
Manuscript prepared for Hydrol. Earth Syst. Sci.
with version 2014/09/16 7.15 Copernicus papers of the LATEX class copernicus.cls.
Date: 15 April 2016

Analytical Drawdown Solution for Steady State
Pumping Tests in Two-dimensional Isotropic
Heterogeneous Aquifers
Alraune Zech1 and Sabine Attinger1,2

1Department of Computational Hydrosystems, UFZ Helmholtz Centre for Environmental Research,
Leipzig, Germany
2Institute for Geosciences, Friedrich Schiller University, Jena, German

Correspondence to: Alraune Zech (alraune.zech@ufz.de)

Abstract.

A new method is presented which allows to interpret steady state pumping test in heterogeneous

isotropic transmissivity fields. In contrast to mean uniform flow, pumping test drawdowns in hetero-

geneous media cannot be described by a single effective or equivalent value of hydraulic transmis-

sivity. An effective description of transmissivity is required, being a function of the radial distance to5

the well and including the parameters of log-transmissivity: mean, variance and correlation length.

Such a model is provided by the upscaling procedure Radial Coarse Graining, which describes the

transition of near well to far field transmissivity effectively. Based on this approach, an analytical

solution for a steady state pumping test drawdown is deduced. The so-called effective well flow

solution is derived for two cases: the ensemble mean of pumping tests and the drawdown within10

an individual heterogeneous transmissivity field. The analytical form of the solution allows to in-

versely estimate the parameters of aquifer heterogeneity. For comparison with the effective well

flow solution, virtual pumping tests are performed and analyzed for both cases, the ensemble mean

drawdown and pumping tests at individual transmissivity fields. Interpretation of ensemble mean

drawdowns showed proof of the upscaling method. The effective well flow solution reproduces the15

drawdown for two-dimensional pumping tests in heterogeneous media in contrast to Thiem’s so-

lution for homogeneous media. Multiple pumping tests conducted at different locations within an

individual transmissivity field are analyzed making use of the effective well flow solution to show

that all statistical parameters of aquifer heterogeneity can be inferred under field conditions. Thus,

the presented method is a promising tool to estimate parameters of aquifer heterogeneity, in particu-20

lar variance and horizontal correlation length of log-transmissivity fields from steady state pumping

test measurements.
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1 Introduction

Pumping tests are a widely used tool to identify horizontal hydraulic conductivity, which is the

parameter determining the groundwater flow velocity. Analytical solutions of the radial flow equation25

are used in practice to analyze measured drawdowns. In general, these solutions assume a constant

homogeneous hydraulic conductivity like Thiem’s solution for steady state (Thiem, 1906):

hThiem(r) =− Qw

2πDKh
ln
r

R
+h(R) . (1)

Thiem’s solution (1) gives the hydraulic head hThiem(r) depending on the radial distance r from

the well for homogeneous horizontal hydraulic conductivity Kh. It is valid in a confined aquifer of30

thickness D with fully penetrating well and a constant discharge Qw, h(R) is a known reference

head at an arbitrary distance R from the well.

In large scale pumping tests the vertical extension of the aquifer is negligible compared to hor-

izontal aquifer extend. Thus, flow is assumed to be horizontal and modelled as two-dimensional.

Hydraulic conductivity is then replaced by transmissivity, which is defined as the product of con-35

ductivity and aquifer thickness T =KhD. In the following, transmissivity will be used instead of

horizontal hydraulic conductivity, since the focus of the work will be on two-dimensional well flow.

Most natural aquifers exhibit geological heterogeneity in the sedimentary composition, which

evolved from the complex geomorphological processes through which they were formed. In particu-

lar, transmissivity shows a strong spatial variability. Values measured in the field vary over orders of40

magnitude (Gelhar, 1993). Modelling transmissivity as spatial random function is generally applied

to capture the effects of aquifer heterogeneity. Transmissivity T (x) is modelled as log-normally

distributed spatial random function: logT (x) = Y (x) is normally distributed with a Gaussian prob-

ability density function pdfY (x) = 1
2πσ2 exp

(
− (x−µ)2

2σ2

)
in uni-variate form with µ and σ2 being

the mean and the variance of Y , respectively. The correlation structure of transmissivity in space is45

captured by a covariance model Cov [T (x+ s),T (x)] = exp
(
2µ+σ2 + CVY (s)

)
.

In the stochastic framework, the solution of the groundwater flow equation with a log-normally

distributed transmissivity is also a random spatial function. Since the solution of the stochastic dif-

ferential equation is out of scope, the focus of investigation was on effective transmissivity values

for describing well flow. As a first approach, Thiem’s solution (1) was applied to pumping tests in50

heterogeneous media. However, this requires a representative transmissivity value T for the whole

range of the depression cone (Matheron, 1967), which does not exist. Effective or equivalent descrip-

tions of transmissivity in pumping tests were investigated, e.g. by Desbarats (1992); Sánchez-Vila

et al. (1999); Neuman et al. (2007); Dagan and Lessoff (2007); Schneider and Attinger (2008) and

many more. For a detailed review see Sánchez-Vila et al. (2006).55

In contrast to mean uniform flow, the pumping test drawdowns in heterogeneous media cannot be

described by a single constant effective value of transmissivity (Matheron, 1967). Different trans-

missivities characterize the behavior near and far from the well: the representative value close to the
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well is the harmonic mean of the log-normal transmissivity TH = exp
(
µ− 1

2σ
2
)

= TG exp
(
− 1

2σ
2
)
.

With increasing distance from the well, the drawdown behavior is characterized by the effective60

transmissivity for uniform flow, which is the geometric mean TG = exp(µ) for flow in two dimen-

sional isotropic porous media.

It seems obvious, that a representative description of transmissivity for well flow needs to be a ra-

dially depending function, which interpolates between the harmonic and the geometric mean. The

equivalent transmissivity Teq is a well established approach of a radially depending description, visu-65

alized in Fig. 1a. Teq(r) =− Qw

2π(h(r)−h(rw)) ln r
rw

was derived from Thiem’s solution (1) (Matheron,

1967; Indelman et al., 1996; Dagan and Lessoff, 2007). In this sense, the equivalent transmissivity

Teq is defined as the value for a homogeneous medium, which reproduces locally the same total out-

flow as observed in the heterogeneous domain of radius r. Teq is strongly impacted by the reference

point rw and the corresponding head h(rw), which is generally chosen to be the drawdown at the70

well h(rw). Therefore, the equivalent conductivity stays close to the harmonic mean TH, which is

representative for the drawdown behavior at the well (Fig. 1a). It takes more than 20 correlation

length for Teq to reach the far field representative value of TG.

It is important to mention, that Teq is not constructed to reproduce the drawdown which was

used for calculating Teq. Strictly speaking, replacing the heterogeneous transmissivity field with the75

equivalent transmissivity in a single forward model does not give the drawdown, with which Teq

was constructed as visualized in Fig. 1b. Instead heq(r) stays close to Thiem’s solution with TH as

constant transmissivity value.

Schneider and Attinger (2008) introduced a novel approach to describe well flow effectively. They

derived a radial adapted transmissivity TRCG(r) by applying the upscaling technique Coarse Grain-80

ing to well flow. TRCG(r) does not only depend on the radial distance r but also on the statistical

parameters of aquifer heterogeneity TG, σ2 and `. TRCG(r) captures the transition from near well to

far field representative transmissivities, based on the radial distance to the well and the parameters

of aquifer heterogeneity, as visualized in Fig. 1a.

In this study, an analytical solution for the hydraulic head hefw(r) is presented, which is based85

on the Radial Coarse Graining transmissivity TRCG(r) as an extension to the work of Schneider

and Attinger (2008). Similar work has been done by (Zech et al., 2012) for pumping test in three

dimensional porous media. The effective well flow solution hefw(r) describes the mean depression

cone of a pumping test in two dimensional heterogeneous media effectively. It can be interpreted as

an extension of Thiem’s formula (1) to log-normal distributed heterogeneous media. It accounts for90

the statistical parameters TG, σ2 and ` and thus allows to inversely estimate them from measured

drawdown data. In contrast to existing head solutions for well flow, hefw(r) is not limited to low

variances, but is applicable to highly heterogeneous media with variances σ2� 1. More explicitly,

the "effective well flow solution" is not a solution derived from an effective equation, but is the

solution of the deterministic groundwater flow equation under well flow conditions in combination95
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with an effective transmissivity. As effective transmissivity description the Radial Coarse Graining

transmissivity is used because it mimics the filtering process taking place during pumping.

In a similar line Neuman et al. (2004) presented a graphical approach to estimate the statistical

parameters of random transmissivity on the basis of steady state head data. The authors constructed

a mathematical description for the apparent transmissivity Ta(r) as function of the radial distance100

to the well r from theoretical findings of near and far field representative transmissivity and a cubic

polynomial interpolation in between. The approach makes use of the ensemble average drawdown as

well as of its variance, combining uncertainty within a unique methodology. From Ta(r) the authors

constructed type curves for the hydraulic head, depending on the variance σ2 and the correlation

length `. Neuman et al. (2004) further gave a multi-point strategy to analyze virtually measured105

drawdown data by type curve matching including parameter estimation. The solution was also ap-

plied in an actual field setting by Riva et al. (2009).

The Radial Coarse Graining approach is similar to that of Neuman et al. (2004) in the idea of

deriving a solution for the head drawdown for well flow depending on the statistics of the random

transmissivity using an effective radial depending transmissivity. Major differences are: (i) the Ra-110

dial Coarse Graining Transmissivity TRCG(r) is derived from upscaling with physically motivated

approximations; whereas the solution of Neuman et al. (2004) based on the analytical solution of

Riva et al. (2001) in combination with numerical Monte Carlo simulations; (ii) the functional form

of TRCG(r) is different from the expression for Ta of Neuman et al. (2004); (iii) the effective well

flow solution hefw(r) is provided as a closed form mathematical expression instead of type curves;115

(iv) inverse parameter estimation can be done by minimizing the difference between the measured

drawdown data and hefw(r) instead of type curves matching. The effective well flow method will be

tested in a similar multi-point sampling strategy to analyze measured drawdown data of individual

heterogeneous transmissivity fields as done by Neuman et al. (2004) as well as others (Copty and

Findikakis, 2004; Firmani et al., 2006).120

The work is organized the following: Sect. 2 is dedicated to the method of Radial Coarse Graining

and the derivation of the effective well flow head solution. The concept of Radial Coarse Graining

is explained in detail. Furthermore it is distinguished between the effective well flow solution for an

ensemble mean and single realizations of heterogeneous transmissivity fields. Section 3 contains the

application of the effective well flow solution to simulated pumping tests. It is shown, that hefw(r)125

reproduces the drawdown in heterogeneous media and can be used to inversely estimate the statisti-

cal parameters of aquifer heterogeneity for both, ensemble mean and single realizations. In Sect. 4, a

sampling strategy is presented to infer the parameters of aquifer heterogeneity of an individual trans-

missivity fields from multiple pumping tests at multiple locations making use of hefw(r). Concluding

remarks are given in Sect. 5.130
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2 Radial Coarse Graining Transmissivity and Effective Well Flow Head

2.1 Steady state well flow with radially depending transmissivity

The drawdown of a steady state pumping test with a radially depending transmissivity T (r) is given

as the solution of the differential equation:

0 = T (r)

(
1

r

dh

dr
+

d2h

dr2

)
+

dT (r)

dr

dh

dr
=

(
1

r
+

dlnT (r)

dr

)
dh

dr
+

d2h

dr2
. (2)135

The equation can be solved in dh
dr by separation of variables, resulting in dh

dr = C1
1

rT (r) . The hy-

draulic head h(r) is then given as the solution of the integral

h(r2)−h(r1) = C1

r2∫
r1

1

rT (r)
dr. (3)

The integration constant C1 is determined by the boundary condition. Supposing a constant flux

boundary condition at the well, givesQw =−2πrwT (rw) dh
dr (rw) =−2πrwT (rw) C1

rw T (rw) and thus,140

C1 =−Qw

2π .

Equation (3) is the general solution of the radial flow equation (2) for radially depending trans-

missivity, independent of the functional form of T (r).

When comparing Eq. (3) with the definition of the equivalent transmissivity, it becomes obvi-

ous that Teq is not constructed to solve the equation. The combination of both formulas results in145 ∫ r2
r1

1
rT (r) dr = 1

Teq(r)
ln r1

r2
, which is only fulfilled, when T (r) is constant in r.

In a heterogeneous transmissivity field, radially symmetric flow is not to be expected. However,

angular fluctuations level out for ensemble averaged drawdowns. Thus, the assumption of a radial-

depending effective transmissivity description T (r) - independent of the angular coordinate - is

well established and reasonable in the context of ensemble analysis. In this line, the Radial Coarse150

Graining Transmissivity and thus the effective well flow solution are considered to be purely radial-

depending referring to ensemble averages.

2.2 Concept of Radial Coarse Graining

A radial-depending transmissivity for log-normally distributed media with Gaussian correlation

structure was derived by Schneider and Attinger (2008), denoted as TRCG(r). It is based on the155

upscaling approach Radial Coarse Graining which follows the basic idea of a spatial filtering of the

flow equation appropriate to the non-uniform flow character of a pumping test. The method of Radial

Coarse Graining is an upscaling method based on mathematically solid filtering of the flow equa-

tion and physically reasonable assumptions and approximations. At the current state the procedure is

limited to a multivariate Gaussian random field as a model for the heterogeneity of the transmissivity160

field.

The approach was further developed for three-dimensional well flow by Zech et al. (2012) intro-

ducing an effective well flow solution for the hydraulic head. Similarly, the concept of Radial Coarse
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Graining for two-dimensional well flow will be expanded in the following. The process can be best

explained within five major steps:165

1. Coarse Graining for uniform flow

2. Transfer of Coarse Graining to radial flow conditions

3. Overcome non-locality of head equation for non-uniform flow

4. Effective Radial Coarse Graining transmissivity

5. Derivation of effective well flow head170

The first three steps will be discussed shortly in the following. Step 4 and 5 will be explained in

detail in Sec.2.3 and Sec. 2.4.

The Coarse Graining approach for uniform flow (step 1) was introduced by Attinger (2003), in-

cluding derivation, mathematical proof and numerical simulations. The author started at a spatially

variable transmissivity field T (x) and derived a filtered version TCG
λ (x), where fluctuation smaller175

than a cut-off length λ are filtered out. The resulting upscaled Coarse Graining transmissivity field

TCG
λ (x) represents a log-normal distributed field with a smaller variance 〈σ2〉λ, but larger correla-

tion length 〈`〉λ. Attinger (2003) showed, that the statistical parameters relate to the parameter of the

unfiltered field by 〈σ2〉λ ≡ σ2 `2

`2+λ2/4 and 〈`〉λ ≡
(
`2 +λ2/4

)1/2
.

The concept of Coarse Graining can similarly be applied to non-uniform flow (step 2). The180

critical point when transferring the results of Attinger (2003) to radial flow is the Fourier back-

transformation of the filtered head equation after localization. For uniform flow, this can be done

due to the reasonable assumption of constant head gradient. For non-uniform flow, this assumption

is not valid and thus, localization is not possible straight ahead.

A heuristic approach is taken to overcome the limitation of non-locality for well flow (step 3).185

Conditions of a quasi-constant head gradient are constructed by adapting the size of the volume

elements over which flow takes place. The change in the volume size refers to the filtering procedure

and is then realized by an radial-depending scaling parameter λ(r). The step can be understood as

a change from an equidistant Cartesian coordinate system to a polar coordinate system. Technically

speaking, the head gradient in well flow is constant for volumes of size proportional to r, because it190

is proportional to the reciprocal of the distance to the well: ∇h(r) = h(r)−h(r+∆r)
∆r ∝ 1

r . Therefore,

the scaling parameter is chosen to be proportional to the radial distance λ= 2ζr. Then, the filter

width increases with distance to the well ensuring that head gradients can be assumed constant over

volume elements of increasing in size with distance to the well. Under this adaption, localization can

be performed and so the following steps of the Coarse Graining procedure.195

The result is an upscaled log-normal distributed field TRCG
r (x) with an arithmetic mean TRCG

A (r)

and a filtered fluctuation term. The step was presented by Schneider and Attinger (2008). It is not

performed in a mathematically straight way, but problem adapted to well flow conditions.
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2.3 Radial Coarse Graining Transmissivity

Spatial heterogeneity is still resolved in TRCG
r (x), although reduced to the amount relevant to the200

pumping test. A further step of averaging is necessary to derive an effective transmissivity which

mimics the intrinsic filtering of the flow during pumping and thus reproduces the drawdown be-

haviour. Thereby, two different aspects are of interest: (i) an effective transmissivity for an ensem-

ble and (ii) effective transmissivity for an individual field. This step includes the transfer from the

stochastic picture of transmissivity to a deterministic description.205

A result for an effective ensemble description is derived by averaging TRCG
r (x) appropriate

to well flow condition. The averaging rule is determined by the boundary condition at the well,

which is the harmonic mean for two-dimensional well flow (Dagan, 1989). Thus, the effective mean

transmissivity, noticed by TRCG(r), is calculated via the theoretical description of the harmonic

mean for log-normal distributed fields making use of the variance of the coarsened transmissivity210

〈σ2〉r = σ2

1+ζ2r2/`2 :

TRCG(r) = TG exp
(
−〈σ2〉r/2

)
= TG exp

(
−1

2

σ2

(1 + ζ2r2/`2)

)
, (4)

where r is the distance to the well, TG is the geometric mean, σ2 is the variance and ` is the correla-

tion length of the log-transmissivity T (x). ζ is a factor of proportionality, which was determined to

be ζ = 1.6, as discussed in detail by Zech et al. (2012).215

TRCG(r) can be interpreted as interpolating function between the representative transmissivity at

the well TH = TG exp
(
− 1

2σ
2
)

to the far field value TG depending on r, controlled by the correlation

length ` (Fig. 1a).

An effective description of well flow transmissivity for an individual field is derived from Eq (4).

The behavior of individual fields is different especially at the well due to a lack of ergodicity there.220

The local transmissivity at the well Twell is not identical to the harmonic mean TH as expected for the

ensemble, but refers to the specific value of transmissivity at the well location. An adapted Radial

Coarse Graining transmissivity accounts for local effects by replacing the harmonic mean TH =

TG exp
(
− 1

2σ
2
)

by Twell. In Eq. (4) this refers to substituting the variance by− 1
2σ

2 = lnTwell−lnTG

and thus,225

T local
RCG(r) = TG exp

(
lnTwell− lnTG

1 + ζ2r2/`2

)
= T

1
1+ζ2r2/`2

well T
ζ2r2/`2

1+ζ2r2/`2

G . (5)

T local
RCG(r) interpolates between the specific transmissivity at the well Twell and the far field value TG

depending on the radial distance r and the correlation length `.

2.4 Effective well flow head

An effective drawdown solution is derived by solving the deterministic groundwater flow equation in230

combination with an effective transmissivity description, namely the Radial Coarse Graining trans-

missivity. This needs to be clearly distinguished from solving an effective well flow equation. In line
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with the deterministic nature of the Radial Coarse Graining transmissivity TRCG(r), the associated

effective well flow head is deterministic as well.

Explicit results for the hydraulic head drawdown in steady state pumping test are achieved by235

solving the integral in Eq. (3) making use of TRCG(r) (Eq. 4). The result is the effective well flow

head hefw(r) is given by

hefw(r) =− Qw

4πTG
exp

(
σ2

2

)(
Γ

(
σ2

2

−ζ2r2/`2

1 + ζ2r2/`2

)
−Γ

(
σ2

2

−ζ2R2/`2

1 + ζ2R2/`2

))
+

Qw

4πTG

(
Γ

(
σ2

2

1

1 + ζ2r2/`2

)
−Γ

(
σ2

2

1

1 + ζ2R2/`2

))
+hR , (6)

where r is the radial distance from the well, Qw is the pumping rate, TG is the geometric mean,240

σ2 is the log-transmissivity variance, and ` is the correlation length. Again, ζ is the factor of pro-

portionality determined to be 1.6 and R is an arbitrary distance from the well, where the hydraulic

head h(R) = hR is known. Γ(x) =
∫ x
−∞

exp(z)
z dz is the exponential integral function. Details on

the derivation of hefw(r) can be found in the Appendix.

An approximate solution happrox
efw (r) is derived from Eq. (6) by making use of an approximation of245

Γ(x). Details are given in the Appendix.

happrox
efw (r) =− Qw

2πTH
ln
r

R
− Qw

4πTG

(
e
σ2

2 − 1
)

·
(

ln
1 + ζ2R2/`2

1 + ζ2r2/`2
+
σ2

2

1

(1 + ζ2r2/`2)
− σ2

2

1

(1 + ζ2R2/`2)

)
+hR , (7)

hefw(r) is constructed to describe the mean drawdown of a pumping test in two dimensional het-

erogeneous media effectively. The drawdown curve of hefw(r) for a specific choice of parameters250

(Ensemble A of Table 1) is given in Fig. 1b in comparison to the equivalent drawdown heq(r), as

the solution of the radial flow equation using the equivalent transmissivity Teq, based on the same

statistical parameters.

The effective well flow solution can be adapted to analyze individual pumping tests by using

T local
RCG(r) (Eq. 5) instead of TRCG(r) (Eq. 4). The local effective well flow solution hlocal

efw (r) is than255

given by Eq. (6) with σ2

2 substituted by − ln Twell
TG

and TH substituted by Twell.

The local effective well flow solution hlocal
efw (r) can be used to analyze drawdowns of single pump-

ing tests in heterogeneous media as encountered in practice. The solution is adapted to the lack of

ergodicity at the well, by using transformed parameters Twell, TG and `. However, the randomness

of hydraulic heads can affect the parameter estimation, in particular of the correlation length which260

is related to drawdown fluctuations in the transition zone. There the impact of heterogeneity is not

fully determined by the local transmissivity at the well, but also not fully levelled out as in the far

field. The geometric mean TG and the correlation length ` for a single realization should therefore be

interpreted as local values, not necessarily representing the mean values of the entire field, but those

of the pumping well vicinity. Owing to the nature of the pumping test, the drawdown signal does265
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not sample the heterogeneity in transmissivity in a symmetric way, but the shape of the drawdown is

mainly determined by the local heterogeneity close to well.

2.5 Impact of parameters

The analytical form of hefw(r) allows to analyze the impact of the statistical parameters TG, σ2 and `

on the drawdown. The drawdown behavior for different choices of parameters can be seen in Fig. 2,270

which is discussed in detail later on.

Every parameter impacts on the drawdown in a different region. The geometric mean TG as

representative value for mean uniform flow determines the far field behavior. The variance σ2

determines the drawdown at the well due to the dependence of the near-well asymptotic value

TH = TG exp
(
− 1

2σ
2
)
. The larger the variance the larger are the differences between TG and TH275

and the steeper is the drawdown at the well. Whereas, the correlation length ` determines the tran-

sition from near to far field behavior. Therefore, fluctuation in the hydraulic head in the transition

zone can affect estimation errors in the correlation length.

The asymptotic behavior of hefw(r) can easily be analyzed using approximate functional descrip-

tion in Eq. (7): for distances close to the well, thus r� `, hefw(r) converges to Thiem’s solution280

with TH as constant transmissivity value. All terms, except the first one in Eq. (7), tend to zero or

become constant. Thus, they are negligible compared to logarithmic first term for very small r,

happrox
efw (r� `)≈− Qw

2πTH
ln
r

R
− Qw

4πTG

(
e
σ2

2 − 1
)
·
(

ln
(
1 + ζ2R2/`2

)
+
σ2

2

)
+hR

≈− Qw

2πTH
ln
r

R
+hR.

For large distances from the well, i.e. r� `, the solution converges to Thiem’s solution with TG as285

constant transmissivity value. The third and fourth term in Eq. (7) tend to zero and cancel out. The

ones in the second term can be neglected, thus

h
approx
efw (r� `)≈− Qw

2πTH
ln
r

R
−
(

Qw

4πTH
− Qw

4πTG

)
· ln
(
ζ2R2/`2

ζ2r2/`2

)
+hR ≈−

Qw

2πTG
ln
r

R
+hR.

The larger the correlation length ` the longer takes the transition of the drawdown from near well

to far field behavior. The influence of ` on hefw(r) vanishes quickly with increasing distance to290

the well. The drawdown reaches the far field behavior after approximately two correlation lengths

hefw(r > 2`) = hThiem(r > 2`) with TG as constant transmissivity value (Fig. 1b). These findings are

in line with the results of Neuman et al. (2004).

3 Robust estimation of statistical parameters

3.1 Numerical pumping tests295

Numerical pumping tests in heterogeneous porous media were generated as artificial measurements.

They were used to test the capability of hefw(r) in reproducing the mean drawdown and in estimating
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the underlying parameters of heterogeneity. Pumping tests were simulated using the finite element

software OpenGeoSys. The software was successfully tested against a wide range of benchmarks

(Kolditz et al., 2012). Results of a steady state simulation with homogeneous transmissivity were in300

perfect agreement with Thiem’s analytical solution Eq. (1).

The numerical grid was constructed as a square of 256× 256 elements with a uniform grid cell

size of 1m except for cells in the vicinity of the pumping well. The mesh was refined in the range of

4m around the well, which ensures a fine resolution of the steep head gradients at the well. The well

in the center of the mesh was included as a hollow cylinder with radius rw = 0.01m. The constant305

pumping rate of Qw =−10−4 m3 s−1 was distributed equally to all elements at the well. At the

radial distance R= 128m a constant head of h(R) = 0m was applied giving a circular outer head

boundary condition.

Log-normally distributed, Gaussian correlated transmissivity fields were generated using a sta-

tistical field generator based on the randomization method (Heße et al., 2014). Multiple ensembles310

with different statistical parameter values were generated, including high variances up to σ2 = 4 (Ta-

ble 1). Ensemble A with TG = 10−4 m2 s−1, σ2 = 1 and `= 10m served as reference ensemble for

specific cases. Every ensemble consists of N = 5000 realizations, which was tested as sufficiently

large to ensure ensemble convergence.

Pumping test simulations were post-processed by performing an angular and an ensemble average.315

For every realization i, the simulated drawdown 〈hi(r,φ)〉 at the radial and angular location (r,φ) in

polar coordinates was averaged over the four axial directions: 〈hi(r)〉=
∑
φj
〈hi(r,φj)〉. The ensem-

ble mean was the sum over the angular mean of all individual realizations: 〈h(r)〉=
∑N
i=1〈hi(r)〉.

Non-linear regression was used to find the best fitting values for the statistical parameters, denoted

by T̂G, σ̂2, and ˆ̀. The best fitting estimates were determined by minimizing the mean square error320

of the difference between the analytical solution hefw(r) and the measured drawdown samples h(r):

minTG,σ2,`

∑
r (h(r)−hefw(r))

2 making use of the Levenberg–Marquardt algorithm. The reliability

of the estimated parameters was evaluated using 95%-confidence intervals.

The estimation procedure was applied to the head measurements at every meter distance starting

at the well up to a distance of 80m. The range beyond 80m was not taken into account to avoid325

boundary effects. The range of 80m includes at least 4 correlation lengths for all tested ensembles,

which is sufficient to ensure convergence to the far field behavior. The question of the applicability

of hefw(r) on limited head data is of quite complex nature. For a detailed discussion on that issue the

reader is referred to Zech et al. (2015).

3.2 Ensemble pumping test interpretation330

First, the simulated ensemble means were analyzed making use of the ensemble version of TRCG(r)

and hefw(r) (Eqs. 4 and 6). Simulated ensemble means 〈h(r)〉 for multiple choices of statistical

parameters TG, σ2 and ` are visualized in Fig. 2 in combination with hefw(r) for the best fitting
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parameter estimates T̂G, σ̂2, and ˆ̀. Input parameters as well as inverse estimation results for all

tested ensembles are listed in Table 1.335

The best fitting estimates show, that all three parameters could be inferred from the ensemble

mean with a high degree of accuracy. The deviation of the geometric mean from the input value is

in general less than 10%, only for high variances the deviations are up to 30%. Variances deviate

in a range of 20% and estimated correlation lengths are accurate within 10% of the initial input

parameter.340

The confidence intervals of the estimates T̂G and σ̂2 are very small, showing a high sensitivity

of the effective well flow solution hefw(r) towards geometric mean and variance. The confidence

intervals of the correlation length are larger due to the dependence of the estimate of ˆ̀ on the esti-

mates T̂G and σ̂2. This is due to the fact, that the correlation length determines the transition from

T̂well = T̂G exp
(
− 1

2 σ̂
2
)

to T̂G, which results in larger uncertainties in the estimates of ˆ̀.345

3.3 Individual pumping test interpretation

In the following, pumping test drawdowns of individual transmissivity fields are interpreted based

on the adaption version hlocal
efw (r) as discussed in Sect. 2.4. The drawdowns along the four axial

directions as well as the radial mean for two realizations from Ensemble A (TG = 10−4 m2 s−1,

σ2 = 1, `= 10m) are visualized in Fig. 3a and b.350

Both realizations from Fig. 3a and b differ significantly in the value of the local transmissivity

at the well. The analysis of the transmissivity fields at the well gave sampled values of < T (a)
well >=

0.204× 10−4 m2 s−1 and < T (b)
well >= 1.11× 10−4 m2 s−1, which is in both cases far from the theo-

retical harmonic mean value TH = 0.61×10−4 m2 s−1 as being the representative value for the near

well behavior.355

Inverse estimation results for the realization in Fig. 3a differ for the drawdowns along the four

axial directions 〈h(r,φj)〉 and the radial mean 〈h(r)〉: the estimated geometric mean ranges be-

tween 1.03× 10−4 and 1.45× 10−4 m2 s−1 for the four axial directions, with an average value

of T̂G = 1.17× 10−4 m2 s−1. The estimates for the local transmissivity at the well are between

0.195×10−4 and 0.212×10−4 m2 s−1, with an average value of T̂well = 0.204×10−4 m2 s−1, which360

is exactly the sampled local transmissivity < T (a)
well >. The value of T̂well = 0.204× 10−4 m2 s−1 is

equivalent to a local variance of σ̂2 = 3.49. The estimated correlation length ranges between 7.95

and 18.15m, with an average of ˆ̀= 12.77m. It shows that the randomness of hydraulic heads due

to the heterogeneity of transmissivity impact on the estimation results of the correlation length.

The differences in the estimates for the drawdowns in different direction for the same realization365

of transmissivity shows that the parameter estimates reflect local heterogeneity in the vicinity of

the well rather than the global statistical parameters of the transmissivity field. This was studied

and discussed in detail for pumping tests in three dimensional heterogeneous media by Zech et al.

(2015).
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The realization in Fig. 3b does not allow to infer the parameters of variance and correlation length,370

due to the similarity of Twell and TG. Near and far field representative transmissivities are nearly iden-

tical, thus the pumping test appears to behave like in a homogeneous medium (Fig. 3b). However, the

behavior is not representative but a result of the coincidental choice of the location of the pumping

well.

A statistical analysis of the estimation results is presented in Fig. 4 for all 5000 realizations of375

Ensemble A. Histogram on the best fitting estimates in normalized form are shown, where normal-

ization of results means that they were divided by the input parameters. It can be inferred that the

estimate of the geometric mean T̂G is in general close to the input value TG. The estimate of the

local transmissivity at the well T̂well is very close to the sampled values < Twell > for nearly all re-

alizations. Thus, the method reproduced very well the local transmissivity at the well. However, the380

local value Twell of every realization can be far from the theoretical value of TH, where both real-

izations in Fig. 3 gave example. The estimates of the correlation length show a very large scatter.

Exceptionally large and small value for ˆ̀refer to realizations, where it was nearly impossible to infer

it due to the similarity of Twell and TG, as for the realization of Fig. 3b. The large range of estimated

correlation lengths also point towards the fact that ˆ̀of a single drawdown needs to be interpreted as385

a local value, which is determined by the transmissivity distribution in the vicinity of the well rather

than the distribution of the entire field. However, the median of the normalized estimated correlation

lengths is close to one, pointing to the fact that representative values can be inferred by taking the

mean from multiple pumping tests.

4 Application Example: Single Aquifer Analysis390

Pumping test campaigns in the field often include the performance of multiple pumping tests within

one aquifer. Drawdown measurements at multiple test locations can be used to gain representative

parameters of the heterogeneous transmissivity field. The sampled area increases and the effect of

local heterogeneity through randomness of heads reduces. In the following, it is shown, how mean

TG, variance σ2 and the correlation length ` of an individual transmissivity fields can be inferred395

making use of a sampling strategy in combination with hlocal
efw (r).

4.1 Sampling Strategy

The sampling strategy was constructed as pumping test campaign in a virtual aquifer with heteroge-

neous transmissivity. A series of steady state pumping tests was performed at n different wells. For

each test, drawdowns were measured at all n wells and at m additional observation wells. A similar400

sampling strategy to infer the aquifer statistics from drawdown measurements have been pursued by

e.g. Neuman et al. (2004); Copty and Findikakis (2004); Firmani et al. (2006).

12



The used sampling strategy includes n= 8 pumping wells and m= 4 observation wells. The spe-

cific location of all wells are indicated in Fig. 5. All 8 pumping wells are located within a distance

of 18 m. The observation wells are located at larger distances and in all four directions. The well405

locations were designed to gain numerous drawdown measurements in the vicinity of each pumping

well to allow a reliable estimation of Twell (or σ2
local, respectively) and ` by reducing the impact of

head fluctuations on the estimation results. The additional observation wells provide head observa-

tions in the far field to gain a representative value for TG. The choice of the well locations does not

interfere with the refinement of the numerical grid at the pumping well.410

Each of the 8 pumping tests was analyzed with hlocal
efw (r) (Sect. 2.4). The best fitting estimates

T̂G, T̂well, and ˆ̀ for all tests were inferred by minimizing the difference between the analytical

solution and the 12 measurements. Additionally, parameter estimates were inferred by analyzing the

drawdown measurements of all tests jointly.

4.2 Aquifer Analysis415

The sampling strategy was applied to fields of all ensembles A-G (Table 1). Results are presented

for two fields: D1 out of Ensemble D (σ2 = 2.25, `= 20 m) and E1 out of Ensemble E (σ2 = 4.0,

`= 10 m). Each field was generated according to the theoretical values defined for the particular

ensemble and afterwards analyzed geostatistically to determine the sampled values. The fields D1

and E1 are visualized in Fig. 5. The drawdown measurements for all 8 pumping tests at both fields420

are given in Fig. 6. The inverse estimates as well as theoretical input and sampling values for the

statistical parameters are summarized in Table 2.

Analyzing the data from all 8 pumping tests at field D1 jointly yields very close estimates of all

parameters T̂G, T̂well (corresponding to σ̂2 = 2.255), and ˆ̀ to the theoretical and sampled values.

The geometric mean estimate is similar for all of the 8 individual pumping tests. In contrast, the425

values of T̂well vary within one order of magnitude. This behavior was expected, since T̂well repre-

sents the local transmissivity value at the pumping well. The wide range of estimates is a results of

the high variance of the transmissivity field. The estimates of the correlation length ˆ̀differ between

the individual tests within a reasonable range of a few meters. The only exception is the estimate

for pumping at PW5. For this specific pumping test is highly uncertain due to the coincidence of430

the values of T̂well and T̂G, similar to the realizations in Fig. 3b, as discussed in section 3.3. How-

ever, the mean value over the individual tests as well as the estimate from the joint analysis of all

measurements gave reliable estimates for the correlation length.

The analysis of the sampling strategy at field E1 yields similar results as for D1. The geometric

mean values T̂G differ little among the 8 individual pumping tests and for the joint analysis. The435

mean value is double the value as the theoretical one, but close to the sampled geometric mean

(Table 2). The local transmissivities T̂well again vary within one order of magnitude, reflecting the

high variance of the field. The mean and jointly estimated values are higher than theoretical one,
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which is in correspondence to the difference in the geometric mean. The estimates of the correlation

length ˆ̀ deviate in a reasonable range of a few meters, which reflects the impact of the location of440

the pumping well with regard to the shape of the correlation structure around the well.

Finally, the analysis shows that representative values of the statistical parameters can be deter-

mined by performing pumping test at multiple locations of an individual transmissivity field. It was

shown, that hefw(r) is feasible to interpret steady state pumping tests in highly heterogeneous fields.

5 Conclusions445

The analytical effective well flow solution hefw(r) is presented, which can be interpreted as extension

of Thiem’s equation to heterogeneous media. hefw(r) depends on the statistical parameters of log-

normal distributed transmissivity: geometric mean TG, variance σ2 and correlation length `. hefw(r)

was derived based on the Radial Coarse Graining transmissivity TRCG(r) introduced by Schneider

and Attinger (2008), which interpolates between the near well and far field representative transmis-450

sivities for well flow. The effective well flow solution does not refer to an effective well flow equation

directly, but is an analytical solution of the groundwater flow equation under well flow conditions in

combination with the Radial Coarse Graining transmissivity as an effective transmissivity. Simula-

tion of pumping tests were performed in log-normally distributed transmissivity fields and compared

with hefw(r). Based on the results, the following conclusions can be drawn:455

1. hefw(r) describes the mean drawdown of a pumping test in two dimensional heterogeneous

isotropic media effectively. It is not limited to small variance, but is tested to reproduce en-

semble means for highly heterogeneous media with variances up to σ2 = 4.

2. The analytical character of hefw(r) allows to perform inverse estimation of the statistical pa-

rameters of the transmissivity fields from measured drawdowns. Geometric mean TG, vari-460

ances σ2 and correlation length ` can be estimated for a wide range of parameters with a high

accuracy and certainty from ensemble mean drawdowns.

3. Parameter estimates from individual drawdowns reflect local heterogeneity at the well rather

than the global statistical parameters of the transmissivity field.

4. Representative values of geometric mean, variance and correlation length for an individual465

field of transmissivity can be determined by performing pumping test at multiple locations of

that field, estimating the parameters for every test separately and than performing a statistical

analysis of the results.

hefw(r) is a promising tool to interpret steady state pumping tests in order to infer the statistical

parameters of the underlying transmissivity field without time- and cost-intensive laboratory inves-470

tigations. Future steps will include the expansion of the method to interpret transient pumping test

data.
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The effective well flow head hefw(r) as solution of the well flow equation (2) is derived by solving

the integral (Eq. 3) with the analytical expression of TRCG(r) from Eq. (4).

h(r2)−h(r1) =
C1

TG

r2∫
r1

1

r
exp

(
σ2

2

1

(1 + ζ2r2/`2)

)
dr . (A1)

The integral is evaluated analytically by making use of the exponential integral function

Γ(x)−Γ(X) =

x∫
X

exp(z)

z
dz = ln

x

X
+

∞∑
k=1

xk −Xk

k!k
. (A2)480

The argument in the exponent in Eq. (A1) is substituted by z(r) = σ2

2
1

(1+ζ2r2/`2) with integrator

dr =− `σ2

4ζz2

(
σ2

2z − 1
)− 1

2

dz, furthermore partial fraction decomposition is used, resulting in

h(r2)−h(r1) =
C1

TG

σ2

4

z(r2)∫
z(r1)

exp(z)

z(z− σ2

2 )
dz

=
C1

2TG

z(r2)−σ22∫
z(r1)−σ22

exp
(
z+ σ2

2

)
z

dz− C1

2TG

z(r2)∫
z(r1)

exp(z)

z
dz (A3)

=
C1

2TG
e
σ2

2

(
Γ

(
z(r2)− σ2

2

)
−Γ

(
z(r1)− σ2

2

))
485

− C1

2TG
(Γ(z(r2))−Γ(z(r1))) .

The final solution for the effective well flow head as given in Eq. (6) results by re-substituting the

abbreviation z(r) = σ2

2
1

(1+ζ2r2/`2) with r2 = r and r1 =R and insertingC1 =−Qw

2π as derived from

the constant flux boundary condition (Sect. 2.1).

An approximate formulation of Eq. (A3) can be derived by using the definition of the exponential490

integral function as infinite sum, given in Eq. (A2) in combination with the relationship z(r)− σ2

2 =
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σ2

2
−ζ2r2/`2
1−ζ2r2/`2 = z(r)

(
− ζ2r2`2

)
:

h(r2)−h(r1) =
C1

2TG
e
σ2

2

ln
z(r2)− σ2

2

z(r1)− σ2

2

+

∞∑
k=1

(
z(r2)− σ2

2

)k
−
(
z(r1)− σ2

2

)k
k!k


− C1

2TG

(
ln
z(r2)

z(r1)
+

∞∑
k=1

z(r2)k − z(r1)k

k!k

)

=
C1

TG
e
σ2

2 ln
r2

r1
+

C1

2TG

(
e
σ2

2 − 1
)

ln
z(r2)

z(r1)
495

+
C1

2TG

∞∑
k=1

z(r2)k
(

e
σ2

2 (−ζ2r2
2/`

2)k − 1
)
− z(r1)k

(
e
σ2

2 (−ζ2r2
1/`

2)k − 1
)

k!k

≈ C1

TG
e
σ2

2 ln
r2

r1
+

C1

2TG

(
e
σ2

2 − 1
)

ln
z(r2)

z(r1)
+

C1

2TG

(
e
σ2

2 − 1
)

(z(r2)− z(r1)) .

(A4)

The final approximate solution as given in Eq. (7) results by re-substituting z(r) with r2 = r and r1 =

R and inserting C1 =−Qw

2π .
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Table 1. Ensemble input parameters TG, σ2 and ` and best fitting inverse estimation results T̂G, σ̂2 and ˆ̀with

95% confidence intervals (in brackets) for ensemble mean 〈h(r)〉 for all generated ensembles.

TG T̂G [10−4m2 s−1] σ2 σ̂2 [−] ` ˆ̀ [m]

A 1.0 1.03 (±0.0011) 1.0 1.04 (±0.0022) 10 9.80 (±0.086)

B 1.0 1.08 (±0.0013) 1.0 1.19 (±0.0022) 20 21.6 (±0.127)

C 1.0 1.08 (±0.0021) 2.25 2.49 (±0.0038) 10 10.1 (±0.050)

D 1.0 1.19 (±0.0024) 2.25 2.67 (±0.0039) 20 22.2 (±0.077)

E 1.0 1.16 (±0.0046) 4.0 4.34 (±0.0078) 10 11.0 (±0.042)

F 1.0 1.31 (±0.0088) 4.0 4.27 (±0.0131) 20 22.2 (±0.120)

G 1.5 1.55 (±0.0012) 1.0 1.03 (±0.0016) 10 10.1 (±0.066)

Table 2. Parameter estimates of geometric mean transmissivity T̂G [10−4 m2/s], local transmissivity at the well

T̂well [10−4 m2/s] and correlation length ˆ̀[m] for the 8 pumping tests at fields D1 (from Ensemble D, σ2 =

2.25) and E1 (from Ensemble E, σ2 = 4.0). Additionally, the theoretical and the sampled values (Twell ≡ TH)

are given.

D1 E1

T̂G T̂well
ˆ̀ T̂G T̂well

ˆ̀

PW0 1.025 0.434 29.51 1.945 0.313 9.56

PW1 1.023 0.362 27.23 2.202 0.445 11.55

PW2 1.076 0.220 23.68 2.093 0.437 10.03

PW3 0.898 1.057 9.51 2.052 0.520 15.34

PW4 1.001 0.147 20.53 2.174 1.847 12.30

PW5 0.889 1.071 5.33 1.980 1.117 5.43

PW6 1.038 0.177 20.39 1.840 0.148 8.78

PW7 0.901 1.700 16.48 1.969 0.476 17.04

Mean of 8 0.981 0.646 19.08 2.032 0.663 9.90

Jointly 1.013 0.328 22.38 2.010 0.409 9.97

Theory 1.0 0.325 20.0 1.0 0.135 10.0

Sampled 0.985 0.333 23.43 1.999 0.491 12.66

Zech, A., Arnold, S., Schneider, C., and Attinger, S.: Estimating Parameters of Aquifer Heterogene-540

ity Using Pumping Tests - Implications for Field Applications, Adv. Water Resour., 83, 137–147,

doi:10.1016/j.advwatres.2015.05.021, 2015.
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Figure 1. Comparison of equivalent and Radial Coarse Graining approach: (a) radially depending transmis-

sivities interpolating between harmonic mean TH and geometric mean TG: TRCG(r) from Eq. (4) and Teq(r)

calculated based on Thiem’s formula Eq. (1) with h(r) = 〈h(r)〉, which is the ensemble mean for Ensemble

A (Table 1), (b) hydraulic head drawdowns after pumping with: hefw(r) from Eq. (6) as solution of the well

flow equation using TRCG(r), heq(r) as solution of the well flow equation using Teq(r), Thiem’s solution with

constant values TG and TH as well as mean ensemble drawdown 〈h(r)〉.
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Figure 2. Simulated ensemble means 〈h(r)〉 (dots) and hefw(r) with best fitting estimates (lines) for multiple

Ensembles: A (blue), B (green), E (red), F (orange), G (purple). Parameter values are listed in Table 1. Black

line shows hThiem(r) with TG = 10−4m2 s−1.
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Figure 3. Drawdowns simulated for two individual transmissivity field realizations of Ensemble A (TG =

10−4m2 s−1, σ2 = 1, `= 10m): (a) realization with Twell = 0.204× 10−4m2 s−1 and (b) realization with

Twell = 1.11× 10−4m2 s−1. 〈h(r)〉 (dark color) is the radial mean, 〈h(r,φ)〉 (light color) denotes the draw-

downs along the four axes (φ= 0◦,90◦,180◦,270◦), as well as in black Thiem’s solution for constant values.
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Figure 4. Histogram on the best fitting estimates (T̂G, T̂well, ˆ̀) versus the theoretical input values (TG, TH,`)

and the sampled transmissivity at the pumping well (< Twell >) for the N = 5000 realizations of Ensemble A.
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Figure 5. Spatial distribution of log-transmissivity for fields (a) D1 and (b) E1 and locations of the eight

pumping wells (PW0, . . .,PW7 in black) and the four observation wells (OW0, . . .,OW3 in gray).
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Figure 6. Simulated drawdown measurements (dots) and fitted effective well flow solution hefw(r) (lines) for

eight pumping tests within the heterogeneous transmissivity fields (a) D1 and (b) E1. Colours indicate the results

for the individual pumping tests at PW0, . . ., PW7 (from light to dark). The black line denotes the effective well

flow solution hefw(r) fitted to all measurements jointly. Gray lines denote Thiem’s solution for T̂G (solid) and

for T̂well (dashed). Statistical parameters are given in Table 2.
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