5
and 6 and Table 2. Accordingly, minor adaption were necessary in the introduction (page 4, lines 19–21).
The last paragraph of section 3.3 was removed, since the general statement is exactly what is shown in
detail in section 4.

The referee further suggests to present results for the whole set of realizations, e.g. by scatter plots.
We see the point, that effects observed in single realizations are difficult to interpret with respect to the
entire ensemble. We aimed to give credit to that point by presenting a boxplot of the estimation results
for 100 realizations in Figure 4. However, the plot might not have provided as much information as we
wanted it to. We tested the proposed scatter plots, but they are difficult to interpret and do not provide
additional information. Instead we tested histogram plots for the estimation results of the entire ensemble
of N = 5000 realizations. The histogram plots better support the discussion in section 3.3. Therefore,
we modified Figure 4 and substituted the barplot by the histogram plots (page 22). Minor adaption were
made in the corresponding paragraph in section 3.3 and the caption of Figure 4.

I have also two minor comments:

• a differential operator is missing in eq.(2) and

• I think that set H of Table 1 is never used.

The differential operator was added in Eq. (2) (page 4, line 27) and set H was removed from Table 1
(page 18).

Additional Major Changes

We aim to adapted the title: ”Analytical Drawdown Solution for Steady State Pumping Tests in Two-
dimensional Isotropic Heterogeneous Aquifers” instead of ”Technical Note: Analytical Solution for the
Mean Drawdown of Steady State Pumping Tests in Two-dimensional Isotropic Heterogeneous Aquifers”.
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Abstract.

A new method is presented which allows to interpret steady state pumping test in heterogeneous

isotropic transmissivity fields. In contrast to mean uniform flow, the pumping test drawdowns in het-

erogeneous media cannot be described by a single effective or equivalent value of hydraulic trans-

missivity. A radially depending description of transmissivity is required, including the parameters5

of aquifer heterogeneitylog-transmissivity: mean, variance and correlation length. Such a model is

provided by the upscaling procedure Radial Coarse Graining, which describes the transition of near

well to far field transmissivity effectively. Based on the Radial Coarse Graining Transmissivitythis

approach, an analytical solution for a steady state pumping test drawdown is derived. The so-called

effective well flow solution is derived for two cases: the ensemble mean of pumping tests and the10

drawdown at an individual heterogeneous transmissivity field. The analytical form of the solution

allows to inversely estimate the parameters of aquifer heterogeneityfrom pumping test data. This is

shown making use of virtual pumping test datatests, for both cases the ensemble mean drawdown

and pumping tests at individual transmissivity fields. The effective well flow solution reproduces the

drawdown for two-dimensional pumping tests in heterogeneous media and in contrast to Thiem’s15

solution for homogeneous media. Multiple pumping tests at an individual transmissivity fields, com-

bined in a sampling strategy, are analyzed making use of the effective well flow solution to show

that all statistical parameters of aquifer heterogeneity can be inferred under field conditions. Thus,

the presented method is a promising tool to estimate parameters of aquifer heterogeneity, in partic-

ular for the variance and horizontal correlation length of log-transmissivity fields from steady state20

pumping test measurements.

1



1 Introduction

Pumping tests are a widely used tool to identify horizontal hydraulic conductivity, which is the

parameter determining the groundwater flow velocity. Analytical solutions of the radial flow equation

are used in practice to analyze measured drawdowns. In general, these solutions assume a constant25

homogeneous hydraulic conductivity like Thiem’s solution for steady state (Thiem, 1906):

hThiem(r) =− Qw

2πDKh
ln
r

R
+h(R) . (1)

Thiem’s solution (1) gives the hydraulic head hThiem(r) depending on the radial distance r from

the well for homogeneous horizontal hydraulic conductivity Kh. It is valid in a confined aquifer of

thickness D with fully penetrating well and a constant discharge Qw, h(R) is a known reference30

head at an arbitrary distance R from the well.

In large scale pumping tests the vertical extension of the aquifer is negligible compared to hor-

izontal aquifer extend. Thus, flow is assumed to be horizontal and modelled as two-dimensional.

Hydraulic conductivity is then replaced by transmissivity, which is defined as the product of con-

ductivity and aquifer thickness T =KhD. In the following, transmissivity will be used instead of35

horizontal hydraulic conductivity, since the focus of the work will be on two-dimensional well flow.

Most natural aquifers exhibit geological heterogeneity in the sedimentary composition, which

evolved from the complex geomorphological processes through which they were formed. In partic-

ular, transmissivity shows a strong spatial variability. Values measured in the field vary over orders

of magnitude (Gelhar, 1993). Geostatistical distributions are generally used to capture the effects40

of aquifer heterogeneities. Transmissivity T (x) is modelled as log-normally distributed spatial ran-

dom function: logT (x) = Y (x) is normally distributed with a Gaussian probability density func-

tion pdfY (x) = 1
2πσ2 exp

(
− (x−µ)2

2σ2

)
in uni-variate form with µ and σ2 being the mean and the

variance of Y , respectively. The correlation structure of transmissivity in space is captured by a co-

variance model Cov [T (x+ s),T (x)] = exp
(
2µ+σ2 + CVY (s)

)
.45

In the stochastic framework, the solution of the radial flow equation with a log-normal distributed

transmissivity is also a random spatial function. Since the solution of the stochastic differential equa-

tion is out of scope, the focus of investigation was on homogeneous substitute values for describing

well flow effectively. As a first approach, Thiem’s solution (1) was applied to pumping tests in het-

erogeneous media. However, this requires a representative transmissivity value T for the whole range50

of the depression cone (Matheron, 1967), which does not exist. Effective or equivalent descriptions

of transmissivity in pumping tests were investigated, e.g. by Desbarats (1992); Sánchez-Vila et al.

(1999); Neuman et al. (2007); Dagan and Lessoff (2007); Schneider and Attinger (2008) and many

more. For a detailed review see Sánchez-Vila et al. (2006).

In contrast to mean uniform flow, the pumping test drawdowns in heterogeneous media cannot be55

described by a single constant value of transmissivity (Matheron, 1967). Different transmissivities

characterize the behavior near and far from the well: the representative value close to the well is
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the harmonic mean of the log-normal transmissivity TH = exp
(
µ− 1

2σ
2
)

= TG exp
(
− 1

2σ
2
)
. With

increasing distance from the well, the drawdown behaviour behavior is characterized by the effec-

tive transmissivity for uniform flow, which is the geometric mean TG = exp(µ) for flow in two60

dimensional isotropic porous media.

It seems obvious, that a representative description of transmissivity for well flow needs to be a ra-

dially depending function, which interpolates between the harmonic and the geometric mean. The

equivalent transmissivity Teq is a well established approach of a radially depending description, visu-

alized in Fig. 1a. Teq(r) =− Qw

2π(h(r)−h(rw)) ln r
rw

was derived from Thiem’s solution (1) (Matheron,65

1967; Indelman et al., 1996; Dagan and Lessoff, 2007). In this sense, the equivalent transmissivity

Teq is defined as the value for a homogeneous medium, which reproduces locally the same total

outflow as observed in the heterogeneous domain of radius r. Teq is strongly impacted by the refer-

ence point rw and the corresponding head h(rw), which is generally chosen to be the drawdown at

the well h(rw). Therefore, the equivalent conductivity stays close to the harmonic mean TH, which70

is representative for the drawdown behaviour behavior at the well (Fig. 1a). It takes more than 20

correlation length for Teq to reach the far field representative value of TG.

It is important to mention, that Teq is not constructed to reproduce the drawdown which was

used for calculating Teq. Strictly speaking, replacing the heterogeneous transmissivity field with the

equivalent transmissivity in a single forward model does not give the drawdown, with which Teq75

was constructed as visualized in Fig. 1b. Instead heq(r) stays close to Thiem’s solution with TH as

homogeneous substitute value.

Schneider and Attinger (2008) introduced a novel approach to describe well flow effectively. They

derived a radial adapted transmissivity TRCG(r) by applying the upscaling technique Coarse Grain-

ing to well flow. TRCG(r) does not only depend on the radial distance r but also on the statistical80

parameters of aquifer heterogeneity TG, σ2 and `. TRCG(r) captures the transition from near well to

far field representative transmissivities, based on the radial distance to the well and the parameters

of aquifer heterogeneity, as visualized in Fig. 1a.

In this study, an analytical solution for the hydraulic head hefw(r) is presented, which is based

on the Radial Coarse Graining transmissivity TRCG(r) as an extension to the work of Schneider85

and Attinger (2008). Similar work has been done by (Zech et al., 2012) for pumping test in three

dimensional porous media. The effective well flow solution hefw(r) describes the mean depression

cone of a pumping test in two dimensional heterogeneous media effectively. It can be interpreted as

an extension of Thiem’s formula (1) to log-normal distributed heterogeneous media. It accounts for

the statistical parameters TG, σ2 and ` and thus allows to inversely estimate them from measured90

drawdown data. In contrast to existing head solutions for well flow, hefw(r) is not limited to low

variances, but is applicable to highly heterogeneous media with variances σ2� 1.

In a similar approach Neuman et al. (2004) presented a graphical approach to estimate the sta-

tistical parameters of random transmissivity on the basis of steady state head data. The authors
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constructed a mathematical description for the apparent transmissivity Ta(r) as function of the95

radial distance to the well r from theoretical findings of near and far field representative trans-

missivity and a cubic polynomial interpolation in between. From Ta(r) the authors constructed

type curves for the hydraulic head, depending on the variance σ2 and the correlation length `.

Neuman et al. (2004) further gave a multi-point strategy to analyze virtually measured drawdown

data by type curve matching including parameter estimation.100

The Radial Coarse Graining approach is similar to that of Neuman et al. (2004) in the idea of

deriving a solution for the head drawdown for well flow depending on the statistics of the random

transmissivity using an effective radial depending transmissivity. Major differences are: (i) the Ra-

dial Coarse Graining Transmissivity TRCG(r) is not based on results of Monte Carlo simulations,

but is derived from upscaling with physically motivated approximations; (ii) the functional form105

of TRCG(r) is different from the expression for Ta of Neuman et al. (2004) ; (iii) the effective well

flow solution hefw(r) is derived analytically by solving the head equation; providing a closed form

mathematical expression instead of type curves; (iv) inverse parameter estimation can be done by

minimizing the difference between the measured drawdown data and hefw(r) instead of type curves

matching. The effective well flow method will be tested in a similar multi-point sampling strategy110

to analyze measured drawdown data of individual heterogeneous transmissivity fields as done by

Neuman et al. (2004) as well as others (Copty and Findikakis, 2004; Firmani et al., 2006) .

The work is organized the following: Sect. 2 is dedicated to the method of Radial Coarse Graining

and the derivation of the effective well flow head solution. Thereby, The concept of Radial Coarse

Graining is explained in detail. Furthermore it is distinguished between the effective well flow solu-115

tion for an ensemble mean and single realizations of heterogeneous transmissivity fields. Section 3

contains the application of the effective well flow solution to simulated pumping tests. It is shown,

that hefw(r) reproduces the drawdown in heterogeneous media and can be used to inversely estimate

the statistical parameters of aquifer heterogeneity for both, ensemble mean and single realizations. In

Sect. 4, a sampling strategy is presented to infer the parameters of aquifer heterogeneity of an indi-120

vidual transmissivity fields from multiple pumping tests at multiple locations making use of hefw(r).

Concluding remarks are given in Sect. 5.

2 Radial coarse graining transmissivity and effective well flow head

2.1 Steady state well flow with radially depending transmissivity

The drawdown of a steady state pumping test with a radially depending transmissivity T (r) is given125

as the solution of the differential equation:

0 = T (r)

(
1

r

dh

dr
+

d2h

dr2

)
+

dT (r)

dr

dh

dr
=

(
1

r
+

dlnT (r)

dr

)
dh

dr
+

d2h

dr2
. (2)
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The equation can be solved in dh
dr by separation of variables, resulting in dh

dr = C1
1

rT (r) . The hy-

draulic head h(r) is then given as the solution of the integral

h(r2)−h(r1) = C1

r2∫

r1

1

rT (r)
dr. (3)130

The integration constant C1 is determined by the boundary condition. Supposing a constant flux

boundary condition at the well, givesQw =−2πrwT (rw) dh
dr (rw) =−2πrwT (rw) C1

rw T (rw) and thus,

C1 =−Qw

2π .

Equation (3) is the general solution of the radial flow equation (2) for radially depending trans-

missivity, independent of the functional form of T (r).135

When comparing Eq. (3) with the definition of the equivalent transmissivity, it becomes obvi-

ous that Teq is not constructed to solve the equation. The combination of both formulas results in
∫ r2
r1

1
rT (r) dr = 1

Teq(r)
ln r1

r2
, which is only fulfilled, when T (r) is constant in r.

2.2 Concept of Radial Coarse Graining

A radially depending transmissivity for log-normal distributed media with Gaussian correlation140

structure was derived by Schneider and Attinger (2008), denoted as the Radial Coarse Graining

Transmissivity TRCG(r). It was derived making use of the upscaling procedure Coarse Graining,

introduced for uniform flow by Attinger (2003). The basic idea of Radial Coarse Graining is to

perform a spatial filtering on the flow equation which is appropriate to the non-uniform flow character

of a pumping test. The filter was chosen proportional to the radial distance from the well. Hence, the145

filter length is very small close to the well, so nearly no filtering is applied and the heterogeneity of

the local transmissivities is resolved. Far away from the well, the filter volumes are very large and

the local heterogeneous transmissivity values are replaced by the effective value for uniform flow.

Detailed discussions on Radial Coarse Graining can be found in Schneider and Attinger (2008)and

Zech et al. (2012).150

A radial-depending transmissivity for log-normally distributed media with Gaussian correlation

structure was derived by Schneider and Attinger (2008), denoted as TRCG(r). It is based on the up-

scaling approach Radial Coarse Graining which follows the basic idea of a spatial filtering of the

flow equation appropriate to the non-uniform flow character of a pumping test.

The approach was further developed for three-dimensional well flow by Zech et al. (2012) introducing155

an effective well flow solution for the hydraulic head. Similarly, the concept of Radial Coarse Grain-

ing for two-dimensional well flow will be expanded in the following. The process can be best ex-

plained within five major steps:

1. Coarse Graining for uniform flow

2. Transfer of Coarse Graining to radial flow conditions160
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3. Overcome non-locality of head equation for non-uniform flow

4. Effective Radial Coarse Graining transmissivity

5. Derivation of effective well flow head

The first three steps will be discussed shortly in the following. Step 4 and 5 will be explained in

detail in Sec.2.3 and Sec. 2.4.165

The Coarse Graining approach for uniform flow (step 1) was introduced by Attinger (2003) , in-

cluding derivation, mathematical proof and numerical simulations. The author started at a spatially

variable transmissivity field T (x) and derived a filtered version TCG
λ (x), where fluctuation smaller

than a cut-off length λ are filtered out. The resulting upscaled Coarse Graining transmissivity field

TCG
λ (x) represents a log-normal distributed field with a smaller variance 〈σ2〉λ, but larger correla-170

tion length 〈`〉λ. Attinger (2003) showed, that the statistical parameters relate to the parameter of the

unfiltered field by 〈σ2〉λ ≡ σ2 `2

`2+λ2/4 and 〈`〉λ ≡
(
`2 +λ2/4

)1/2
.

The concept of Coarse Graining can similarly be applied to non-uniform flow (step 2). The

critical point when transferring the results of Attinger (2003) to radial flow is the Fourier back-

transformation of the filtered head equation after localization. For uniform flow, this can be done175

due to the reasonable assumption of constant head gradient. For non-uniform flow, this assumption

is not valid and thus, localization is not possible straight ahead.

A heuristic approach is taken to overcome the limitation of non-locality for well flow (step 3).

Conditions of a quasi-constant head gradient are constructed by adapting the size of the volume

elements over which flow takes place. The head gradient in well flow is proportional to the reciprocal180

of the distance to the well:∇h(r) = h(r)−h(r+∆r)
∆r ∝ 1

r . The gradient is constant for volumes of size

proportional to r. The step can be understood as a change from an equidistant Cartesian coordinate

system to a polar coordinate system with cell sizes increasing with distance to the center, where the

pumping well is located. Under this adaption, localization can be performed and so the following

steps of the Coarse Graining procedure.185

The changed coordinate system impacts on the scaling procedure and the parameter λ. For uniform

flow, λ is constant. Adapted to well flow, the scaling parameter needs to be proportional to r, because

the filter width increases with distance to the well, thus λ/2 = ζr. The result is an upscaled log-

normal distributed field TRCG
r (x) with an arithmetic mean TRCG

A (r) and a filtered fluctuation term.

The step was presented by Schneider and Attinger (2008) . It is not performed in a mathematically190

straight way, but problem adapted to well flow conditions.

2.3 Radial Coarse Graining Transmissivity

Spatial heterogeneity is still resolved in TRCG
r (x), although reduced to the amount relevant to the

pumping test. A further step of averaging is necessary to derive an effective description of the trans-
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missivity for well flow conditions. Thereby, two different aspects are of interest: (i) an effective195

transmissivity for an ensemble and (ii) effective transmissivity for an individual field.

Schneider and Attinger (2008) presented two forms of TRCG(r), one for an ensemble of pumping

tests and an adapted version for drawdowns of individual pumping tests, which are different from

the ensemble behaviour due to a lack of ergodicity at the well. The ensemble version of TRCG(r) is

given as200

A result for an effective ensemble description is derived by averaging TRCG
r (x) appropriate

to well flow condition. The averaging rule is determined by the boundary condition at the well,

which is the harmonic mean for two-dimensional well flow (Dagan, 1989) . Thus, the effective mean

transmissivity, noticed by TRCG(r), is calculated via the theoretical description of the harmonic

mean for log-normal distributed fields making use of the variance of the coarsened transmissivity205

〈σ2〉r = σ2

1+ζ2r2/`2 :

TRCG(r) = TG exp
(
−〈σ2〉r/2

)
= TG exp

(
−1

2

σ2

(1 + ζ2r2/`2)

)
, (4)

where r is the radial distance to the well, TG is the geometric mean, σ2 is the variance and ` is the

correlation length of the log-normally distributedtransmissivity T (x) . ζ is a factor of proportionality,

which was determined to be ζ = 1.6, as discussed in detail by Zech et al. (2012).210

TRCG(r) allows a transition from near field transmissivity can be interpreted as interpolating

function between the representative transmissivity at the well TH = TG exp
(
− 1

2σ
2
)

to the far field

value TG depending on the radial distance r, controlled by the correlation length ` (Fig. 1a).

The adapted radial coarse graining transmissivity accounts for local effects of individual pumping

tests and is given by An effective description of well flow transmissivity for an individual field is215

derived from Eq (4). The behavior of individual fields is different especially at the well due to a

lack of ergodicity there. The local transmissivity at the well Twell is not identical to the harmonic

mean TH as expected for the ensemble, but refers to the specific value of transmissivity at the well

location. An adapted radial coarse graining transmissivity accounts for local effects by replacing the

harmonic mean TH = TG exp
(
− 1

2σ
2
)

by Twell. In Eq. (4) this refers to substituting the variance by220

− 1
2σ

2 = lnTwell− lnTG and thus,

T local
RCG(r) = TG exp

(
lnTwell− lnTG

1 + ζ2r2/`2

)
= T

1
1+ζ2r2/`2

well T
ζ2r2/`2

1+ζ2r2/`2

G . (5)

where Twell is the local transmissivity at the well of an individual transmissivity field . T local
RCG(r) was

derived from TRCG(r) by substituting the variance by σ2 =−2ln Twell
TG

. The substitution is derived

from the relation of the variance to the harmonic mean, as asymptotic representative value at the225

well, TH = TG exp
(

1
2σ

2
)
, thus σ2 =−2ln TH

TG
. The theoretical value of TH is than replaced by the

local transmissivity at the wellTwell. Due to the lack of ergodicity at the well for a single realization,

Twell generally does not equal the harmonic mean transmissivity TH of the entire field T (x).
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T local
RCG(r) interpolates between the specific transmissivity at the well Twell and the far field value TG

depending on the radial distance r and the correlation length `.230

2.4 Effective well flow head

Explicit results for the hydraulic head drawdown in steady state pumping test with a radially de-

pending transmissivity can be are achieved by solving the integral in Eq. (3) making use of TRCG(r)

(Eq. 4). Details on the derivation of hefw(r) can be found in the Appendix. A fully analytical solution,

called the The result is the effective well flow head hefw(r) is given by235

hefw(r) =− Qw

4πTG
exp

(
σ2

2

)(
Γ

(
σ2

2

−ζ2r2/`2

1 + ζ2r2/`2

)
−Γ

(
σ2

2

−ζ2R2/`2

1 + ζ2R2/`2

))

+
Qw

4πTG

(
Γ

(
σ2

2

1

1 + ζ2r2/`2

)
−Γ

(
σ2

2

1

1 + ζ2R2/`2

))
+hR , (6)

where r is the radial distance from the well, Qw is the pumping rate, TG is the geometric mean,

σ2 is the log-transmissivity variance, and ` is the correlation length. Again, ζ is the factor of pro-

portionality determined to be 1.6 and R is an arbitrary distance from the well, where the hydraulic240

head h(R) = hR is known. Γ Γ(x) =
∫ x
−∞

exp(z)
z dz is the exponential integral functionwith

Γ(x) =

x∫

∞

exp(z)

z
dz .

Details on the derivation of hefw(r) can be found in the Appendix.

An approximate solution happrox
efw (r) can be is derived from Eq. (6) by making use of an approxi-

mation of the exponential integral function ΓΓ(x). Details are given in the Appendix.245

happrox
efw (r) =− Qw

2πTH
ln
r

R
− Qw

4πTG

(
e
σ2

2 − 1
)

·
(

ln
1 + ζ2R2/`2

1 + ζ2r2/`2
+
σ2

2

1

(1 + ζ2r2/`2)
− σ2

2

1

(1 + ζ2R2/`2)

)
+hR , (7)

hefw(r) is constructed to describe the mean drawdown of a pumping test in two dimensional het-

erogeneous media effectively. The drawdown curve of hefw(r) for a specific choice of parameters

(Ensemble A of Table 1) is given in Fig. 1b in comparison to the equivalent drawdown heq(r), as250

the solution of the radial flow equation using the equivalent transmissivity Teq, based on the same

statistical parameters.

The effective well flow solution hefw(r) can be adapted to analyze individual pumping tests by

using T local
RCG(r) (Eq. 5) instead of TRCG(r) (Eq. 4). The appropriate local effective well flow solutions

hlocal
efw (r) are than given similarly to Eqsis than given by Eq. (6) and (7) with σ2

2 substituted by255

− ln Twell
TG

and TH substituted by Twell.

The local effective well flow solution hlocal
efw (r) can be used to analyze drawdowns of single pump-

ing tests in heterogeneous media as encountered in practice. The solution is adapted to the lack of
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ergodicity at the well, by using transformed parameters Twell, TG and `. The geometric mean TG

and the correlation length ` for a single realization should also be interpreted as local values, not260

necessarily representing the mean values of the entire field, but those of the pumping well vicinity.

Owing to the nature of the pumping test, the drawdown signal does not sample the heterogeneity in

transmissivity in a symmetric way, but the shape of the drawdown is mainly determined by the local

heterogeneity close to well.

2.5 Impact of parameters265

The analytical form of hefw(r) allows to analyze the impact of the statistical parameters TG, σ2 and

` on the drawdown. The drawdown behaviour behavior for different choices of parameters can be

seen in Fig. 2, which is discussed in detail later on.

Every parameter impacts on the drawdown in a different region. The geometric mean TG as rep-

resentative value for mean uniform flow determines the far field behaviourbehavior. The variance270

σ2 determines the drawdown at the well due to the dependence of the near-well asymptotic value

TH = TG exp
(
− 1

2σ
2
)
. The larger the variance the larger are the differences between TG and TH and

the steeper is the drawdown at the well. Whereas, the correlation length ` determines the transition

from near to far field behavior.

The asymptotic behaviourbehavior of hefw(r) can easily be analyzed using approximate functional275

description in Eq. (7): for distances close to the well, thus r� `, hefw(r) converges to Thiem’s

solution with TH as homogeneous substitute value. All terms, except the first one in Eq. (7), tend

to zero or become constant. Thus, they are negligible compared to logarithmic first term for very

small r,

happrox
efw (r� `)≈− Qw

2πTH
ln
r

R
− Qw

4πTG

(
e
σ2

2 − 1
)
·
(

ln
(
1 + ζ2R2/`2

)
+
σ2

2

)
+hR280

≈− Qw

2πTH
ln
r

R
+hR.

For large distances from the well, i.e. r� `, the solution converges to Thiem’s solution with TG as

homogeneous substitute value. The third and fourth term in Eq. (7) tend to zero and cancel out. The

ones in the second term can be neglected, thus

h
approx
efw (r� `)≈− Qw

2πTH
ln
r

R
−
(

Qw

4πTH
− Qw

4πTG

)
· ln
(
ζ2R2/`2

ζ2r2/`2

)
+hR ≈−

Qw

2πTG
ln
r

R
+hR.285

The larger the correlation length ` the longer takes the transition of the drawdown from near well to

far field behaviourbehavior. The influence of ` on hefw(r) vanishes quickly with increasing distance

to the well. The drawdown reaches the far field behavior after approximately two correlation lengths

hefw(r > 2`) = hThiem(r > 2`) with TG as homogeneous substitute value (Fig. 1). b). These findings

are in line with the results of Neuman et al. (2004) .290
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3 Robust estimation of statistical parameters

3.1 Numerical pumping tests

Numerical pumping tests in heterogeneous porous media were generated as artificial measurements.

They serve were used to test the capability of hefw(r) in reproducing the mean drawdown and in es-

timating the underlying parameters of heterogeneity. Pumping tests were simulated using the finite295

element software OpenGeoSys. The software was successfully tested against a wide range of bench-

marks (Kolditz et al., 2012). Results of a steady state simulation with homogeneous transmissivity

are were in perfect agreement with Thiem’s analytical solution Eq. (1).

The numerical grid is was constructed as a square of 256× 256 elements with a uniform grid cell

size of 1m except for cells in the vicinity of the pumping well. The mesh was refined in the range of300

4m around the well, which ensures a fine resolution of the steep head gradients at the well. The well

in the center of the mesh is was included as a hollow cylinder with radius rw = 0.01m. The constant

pumping rate of Qw =−10−4 m3 s−1 is was distributed equally to all elements at the well. At the

radial distance R= 128m a constant head of h(R) = 0m is was applied giving a circular outer head

boundary condition.305

Log-normally distributed, Gaussian correlated transmissivity fields were generated using a sta-

tistical field generator based on the randomization method (Heße et al., 2014). Multiple ensembles

with different statistical parameter values were generated, including high variances up to σ2 = 4

(Table 1). Ensemble A with TG = 10−4 m2 s−1, σ2 = 1 and `= 10m will serve served as reference

ensemble for specific cases. Every ensemble consist consists of N = 5000 realizations, which was310

tested as sufficiently large to ensure ensemble convergence.

Pumping test simulations are were post-processed by performing an angular and an ensemble

average. For every realization i, the simulated drawdown 〈hi(r,φ)〉 at the radial and angular location

(r,φ) in polar coordinates is was averaged over the four axial directions: 〈hi(r)〉=
∑
φj
〈hi(r,φj)〉.

The ensemble mean is was the sum over the angular mean of all individual realizations: 〈h(r)〉=315
∑N
i=1〈hi(r)〉.
Non-linear regression is was used to find the best fitting values for the statistical parameters,

denoted by T̂G, σ̂2, and ˆ̀. The best fit estimates are fitting estimates were determined by minimiz-

ing the mean square error of the difference between the analytical solution hefw(r) and the measured

drawdown samples h(r): minTG,σ2,`

∑
r (h(r)−hefw(r))

2 making use of the Levenberg–Marquardt320

algorithm. The reliability of the estimated parameters is was evaluated using 95%-confidence inter-

vals.

The estimation procedure is was applied to the head measurements at every meter distance starting

at the well up to a distance of 80m. The range beyond 80m is was not taken into account to avoid

boundary effects. The range of 80m includes at least 4 correlation lengths for all tested ensembles,325

which is sufficient to ensure convergence to the far field behaviourbehavior. The question of the
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applicability of hefw(r) on limited head data is of quite complex nature. For a detailed discussion on

that issue the reader is referred to Zech et al. (2015).

3.2 Ensemble pumping test interpretation

We first analyze First, the simulated ensemble means were analyzed making use of the ensemble ver-330

sion of TRCG(r) and hefw(r) (Eqs. 4 and 6). Simulated ensemble means 〈h(r)〉 for multiple choices

of statistical parameters TG, σ2 and ` are visualized in Fig. 2 in combination with hefw(r) for the best

fit fitting parameter estimates T̂G, σ̂2, and ˆ̀. Input parameters as well as inverse estimation results

for all tested ensembles are listed in Table 1.

The best fit fitting estimates show, that all three parameters can could be inferred from the en-335

semble mean with a high degree of accuracy. The deviation of the geometric mean from the input

value is in general less than 10%, only for high variances the deviations are up to 30%. Variances

deviate in a range of 20% and estimated correlation lengths are accurate within 10% of the initial

input parameter.

The confidence intervals of the estimates T̂G and σ̂2 are very small, showing a high sensitivity340

of the effective well flow solution hefw(r) towards geometric mean and variance. The confidence

intervals of the correlation length are larger due to the dependence of the estimate of ˆ̀ on the esti-

mates T̂G and σ̂2. This is due to the fact, that the correlation length determines the transition from

T̂well = T̂G exp
(
− 1

2 σ̂
2
)

to T̂G, which results in larger uncertainties in the estimates of ˆ̀.

3.3 Individual pumping test interpretation345

In the following, pumping test drawdowns of individual transmissivity fields are interpreted based

on the adaption version hlocal
efw (r) as discussed in Sect. 2.4. The drawdowns along the four axial

directions as well as the radial mean for two realizations from Ensemble A (TG = 10−4 m2 s−1,

σ2 = 1, `= 10m) are visualized in Fig. 3a and b.

Both realizations from Fig. 3a and b differ significantly in the value of the local transmissiv-350

ity at the well. The analysis of the transmissivity fields at the well gave “measured” values of

T (a)
well = 0.204× 10−4 m2 s−1 and T (b)

well = 1.11× 10−4 m2 s−1sampled values of < T (a)
well >= 0.204×

10−4 m2 s−1 and < T (b)
well >= 1.11× 10−4 m2 s−1, which is in both cases far from the theoretical

harmonic mean value TH = 0.61× 10−4 m2 s−1 as being the representative value for the near well

behaviourbehavior.355

Inverse estimation results for the realization in Fig. 3a differ for the drawdowns along the four

axial directions 〈h(r,φj)〉 and the radial mean 〈h(r)〉: the estimated geometric mean ranges be-

tween 1.03× 10−4 and 1.45× 10−4 m2 s−1 for the four axial directions, with an average value

of T̂G = 1.17× 10−4 m2 s−1. The estimates for the local transmissivity at the well are between

0.195×10−4 and 0.212×10−4 m2 s−1, with an average value of T̂well = 0.204×10−4 m2 s−1, which360

is exactly the “measured” local transmissivity T (a)
wellsampled local transmissivity< T (a)

well >. The value
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of T̂well = 0.204×10−4 m2 s−1 is equivalent to a local variance of σ̂2 = 3.49. The estimated correla-

tion length ranges between 7.95 and 18.15m, with an average of ˆ̀= 12.77m. The differences in the

estimates for the drawdowns in different direction for the same realization of transmissivity shows

that the parameter estimates reflect local heterogeneity in the vicinity of the well rather than the365

global statistical parameters of the transmissivity field. This was studied and discussed in detail for

pumping tests in three dimensional heterogeneous media by Zech et al. (2015).

Realizations The realization in Fig. 3b does not allow to infer the parameters of variance and

correlation length, due to the similarity of Twell and TG. Near and far field representative transmis-

sivities are nearly identical, thus the pumping test appears to behave like in a homogeneous medium370

(Fig. 3b). However, the behaviour behavior is not representative but a result of the coincidental

choice of the location of the pumping well.

A statistical analysis of the estimation results is presented in Fig. 4 for 100all 5000 realizations

of Ensemble A. Estimation results Histogram on the best fitting estimates in normalized form are

shownas standard box plots, where normalization of results means that they are were divided by375

the input parameters. It can be inferred that the estimate of the geometric mean T̂G is in general

close to the input value TG. A few exceptionally small and large values of T̂G show that the mean

transmissivity observed by a pumping test in the vicinity of the well is not necessary close to the

mean value of the entire transmissivity field. The estimate of the local transmissivity at the well T̂well

from the drawdown data is very close to the “measured” values Twell sampled values < Twell > for380

nearly all realizations. Thus, the method reproduces reproduced very well the local transmissivity

at the well. However, the local value Twell of every realization can be far from the theoretical value

of TH, where both realizations in Fig. 3 gave example. The estimates of the correlation length show

a very large scatter. Exceptionally large and small value for ˆ̀ refer to realizations, where it is was

nearly impossible to infer it due to the similarity of Twell and TG, as for the realization of Fig. 3b. The385

large range of estimated correlation lengths also point towards the fact that ˆ̀of a single drawdown

needs to be interpreted as a highly local value, which is determined by the transmissivity distribution

in the vicinity of the well rather than the distribution of the entire field. However, the median of

the normalized estimated correlation lengths is close to one, pointing to the fact that representative

values can be inferred by taking the mean from multiple pumping tests.390

Representative values of TG, σ2 and ` for individual transmissivity fields can be inferred by

performing pumping tests at multiple location of the field. Thus, the sampled area increases and

the effect of local heterogeneity at the well is reduced. Parameters should be estimated for every test

separately and statistically analyzed. Mean values and the range of estimation results can than be

interpreted as representative for the underlying transmissivity field.395

4 Application Example: Single Aquifer Analysis
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Pumping test campaigns in the field often include the performance of multiple pumping tests within

one aquifer. Drawdown measurements at multiple test locations can be used to gain representative

parameters of the heterogeneous transmissivity field. The sampled area increases and the effect of

local heterogeneity reduces. In the following, it is shown, how mean TG, variance and σ2 σ2 and400

the correlation length ` for of an individual transmissivity fields can be inferred making use of a

sampling strategy in combination with hlocal
efw (r).

4.1 Sampling Strategy

The sampling strategy was constructed as pumping test campaign in a virtual aquifer with heteroge-

neous transmissivity. A series of steady state pumping tests was performed at n different wells. For405

each test, drawdowns were measured at all n wells and at m additional observation wells. A similar

sampling strategy to infer the aquifer statistics from drawdown measurements have been pursued by

e.g. Neuman et al. (2004); Copty and Findikakis (2004); Firmani et al. (2006) .

The used sampling strategy includes n= 8 pumping wells and m= 4 observation wells. The

specific location of all wells are indicated in Fig. 5. All 8 pumping wells are located within a distance410

of 18 m. The observation wells are located at larger distances and in all four directions. The well

locations were designed to gain numerous drawdown measurements in the vicinity of each pumping

well to allow a reliable estimation of Twell (or σ2
local, respectively) and `. The additional observation

wells provide head observations in the far field to gain a representative value for TG. The choice of

the well locations does not interfere with the refinement of the numerical grid at the pumping well.415

Each of the 8 pumping tests was analyzed with hlocal
efw (r) (Sect. 2.4). The best fitting estimates

T̂G, T̂well, and ˆ̀ for all tests were inferred by minimizing the difference between the analytical

solution and the 12 measurements. Additionally, parameter estimates were inferred by analyzing the

drawdown measurements of all tests jointly.

4.2 Aquifer Analysis420

The sampling strategy was applied to fields of all ensembles A-G (Table 1). Results are presented

for two fields: D1 out of Ensemble D (σ2 = 2.25, `= 20 m) and E1 out of Ensemble E (σ2 = 4.0,

`= 10 m). Each field was generated according to the theoretical values defined for the particular

ensemble and afterwards analyzed geostatistically to determine the sampled values. The fields D1

and E1 are visualized in Fig. 5. The drawdown measurements for all 8 pumping tests at both fields425

are given in Fig. 6. The inverse estimates as well as theoretical input and sampling values for the

statistical parameters are summarized in Table 2.

Analyzing the data from all 8 pumping tests at field D1 jointly yields very close estimates of all

parameters T̂G, T̂well (corresponding to σ̂2 = 2.255), and ˆ̀ to the theoretical and sampled values.

The geometric mean estimate is similar for all of the 8 individual pumping tests. In contrast, the430

values of T̂well vary within one order of magnitude. This behavior was expected, since T̂well repre-
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sents the local transmissivity value at the pumping well. The wide range of estimates is a results of

the high variance of the transmissivity field. The estimates of the correlation length ˆ̀differ between

the individual tests within a reasonable range of a few meters. The only exception is the estimate

for pumping at PW5. For this specific pumping test is highly uncertain due to the coincidence of435

the values of T̂well and T̂G, similar to the realizations in Fig. 3b, as discussed in section 3.3. How-

ever, the mean value over the individual tests as well as the estimate from the joint analysis of all

measurements gave reliable estimates for the correlation length.

The analysis of the sampling strategy at field E1 yields similar results as for D1. The geometric

mean values T̂G differ little among the 8 individual pumping tests and for the joint analysis. The440

mean value is double the value as the theoretical one, but close to the sampled geometric mean

(Table 2). The local transmissivities T̂well again vary within one order of magnitude, reflecting the

high variance of the field. The mean and jointly estimated values are higher than theoretical one,

which is in correspondence to the difference in the geometric mean. The estimates of the correlation

length ˆ̀ deviate in a reasonable range of a few meters, which reflects the impact of the location of445

the pumping well with regard to the shape of the correlation structure around the well.

Finally, the analysis shows that representative values of the statistical parameters can be deter-

mined by performing pumping test at multiple locations of an individual transmissivity field. It was

shown, that hefw(r) is feasible to interpret steady state pumping tests in highly heterogeneous fields.

450

5 Conclusions

The analytical effective well flow solution hefw(r) is presented, which can be interpreted as extension

of Thiem’s equation to heterogeneous media. hefw(r) depends on the statistical parameters of log-

normal distributed transmissivity: geometric mean TG, variance σ2 and correlation length `. hefw(r)

was derived based on the Radial Coarse Graining transmissivity TRCG(r) introduced by Schneider455

and Attinger (2008), which interpolates between the near well and far field representative trans-

missivities for well flow. Simulation of pumping tests were performed in log-normally distributed

transmissivity fields and compared with hefw(r). Based on the results, the following conclusions can

be drawn:

1. hefw(r) describes the mean drawdown of a pumping test in two dimensional heterogeneous460

isotropic media effectively. It is not limited to small variance, but is tested to reproduce en-

semble means for highly heterogeneous media with variances up to σ2 = 4.

2. The analytical character of hefw(r) allows to perform inverse estimation of the statistical pa-

rameters of the transmissivity fields from measured drawdowns. Geometric mean TG, vari-

ances σ2 and correlation length ` can be estimated for a wide range of parameters with a high465

accuracy and certainty from ensemble mean drawdowns.
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3. Parameter estimates from individual drawdowns reflect local heterogeneity at the well rather

than the global statistical parameters of the transmissivity field.

4. Representative values of geometric mean, variance and correlation length for an individual

field of transmissivity can be determined by performing pumping test at multiple locations of470

that field, estimating the parameters for every test separately and than performing a statistical

analysis of the results.

hefw(r) is a promising tool to interpret steady state pumping tests in order to infer the statistical

parameters of the underlying transmissivity field without time- and cost-intensive laboratory inves-

tigations. Future steps will include the expansion of the method to interpret transient pumping test475

data.

The article processing charges for this open-access publication were covered

by a Research Centre of the Helmholtz Association.

Appendix480

The effective well flow head hefw(r) as solution of the well flow equation (2) is derived by solving

the integral (Eq. 3) with the analytical expression of TRCG(r) from Eq. (4).

h(r2)−h(r1) =
C1

TG

r2∫

r1

1

r
exp

(
σ2

2

1

(1 + ζ2r2/`2)

)
dr . (A1)

The integral is evaluated analytically by making use of the exponential integral function

Γ(x)−Γ(X) =

x∫

X

exp(z)

z
dz = ln

x

X
+
∞∑

k=1

xk −Xk

k!k
. (A2)485

The argument in the exponent in Eq. (A1) is substituted by z(r) = σ2

2
1

(1+ζ2r2/`2) with integrator

dr =− `σ2

4ζz2

(
σ2

2z − 1
)− 1

2

dz, furthermore partial fraction decomposition is used, resulting in

h(r2)−h(r1) =
C1

TG

σ2

4

z(r2)∫

z(r1)

exp(z)

z(z− σ2

2 )
dz

=
C1

2TG

z(r2)−σ22∫

z(r1)−σ22

exp
(
z+ σ2

2

)

z
dz− C1

2TG

z(r2)∫

z(r1)

exp(z)

z
dz (A3)

=
C1

2TG
e
σ2

2

(
Γ

(
z(r2)− σ2

2

)
−Γ

(
z(r1)− σ2

2

))
490

− C1

2TG
(Γ(z(r2))−Γ(z(r1))) .
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The final solution for the effective well flow head as given in Eq. (6) results by re-substituting the

abbreviation z(r) = σ2

2
1

(1+ζ2r2/`2) with r2 = r and r1 =R and insertingC1 =−Qw

2π as derived from

the constant flux boundary condition (Sect. 2.1).

An approximate formulation of Eq. (A3) can be derived by using the definition of the exponential495

integral function as infinite sum, given in Eq. (A2) in combination with the relationship z(r)− σ2

2 =

σ2

2
−ζ2r2/`2
1−ζ2r2/`2 = z(r)

(
− ζ2r2`2

)
:

h(r2)−h(r1) =
C1

2TG
e
σ2

2


ln

z(r2)− σ2

2

z(r1)− σ2

2

+
∞∑

k=1

(
z(r2)− σ2

2

)k
−
(
z(r1)− σ2

2

)k

k!k




− C1

2TG

(
ln
z(r2)

z(r1)
+
∞∑

k=1

z(r2)k − z(r1)k

k!k

)

=
C1

TG
e
σ2

2 ln
r2

r1
+

C1

2TG

(
e
σ2

2 − 1
)

ln
z(r2)

z(r1)
500

+
C1

2TG

∞∑

k=1

z(r2)k
(

e
σ2

2 (−ζ2r2
2/`

2)k − 1
)
− z(r1)k

(
e
σ2

2 (−ζ2r2
1/`

2)k − 1
)

k!k

≈ C1

TG
e
σ2

2 ln
r2

r1
+

C1

2TG

(
e
σ2

2 − 1
)

ln
z(r2)

z(r1)
+

C1

2TG

(
e
σ2

2 − 1
)

(z(r2)− z(r1)) .

(A4)

The final approximate solution as given in Eq. (7) results by re-substituting z(r) with r2 = r and r1 =

R and inserting C1 =−Qw

2π .
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Table 1. Ensemble input parameters TG, σ2 and ` and best fit fitting inverse estimation results T̂G, σ̂2 and ˆ̀

with 95% confidence intervals (in brackets) for ensemble mean 〈h(r)〉 for all generated ensembles.

TG T̂G [10−4m2 s−1] σ2 σ̂2 [−] ` ˆ̀ [m]

A 1.0 1.03 (±0.0011) 1.0 1.04 (±0.0022) 10 9.80 (±0.086)

B 1.0 1.08 (±0.0013) 1.0 1.19 (±0.0022) 20 21.6 (±0.127)

C 1.0 1.08 (±0.0021) 2.25 2.49 (±0.0038) 10 10.1 (±0.050)

D 1.0 1.19 (±0.0024) 2.25 2.67 (±0.0039) 20 22.2 (±0.077)

E 1.0 1.16 (±0.0046) 4.0 4.34 (±0.0078) 10 11.0 (±0.042)

F 1.0 1.31 (±0.0088) 4.0 4.27 (±0.0131) 20 22.2 (±0.120)

G 1.5 1.55 (±0.0012) 1.0 1.03 (±0.0016) 10 10.1 (±0.066)

H 1.5 1.62 (±0.0024) 1.0 1.19 (±0.0028) 20 21.2 (±0.158)

Table 2. Parameter estimates of geometric mean transmissivity T̂G [10−4 m2/s], local transmissivity at the well

T̂well [10−4 m2/s] and correlation length ˆ̀[m] for the 8 pumping tests at fields D1 (from Ensemble D, σ2 =

2.25) and E1 (from Ensemble E, σ2 = 4.0). Additionally, the theoretical and the sampled values (Twell ≡ TH)

are given.

D1 E1

T̂G T̂well
ˆ̀ T̂G T̂well

ˆ̀

PW0 1.025 0.434 29.51 1.945 0.313 9.56

PW1 1.023 0.362 27.23 2.202 0.445 11.55

PW2 1.076 0.220 23.68 2.093 0.437 10.03

PW3 0.898 1.057 9.51 2.052 0.520 15.34

PW4 1.001 0.147 20.53 2.174 1.847 12.30

PW5 0.889 1.071 5.33 1.980 1.117 5.43

PW6 1.038 0.177 20.39 1.840 0.148 8.78

PW7 0.901 1.700 16.48 1.969 0.476 17.04

Mean of 8 0.981 0.646 19.08 2.032 0.663 9.90

Jointly 1.013 0.328 22.38 2.010 0.409 9.97

Theory 1.0 0.325 20.0 1.0 0.135 10.0

Sampled 0.985 0.333 23.43 1.999 0.491 12.66
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Figure 1. Comparison of equivalent and Radial Coarse Graining approach: (a) radially depending transmis-

sivities interpolating between harmonic mean TH and geometric mean TG: TRCG(r) from Eq. (4) and Teq(r)

calculated based on Thiem’s formula Eq. (1) with h(r) = 〈h(r)〉, which is the ensemble mean for Ensemble

A (Table 1), (b) hydraulic head drawdowns after pumping with: hefw(r) from Eq. (6) as solution of the well

flow equation using TRCG(r), heq(r) as solution of the well flow equation using Teq(r), Thiem’s solution with

homogeneous substitute values TG and TH as well as mean ensemble drawdown 〈h(r)〉.
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Figure 2. Simulated ensemble means 〈h(r)〉 (dots) and hefw(r) with best fitting estimates (lines) for multiple

Ensembles: A (blue), B (green), E (red), F (orange), G (purple). Parameter values are listed in Table 1. Black

line shows hThiem(r) with TG = 10−4m2 s−1.
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Figure 3. Drawdowns simulated for two individual transmissivity field realizations of Ensemble A (TG =

10−4m2 s−1, σ2 = 1, `= 10m): (a) realization with Twell = 0.204× 10−4m2 s−1 and (b) realization with

Twell = 1.11× 10−4m2 s−1. 〈h(r)〉 (dark color) is the radial mean, 〈h(r,φ)〉 (light color) denotes the draw-

downs along the four axes (φ= 0◦,90◦,180◦,270◦), as well as in black Thiem’s solution for homogeneous

substitute values.
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Figure 4. Histogram on the best fitting estimates (T̂G, T̂well, ˆ̀) versus the theoretical input values (TG, TH,`)

and the sampled transmissivity at the pumping well (< Twell >) for the N = 5000 realizations of Ensemble A.
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Figure 5. Spatial distribution of log-transmissivity for fields (a) D1 and (b) E1 and locations of the eight

pumping wells (PW0, . . .,PW7 in black) and the four observation wells (OW0, . . .,OW3 in gray).
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Figure 6. Simulated drawdown measurements (dots) and fitted effective well flow solution hefw(r) (lines) for

eight pumping tests within the heterogeneous transmissivity fields (a) D1 and (b) E1. Colours indicate the results

for the individual pumping tests at PW0, . . ., PW7 (from light to dark). The black line denotes the effective well

flow solution hefw(r) fitted to all measurements jointly. Gray lines denote Thiem’s solution for T̂G (solid) and

for T̂well (dashed). Statistical parameters are given in Table 2.
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