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Dear Professor Romano, 1 

 2 

The authors would like to thank the first anonymous reviewer and Dr. T. Caldwell the second 3 

reviewer for the careful review of our manuscript and for providing us with their valuable 4 

comments and the suggestions. We are pleased that the reviewers find the importance of our 5 

study as well as being of sufficient scientific quality and general interest to consider 6 

publication in HESS after revisions. The following responses have been prepared to address 7 

all of the reviewers’ comments in a point - by - point fashion. We have made major revision, 8 

clarification and additions/deletions to part of the manuscript.  After revision we found out 9 

that the manuscript has greatly improved.  10 

In the following pages, the reviewer’s comments are in italics, followed by responses from 11 

the authors in plain and blue type and details of changes/modifications (in plain and bold 12 

type). Please note that page and line numbers refer to the revised version (track changed 13 

word). 14 

 15 

Sincerely yours, 16 

Meisam Rezaei 17 

 18 

 19 

Anonymous Referee #1 comments 20 

General Comments 21 

This is a very interesting paper focusing on the sensitivity analysis of modelling tools used 22 

in agricultural studies and applications. The manuscript is well-written and clearly 23 

structured and perhaps a bit lengthy and with a possibility to be reduced in size in some 24 

areas; language used is appropriate for the scope and scientific context on which this study 25 

belongs to. The objectives of the paper are clearly set and the materials and methods 26 

adopted in the study are also well-described. Some suggestions I have for the consideration 27 

of the authors to further improve their manuscript before it is accepted for publication 28 

include: 29 

Specific Comments  30 

Specific Comments 1: In model calibration: o Include a justification of why this particular 31 

period was included for the model calibration. Also, make a statement (in the results section 32 

perhaps?) of the effect it could have on the final study results the selection of a different 33 

time period. Similarly also for the time interval selection of 2h which was chosen.  34 

 35 
Response: Indeed, the choice of the calibration period eyah yam influence on the results of 36 

the analysis. On the other hand, the observed soil water range and dynamics, rainfall 37 

intensity and ETo were similar in calibration and validation periods in which a similar model 38 
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response and performance is expected in other different period. However, we tested 1 

parameter sensitivity and optimization for 2013 growing season period which as we 2 

expected they were similar model outputs as calibration period 2012 (results not shown in 3 

this paper). Then, we will modified the text as follows: 4 

 5 

In page 11, line 11-13: “For accurate parameter estimation, the longer period 6 

such a growing season (i.e. 2012) with several drying and wetting events was 7 

selected. It is also suggested by Wöhling et al. (2009); Wöhling et al. (2008). 8 

Therefore, the period …”  9 

 10 

In page 11, line 14-17:  “We used a time interval of two hours, resulting in 11 

12960 soil water content records based on hourly precipitation and evaporation 12 

input data. Based on our experience we found out those number of data are 13 

sufficient for optimization purposes.”  14 

 15 
 16 

Specific Comments 2:  Model evaluation and statistical analysis: o Why only those specific 17 
statistical metrics were selected? I feel a stronger justification needs to be provided there. 18 
  19 
Response: We modified the text and add the justification as follows: 20 

In page 12, line 3-16: “The performance of models can be evaluated with a 21 

variety of statistics (Neuman and Wierenga, 2003). It has been known that there 22 

is no efficiency criteria which performs ideally. Each of the criteria has specific 23 

pros and cons which have to be taken into account during model calibration 24 

and evaluation. It suggested a combination of different efficiency criteria to  25 

assess of the absolute or relative volume error (Krause et al., 2005). The root-26 

mean-square errors (RMSE), the coefficient of determination (r
2
), and the 27 

Nash–Sutcliffe coefficient of model efficiency (American Society of Civil 28 

Engineers, 1993), are popular and widely used performance criteria to evaluate 29 

the difference between observed and modeled data (Gandolfi et al., 2006; Nasta 30 

et al., 2013; Verbist et al., 2009; Verbist et al., 2012; Vrugt et al., 2004; Wöhling 31 

and Vrugt, 2011; Wollschlager et al., 2009). They are calculated .…” 32 

 33 

Specific Comments 3: In results & discussion: o I would like to have seen a more in-depth 34 
discussion on the potential implications of this study results in regards to the models’ use in the 35 
future and also on how those results here agree with previous SA studies on the same models.  36 

 37 

Response: Generally, we would like to stress that at the field scale non-uniform irrigation 38 

distribution (water supply in dryer parts with ground water level below 120 cm) would be 39 

necessary and resulting in cost saving for the farmer in one hand. On the other hand, 40 

improper timing in irrigation strategy could be improved by considering soil water statues, 41 

crop condition and weather forecast using combined hydrological and crop growth model in 42 

irrigation management and precision agriculture. We have tried to simplify the 43 

parameterization scenarios in the calibration and validation stage of model development. 44 

Current study provides adequate procedure to apply hydrological model in combination with 45 

crop growth model for irrigation scheduling by the practitioners. This simple approach of 46 
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modeling for precision agricultural managements may extend from a local to regional scale 1 

and different crops such as the study area.   2 

The link with similar modeling exercises focusing on sensitivity analysis is already made in 3 

the current version page 3, lines 17-20 and page 13 lines 9-11, and also here in the following 4 

paragraphs. However, many studies did aggregate the sensitivities of different aspects 5 

and/or time steps to summarizing sensitivity indices e.g. (Abbasi et al., 2003a; Li et al., 6 

2012; Mertens et al., 2005; Rocha et al., 2006; Šimůnek and vanGenuchten, 1996; Verbist et 7 

al., 2012; Zhou et al., 2012). The latter makes it difficult to compare the current contribution 8 

with other papers in literature. However, we would address the following text in the 9 

manuscript: 10 

In P 13-14, lines 27-30 and 1-4: “Generally, all soil hydraulic parameters 11 

showed higher sensitivity in dry periods as compared to wet periods. On the 12 

other hand, there is a clear effect of parameter variability in layer 1 on water 13 

content estimation at 10 cm, and the effect is slightly declining at 20 and 30 cm, 14 

which suggested the great importance and influence of upper boundary 15 

variables especially evapotranspiration. Similar results were observed by Rocha 16 

et al. (2006). They found soil water content and pressure heads were most 17 

sensitive to hydraulic parameters variation in the dry period near the soil 18 

surface using local sensitivity analysis of Hydrus.”  19 

 20 

 21 

In page 14, lines 6-15: “...soil-water content is sensitive to variations of α, n, and 22 

Ks in both layers. The sensitivity is the largest for n, α and less so for Ks in the 23 

first layer. For the second layer, soil-water content was most sensitive to α 24 

followed by n and Ks. Abbasi et al. (2003a) reported that n, θs and Ks were most 25 

sensitive parameters in their study which more pronounced in deeper parts, 26 

however they also observed some sensitivity near the soil surface during the 27 

drier conditions. The most sensitive parameters were θs, n and α and less 28 

sensitive parameter was Ks  in study of Schneider et al. (2013) using Hydrus-1D. 29 

They found large interaction (correlation) among sensitive parameters. In 30 

contrast, Wegehenkel and Beyrich (2014) reported that soil water content 31 

predictions were most sensitive to θr and θs and least sensitive to α, n, and Ks 32 

input parameters using hydrus-1D. Similarly Caldwell et al. (2013) found θr, n 33 

and l were sensitive and θs, α and Ks were insensitive to water content 34 

simulation.”  35 

 36 

Specific Comments 4: Also, I think it would be of great value if the authors could underline a bit 37 
more the limitations inherited in their LSA (e.g. in contrast to a GSA, e.g. how about interactions 38 
between input parameters?) and on the potential impact of that on generalizing the results reported 39 
in this study in regards to the models’ future use by the users community of those models. 40 

 41 
Response: Regards to underline a bit more the limitations inherited in our LSA:  It is 42 

indeed correct that the manuscript does not elaborate about the drawbacks of a local 43 

sensitivity analysis. However, we are convinced that the selection of a LSA is justified, 44 

notwithstanding the impossibility of getting more insight in higher order parameter 45 
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interaction. We do agree with the referee that the reader should be informed about these 1 

limitations. As such, we adapted the text, justifying the selection of a LSA as follows: 2 

 Page 9-10 lines 21-30 and 1-8: “The effect of each input factor or parameter on 3 

the model output is determined by a local sensitivity analysis (SA), using a one-4 

at-a-time (OAT) approach. We used this approach because it allows a clear 5 

identification of single parameter effects. Relevant parameters have major 6 

effects on output variables with only a small change in their value (Saltelli et al., 7 

2008). Sensitivity analysis is, among other purposes, used to find the most 8 

relevant parameters which enable a reduction of the number of parameters  9 

that need to be optimized. In a local sensitivity analysis, only the local 10 

properties of the parameter values are taken into account in contrast to global 11 

sensitivity analysis which computing a number of local sensitivities. Since the 12 
interest in this study goes specifically to the measured (parameter) values in the field, a 13 

local sensitivity analysis is chosen. Furthermore, an OAT approach (local or 14 

global) does not provide direct information about higher and total order 15 

parameter interaction as is provided by variance based sensitivity analysis 16 

(Saltelli et al., 2008). However, by evaluating the parameter sensitivities in time, 17 

insight is given about potential interaction when similar individual effects are 18 

observed. The latter can be quantified by a collinearity analysis (Brun et al., 19 

2001), but will be done graphically in this contribution. Here, a dynamic (time-20 

variable) local…” 21 

Response: Regards to potential impact of that on generalizing the results - use in the 22 
future: We do already emphasize the importance of correct parameterizing the hydraulic 23 

parameters for irrigation management, specifically because of the importance in dry periods 24 

(which are essential for a correct irrigation management) (page 14, lines 21-25). The 25 

application of a time variant sensitivity analysis is crucial to this respect. However, we do 26 

not want to generalize the results of the SA itself too much towards other applications, due 27 

to the case-specific aspects. Each field is specific (sometimes referred to as uniqueness of 28 

place, (Beven, 2000)) and should be treated as such. Local sensitivity analysis is a 29 

straightforward methodology, which we consider as an essential step within the modeling 30 

workflow to learn about model behavior and to identify key parameters. Applying it time 31 

variant instead of aggregating the sensitivity in a single metric is crucial to derive this kind 32 

of information. It could be interesting to compare the results with other applications in 33 

sandy two-layered soil under grass in a temperate maritime climate, but the application of 34 

the SA is as important as the result itself and will be useful in a wide set of conditions, 35 

climates and soil types. Therefore, we deliberately inform the reader in the conclusions part 36 

about the case-specific conclusions e.g. (page 19, lines 4-7), (page 19, line 12-13),…  37 

To make this more clear, we adapted the text as follows: 38 

Page 19, lines 26-28: “… they generate. We showed that it is sufficient to 39 

estimate limited amount of key parameters for which the temporal variant 40 

information of the sensitivity is crucial. Furthermore,  that optimization 41 

strategies involving multiple…” 42 

 43 

 44 
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 2 

Dr. T. Caldwell (Referee #2) comments 3 

 General Comments 4 

The study presents a numerical analysis of hydraulic properties, water stress, and potential yields 5 
using a time-dependent sensitivity analysis. Overall, it is well written and presented. I not sure I 6 
follow the whole time-dependency argument but it is could be very interesting with a little more 7 
clarification. More clarification is required on the LINGRA-N model and the metrics presented for 8 
the sensitivity analysis. Fist, what is driving the LINGRA model so that it can feed LAI into 9 
HYDRUS? Please expand this section. Second, is the sensitivity analysis presented in Eq 12-14 new? 10 
Is there any reference? I am familiar with regional sensitivity analyses and monte carlo based 11 
approaches (Freer et al, 1996; Mertens et al., 2005); I even did one myself using Hydrus (Caldwell 12 
et al., 2013), but I don’t know this method. What are the limitation of only changing a single 13 
parameter while holding everything else constant? 14 
 15 
Response: Firstly, we agree with the referee for more clarification about the crop model 16 

setup. Therefore, this section was adopted as: 17 

In page 6, lines 8-25: “The simple generic crop growth model, LINGRA-N 18 

model (Wolf, 2012) which can calculate grass growth and yields under  19 

potential (i.e. optimal), water limited (i.e. rain fed) and nitrogen limited 20 

growing conditions, was used to calculate the leaf area index (LAI) and grass 21 

yield. This tool was calibrated and tested for perennial rye grass and natural 22 

annual grass over Europe (Barrett et al., 2004; Schapendonk et al., 1998). 23 

LINGRA-N  simulates the growth of a grass crop as a function of intercepted 24 

radiation, temperature, light use efficiency and available water (Wolf, 2012). 25 

The LAI and crop growth simulations were carried out from 1 January 2012 to 26 

31 December 2013. The model calculated LAI and yield on a daily time 27 

intervals using daily weather data, solar radiation (kJ m
-2

 d
-1

), minimum 28 

temperature (
0
C), maximum temperature (

0
C), vapour pressure (kPa), wind 29 

speed (m s
-1

) and precipitation (mm d
-1

). A grass crop data file is available 30 

mainly derived from WOFOST. Soil data for our soil were produced using 31 

measured values of soil moisture content at air dry (pF=6),  wilting point (pF= 32 

4.2), field capacity (pF= 2.3) and at saturation and also percolation to deeper 33 

soil layers (cm day
-1

)  in the laboratory. The maximum rooting depth was 34 

adjusted to 40 cm. Irrigation supply was imposed at the specific applied times 35 

with optimal nitrate application. The simulated LAI was ….” 36 

Secondly, the local sensitivity analysis as it is applied in the paper is just a direct 37 

implementation of the definition of sensitivity analysis itself, i.e. the partial derivative of the 38 

model output towards the individual parameter value in a specific point in the parameter 39 

space: 40 

∂y

∂x
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with  y the model output and  x the model parameters. This is not new at all and is in most 1 

text books about dynamical modeling and/or sensitivity analysis described. We would 2 

address some references such as: Abbasi et al. (2003a); Abbasi et al. (2003b); Rocha et al. 3 

(2006); Šimůnek and vanGenuchten (1996) among many others. For some models, it can be 4 

derived analytically (by hand or using symbolic manipulation software like sympy, 5 

mathematica, symbolic toolbox of matlab), but is in the case of environmental modeling 6 

mostly done using a numerical approximation as it is provided in the paper. By using a 7 

perturbation factor small enough to rely on the fact that the linear approximation of the 8 

partial derivative is accurate in the direct neighborhood of the parameter value, the 9 

sensitivity is calculated by approximating it as such (see paper). The numerical 10 

approximation is needed for closed software applications such as Hydrus. We’ve written a 11 

wrapper around, which is available on Github: 12 

https://github.com/stijnvanhoey/hydrus_wrapper. 13 

Choosing a local method does have some limitations, with the fact that it is only looking 14 

locally in the parameter space as a major drawback and the One-At-a-Time (OAT) property 15 

limiting the insight in higher order interactions.  16 

This comment is correct and already mentioned by the first referee. So we decided to adapt 17 

the text as follows to justify the usage of a local method an pointing out the limitations: 18 

 19 

Page 9-10 lines 21-30 and 1-8: “The effect of each input factor or parameter on 20 

the model output is determined by a local sensitivity analysis (SA), using a one-21 

at-a-time (OAT) approach. We used this approach because it allows a clear 22 

identification of single parameter effects. Relevant parameters have major 23 

effects on output variables with only a small change in their value (Saltelli et al., 24 

2008). Sensitivity analysis is, among other purposes, used to find the most 25 

relevant parameters which enable a reduction of the number of parameters  26 

that need to be optimized. In a local sensitivity analysis, only the local 27 

properties of the parameter values are taken into account in contrast to global 28 

sensitivity analysis which computing a number of local sensitivities. Since the 29 
interest in this study goes specifically to the measured (parameter) values in the field, a 30 

local sensitivity analysis is chosen. Furthermore, an OAT approach (local or 31 

global) does not provide direct information about higher and total order 32 

parameter interaction as is provided by variance based sensitivity analysis 33 

(Saltelli et al., 2008). However, by evaluating the parameter sensitivities in time, 34 

insight is given about potential interaction when similar individual effects are 35 

observed. The latter can be quantified by a collinearity analysis (Brun et al., 36 

2001), but will be done graphically in this contribution. Here, a dynamic (time-37 

variable) local…” 38 
 39 

Line specific comments 40 

p6886 l14: Despite topographic and groundwater depth variability, is there no variation in 41 

Ap thickness (33cm)? 42 

 43 

https://github.com/stijnvanhoey/hydrus_wrapper
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Response: In this study we excavated a profile at one location that the sensors ware 1 

installed.  Therefore in this line we just mentioned the first layer depth of the profile (i.e. 2 

33cm). Indeed, Ap thickness varied between 30 to 50 cm. We added the sentence to address 3 

this variation as: 4 

 5 

In page 4, lines 7-9: “The measured depth of the groundwater table was 6 

between 80 and 150 cm and the Ap horizon thickness was between 30 and 50 cm 7 

below the soil surface at various locations across the field depending on the 8 

topography.” 9 

 10 

p6886 l18: how was rooting density measured or determined? 11 

 12 

Response: The mentioned rooting density was observed during profile excavation. 13 

  14 

In page 4, lines 23-24: “Maximum grass root density was found at about 6 cm 15 

and decreased from 6 to 33 cm (based on field observation during profile 16 

excavation).” 17 

 18 

p6888 l17: I am not following how LINGA-N was integrated into HYDRUS. At a 19 

minimum,tell me what the forcing functions are for LINGA-N. Was it only used to 20 

parameterize a time-varying LAI in hydrus? 21 

 22 

Response: As explained in the first general comment we used a time variant LAI provided 23 

by LINGRA-N in Hydrus. 24 

 25 

p6689 l17: ... air entry or hysteresis ... 26 

 27 

Response: We used van Genuchten-Mualem model without air entry value and with no 28 

hysteresis condition. We stated at the text as: 29 

In page 7 lines 17-19: “To solve the Eq. 5, the van Genuchten-Mualem (MVG) 30 

soil hydraulic model (Eqs. 1-4) without air entry value and without hysteresis 31 

was used.” 32 
 33 

p6890 eq8: add ’DWS =’ to this equation - it will make it a little easier to figure out what 34 

DWS means throughout the manuscript. 35 

 36 

Response: We agree with the reviewer. This suggestion was taken into account (page 8) 37 

 38 

𝑫𝑾𝑺 =
𝑻𝒂
𝑻𝒑

= ∫ 𝒘(𝒉)𝑹(𝒙)𝒅𝒙
𝑳𝒓

 (8) 

 39 

 40 

p6891 l8: the subscript of ET are coming and going - I suggest sticking with the subscripts 41 

on ETo and ETp, ETa, etc. 42 

 43 

Response: This suggestion was taken into account.  (page 7, lines 22-23,  page 9, lines 1-4, 44 

and also page 11, line 2 for hydraulic properties). 45 

 46 
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p6892 eq. 11: S(h) was previously defined - seems odd to now have ’S’ be a function of 1 

another variable, time. Obviously they aren’t related but perhaps you could change this for 2 

clarity. 3 

 4 

Response:  In eq. 11, S denotes as Sensitivity function we will change it to SF(t) as:5 

 6 

𝐒𝐅(𝐭) =
𝛛𝐲(𝐭)

𝛛𝐱
 (11) 

In page 10 , line 16: “where SF(t), y(t), and x denote”… 7 
  In addition eq. 13 was modified (see page 10).8 

 9 

p6893 l17: what error term was used for the objective function? And how was this 10 

optimization performed? You present 3 different cost functions later. Also, did you use the 11 

Levenberg optimization routine built into Hydrus? 12 

 13 

Response: We used Levenberg–Marquardt optimization procedures which were 14 

implemented into Hydrus. We also referred to this in the introduction on p 6884, line l29.  15 

The inverse solution is finalized when the Value of the objective function is being 16 

minimized during the parameter optimization process (SSQ). Indeed we evaluated the 17 

simulated results comparing with measured ones  using three different statistics criteria (at 18 

Model evaluation and statistical analysis section). We did not represent the objective 19 

function formula in the text since it is available in the literature.  20 

 21 

p6898 l23: ’model performance during the calibration was superior to the validation 22 

period’ or something to replace ’less well’. 23 

 24 

Response: This suggestion was taken into account. The text was changed as: 25 

 26 

In page 16 lines 28-29: “…boundary conditions, show that model performance 27 

during the calibration was superior to the validation period at all observation 28 

depths (Fig. 5, Table 3)….” 29 

 30 

p6908 Table 1. Where did this data come from? Lab analysis? How many samples make up 31 

the average? You note ’measured values’ on p6896 l23 - unless this data is in another 32 

manuscript - you need to present the methods for C, texture and hydraulic properties. 33 

 34 

Response: We performed all analysis on soil characterizations. As mentioned in material 35 

and methods section,  page 5, lines 11-31 and page 6, lines 1-7, we explained number of 36 

samples and the method to determine each parameter.  37 

 38 

p6910 Table 3: Node Depth - not Nodes 39 

Response: This comment was taken into account (page 27). 40 

 41 

p6920 Figure 8: the units on the y-axis could use a space between mm and h - it looks 42 

like there’s a millihour in there. 43 

 44 
Response: Indeed it is necessary to use a space between mm and h. The figure is adopted 45 

now (page 37). 46 
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Abstract 16 

Monitoring and modeling tools may improve irrigation strategies in precision agriculture. We 17 

used non-invasive soil moisture monitoring, a crop growth and a soil hydrological model to 18 

predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil 19 

under supplementary irrigation. The sensitivity of the model to hydraulic parameters, water 20 

stress, crop yield and lower boundary conditions was assessed. Free drainage and incremental 21 

constant head conditions was implemented in a lower boundary sensitivity analysis. A time-22 

dependent sensitivity analysis showed that changes in soil water content are mainly affected 23 

by the soil saturated hydraulic conductivity Ks and the Mualem-van Genuchten retention 24 

curve shape parameters n and α. Results further showed that different parameter optimization 25 
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strategies (two-, three-, four- or six-parameter optimizations) did not affect the calculated 1 

water stress and water content as significantly as does the bottom boundary. For this case, a 2 

two-parameter scenario, where Ks was optimized for each layer under the condition of a 3 

constant groundwater depth at 135-140 cm, performed best. A larger yield reduction, and a 4 

larger number and longer duration of stress conditions occurred in the free drainage condition 5 

as compared to constant boundary conditions. Numerical results showed that optimal 6 

irrigation scheduling using the aforementioned water stress calculations can save up to 12-7 

22% irrigation water as compared to the current irrigation regime. This resulted in a yield 8 

increase of 4.5-6.5%, simulated by crop growth model.  9 

Keywords: soil hydrological model; crop model; sensitivity analysis; groundwater level; soil 10 

water stress; irrigation management, saturated hydraulic conductivity, crop yield 11 

1 Introduction 12 

Efficient water use and optimal water supply to increase food and fodder productivity are of 13 

great importance when confronted with worldwide water scarcity, climate change, growing 14 

populations and increasing water demands (FAO, 2011). In this respect, irrigation efficiency 15 

which is influenced by the type of irrigation and irrigation scheduling is essential for 16 

achieving higher water productivity. In particular, precision irrigation is adopting new 17 

methods of accurate irrigation scheduling (Jones, 2004). Various irrigation scheduling 18 

approaches such as soil-based, weather-based, crop-based, and canopy temperature-based 19 

methods have been presented (Jones, 2004;Mohanty et al., 2013;Pardossi et al., 2009;Evett et 20 

al., 2008;Nosetto et al., 2012;Huo et al., 2012).  21 

Numerical models are increasingly adopted in water resources planning and management. 22 

They contain numerical solutions of the Richards’ equation (Richards, 1931) for water flow 23 

and root water uptake (Fernández-Gálvez et al., 2006;Vrugt et al., 2001;Skaggs et al., 2006) 24 

or contain reservoir cascade schemes (Gandolfi et al., 2006). Hydrological models require 25 

determination of hydraulic properties (Šimůnek and Hopmans, 2002), upper boundary 26 

conditions related to atmospheric forcing (evapotranspiration and precipitation) (Brutsaert, 27 

2005;Nosetto et al., 2012) and groundwater dynamics at the lower boundary of the soil profile 28 

(Gandolfi et al., 2006). Numerical models such as Hydrus 1D (Šimůnek et al., 2013) have 29 

been used in a wide range of irrigation management applications, for example, by Sadeghi 30 

and Jones (2012), Tafteh and Sepaskhah (2012), Akhtar et al. (2013), and Satchithanantham et 31 
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al. (2014). The tool has been combined with crop-based models for accurate irrigation 1 

purposes and for predicting the crop productivity for cotton (Akhtar et al., 2013), vegetables 2 

and winter wheat (Awan et al., 2012). The degree of soil-water stress was used for irrigation 3 

management by coupling a hydrological model (Hydrus-1D) with a crop-growth model 4 

(WOFOST) for maize (Li et al., 2012) and wheat (Zhou et al., 2012). The importance of 5 

correct average representation of the soil-plant-atmosphere interaction in numerical models 6 

has been stressed by (Wollschlager et al., 2009). A combination of crop growth model and the 7 

hydrological model enables calculating crop yield reduction based on soil-water stress derived 8 

by the hydrological model.  9 

Direct measurement of hydraulic parameters may be inaccurate for predictions at the field 10 

scale (Verbist et al., 2012;Wöhling et al., 2008). As an alternative, parameters can be 11 

determined by inverse modeling. A single-objective inverse parameter estimation using the 12 

Levenberg–Marquardt optimization procedures has been used in different studies (Abbasi et 13 

al., 2004;Jacques et al., 2012;Šimůnek et al., 2013). A typical challenge in parameter 14 

optimization is the non-uniqueness of the parameters, leading to parameter identifiability 15 

problems (Hopmans et al., 2002). Non-uniqueness can be reduced by decreasing the number 16 

of parameters to be estimated based on a sensitivity analysis. Sensitivity analysis has been 17 

used to optimize parameter estimation, to reduce parameter uncertainty (Rocha et al., 2006), 18 

and to investigate the effects of various parameters or processes on water flow and transport 19 

(van Genuchten et al., 2012). 20 

In this study, we used a combination of soil moisture monitoring and modeling to estimate 21 

hydraulic properties and to predict soil-water content in a two layered sandy soil for precision 22 

irrigation management purposes. The objective of this paper is to investigate the impact of 23 

parameter estimation and boundary conditions on the irrigation requirements, calculated using 24 

a soil hydrological model in combination with a crop growth model. The effect of changing 25 

bottom boundary conditions on model performance was evaluated in a first step. A systematic 26 

local sensitivity analysis was then used to identify dominant hydraulic model parameters. This 27 

was followed by a model calibration using inverse modeling with field data to estimate the 28 

hydraulic properties. Finally, the degree of soil-water stress was calculated with different 29 

parameterization scenarios to show to what extent hydrological model parameter choice and 30 

boundary conditions affect estimations of irrigation requirement and crop yield.   31 
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2 Materials and Methods  1 

2.1 Description of the Study Site  2 

The study site is located in a sandy agricultural area at the border between Belgium and the 3 

Netherlands (with central coordinates 51°19′05″ N, 05°10′40″ E), characterized by a 4 

temperate maritime climate with mild winters and cool summers. During the study period 5 

2011-2013, the farmer cultivated grass. The farm is almost flat (less than 1% sloping up from 6 

NW to SE) and runoff is not considered to be important. The measured depth of the 7 

groundwater table was between 80 and 155 cm and the Ap horizon thickness was between 30 8 

and 50 cm below the soil surface at various locations across the field depending on the 9 

topography. The field is partly drained by parallel drainage pipes which are placed at 10 to 20 10 

m intervals and at around 90 cm below the soil surface (as measured in the ditch). Drainage 11 

pipes are connected to a ditch in the North-West border of the field. Figure 1 shows the 12 

location and layout of the field. Reel Sprinkler Gun irrigation (type Bauer rainstar E55, 13 

Röhren- und Pumpenwerk BAUER Ges.m.b.H., Austria) was used on a 290 m by 400 m field 14 

to improve crop growth in the sandy soil during dry periods in summer. The field was 15 

irrigated three times throughout each growing season (2012: 64.5 mm and 2013: 85.4 mm).  16 

Figure 2 shows the soil profile, a typical Podzol (Zcg-Zbg type according to the Belgian soil 17 

classification or cambisol according to WRB, (FAO, 1998)) consisting of a uniform dark 18 

brown layer of sandy soil (Ap horizon, 0 to 33 cm) with elevated organic matter content, 19 

followed by a yellowish to white sandy soil, including stones and gravels, (C1 horizon, 33 to 20 

70 cm). A deeper horizon is light gray sandy soil (C2 horizon, 70 to 135 cm), including more 21 

stones and gravels (max 20%), but having similar hydraulic properties as the C1 horizon. 22 

Maximum grass root density was found at about 6 cm and decreased from 6 to 33 cm. (based 23 

on field observation during profile excavation). The properties of the two layers are  24 

summarized in Table 1.  25 

 26 

2.2 Field Monitoring System 27 

The site was equipped with two weather stations (type CM10, Campbell Scientific Inc., Utah, 28 

USA), one in the study field and another 100 m away from the field. Soil-water content was 29 

recorded (from 1 Mar. until 25 Nov. in both 2012 and 2013) using a water content profile 30 
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probe (type EasyAG50, Sentek Technologies Ltd., Stepney, Australia), placed vertically, that 1 

measures soil-water content at 10, 20, 30, 40 and 50 cm depths. The weather stations were 2 

connected to a CR800 data logger (Campbell Scientific Inc., Utah, USA) and the water 3 

content profile probe provided the soil water content wirelessly. All measurements were taken 4 

on an hourly basis and an hourly reference evapotranspiration was calculated based on the 5 

Penman–Monteith equation (Allen et al., 1998) using weather station data. The amount of 6 

irrigation was derived by subtracting measurements of rain gauges of the field’s weather 7 

station (i.e. rainfall and irrigation) and the local meteorological station (i.e. only rainfall) 8 

outside the study field. Grass yield was measured at each harvesting time (4 times in each 9 

growing season) across the field (Fig. 3).  10 

At the sensor location (indicated by the star on the map in Figure 1), duplicate undisturbed 11 

(100 cm
3
 Kopecky rings, Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands) soil 12 

samples were taken to determine the soil saturated hydraulic conductivity and water retention 13 

curve, and one disturbed sample to measure soil properties such as texture, dry bulk density 14 

and organic matter, from the Ap (topsoil) and C (subsoil) horizons in June 2013. Groundwater 15 

depth at the sensor location was measured four times on 4 June and 5 October 2012 (140 and 16 

136 cm, respectively), and 24 June and 25 October 2013 (135 and 133 cm, respectively) using 17 

augering.  18 

The saturated hydraulic conductivity (Ks) was determined using a constant head laboratory 19 

permeameter (M1-0902e, Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). The 20 

soil-water retention curve, (SWRC, θ(h)), was determined using the sandbox method 21 

(Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands) up to a matric head of -100 22 

cm and the standard pressure plate apparatus (Soil moisture Equipment, Santa Barbara CA, 23 

USA) for matric heads equal to or below -200 cm, following the procedure outlined in 24 

(Cornelis et al., 2005). Bulk density was obtained by drying volumetric soil samples (100 25 

cm
3
) at 105 °C. Particle size distribution of the mineral component was obtained using the 26 

pipette method for clay and silt fractions and the sieving method for sand particles (Gee and 27 

Bauder, 1986). The organic matter content was determined by method of Walkley and Black 28 

(1934) . 29 

Soil hydraulic properties were determined according to the van Genuchten (1980) and 30 

Mualem (1976) conductivity model (MVG model). The parameters of the water retention 31 



6 

equation were fitted to the observed data set using the RETC, version 6.02 (van Genuchten et 1 

al., 1991). The MVG model (Mualem, 1976;van Genuchten, 1980) is given by: 2 

𝑆𝑒 =
𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟

(1) 

𝑆𝑒(ℎ) = 1  ℎ ≥ 0 (2) 

𝑆𝑒(ℎ) = (1 + |𝛼ℎ|𝑛)−𝑚  ℎ < 0;   𝑤ℎ𝑒𝑟𝑒 𝑚 = 1 −
1

𝑛
(3) 

𝐾(𝑆𝑒) = 𝐾𝑠𝑆𝑒
𝑙 [1 − (1 − 𝑆𝑒

1
𝑚)𝑚]

2

(4) 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

where θs, θr, and θ are the saturated, residual and actual volumetric water content respectively 

(L
3
L

-3
), α is the inverse of air entry value (L

-1
), n is a pore size distribution index > 1, m=1-1/n 

(dimensionless), Se is the effective saturation (dimensionless), and l is a pore connectivity and 

tortuosity parameter in the hydraulic conductivity function, which is assumed to be 0.5 as an 

average for many soils (Mualem, 1976). 

2.3 Modeling at Monitoring Locations 

2.3.1 Simulation of leaf area index and grass yield 

The simple generic crop growth model, LINGRA-N model (Wolf, 2012) which can calculate 

grass growth and yields under  potential (i.e. optimal), water limited (i.e. rain fed) and 

nitrogen limited growing conditions, was used to calculate the leaf area index (LAI) and grass 

yield. This tool was calibrated and tested for perennial rye grass and natural annual grass over 

Europe (Barrett et al., 2004;Schapendonk et al., 1998). LINGRA-N  simulates the growth of a 

grass crop as a function of intercepted radiation, temperature, light use efficiency and 

available water (Wolf, 2012). The LAI and yield was simulated with a daily time intervals. 

The simulated LAI were. The LAI and crop growth simulations were carried out from 1 

January 2012 to 31 December 2013. The model calculated LAI and yield on a daily time 

intervals using daily weather data, solar radiation (kJ m
-2

 d
-1

), minimum temperature (0C), 20 

maximum temperature (
0C), vapour pressure (kPa), wind speed (m s

-1) and precipitation (mm 21 

d
-1

). A grass crop data file is available mainly derived from WOFOST. Soil data for our soil 22 

were produced using measured values of soil moisture content at air dry (pF=6),  wilting point 23 

(pF= 4.2), field capacity (pF= 2.3) and at saturation and also percolation to deeper soil layers 24 
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(cm day
-1

) in the laboratory. The maximum rooting depth was adjusted to 40 cm. Irrigation 1 

supply was imposed at the specific applied times with optimal nitrate application. The 2 

simulated LAI was scaled to an hourly basis using linear interpolation between two adjacent 3 

simulated daily values of LAI. The model was run for optimal (no water limitation) and 4 

realistic conditions (actual water inlet i.e. irrigation and rainfall) for each growing season. 5 

Figure 3 represents predicted LAI and grass yield of 2012 and 2013. 6 

2.3.2 Simulation of Water Flow 7 

The simulated soil profile in the model extends to 150 cm depth and is divided into two 8 

layers: Layer 1 (0 to 33 cm) and Layer 2 (33 to 150 cm). Simulation of root water uptake and 9 

water flow, which is assumed to be in the vertical direction in the vadose zone, was carried 10 

out for two growing seasons (from 1 Mar. until 25 Nov. in 2012 and 2013) using Hydrus-1D 11 

version 4.16 which solves the 1-D Richards’ equation: 12 

Wherewhere θ is the volumetric water content (L
3
L

-3
), t is time (T), z is the radial and vertical 13 

space coordinate taken positive downward (L), K(h) is the unsaturated hydraulic conductivity 14 

function (LT
-1

), h is the pressure head (L), and S(h) represents a sink term (L
3
L

-3
T

-1
), defined 15 

as the volume of water removed from a unit volume of soil per unit time due to plant water 16 

uptake.  17 

To solve the Eq. 5, the van Genuchten-Mualem (MVG) soil hydraulic model (Eqs. 1-4) 18 

without air entry value and without hysteresis was used. The initial pressure head distribution 19 

was calculated using the inverse of Equation (3), h(Se), from the measured initial water 20 

content of each observation node. These point values were then interpolated linearly from the 21 

deepest observation node to the groundwater level (h=0, GWL). The pore connectivity 22 

parameter of the MVG model was fixed at l=0.5. The upper condition for water flow was an 23 

atmospheric boundary condition (based on rainfall and irrigation water supply, leaf area index 24 

(LAI) calculated by LINGRA-N (see 2.3.1) and reference evapotranspiration (ETo)) with 25 

surface runoff. The ETo was initially used without adjusting the crop coefficient assuming that 26 

grass at our site did not differ much from the reference crop. The Feddes’ model (Feddes et 27 

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾(ℎ) (

𝜕ℎ(𝜃)

𝜕𝑧
+ 1)] − 𝑆(ℎ) (5) 
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al., 1978) without solute stress was used for root water uptake. The default grass parameters 1 

values provided by Hydrus-1D were used (Taylor and Ashcroft, 1972). 2 

 3 

2.4 Soil-Water Stress and yield reduction 4 

The Feddes’ model (Feddes et al., 1978) as the sink term of Richards’ equation Eq. (5), S(h), 5 

is specified in terms of quantify potential root water uptake and water stress, as: 6 

𝑆(ℎ) = 𝑤(ℎ)𝑅(𝑥)𝑇𝑝 (6) 

where R(x) is the root distribution function (cm), Tp is potential transpiration (cm h
-1

), and w(h) 7 

is the water stress response function (0 ≤ w(h) ≤ 1) which prescribes the reduction in uptake 8 

that occurs due to drought stress . Crop specific values of this reduction function are chosen 9 

from the default Hydrus data set. The actual plant transpiration is calculated numerically, as: 10 

𝑇𝑎 = ∫ 𝑆(ℎ)𝑑𝑥 =
𝐿𝑟

𝑇𝑝 ∫ 𝑤(ℎ)𝑅(𝑥)𝑑𝑥
𝐿𝑟

 (7) 

Where Lr is the rooting depth (cm). 11 

By assuming root water uptake is equal to actual transpiration, the ratio of actual to potential 12 

transpiration by the root uptake was introduced as a degree of water stress, DWS, (Jarvis, 13 

1989), as: 14 

𝑇𝑎

𝑇𝑝
𝐷𝑊𝑆 =

𝑇𝑎

𝑇𝑝
= ∫ 𝑤(ℎ)𝑅(𝑥)𝑑𝑥

𝐿𝑟

 (8) 

The effect of the boundary conditions and parameter uncertainty on soil-water stress was 15 

evaluated using the ratio between the calculated actual water uptake/actual transpiration and 16 

the potential transpiration provided by the model (Li et al., 2012;Zhou et al., 2012). In optimal 17 

and stress free conditions, this ratio should be (close to) unity (>0.90 of maximum reference 18 

evapotranspiration).  19 
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The ratio between actual crop evapotranspiration and potential evapotranspiration was 1 

introduced as a water stress factor equal to the crop yield reduction due to water shortage 2 

(Doorenbos and Kassam, 1979), given as:  3 

1 −
𝑌𝑎

𝑌𝑚
= 𝐾𝑦 (1 −

𝐸𝑇𝑎

𝐸𝑇𝑝
) (9) 

Where Ya is actual crop yield, Ym is the maximum crop yield in optimal condition, Ky is the 4 

crop yield factor (for grass Ky=1), ETa is actual crop evapotranspiration estimated by the 5 

model. The Ym value was simulated using LINGRA-N in optimal condition (no water stress) 6 

for 2012 and 2013 growing seasons. ETp is potential evapotranspiration and can be calculated 7 

from the reference evapotranspiration by: 8 

𝐸𝑇𝑝 = 𝐸𝑇0 × 𝐾𝑐 (10) 

Where Kc is the crop coefficient and equal to one, assuming that grass at our site did not differ 9 

much from the reference crop. Accordingly, crop yield reduction of each scenario was 10 

calculated using Eq. 9 for both periods to show to what extent different scenarios affect soil 11 

water stress and crop yield. 12 

2.5 Sensitivity Analysis  13 

The contribution of each input factor or parameter to the uncertainty of the model output is 14 

determined by sensitivity analysis (SA). To reduce the number of parameters that need to be 15 

optimized, local sensitivity analyses are often performed that evaluate model output for each 16 

parameter perturbation using a one-at-a-time approach. Relevant parameters have major 17 

effects on output variables with only a small change in their value (Saltelli et al., 2008). 18 

Generally, in model calibration purposes, a local SA is used to find the most relevant 19 

parameters and the analysis is invariant with time. Here, a dynamic (time-variable) local 20 

sensitivity analysis was conducted by linking Equations (11-14), programmed in Python 21 

software (https://www.python.org/) to Hydrus-1D. A dynamic sensitivity function can be 22 

written as follows: 23 

The effect of each input factor or parameter on the model output is determined by a local 24 

sensitivity analysis (SA), using a one-at-a-time (OAT) approach. We used this approach 25 

because it allows a clear identification of single parameter effects. Relevant parameters have 26 
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major effects on output variables with only a small change in their value (Saltelli et al., 2008). 1 

Sensitivity analysis is, among other purposes, used to find the most relevant parameters which 2 

enable a reduction of the number of parameters that need to be optimized. In a local 3 

sensitivity analysis, only the local properties of the parameter values are taken into account in 4 

contrast to global sensitivity analysis which computing a number of local sensitivities. Since 5 

the interest in this study goes specifically to the measured (parameter) values in the field, a 6 

local sensitivity analysis is chosen. Furthermore, an OAT approach (local or global) does not 7 

provide direct information about higher and total order parameter interaction as is provided by 8 

variance based sensitivity analysis (Saltelli et al., 2008). However, by evaluating the 9 

parameter sensitivities in time, insight is given about potential interaction when similar 10 

individual effects are observed. The latter can be quantified by a collinearity analysis (Brun et 11 

al., 2001), but will be done graphically in this contribution. Here, a dynamic (time-variable) 12 

local sensitivity analysis was conducted by linking Equations (11-14), programmed in Python 13 

software (https://www.python.org/) to Hydrus-1D. A dynamic sensitivity function can be 14 

written as follows: 15 

SSF(t) =
∂y(t)

∂x
 (11) 

where SSF(t), y(t), and x denote the sensitivity function, output variable and parameter 16 

respectively. If an output variable (y) significantly changes (evaluated by calculating the 17 

variance or coefficient of determination or by visualizing in a scatter plot) due to small 18 

changes of the parameter of interest x, it is called a sensitive parameter.  19 

This partial derivative can be calculated analytically or numerically with a finite different 20 

approach by a local linearity assumption of the model on the parameters. Local sensitivity 21 

functions evaluate the partial derivative around the nominal parameter values. The central 22 

differences of the sensitivity function are used to rank the parameter sensitivities and can be 23 

expressed as follows: 24 

∆x = p𝑓 . xj (12) 

CAS =
∂y(t)

∂x
= lim

∆xj→0

y(t, xj + ∆xj) − y(t, xj − ∆xj)

2∆xj
 (13) 

CTRS =
∂y(t)

∂x
.
x𝑗

y
 ,                        CPRS =

∂y(t)

∂x
. x𝑗 (14) 

Field Code Changed
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where pf is the perturbation factor, xj is the parameter value and Δxj is the perturbation, CAS is 1 

the Central Absolute Sensitivity, CTRS is the Central Total Relative Sensitivity analysis, and 2 

CPRS is a Central Parameter Relative Sensitivity. Since the parameters and variables have 3 

different orders of magnitude for which the sensitivity is calculated, direct comparison of the 4 

sensitivity indices with CAS is not possible. Hence, recalculation towards relative and 5 

comparable values is needed. In order to compare the sensitivity of the different parameters 6 

towards the different variables, CTRS is preferred. CPRS is sufficient when the sensitivity of 7 

different parameters is compared for a single variable, i.e., soil-water content. 8 

Given the output accuracy of Hydrus-1D (0.001), a perturbation factor of 0.1 was chosen. To 9 

carry out the sensitivity analysis, each hydraulic parameter (Ks, r, s,  and n) in each layer 10 

was varied (measured value ± perturbation factor) and its CTRS was calculated (Eq. 13-14), 11 

while the values of other parameters were fixed to the measured values. The model was ran in 12 

forward mode 20 times, i.e., 10 runs for each layer and two runs for each parameter. A weak 13 

direct effect of a parameter in SA is denoted by low absolute values close to zero. A positive 14 

effect is expressed by a positive value and a negative effect by a negative value. 15 

 16 

2.6 Model Calibration and validation 17 

2.6.1 Model calibration 18 

TheFor accurate parameter estimation, the longer period such a growing season (i.e. 2012) 19 

with several drying and wetting events was selected. It is also suggested by Wöhling et al. 20 

(2009);Wöhling et al. (2008). Therefore, the period between 1 Mar. 2012 (00:00 h) and 25 21 

Nov. 2012 (23:00 h) was used as the calibration period. We used a time interval of two hours, 22 

resulting in 12960 soil-water content records based on hourly precipitation and evaporation 23 

input data. Based on our experience we found out those number of data are sufficient for 24 

optimization purposes. The objective functions to be optimized were soil water content and 25 

water retention data for both soil layers with unit weighting. In the calibration, we optimized 26 

only the values of the most sensitive parameters (Ks, n, and ) of the two layers, taking initial 27 

values of hydraulic parameters for each layer equal to the values estimated by the RETC 28 

program for the independent field samples, while keeping the insensitive hydraulic parameters 29 

(s, r) fixed to the measured values. Thirty seven parameter optimization scenarios were 30 
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selected and analyzed to identify correlations among optimized parameters and to identify the 1 

most influential parameter sets on soil water stress and water content in different lower 2 

boundary conditions. The thirty seven scenarios comprised optimizing all six parameters 3 

simultaneously (1 scenario), four parameters (9 scenarios), three parameters (18 scenarios) 4 

and two parameters (9 scenarios). Finally, the best performing parameter set - based on 5 

performance criteria, the correlation between optimized parameters (non-uniqueness of the 6 

parameter sets) and the visual inspection of simulated and observed soil-water content - was 7 

selected for validation using independent data from 2013 (from 1 Mar. until 12 Sep. 2013).  8 

 9 

2.6.2 Model Evaluation and Statistical Analysis 10 

The performance of models can be evaluated with a variety of statistics (Neuman and 11 

Wierenga, 2003). The root-mean-square errors (RMSE), the coefficient of determination (r
2
), 12 

and the Nash–Sutcliffe coefficient of model efficiency (American Society of Civil Engineers, 13 

1993), are popular and widely used performance criteria to evaluate the difference between 14 

observed and modeled data (Krause et al., 2005). . It has been known that there is no 15 

efficiency criteria which performs ideally. Each of the criteria has specific pros and cons 16 

which have to be taken into account during model calibration and evaluation. It suggested a 17 

combination of different efficiency criteria to  assess of the absolute or relative volume error 18 

(Krause et al., 2005). The root-mean-square errors (RMSE), the coefficient of determination 19 

(r
2
), and the Nash–Sutcliffe coefficient of model efficiency (Ce) (American Society of Civil 20 

Engineers, 1993), are popular and widely used performance criteria to evaluate the difference 21 

between observed and modeled data (Wöhling and Vrugt, 2011;Verbist et al., 2012;Gandolfi 22 

et al., 2006;Vrugt et al., 2004;Wollschlager et al., 2009;Nasta et al., 2013;Verbist et al., 23 

2009).They are calculated as follows: 24 

𝐶𝑒 = 1 −
∑ (𝑂𝑖 − 𝑆𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖 − 𝑂̅)2𝑛
𝑖=1

 (15) 

𝑟2 = (
∑ (𝑂𝑖 − 𝑂̅)(𝑆𝑖 − 𝑆̅)𝑛

𝑖=1

√∑ (𝑆𝑖 − 𝑆̅)2 ∑ (𝑂𝑖 − 𝑂̅)2𝑛
𝑖=1

𝑛
𝑖=1  

)2 
(16) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑂𝑖 − 𝑆𝑖)2𝑛

𝑖

𝑛
 (17) 
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 1 

where O and S are observed and simulated values at time/place i, respectively. 2 

Ce and r
2 

are considered to be satisfying when they are close to one, while RSME should be 3 

close to zero. Ce may result in negative values when the mean square error exceeds the 4 

variance (Hall, 2001).  5 

2.7 Irrigation Scheduling 6 

The value of soil-water stress, and the number and the duration of stress periods was 7 

calculated for two growing seasons (2012 and 2013), as an indicator for the performance of 8 

the irrigation scheduling (van Dam et al., 2008). To optimize the irrigation scheduling (timing 9 

of application), the actual water supply (all irrigation events) was deleted from the model 10 

input of the hydrological model. Secondly, the LAI simulated with the LINGRA-N for 11 

optimal conditions (no water stress) was used as a variable in the hydrological model. Then, 12 

the hydrological model with a constant bottom boundary condition was run with the new 13 

input variables to elucidate water stress without actual water supply. Subsequently, the 14 

required irrigation was added to the precipitation at the beginning of each water stress period 15 

to exclude water stress from the simulations. To simulate crop yield at the optimized 16 

condition, the new precipitation variables (rainfall and required irrigation) were used in 17 

LINGRA-N model. The optimal yield obtained using the optimized irrigation scheduling was 18 

compared to the actual (simulated and measured) yield of current irrigation management 19 

practices. 20 

3 Results and Discussion 21 

3.1 Parameter Sensitivity Analysis 22 

Due to the variable rainfall, irrigation, evapotranspiration and drainage, the soil-water content 23 

changes in the soil profile, and, consequently, parameter sensitivities are time dependent. The 24 

soil-water content has a low sensitivity to θs and θr, especially for the second layer. Low 25 

sensitivities to θr have been reported by others (Kelleners et al., 2005;Mertens et al., 26 

2006;Wöhling et al., 2008).  27 
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Figure 4 illustrates the results of the sensitivity analysis as a function of time for the most 1 

influential parameters α, n, and Ks, and for both soil layers as depicted by the suffix 1 for 2 

layer 1 and suffix 2 for layer 2. A weak direct effect of a parameter is reflected by low 3 

absolute values (close to zero). 4 

The results show for all parameters a general change in sensitivity with time with the seasonal 5 

changes in irrigation application and rainfall. Generally, all soil hydraulic parameters showed 6 

higher sensitivity in dry periods as compared to wet periods. On the other hand, there is a 7 

clear effect of parameter variability in layer 1 on water content estimation at 10 cm, and the 8 

effect is slightly declining at 20 and 30 cm., which suggested the great importance and 9 

influence of upper boundary variables especially evapotranspiration. Similar results were 10 

observed by Rocha et al. (2006). They found soil water content and pressure heads were most 11 

sensitive to hydraulic parameters variation in the dry period near the soil surface using local 12 

sensitivity analysis of Hydrus.  13 

Soil-water content is sensitive to variations of α, n, and Ks in both layers. The sensitivity is the 14 

largest for n, α and less so for Ks in the first layer. For the second layer, soil-water content was 15 

most sensitive to α followed by n and Ks. Abbasi et al. (2003) reported that n, θs and Ks were 16 

most sensitive parameters in their study which more pronounced in deeper parts, however 17 

they also observed some sensitivity near the soil surface during the drier conditions. The most 18 

sensitive parameters were θs, n and α and less sensitive parameter was Ks in study of 19 

Schneider et al. (2013) using Hydrus-1D. They found large interaction (correlation) among 20 

sensitive parameters. In contrast, Wegehenkel and Beyrich (2014) reported that soil water 21 

content predictions were most sensitive to θr and θs and least sensitive to α, n, and Ks input 22 

parameters using hydrus-1D. Similarly, Caldwell et al. (2013) found θr, n and l were sensitive 23 

and θs, α and Ks were insensitive to water content simulation. In dry periods, there is a general 24 

negative correlation between n and α on the one hand and soil-water content on the other 25 

hand, whereas a positive correlation exists between Ks and soil-water content (Fig. 4). Figure 26 

4 shows that in the first layer, the soil-water content is more influenced by rainfall at 10 cm 27 

than at 30 cm (higher and lower sensitivity for observation nodes 10 and 30 cm, respectively, 28 

within first layer).  29 

The fact that the model predictions in the upper part of the soil profile are extremely sensitive 30 

to variations in hydraulic parameters in dry periods, is of great importance to irrigation 31 

management. To improve the timing of irrigation in these crucial periods, numerical soil 32 
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models that are used to determine irrigation requirement, need to be well parameterized for , 1 

n and Ks.  2 

3.2 Model Calibration 3 

Since soil-water content prediction was insensitive to the parameters s and r, they were 4 

fixed to the measured (initial) values (Table 1). Similar strategies were used by (Verbist et al., 5 

2012;Schwartz and Evett, 2002).  6 

The model was run inversely using time series of soil-water content with values for α, n and 7 

Ks being optimized for the two layers (i.e., six-parameter optimization scenario). A significant 8 

correlation appears between optimized α and Ks for both layers (layer 1: r= 0.85; layer 2: 9 

r=0.95 constant head; and layer 1: r= 0.82; layer 2: r=0.80 free drainage) and between 10 

optimized n and α (both layers: r=-0.99 constant head; and layer 1: r=-0.83 and layer 2: r=-11 

0.84 free drainage) within each layer, but not between layers. On the other hand, there is a 12 

significant correlation between n and Ks in both layers (layer 1: r= -0.85; layer 2: r=-0.94 13 

constant head; and layer 1: r= -0.75; layer 2: r=-0.98 free drainage). This means that , n, and 14 

Ks within one layer cannot be determined independently and different sets of correlated 15 

parameters lead to very similar predictions of soil-water content. The high correlation 16 

between optimized parameters within a layer leads to a large uncertainty of the final 17 

parameter estimates (Hopmans et al., 2002). To avoid non-uniqueness of the inverse solution 18 

(Šimůnek and Hopmans, 2002), 36 additional systematic four-, three- and two-parameter 19 

optimizations were conducted. All optimizations resulting in correlations among the 20 

optimized parameters were removed and only the optimization scenarios with the uncorrelated 21 

parameters were kept. This resulted in parameter values as shown in Table 2 for a constant 22 

head corresponding to a groundwater depth of -140 cm and free drainage. For comparison 23 

purposes, six parameter scenario (all parameters optimized) and only the best performing 24 

optimization with two parameters is presented for the other boundary condition (i.e., GWL = -25 

120 cm). 26 

The performance results of the parameter optimizations according to the performance criteria 27 

for all scenarios with uncorrelated parameters and different boundary conditions are presented 28 

in Table 3, together with the performance of the six parameter scenario. The results show that 29 

a two parameter optimization (optimizing only Ks in both layers) performs equally well as 30 

compared to a six-, four- or three-parameter scenario for all performance criteria and 31 
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observation depths. However, parameters in the six parameter scenario are considered 1 

unidentifiable due to their correlations. In this case, the model was not able to find a global 2 

minimum but found a local minimum (Marquardt-Levenberg method) due to the high 3 

dimensionality of the problem (Ritter et al., 2003) and the large uncertainty of the optimized 4 

values. 5 

Large differences in model performance were obtained when using free drainage or constant 6 

head conditions (Table 3). After optimization, the r
2 

for different free drainage and constant 7 

head conditions and various optimization scenarios was similar, while Ce and RSME were 8 

different. Overall, the performance of the model to predict soil-water content at 40 cm was 9 

lowest. The model performs well for the 10, 20, and 30 cm depths where the plant roots are 10 

concentrated and which are consequently the most critical in terms of irrigation optimization. 11 

The model with a constant head (-140 cm) clearly performed better than the free drainage 12 

boundary condition. The smallest differences were detected at the top node (10 cm) compared 13 

to deeper nodes in constant head and free drainage conditions. The optimization approach 14 

showed that the free drainage condition was unsuccessful to predict soil water content 15 

sufficiently well in agreement with observations, even using different parameter estimations. 16 

The two-parameter scenario requires less parameters (one parameter for each layer) to be 17 

optimized, performs better as compared to the uncalibrated model (see supplementary 18 

materials) and is therefore to be preferred. Large confidence limits indicate uncertain 19 

estimations of a particular parameter (Šimůnek and Hopmans, 2002). The optimized Ks with 20 

95% confidence limits (CL) for the first and second layer were 1.20 (1.15 – 1.24) cm.h
-1

, and 21 

2.17 (2.06 – 2.26) cm.h
-1

, respectively, in the two-parameter scenario with -140 cm GWL. 22 

Therefore, this optimization result was considered the best and was chosen for the evaluation 23 

run.  24 

3.3 Model Evaluation 25 

The validation results (using the same hydraulic parameters values as in the calibration 26 

period) under different upper (rainfall and water supply, ETo, LAI) and lower (groundwater 27 

depth, i.e. -135 cm) boundary conditions, show that the model performs less well as compared 28 

toperformance during the calibration was superior to the validation period at all observation 29 

depths (Fig. 5, Table 3). The same result was reported by (Ritter et al., 2003), Wöhling et al. 30 

(2008), Wöhling et al. (2009). Similar to the calibration period, soil-water content was 31 
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predicted better during the rain and irrigation period than in the dry period. Specifically, soil-1 

water content was overpredicted during summer months (June-August) and underpredicted 2 

during winter and spring. Wöhling et al. (2009) explained that the differences can be partly 3 

attributed to non-uniqueness of the optimization process, inadequacy of the model structure, 4 

the large number of optimized parameters, different information content in the calibration and 5 

evaluation data, and seasonal changes in soil hydraulic properties. To what extent the soil 6 

water content prediction affects the calculated irrigation requirements, is shown in the 7 

subsequent paragraph.  8 

 9 

3.4 Effect of Optimization Scenarios on Estimated Water Stress and 10 

yield reduction  11 

Using the two-parameter optimization scenario (Table 4), the calculated potential-reference 12 

evapotranspiration (ETo) values for 2012 and 2013 (same period from 1 Mar. to 12 Sep.) were 13 

523 and 524 mm, respectively. The cumulative actual transpiration and evaporation, provided 14 

by the hydrological model, were 353 and 86 mm for the calibration (2012) and 343 and 114 15 

mm for validation (2013) periods. Calculated cumulative actual fluxes across the bottom of 16 

the soil profile were -15.4 mm (outflow) and 63.3 mm (upward inflow), respectively. The 17 

calculations are valid for the location where the soil moisture sensor was placed, i.e., in the 18 

dryer part of the field with groundwater depths below 120 cm. The sum of irrigation and 19 

precipitation over the simulation period was 463 mm (64.5 mm irrigation and 398.5 mm 20 

precipitation) in 2012 and 428.7 mm (85.4 mm irrigation and 343.3 mm precipitation) in 21 

2013. In 2013, the amount of water from irrigation and rainfall was lower as compared to 22 

2012, resulting in a larger recharge from the groundwater. Generally, the periods of water 23 

stress was 671 h in 2012 and 675 h in 2013 (Table 4). Despite these similarity, the extent of 24 

soil water stress was larger in 2013 as compared to 2012. This can be attributed that the first 25 

water stress event in 2012 with about 328 h duration is not related to soil water availability 26 

but is also due to climate limitations (low temperature and light-radiation limitation). No 27 

significant reduction or increase in yield and LAI was achieved during this first water stress 28 

event in current and optimum conditions (Fig. 3).  29 

There was a significant effect of the bottom boundary condition on the calculated water stress. 30 

A free drainage condition resulted in a larger number, longer duration of stress conditions 31 
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(Fig. 6 and Table 4) and overestimated water stress due to excessive recharge to the 1 

groundwater (more than 148 mm). On the other hand, a shallower imposed groundwater level 2 

(-120 cm) creates less estimated water stress (Fig 6 and Table 4), because this boundary 3 

condition allows inflow (upward flow) from ground water table. When the ground water level 4 

was -140 cm the outflow of the bottom flux increase from six-optimized parameters scenario 5 

(-4.6 mm) to two- parameters scenario (-15.4 mm) in calibration period. While upward flow 6 

increased with increasing number of optimized parameters in validation period (63.3 to 76.9 7 

mm). But these inflow did not meet the crop water requirement (see next paragraph). Huo et 8 

al. (2012) reported that the maximum contribution of ground water level to crop water 9 

requirement occurred when the groundwater level was less than 100 cm. Overall, to overcome 10 

the water stress effects on crop yield, additional required irrigation should be supplied for 11 

different optimization scenarios and boundary conditions. During water stress, yield reduction 12 

would be in range of 0 to 33% for different optimization scenarios (Table 4). In addition, two- 13 

to six-parameter optimizations showed a similar value in yield reduction (16% for two and 14 

13% for three- to six-parameter in calibration and 13% for two and 11% for three to six-15 

parameters to be optimized in validation periods). The maximum yield reduction occurred in 16 

the free drainage condition among different boundary conditions and parameter optimization 17 

scenarios. Different parameter optimization strategies (two-, three-, four- or six-parameter 18 

optimizations) do not affect the calculated water stress as significantly as does the bottom 19 

boundary. Therefore, these results suggest that simultaneous optimization is needed for 20 

irrigation management purposes, i.e. optimize/choosing boundary conditions to accurately 21 

describe recharge to or from groundwater and, in second order, optimize hydraulic parameters 22 

to accurately describe soil-water content variation in the topsoil.  23 

3.5 Irrigation scheduling scheme 24 

The simulated results further showed that, to avoid drought stress during summer, a more 25 

accurate irrigation schedule would be needed in the dryer part of the field. It would be better 26 

to supply water in June and July instead of a huge amount in late summer or at an 27 

inappropriate time (see Figure 6 and 7). Results revealed that the actual water supply 28 

exceeded crop demand but did not meet the crop requirement (Fig. 7 and Table 5). Irrigation 29 

volume affects soil water fluxes. In the ‘no irrigation’ scenario for 2012 the upward/inflow 30 

fluxes from groundwater were larger than current and guided irrigation scenarios (Fig. 8). The 31 

upward flow of water was not sufficient to meet the crop requirement. For guided irrigation, 32 
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recharge from groundwater was larger than current irrigation in 2012 and 2013. Which means 1 

some part of crop water demand would supply from groundwater in guided irrigation.  2 

Results show that, although reducing water supply throughout growth period by about 22.5% 3 

in 2012 and 12% in 2013, yield would have increased about 4.5% in 2012 and 6.5% in 2013 4 

on average (Table 5, Figure 3), by rescheduling irrigation at the precise time when the crop is 5 

exposed to water stress. The number of irrigation events would remain similar to realistic 6 

applications (three times in each growing season). At the field scale non-uniform irrigation 7 

distribution (water supply in dryer parts with ground water level below 120 cm) would be 8 

necessary.  9 

 10 

4 Conclusions  11 

The results of this study demonstrated clearly the profound effect of the position of the 12 

groundwater table on the estimated soil-water content and associated water stress in a sandy 13 

two-layered soil under grass in a temperate maritime climate. Indeed, field scale variations in 14 

soil-water content can be very large, due to topography and variable depth of the 15 

groundwater. Furthermore, the model performance was affected by the spatial variability of 16 

hydraulic parameters such as Ks. Results show that the uniform distribution of water using 17 

standard gun sprinkler irrigation may not be an efficient approach since at locations with 18 

shallow groundwater, the amount of water applied will be excessive as compared to the crop 19 

requirements, while in locations with a deeper groundwater table, the crop irrigation 20 

requirements will not be met during crop water stress.  21 

The results show that the effect of groundwater level was dominant in soil-water content 22 

prediction, at least under conditions similar to those in our study. This reflects the need for 23 

accurate determination of the bottom boundary condition, both in space and time. In a 24 

subsequent field experiment in an adjacent field, the temporal fluctuations of the groundwater 25 

table based on diver (Mini-Diver, Eijkelkamp Agrisearch Equipment, Giesbeek, the 26 

Netherlands) measurements in boreholes revealed changes in groundwater depth of about 10 27 

cm. The temporal changes were smaller than the expected variation due to topography which 28 

may well range more than 100 cm even for relatively flat areas. This has important 29 

consequences for precision irrigation management and variable water applications at sub-field 30 
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scale. The use of detailed (cm scale) digital elevation models, geophysical measurement 1 

techniques such as electromagnetic induction or ground penetrating radar as proxies for 2 

hydraulic parameters will serve as valuable data sources for hydrological models to calculate 3 

variable irrigation requirements within agricultural fields. The parameterization scenarios in 4 

the calibration and validation stage of model development should be kept simple in view of 5 

the information they generate. We showed that it is sufficient to estimate limited amount of 6 

key parameters andfor which the temporal variant information of the sensitivity is crucial. 7 

Furthermore,  that optimization strategies involving multiple parameters do not perform better 8 

in view of the optimization of irrigation management. We showed that a combined modeling 9 

approach could increase water use efficiency (12-22.5%) and yield (5-7%) by changing the 10 

irrigation scheduling. Results of study call for taking into account weather forecast and water 11 

content data in irrigation management and precision agriculture. The combination of accurate 12 

and spatially distributed field data with appropriate numerical models will allow to accurately 13 

determine the field scale irrigation requirements, taking into account variations in boundary 14 

conditions across the field and spatial variations of model parameters. The information gained 15 

in this study with respect to dominant parameters and effect of boundary conditions at the plot 16 

scale (1D) will be scaled up in a 2D approach to the field scale using detailed spatial 17 

information on groundwater depth and hydraulic conductivity Ks.  18 

 19 
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Table 1. Average of soil properties of soil profile. θr, θs are residual and saturated water content, respectively; α and n are shape parameters for 1 

the van Genuchten-Mualem equation. Ks denotes the saturated hydraulic conductivity.  2 

 3 

 Ks θr θs α n OC Sand Silt Clay ρb 

 cmh
-1

 cm
3
cm

-3
 cm

-1
  % gcm

-3
 

Topsoil 9.59 0.09 0.39 0.017 2.72 2.08 91.65 7.0 1.35 1.57 

Subsoil 4.74 0.03 0.31 0.021 2.34 0.18 95.7 3.1 1.2 1.76 
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Table 2. Optimized values of hydraulic parameters for the optimization scenarios yielding uncorrelated parameters (except for reference scenario 1 

with 6 optimized parameters). Values indicated in italic are values fixed to the measured values close to the sensor location. Number between 2 

parentheses represents the standard errors of optimized parameter. 3 

 4 

  5 

Boundary 

condition 

Number of 

optimized 

parameters 

First soil layer Second soil layer 

  α1 (cm
-1

) n1 Ks1 (cmh
-1

) α2 (1/cm) n2 Ks2 (cmh
-1

) 

Constant head  

(-140 cm) 

6 
0.023 

(0.0004) 
2.14 (0.02) 

2.87  

(0.111) 

0.022 

(0.0006) 
2.15 (0.034) 1.95 (0.14) 

4 0.017 2.64 (0.003)
 1.54 

(0.028) 

0.020 

(0.00005) 
2.34 1.43 (0.026) 

3 0.017 2.72 
1.39 

(0.026) 

0.020 

(0.00005) 
2.34 

1.65 

(0.031) 

2 0.017 2.72 
1.20 

(0.023) 
0.021 2.34 2.17 (0.044) 

Constant head  

(-120 cm) 
2 0.017 2.72 

3.45 

(0.162) 
0.021 2.34 0.75 (0.0107) 

Free drainage 

6 
0.036 

(0.0007) 
1.45 (0.003) 

16.68  

(0.48) 

0.013 

(0.0005) 
1.59 (0.013) 5.10 (0.51) 

4 0.017 1.53 (0.003) 
5.09 

(0.12) 

0.003 

(0.00013) 
2.34 0.33 (0.005) 

3 0.017 2.72 
0.97 

(0.02) 

0.017 

(0.00008) 
2.34 

0.22 

(0.004) 

2 0.017 2.72 
0.86 

(0.022) 
0.021 2.34 0.39 (0.004) 
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Table 3. Calculated performance criteria describing the correspondence between measured 1 

and simulated soil water content for each scenario for various boundary conditions.  2 

 3 

†RMSE, Ce and r
2
 are the root-mean-square deviation, the Nash–Sutcliffe coefficient of 4 

efficiency (cm
3
cm

-3
) and the coefficient of determination. 5 

 Boundary condition 
Number of optimized 

parameters 

NodesNode 

depth (cm) 
RMSE †

 
Ce †

 
r

2
 † 

C
a
li

b
r
a
ti

o
n

 p
e
ri

o
d

 (
2
0
1

2
) 

Constant head 
 (-140 cm) 

6 

10 0.023 0.56 0.62 
20 0.016 0.53 0.74 
30 0.010 0.67 0.69 
40 0.008 0.63 0.64 

4 

10 0.024 0.52 0.62 
20 0.016 0.54 0.76 
30 0.010 0.65 0.70 

40 0.008 0.64 0.64 

3 

10 0.026 0.45 0.62 
20 0.014 0.65 0.75 
30 0.010 0.65 0.70 
40 0.008 0.63 0.64 

2 

10 0.026 0.46 0.63 

20 0.014 0.65 0.75 

30 0.010 0.66 0.69 

40 0.010 0.45 0.63 

Constant head  
(-120 cm) 

2 

10 0.022 0.60 0.61 
20 0.031 -0.65 0.72 
30 0.025 -0.97 0.64 
40 0.019 -1.01 0.56 

Free drainage 

6 

10 0.023 0.57 0.60 
20 0.018 0.46 0.71 
30 0.016 0.19 0.56 
40 0.011 0.34 0.50 

4 

10 0.022 0.62 0.64 
20 0.018 0.45 0.71 
30 0.014 0.13 0.55 

40 0.016 -0.11 0.42 

3 

10 0.032 0.18 0.54 
20 0.021 0.29 0.62 
30 0.027 0.12 0.50 
40 0.019 -0.95 0.43 

2 

10 0.028 0.39 0.51 

20 0.022 0.31 0.59 
30 0.015 0.12 0.51 
40 0.014 0- .98 0.50 

V
a
li

d
a
ti

o
n

 

p
er

io
d

 

(2
0
1
3
) 

Constant head  

(-135 cm) 
2 

10 0.042 0.34 0.37 

20 0.027 0.30 0.40 

30 0.020 0.24 0.33 

40 0.016 0.11 0.29 
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Table 4. Total duration, number and extent of water stress for different boundary conditions and scenarios (from 1 Mar. to 12 Sep.). Total rainfall 1 

and irrigation amount were 398.2 and 64.5 mm in 2012 and 343.3 and 85.4 mm in 2013 respectively. Number between parentheses represents the 2 

duration of first water stress event due to light-radiation and temperature limitations. 3 

  4 

 Boundary condition 

Number of 

parameters 

optimized 

Number of 

water stress 

periods 

Total 

Duration 

of water 

stress 

Degree of 

water 

stress 

Profile 

bottom 

flux 

Yield 

reduction 

    h  mm % 

C
a
li

b
r
a
ti

o
n

 

p
er

io
d

 

Free drainage 2 7 867 (345) 0.37 -167.7 18 

Constant head (-120 cm) 2 0 0 ≥1 71.9 0 

Constant head (-140 cm) 2 7 671 (328) 0.65 -15.4 16 

Constant head (-140 cm) 4 4 524 (277) 0.65 -1 13 

Constant head (-140 cm) 

 
6 5 540 (276) 0.66 -4.6 13 

V
a
li

d
a
ti

o
n

 

p
er

io
d

 

Free drainage 2 7 1093 0.10 -148.7 23 

Constant head (-120 cm) 2 1 20 0. 85 64.4 0 

Constant head (-135 cm) 2 5 675 0.65 63.3 13 

Constant head (-135 cm) 4 4 598 0.65 76.6 11 

Constant head (-135 cm) 6 3 579 0.65 76.9 11 



 

29 

Table 5. Comparison of optimized irrigation schedule with farmer’s conventional irrigation schedule. 1 

  2 

Boundary condition 

Observed irrigation schedule  Optimized irrigation schedule Difference 

Time amount 
Yield 

observed 

Yield 

simulated 
Time amount 

Yield 

simulated 
amount 

day mm ton ha
-1

  day mm ton ha
-1

 mm 

Calibration period (2012) 

Constant head (-140 cm) with 2 

optimized parameters 

20 May 22.5 

10.39 

 27 May 15 

11.39 14.5 11 June 21 10.91 2 July 15 

13 August 21  11 August 20 

Validation period (2013) 
Constant head (-135 cm) with 2 

optimized parameters 

13 June 32.4 

10.83 

 6 June 25 

11.82 10.4 23 July 24.8 11.11 8 July 25 

23 August 28.2  17 July 25 
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 1 

Figure. 1. Geographical location of the experimental field and the map of the apparent soil 2 

electrical conductivity (ECa) of the study site corresponding to 3 different zones of 3 

groundwater levels. The black star on the ECa map indicates the sensor location.  4 

 5 

  6 
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 1 

Figure. 2. Two-layered typical soil profile of the field close to the location of the sensor. 2 

 3 

  4 
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  LAI, optimal condition, 2012 
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Figure. 3. Predicted leaf area index, LAI and grass yield using LINGRA-N model for 2012 3 

and 2013. 4 
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  6 
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 1 

Figure. 4. Parameter sensitivity as a function of time. The numbers 1 and 2 correspond to the 2 

first and second layer, respectively.  3 

 4 

  5 
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1 
Figure. 5. Observed and simulated time series of soil water content with calibration using the 2 

two-parameter Ks scenario for 2012 and validation results of 2013.  3 

 4 
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 1 

 2 

Figure. 6. Degree of water stress at potential reference evapotranspiration in 2012 and 2013 3 

for various scenarios and bottom boundary conditions. 4 
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 1 

Figure 7. Comparison degree of water stress between farmer’s conventional irrigation (current 2 

irrigation), without irrigation and optimized irrigation scheme for calibration and validation 3 

periods.  4 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

Figure 8. Actual flux of farmer’s conventional irrigation (current irrigation), without irrigation 9 

and optimized irrigation scheme (guided irrigation) for 2012 and 2013.  10 

-0.2

-0.1

0

0.1

0.2

F
lu

x
 [

m
m

 h
-1

] 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

F
lu

x
 [

m
m

 h
-1

] 

Time [h] 

No irrigation

Current irrigation

Optimized irrigation




