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Abstract

The Short-Term Ensemble Prediction System (STEP@npdemented in real-time at the
Royal Meteorological Institute (RMI) of Belgium. €main idea behind STEPS is to quantify
the forecast uncertainty by adding stochastic pleations to the deterministic Lagrangian
extrapolation of radar images. The stochastic peations are designed to account for the
unpredictable precipitation growth and decay preesand to reproduce the dynamic scaling
of precipitation fields, i.e. the observation thatge scale rainfall structures are more
persistent and predictable than small scale comeectiells. This paper presents the
development, adaptation and verification of the eaysiSTEPS for Belgium (STEPS-BE).
STEPS-BE provides in real-time 20 member ensemblepiten nowcasts at 1 km and 5
min resolution up to 2 hours lead time using a 4 @dbeadar composite as input. In the
context of the PLURISK project, STEPS forecastsewganerated to be used as input in sewer
system hydraulic models for nowcasting urban inudatin the cities of Ghent and Leuven.
Comprehensive forecast verification was performedriaer to detect systematic biases over
the given urban areas and to analyze the reliphafiprobabilistic forecasts for a set of case
studies in 2013 and 2014. The forecast biasestheetities of Leuven and Ghent were found
to be small, which is encouraging for future intéigraof STEPS nowcasts into the hydraulic

models. Probabilistic forecasts of exceeding 0.5 mthane reliable up to 60-90 min lead
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time, while the ones of exceeding 5.0 mnt fare only reliable up to 3Min. The STEPS -
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1 Introduction

The use of radar measurements for urban hydrologpgalications has substantially increased
during the last years (e.g. Berne et al., 2004fafist al., 2004; Bruni et al., 2015). Given the
fast response time of urban catchments and seweensystradar-based very short-term
precipitation forecasting (nowcasting) has potértbaextend the lead time of hydrological

and hydraulic flow predictions.

Nowcasting concerns the accurate description ofcthieent weather situation together with

very-short term forecasts obtained by extrapolathmg real-time observationQuantitative

precipitation nowcasting (QPN) is traditionally dohy estimating the apparent movement of
radar precipitation fields using optical flow orriaional echo tracking technigques and

extrapolating the last observed precipitation fiekd the future (e.g. Germann and Zawadzki,

2002; Bowler et al., 2004auring recent years there has been significangness in NWP { ichinr i }

modelling with radar data assimilation technigue® (@aeview in Sun et al., 2014), which - {Eg;lf_';ﬁt(tg%':ont Not Italic, J
””” - I K.

reduces the useful lead time of extrapolation-bas®uacasts compared with NWP forecasts.

The development of seamless forecasting systemsotitanally blend the extrapolation

nowcast with the output of NWP models makes the difinof the nowcasting time range

even fuzzier (see e.q. Pierce et al., 2010). { Formatted: Englsh (UK) ]

Due to the lack of predictability of rainfall growaind decay processes at small spatial scales
(Radhakrishna et al.,, 2012), it is very importaot grovide together with a forecast an
estimation of its uncertainty. The established metiwocepresent the forecast uncertainty in
Numerical Weather Prediction (NWP) is to generateeasemble of forecasts by perturbing
the initial conditions of the model in the directioexhibiting the largest error growth, which
amplify more the spread of the obtained ensemble. Memven the nowcasting range the

computation of large NWP ensembles (50-100 membeas)ydisolve features at the scales of
- { Deleted: minutes J

nowcasting research have recently focused on deiwnejo heuristic techniques for
probabilistic precipitation nowcasting, which wdee ttopic of theHeuristic Probabilistic
Forecasting Workshop that was organized in Munich, Germany (Foresti.e@14).

Probabilistic QPN methods can be categorized inteethmain classes: analogue, local
Lagrangian and stochastic approaches. The analwagest approach derives the forecast
probability density function (p.d.f.) by retrievirgset of similar situations from an archive of

precipitation events (Panziera et al., 2011; Foegsdl., 2015), the local Lagrangian approach
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derives the p.d.f. by collecting the precipitati@iues in a neighborhood of a given grid point
in Lagrangian frame of reference (Hohti et al., Z0Germann and Zawadzki, 2004) and the
stochastic approach exploits a random number gemexatcompute an ensemble of equally
likely precipitation fields, for example by addingpehastic perturbations to a deterministic
extrapolation nowcast (Pegram and Clothier, 2000818; Bowler et al., 2006; Metta et al.,

2009; Berenguer et al., 2011; Seed et al., 2018nda and Zawadzki, 2014; Dai et al.,

2015). The stochastic approach is also extensivedygl to produce ensembles of precipitation
fields that characterize the radar measurement @ieri(e.g. Jordan et al., 2003; Germann
et al., 2009) and for design storm studies (e.dlevkis, 2001a; Paschalis et al., 2013).

Uncertainty quantification is nowadays an integpalt of both weather and hydrological
forecasting (Pappenberger and Beven, 2006). Narisingly, an important part of hydro-
meteorological research aims at understanding howprmpagate the uncertainty of
precipitation observations and forecasts into thé@rdlogical models (e.g. Willems, 2001b;
Cloke and Pappenberger, 2009; Collier, 2009, Zapéd, 2010).

Several studies already analyzed the value of ménéstic nowcasting systems for catchment
hydrology (e.g. Berenguer et al., 2005) and fotdvatontrol of urban drainage systems (e.qg.
Achleitner et al., 2009; Verworn et al., 2009; Tinbahl and Rasmussen, 2013). Since an
important fraction of the uncertainty of hydrologligredictions is due to the uncertainty of
the input rainfall observations and forecasts, ré@sed ensemble nowcasting systems are
increasingly used as inputs for flood and sewetesysmodeling (e.g. Ehret et al., 2008;
Silvestro and Rebora, 2012; Silvestro et al., 20dBn et al., 2009; Xuan et al., 2014). At

P { Deleted: largely

hydrological models (see Roulin and Vannitsem, 200%¢len et al., 2009; Schellekens et
al., 2011).

The Short-Term Ensemble Prediction System (STEPS&)psobabilistic nowcasting system
developed at the Australian Bureau of Meteorologg the UK MetOffice (see the series of
papers Seed, 2003; Bowler et al., 2006; Seed ,eP@L3). STEPS is operationally used at

- { Deleted: offices

extrapolation of radar images and the downscaledigtation output of NWP models. The
main idea behind STEPS is to represent the uncertdire to the unpredictable precipitation
growth and decay processes by adding stochastiturpations to the deterministic

extrapolation of radar images. The stochastic peations are designed to represent the scale-
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dependence of the predictability of precipitationd @0 reproduce the correct spatio-temporal

correlation and growth of the forecast errors.

One of the first applications of STEPS in hydrolagyresented in Pierce et al. (2005), who
used the STEPS ensemble nowcasts to quantify tlheaagcof flow predictions in a medium-
sized catchment in UK. The value of STEPS nowcastaifban hydrology was extensively

analyzed by Liguori and Rico-Ramirez, 2012; Ligustral., 2012; Liguori and Rico-Ramirez,

the radar-based extrapolation nowcast can be imgrafter 1 hour lead time if blended with
the output ofa NWP model. They also found thadccording to the Receiver Operating
Characteristic (ROC) curyghe probabilistic nowcasts have more discriminapower than
the deterministic ones. Liguori et al. (2012) imeggd STEPS nowcasts as inputs into sewer
system hydraulic models in an urban catchment in tork (UK). They concluded that the
blending of radar and NWP forecasts has potentaintrease the lead time of flow
predictions, but is strongly limited by the low aaty of the NWP model in forecasting
small scale features. Liguori and Rico-Ramirez (2@f3formed a detailed verification of the
accuracy of flow predictions and concluded that 8iBEPS ensembles provide similar
slight underestimation of the flow predictions. Xuahal. (2014) used ensemble STEPS
nowcasts as inpgitin a lumped hydrological model for a medium-sizedchment in the
South-West of UK. The hydrological model calibratgiih rain gauges had lower RMSE
than the one using radar data, but the ability ®EBS in accounting for the forecast
uncertainty was useful to capture some of the Higlu peaks and extending the forecast lead
time. However, the conclusions of the previous @sidire strongly affected by the limited
number of flood events analyzed. An extensive newié the usage of precipitation forecast
systems for operational hydrological predictions Ui from very-short to long range
(including STEPS) is provided in Lewis et al. (2D15

The goal of this paper is to present the developraedtverification of the STEPS system at
the Royal Meteorological Institute of Belgium (RMitgferred to as STEPS-BE. STEPS-BE
provides in real-time 20 member ensemble precipitatiowcasts at 1 km and 5 min
resolutions up to 2 hours lead time on a 512xkild@neterdomain using the Belgian 4 C-
band radar composite as input. It was developethénframework of the Belspo project

PLURISK for better management of rainfall-inducesksi in the urban environment/ith
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respect to the original implementation of STEPS (Bovdt al., 2006), STEPS-BE includes
two _main _improvements, which are designed to gendsateer STEPS nowcasts without

NWP blending. The first one is related to the agdtitow algorithm, which is extended with a

kernel-based interpolation method to obtain smootiepcity fields. The second one

concerns the generation of stochastic noise onllginvihe advected radar composite. While

the verification of STEPS nowcasts with NWP _blendiras already been extensive (Bowler

et al., 2006; Seed et al., 2013), this paper aralylze accuracy of STEPS ensemble nowcasts

without NWP blending in the 0-2 hours forecastiagge.

Ensemble STEPS nowcasts are computed for a setvef seerflow cases that affected the

cities of Leuven and Ghent in 2013 and 2014. Thei@cy of the ensemble mean forecast is

verified using both continuous verification scofeslltiplicative bias, RMSE) and categorical
scores derived from the contingency table (probgbdf detection, false alarm ratio and
Gilbert skill score). However, the most interestgayt of this paper is the probabilistic and

ensemble verification of STEPS nowcasts using batatiform and convective rainfall

- { Deleted: contribution

events. Probabilistic nowcasts are verified usel@ability diagrams and ROC curves. On the

other hand, the dispersion of the nowcast ensenleified using rank histograms and by

comparing the ensemble spread to the error of trendrie mean.

The paper is structured as follows. Section 2 mtsséhe radar data processing and case

studies that are used to generate and verify tHePSTforecasts. Section 3 describes the

nowcasting system STEPS, its extension and locakeimghtation for Belgium (STEPS-BE).
Section 4 illustrates the forecast verificationutess Section 5 concludes the paper an

discusses future perspectives.

2 Radar data and precipitation case studies

STEPS-BE integrates as input a composite image peddfiom the C-band radars of
Wideumont (RMlI, single-pol), Zaventem (Belgocontisihgle-pol), Jabbeke (RMI, dual-pol)

Ty Y e T ey Y ey e e L L T R

grid by combining single-radar pseudo Constant édiit Plan Position Indicato(CAPPI) at

from each radar at each grid point.

d
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The radars have different hardware, scanning gieeand are operated by different agencies

(RMI, Belgocontrol and Mteo-France), which inevitably leads to differences e tdata {Deleted:é
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processing. The Wideumont and Zaventem radars elienitie@ non-meteorological echoes
using standard Doppler filtering. The Jabbeke radeludes an additional clutter filtering
which uses a fuzzy logic algorithm based on thd-gaokarization moments (essentially the
co-polar correlation coefficient, the texture oé tlifferential reflectivity and the texture of

the specific differential phase shift). A statiognd clutter map and a statistical filter are used

by Meteo-France to remove the non-meteorological echodéiseofvensois radar. The French { Deleted:

vw _ _ _ _ _ _ L

radar data processing chain is described in Tat2097) and in Figueras i Ventura and
Tabary (2013).

Since the Zaventem radar is mainly used for aviasipplications, its scanning strategy is
optimized for the measurement of winds. Except fer ldwest elevation scan, a dual PRF
mode (1200/800 Hz) is used. The azimuths that amnsdawith a high PRF (1200 Hz) only

have a maximum range of 125 km and are more affegtéldebsecond trip echoes caused by

convective cells located beyond the 125 km range.

All radars use the standard Marshall-Palmer relatignZ=200R®°to convert the measured

reflectivity to rainfall rate. A composite image with more advanced radar-basedtitatue

precipitation _estimation (QPE), that includes betimyund clutter removal algorithms and

also a correction for the bright band, was recedélyeloped and the verification of the new

product is ongoing.

STEPS forecasts were generated and verified fat afssewer system overflow cases that
affected the cities of Ghent and Leuven (see Tapl&@he Ghent cases have a more stratiform
character and occurred in late autumn and winterti® other hand, the Leuven cases are
more convective and occurred in summer months. A lddtailimatology of convective
storms in Belgium can be found in Goudenhoofdt anidtiie (2009).

3 Short-Term Ensemble Prediction System (STEPS)

3.1 STEPS description

The Short-Term Ensemble Prediction System (STEPS) jaimsly developed by the
Australian Bureau of Meteorology (BOM) and the UKet®@ffice (Bowler et al., 2006).

1é
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STEPS forecasts are produced operationally at Wwetither services and are distributed to

weather forecasters and a number of external usquarticular the hydrological services.

The key idea behind STEPS is to account for theadigtable rainfall growth and decay
processes by adding stochastic perturbations tdeterministic extrapolation of radar images
(Seed, 2003). In order to be effective, the staibbaerturbations need to reproduce important

statistical properties of both the precipitatioglds and the forecast errors:
1. Spatial scaling of precipitation fields,
2. Dynamic scaling of precipitation fields,
3. Spatial correlation of the forecast errors,
4. Temporal correlation of the forecast errors.

The spatial scaling considers the precipitation field as arising fromltiplicative cascade

processes (Schertzer and Lovejoy, 1987; Seed, 2008) presence of spatial scaling can be

- { Deleted: the

1D PS can be obtained by radially averaging thedP& The precipitation field is said to be
scaling if the 1D PS draws a straight line on the logbgt of the power against the spatial
frequency (power law), which can be parametrizecalmyne or two spectral exponents (see
e.g. Seed et al. 2013; Foresti and Seed, 2014hiMthie multiplicative framework, a rainfall
field is not represented as a collection of coriveatells of a characteristic size but rather as
a hierarchy of precipitation structures embeddeé@aoh other over a continuum of scales.
STEPS considers the spatial scaling by decompodieg radar rainfall field into a
multiplicative cascade using a fast Fourier tramafdFFT) to isolate a set of 8 spatial
frequencies (Seed, 2003; Bowler et al., 2006, $¢ed., 2013)The top cascade levels (0, 1

and 2) represent the low spatial frequencies (largeipitation structures), while the bottom

cascade levels (5, 6, 7) represent the high sgadiquencies (small precipitation structures).

Another important behavior of rainfall fields is kmo asdynamic scaling, which is the
empirical observation that the rate of temporal dgwelent of rainfall structures is a power
law function of their spatial scale (Venugopal &t 4999; Foresti and Seed, 2014). This
means that large precipitation features are mordspens andhencepredictable compared
with small precipitation cells, which is closely atdd to concept of scale-dependence of the
predictability of precipitation (Germann and Zawad2002; Turner et al., 2004).
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The stochastic perturbations should be able teecethe properties of the forecast errors.
Generating spatially and temporally correlated dast errors is mandatory for hydrological
applications, in particular when the correlationgth of the errors is comparable or superior

to the size and response time of the catchnigatially correlated stochagtic noise can be

constructed byapplying apower law filterto a white noise field (Schertzer and Lovejoy, _{ Deleted: ing

1987). In practice it consists of three stéps: cdinguthe FFT of a white noise fiela,
multiplying the obtained components in frequency diong a given filter and applying the
inverse FFT to return back to the spatial domahre ID or 2D power spectra of the rainfall
field can be used as filter to obtain noise fietdat have the same scaling and spatial
correlation of the rainfall field. The 1D PS of theecipitation fields often appears to be a
power law of the spatial frequency and explains wWie/procedure is also called power law
filtering of white noise. In order to represent t@sotropies of the precipitation field the 2D
PS can also be used as filter. In the absenceao@at precipitation field from which to derive
the PS, the filter can be parametrized by usingraatblogical power law (see Seed et al.,
2013). Finally, thetemporal correlations are imposed by auto-regressive (AR) filteridg.

hierarchy of AR processes defines the temporal éeolwf the cascade levelWith the

exception of forecast lead times beyond 2-3 houter(@ia and Zawadzki, 2014), an AR
process of order 1 or 2 is already a good approximab describe the temporal decorrelation

of the forecast errors.

The practical implementation of STEPS to reprodingese important properties consists of
the following steps (see Bowler et al., 2006; For@sd Seed, 2014):

1. Estimation of the velocity field using optical flown the last two radar rainfall images
(Bowler et al., 2004a).

2. Decomposition of both rainfall fields into a multgative cascade using an FFT to
isolate a set of 8 spatial frequencies.

3. Estimation of the rate of temporal evolution of falhfeatures at each level of the
cascade (Lagrangian auto-correlation).

4. Generation of a cascade of spatially correlatechststic noise using as filter the 1D or

2D power spectra of the lasbservedadar rainfall field. A Gaussian filter is used to

isolate a given spatial frequency (see ForestiSeet, 2014).

5. Stochastic perturbation of the rainfall cascadaegifiie noise cascade (level by level).
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6. Extrapolation of the cascade levels using a semidragian advection scheme.

7. Application of the AR(1) or AR(2) model for the temmpbupdate of the cascade levels

at each forecast lead time using the Lagrangian@urtelations estimated in step (3).
8. Recomposition of the cascade into a rainfall field.

9. Probability matching of the forecast rainfall fieldth the original observed field
(Ebert, 2001).

10.Computation of the forecast rainfall accumulatioremrf the instant forecast rainfall

rates. This procedure is known as advection coom@nd consists of advecting the

{ Deleted: minute

smaller time steps.

3.2. STEPS implementation at RMI (STEPS-BE)

Bowler et al. (2006) introduced a general frameworkblending a radar-based extrapolation

nowcast with one or more outputs of downscaled NWielsdsee also Pierce et al., 2010,

and Seed et al., 2013Because of being designed for urban applicatittresmaximum lead

. { Deleted: forecasts

runs only 4 times daily using a grid spacing ofd. iConsidering the model spin-up time and
the absence of radar data assimilation, it is valikely that ALARO provides useful skill for
blending its output with a radar-based extrapotatioowcast within the considered
nowcasting range. It must also be reminded that fieet&ve resolution of NWP models is
much larger than the grid spacing. For instance,s€arg2000) estimates the effective
resolution to be at least 4 times the grid spacirigle Skamarock (2004) estimates it to be up
to 7 times the grid spacing. ALARO would then oibly able to resolve features that are
greater than 20 km. For all these reasons, STEPSrBEinvolves an extrapolation nowcast
without NWP blending.

The STEPS-BE forecast domain is smaller than thenéxf the 4 C-band radars composite

(see Fig. 1). The radar field was upscaled fromottiginal resolution of 500 m to 1 km and a [ Formatted: Font:
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sub-region of 512x512 grid points centered ovegieh was extractedlhe forecast domain
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was extended by 32 pixels on each side to reduxedbe effects due to the FFT. This |ea(’j"f8,";{Formatted:
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km. Italic characters mark the scales on which thadsian filter is centered (see Foresti and

Seed, 2014, for a more detailed explanation andliimtion of the Gaussian FFT filter). One

can notice that the spatial scales are not exadiptasl of 2. In fact, a multiplication factor of
2,246 was employed to match the enlarged STEPS-Biaidosize.

STEPS-BE includes a couple of improvements compartdtive original implementation of
the BOM:

1. Kernel interpolation of optical flow vectors,
2. Generation of stochastic noise only within the atee radar mask.

The optical flow algorithm of Bowler et al. (2004@3timates the velocity field by dividing
the radar domain into a series of blocks withinalhthe optical flow equation is solved. The
minimization of the field divergence is only performetcthe level of the block, which leaves
sharp discontinuities in the velocity field betwebe blocks. In order to overcome this issue,
a Gaussian kernel regression was applied to inegeohe velocity vectors located at the
center of the blocks onto the fine radar grid. TWamdwidth of the Gaussian kernel was
chosen to be = 24km = 0.4k, where k=60 grid points is the blsike. This setting has the
advantage of obtaining velocity fields that areslaffected by the differential motion of small
rainfall features and the presence of ground alutgoo precise velocity field would provide
increased predictability at very-short lead times warse forecasts at longer lead times due
to excessive convergence and divergence of pratigit features during the advection.
Smooth velocity fields could also be obtained byngsa smaller block size andy
compensating with a larger bandwidth of the smootkemgel.

In STEPS-BE the 1D power spectrum of the lastervedrainfall field is used as filter to
generate the spatially correlated stochastic geations. The PS is parameterized using two
spectral slopes to account for a scaling breakithaften observed at the wavelength of 40
km (see Seed et al., 2013; Foresti and Seed, 20d43implify the computations, an auto-
regressive model of order 1 (AR(1)) was employediffigposing the temporal correlations

and to model the growth of forecast errors.

- /{ Formatted: Font: Not Italic, }
The original STEPS implementation (Bowler et al.0@0was designed to blend the radar [English (UK.)

7777777 j77777777777i777777777777777777777777777777777777j77777777777 ) Formatted: Tabs: Not at -4.6
extrapolation nowcasts with the output of NWP medelowever, the domain covered by the |cm J

radars is smaller than the rectangular domain of NP model and small amounts of {Eggﬁgﬁt(tﬂ:)mt: Not Italic, }

stochastic noise are generated by default alsedeuts the radar composite. This setting was
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not adapted for radar-based nowcasts without NV€Rdihg and needed some adapta;i_n -

nowcast with the output of NWP,
there is as side effect the
appearance of small amounts of
stochastic rain also outside of th
non-rectangular domain covered
by the radars.

of stochastic rain appear outside of the validigmdin of the forecast and perturb the\

probability matching. In STEPS-BE the stochastidyréations are only generated within the\\\\
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advected radar domain and set to zero elsewhere. an issue
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STEPS version that is implemented in UK (Bowler gt2006) includes a detailed procedure {meatted English (U.K.)

Deleted: due to the future
to generate velocity perturbations that reproduegious statistical properties of the | evolution of the diagnosed

Deleted: Since STEPS-BE doe
not blend the extrapolation

differences between the forecast velocity and theah future diagnosed velocity (see details
in Bowler et al., 2004b). In the BOM and RMI implernteions a simpler procedure is
applied. The diagnosed velocity field is multiplieg a single facto€ that is drawn from the

following distribution:
C = 101.5N /10 , (1)

whereN is a nhormally distributed random variable with@enean and unit variance. In other
words, the velocity field is accelerated or deadkul by a single random factor without

affecting the direction of the vectors. In facte thncertainty on the diagnosed speed was
- { Deleted: e one ]

The BOM and RMI versions of STEPS also include ectsastic model for the radar
measurement error, a broken-line model to accoomthie unknown future evolution of the
mean areal rainfall and the possibility to use tiagged ensembles. However, a nowcasting
model with too many components is harder to catébeand complicates the interpretation of

the forecast fields. Because of these reasons, S:BEPonIy exploits the basic stochastic

{ Deleted: of the evolution of J

processes).

The core of STEPS-BE is implemented in C/C++ ared gloduction of figures in python.
Bash scripts were written to call multiple STEPStémces and compute the ensemble
members in parallel over several processors. Olhtleeaensemble members are computed, a
separate script collects the corresponding netCidés fand calculates the forecast
probabilities. Most of the computational cost ofEFIS consists of filtering the white noise
field with FFT, advecting and updating the radasceale with the AR model. The re-

11
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calculation of optical flow fields on each proceasdakes less than 10% of the total

_-| Deleted: Thus, a parallel re-
. design of the STEPS source cod
was not needed (e.g. using
openMP or MPI implementations).

The python matplotlib library is used to read tle¢GDF files, export the PNG figures and the

time series of observed and forecast rainfall at ldcation of major cities and weather
stations. A single STEPS nowcast generates more@f@ figures, which takes a significant
fraction of the total computational time. In ord&r optimize the timing, a bash script
monitors continuously the directory with incomireglar composites and triggers STEPS-BE

once a field with a new time stamp is found. Ak implementation details ensure that the
- { Deleted: minutes ]

receiving the radar composite image.

The visualization system of STEPS-BE is very simila the one of INCA-BE, the local
Belgian implementation of the Integrated Nowcastthgough Comprehensive Analysis
system (INCA, Haiden et al., 2011) developed atAhstrian weather office (ZAMG). Figure

1 illustrates the web interface with an examplewofensemble mean nowcast. The user can
highlight the major cities, weather stations arndkcto visualize the time series of observed
and forecast precipitation/probability, which appgeat the bottom of the web page. The
navigation through the observations and forecast temes is facilitated by the scroll wheel
of the mouse. On the other hand, by clicking on ithage it is possible to easily scroll

through the various ensemble members or probalditglsfor a given lead timeScrolling

the ensemble members at different lead times i imstructive and can make the user aware
of the forecast uncertainty. In fact, at a leadetiof 5 min the ensemble members agree very
well on the intensity and location of precipitatiofbhis means that the ensemble spread is
small and the probabilistic forecast is sharp,mest of the forecast probabilities are close to
1 or O (seean explanation in Appendix A). On the other hand, ar hours lead time the
ensemble members disagree on the location andsityteof rainfall, which enhances the
ensemble spread and decreases the sharpness pfotiabilistic forecast. The web page
includes extensive documentation to guide the ws& a set of case studies to help
understanding the strengths and limitations of SIERhe visualization system was
implemented with great attention to take full adege of the multi-dimensional information

content of probabilistic and ensemble forecasts.
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4  Forecast verification

4.1 Verification set-up

This section presents the verification of STEPS#Bfecasts using a set of case studies (see

Sect. 2). The accumulated radar observations weptoged as reference for the verification.

{ Deleted: minutes

The rainfall rates are accumulated over the lgstirbby reversinghe field vectors based on-~ ]
””””””””””””””””” "~ 7| Formatted: English (U.K.) ]

the observations and theerforming the advection correctign. The 30 misesnble mean __ { Deleted: the velocity field
vectors

N

forecast was verified against the observed 30 iailar accumulations using both continuous- —
Deleted: The verification

procedure follows the one
presented in Foresti and Seed

. . . . . . . . 2015), which was designed to
presented in Foresti and Seed (2015), which wagrkss to analyze the spatial distribution E,na.yz’e the spatiamistﬁbution of

the forecast errors.

and categorical verification scoreBae deterministic verification procedure followsetbne

of the forecast errors. More details about thedase verification setup and scores are given
in Appendix A.

The continuous scores include the multiplicativasband the root mean squared error
(RMSE), while the categorical scores include thebpbility of detection (POD), false alarm
ratio (FAR) and Gilbert skill score (GSS) derivewrh the contingency table for rainfall
thresholds of 0.5 mm Hrand 5.0 mm ht. The rainfall thresholds are given in equivalent

intensity independently of the forecast rainfat@mulation. Thus, a threshold of 5.0 mnt hr

. { Deleted: minute J

RMSE were evaluated only at the locations wherefdhecast or the verifying observations
exceeded 0.1 mm fyr which can be referred to asweakly conditional verification. The
probabilistic forecast of exceeding 0.1, 0.5, 5.0 thr* was verified using the reliability
diagrams and ROC curves. Finally, the dispersionthed ensemble was analyzed by
comparing the ensemble spread to the RMSE of tlseneibble mean and by using rank

histograms. The probabilistic and ensemble verification doeg nonsider the spatial

distribution of the errors and pools the data theetn both space and time to derive the

- _ - Deleted: More details about the
staustics. -~ | forecast verification setup and
scores are given in Appendix A.

4.2 Deterministic verification
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other words, they represent the average forecasbbserved rainfall rates over the duration
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of the precipitation event (for the 0-30 min leaud). The averagewas computed using the-~ -{ Detebed: mean

weak conditional principle explained above.

The average forecast and observed accumulatioreragtgﬂagree very well for the 0-30 min

P { Deleted: Leuven

with northwesterly flows and is characterized by tlowest average rainfall rates. The
Avesnois radar demonstrates very well the ranges#gnce of the average rainfall rates,
which gradually decrease with increasing distanomfthe radar. On the contrary, the smaller
ring of high rainfall rates around the Zaventemaraid mostly due to the bright band (Fig.
2b).
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by a single convective cell, the average rainfaé rover the duration of the event may not be

as high in the considered city (e.g. Fig. 3b).

Figure 4 illustrates the multiplicative bias of 30 min nowcast averaged over each of the

4 events. A detailed interpretation of such forebésses using Australian radar data and their
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connection to orographic features is given in Rbeesd Seed (2015), which point out that an
important fraction ofthe forecast errors is caused by the biases of thdyiregi radar
observations rather than systematic rainfall groant decay processes due to orography. In
Fig. 4a it is easy to notice the effect of briglntd, which causes a series of systematic
forecast biases around the Zaventem radar and mubgodarly oriented with respect to the
prevailing flow direction (NW). Systematic rainfalhderestimation occurs along the Belgian
coast of the North Sea. One factor which contribtivethis underestimation is the absence of
visibility of the radar at longer ranges. The indogprecipitation is suddenly detected by the
radar and therefore strongly underestimated by STHWPe only situation where the range
dependence of the rainfall estimation does nocatfes forecast verification occurs when the
velocity field is perfectly rotational and centerexd the radar (assuming no beam blockage).

All the other cases have to deal with the fact thatrainfall nowcast also extrapolates the

biases of the radar observations! Coptrayy to etieq, on the upwind side of the Ardenges’ize:e:e:: "th
*********************************** S eleted: the

there is overestimation, which may depict a regibeystematic rainfall decay. The bias ovef\{Ddeted: S

the city of Ghent is fortunately small andjisluded in the range fror tq +0.5 dB (light - - { Deleted: comprised between

7777777777777777777777777777777777 o [ Deleted: and

U

overestimation, rainfall decay). Having small sys¢ic biases over the cities of interest is
very important for future integration of STEPS newts as input in hydraulic models. In Fig.
4b the systematic underestimation is also locajgstream with respect to the prevailing
winds (SW). The strong overestimations in Germamy &he Netherlands are mostly due to
the underestimation of rainfall by the verifyingdeat observations rather than caused by
systematic rainfall decay. This is particularly ibis after a range of 125 km from the
Zaventem radar, which demonstrates again that mliseoties and biases in the radar

observations lead to biases in the extrapolatioactst. Also in this case the bias over the

. { Deleted: comprised
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growth). A similaryadar _biads visible in Fig. 4c but this time located at aga of 240 km *{Ddeted:and

North of the Wideumont radar when entering the a@eered by the Jabbeke radar. This ( Deleted: feature

L

forecast bias is mainly explained by the negataiération bias of the Jabbeke radar, which
is known to slightly underestimate the rainfallesatwith respect to the Wideumont radar.
Strong underestimation occurs over the Ardennestadiee systematic initiation and growth

of convection that cannot be predicted by STEPS. 4c) Fortunately the city of Leuven is

p { Deleted: comprised
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interesting since strong underestimations are éakcat front of the rain band (from Charleroi " { Deleted: and

to Leuven and beyond) and overestimations at theakthe rain band (West of the Jabbeke
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radar). The underestimations are due to systerriti€all initiation in front of the rain band,

while the overestimations are probably caused tyoaslow extrapolation of rainfall, which

tends to drag at the rear of the rain band. Thebsrals of underestimations South of Leuven
are caused by two different thunderstorms. The dine passed over the city of Leuven and
had a stronger westerly component with respedbegotevailing southerly flow. The second
thunderstorm was weaker and had a stronger eastmmyponent. When isolated convection
does not follow the prevailing movement of the falinfield, strong biases can appear in the

nowcast during the first lead times.

Figure 5 shows the spatial distribution of the RMBE the stratiform event on 3 January
2014 in Ghent and the convective event on 20 Jidy@2n Leuven. If compared with Figs. 2d
and 3d it is clear that the RMSE is strongly cated with the regions having the highest
mean rainfall accumulations (proportional effe@fjus, it is not surprising that the RMSE of
the convective case (Fig. 5b) displays values alingel0 mm hr- over the city of Leuven.

The winter case only shows RMSE values below 2 mitrokier the city of Ghent.

Figure 6 illustrates an example of categoricalfigaiion of the 30-60 min ensemble mean
forecast for the Leuven case on 19-20 July 2014tivel to the rainfall threshold of 0.5 mm
hr'. The probability of detection is high everywhemmefn of 0.75) except in the
neighborhood of Antwerp and South of Leuven, whbeeinitiation of thunderstorms could

not be predicted by STEPS (Fig. 6a). The falsenalatio is quite low (mean of 0.36) and the
regions with high values are mainly located at tbar of the front where the rainfall is
advected too slowly compared with the actual moweréthe front (Fig. 6b). A high Gilbert

skill score generally coincides with the regionghwthe highest rainfall accumulations and
becomes lower at the edges of the rain areas @€). This finding can be explained
conceptually if one thinks about the verificatidntloe future path of a single convective cell.
The regions with the highest uncertainty are |latadédong the edges of the predicted
thunderstorm path and the highest skilbbtained in the center of the predicted path.

4.3 Probabilistic verification

Figure 7 shows the reliability diagrams relativettie probabilistic forecast of exceeding the
0.5 and 5.0 mm Hrrainfall thresholds for the Ghent case on 03 JanR@14 (Figs. 7a and

forecast is taken as the climatological frequerfoyxaeeding a given rainfall threshold during

16
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that precipitation event (horizontal dashed liridnexpectedly, the forecasts of the stratiform

case in Ghent are less reliable than the onesofdhvective case in Leuven for both rainfall
thresholds. Probabilistic forecasts of exceedifigrim hi* for the Ghent case have a good
reliability and positive Brier skill score (BSS) wp 60 min lead time (Fig. 7a). The higher
rainfall threshold of 5.0 mm Hris harder to predict and there is skill only uB@®min lead
time (Fig. 7b). The convective case in Leuven isrenpredictable and the probabilistic
forecast of exceeding 0.5 mm™hexhibits skill up to 90 min lead time (Fig. 7c}. i6
interesting to note that forecast probabilitiest thee close to the climatological frequency
(intersection of lines around the probability 0.D8)en fall outside of the skillful region. In

P { Deleted: sufficient

frequencies. The rainfall threshold of 5.0 mrit Bhows again a limit of predictability of 30
min (Fig. 7d). Despite having a negative BSS, tiiloWing lead timegFig. 7d)have higher

resolution than the stratiform case in Ghent (Fip, .| Formatted: Englh (UK.

Figure 8 illustrates the ROC curves relative toghababilistic forecast of exceeding 0.1 mm

- { Deleted: and 8b
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level that is marked with a cross is the one whdximizes the difference between the hit

rate HR and the false alarm rate (not to be confused with the false alarm ratio clthis
. _ { Deleted: comprised

conditioned on the forecasts). This poi

- { Deleted: between

means that an optimal forecast of the probabilityam is achieved when only 10-20% of the
ensemble members exceed the 0.1 mih threshold. A forecaster who is not scared of
making false alarms would choose a lower probat#itel to increase the number of hits. On
the contrary, an unconfident forecaster who woikd to minimize the false alarms would
choose a higher probability level, which has howelre consequence of reducing the number
of hits. As expected, the area under the ROC cuf&&rC) decreases for increasing lead
times. The discrimination skill for the convectiggent in Leuven is slightly higher than the
one of the stratiform event in Ghent, which conéirthe findings on the reliability diagrams
(Fig. 7). This does not mean that small scale featare easier to forecast than larger scales
features, which is known to be false (see Forestl &eed, 2014). It means that the
predictability of well defined and organized contee systems is higher than the one of more

moderate convection with shorter lifetime, at |dasthe cases analyzed in this paper.
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4.4 Ensemble verification

Figure 9 compares the error of the ensemble meMSE and the ensemble spread for the
Ghent case on 03 January 2014 and the Leuven nak@-20 July 2014 (see interpretation of
ensemble spread in Appendix A). In both cases M&R increases up to a lead time of 50-
60 min and then starts a slow decrease, which eatbbnter-intuitive. However, it must be
reminded that the ensemble mean forecast beconstisen for increasing lead times, which
reduces the double penalty error due to forecastitiginderstorm at the wrong location. The
ensemble spread also increases up to 50-60 mirtiteacand then slowly stabilizes. For both
the Ghent and Leuven cases the ensemble spreagiasthan the error of the ensemble mean
at all lead times, which suggests that the ensefobdeasts are under-dispersive. The degree
of under-dispersion is highest at a lead time g@fiib, with the spread values being equal to”

T e e Y ey T L ey T T N9 AT

60% of the forecast error for the winter event ihe@t (Fig. 9a) and 70% for the summer

90% of the forecast error for the Ghent case (8&).and 75-80% for the Leuven case (Fig.

9b), which is a good result. It is not yet clearywthe RMSE at a lead time of 5 min is higher

than the one at 10 min for the winter case in GKiigt 9a).

The under-estimation of the ensemble dispersidheatfirst lead time can be attributed to bbth

the under-estimation of the ensemble spread andubeestimation of the ensemble me\QLn
RMSE, but with different degrees according to tifeecknt causes. High RMSEs at the sta\(t

of the nowcast can be due to using a very smodttie field for the advection (see Section\\

3.2), which does not exploit sufficiently the vesihort term predictability of small scale '

\

precipitation features, but is optimized for preidies at longer lead times. Another '
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Deleted: This underestimation
may be attributed to using a very
smooth velocity field for the
advection, which does not exploit
sufficiently the very short
predictability of small scale
precipitation features but is
optimized for predictions at longer
lead times Another explanation fq
this underestimation is due to not
using a model for the radar
measurement errors, in particular
due to the space-time variability @
the Z-R relationship. It is not yet
clear why the RMSE at a lead time
of 5 min is higher than the one at
10 min for the winter case in
Ghent (Fig. 9a). For all other lead
times, the ensemble spread
represents 75-90% of the forecast
error for the Ghent case (Fig. 9a),
and 75-80% for the Leuven case
(Fig. 9b), which is a good res..
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explanation for this underestimation of ensembgpelision could be due to the space-time {meattedﬂabs: Not at -4.6
cm

variability of the Z-R relationship. Spatial andnigoral changes in the drop size distribution

(DSD) can lead to changes in the estimated raiméi# that is used for the verification.

Therefore, there could be a mismatch between tixed'f DSD of the forecasts and the

variable DSD underlying the verifying observatiodsiother possible source of mismatch

could be due to the advection correction with adtifow when computing the rainfall

accumulations. The forecast accumulations are ctedpoy advecting forward the previous

rainfall field. On the other hand, the observeduawglations are computed by reversing the

optical flow vectors and advecting the rainfalldidackwards (see Section 4.1). This choice

increases the differences when comparing the +0r5fonecast accumulations (advection of
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the 0 min image forward) with the +0-5 min obser@dumulations a posteriori (advection

of the +5 min image backwards). The ideal appraaehld be to derive the accumulation by

advecting both the previous image forward and th& image backwards. An optimal

accumulation could be computed by a weighted aeergthe two advected images by

discretizing the 5 min interval. However, such a@mh is not very pragmatic and would

require_additional computational time in order tiotadn a marginal improvement on the
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Figure 10 illustrates the rank histograms for tleanen case on 19-20 July 2014 for lead

P { Deleted: minutes

degree of ensemble under-dispersion. In particalbthe ensemble members for the 5 min
lead time are inferior to the observations in ~1@%he cases (Fig. 10a), while for the 60 min
lead time it happens in more than ~30% of the céB&ps 10b). On the other hand, the
fraction of observations falling below the valuetbé lowest ensemble member is only 8%
for both lead times. Despite the fact that STEP8esigned to reproduce the space-time

variability of rainfall, it underestimates a centdraction of the observed rainfall extremes.

P { Deleted: augments

of the STEPS ensembles, which is probably duedativection of the radar rainfall cascade

. { Deleted: in the lowest

(see Sect. 3, step 6). In fact, the small scalefathifeatures represent the bottom -

cascade levels suffer more from numerical diffusibiring the Lagrangian extrapolation,

which is observed as a gradual loss of variahititthe forecast ensembles.

4.5 Verification summary of the events

Table 2 provides a comparison of the verificatioarss for each event. The averaggndard

P { Deleted: are

deviation of themultiplicative biases of the 30 min lead time fasigs jn the range.3:.0.8. .-

< { Deleted: comprised

Except for the event on 19-20 July 2014 the biasesin well below 1 dB for all lead times\,;\\\[pdeted: between

U

which is a positive result. Of course, these areraye values and locally they can even { Deleted: and
exceed 3 dB (see Fig. 4).

On the other hand, the RMSE values mark more ttindiion between the two winter cases
in Ghent and the two summer cases in Leuven. Ferwimter cases the RMSE values
increase from 0.38-0.95 at a lead time of 30 mirDi68-1.48 at 120 min, while for the
summer cases from 1.84-2.45 to 2.52-3.38 mih Thus, the RMSE of a 30 min lead time

nowcast of the two convective cases is higher thanRMSE of a 120 min nowcast of the
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two stratiform casesas might be expectet is interesting to mention that linear verificati

scores such as the RMSE strongly depend on thangariof the data. Consequently, it would

be difficult to compare the error of the STEPS emnde mean nowcast with the one of a

deterministic nowcast, for example computed by INBR In fact, the ensemble averaging

process filters out the unpredictable precipitafiestures and is rewarded in terms of RMSE.

Similar_results were already observed in Forestalet(2015), who also pointed out the

difficulty of comparing ensemble prediction systehaving a different number of ensemble

members.

The probability of detection relative to the 0.5 rhwit threshold decreases from 78-86% to
33-58%, while the false alarm ratio increases fidi¥17% to 46-65%. The Gilbert skill score
starts with values of 0.58-0.64 and 0.29-0.40 at30 and 60 min lead times respectively and
decays to values of 0.08-0.20 at 120 min. Wand. €2@09) reported a Critical success index
value of 0.45 for STEPS nowcasts of 0-60 accunanatielative to the 1 mm hrthreshold.
Considering that the GSS is the CSI corrected bgom chance, this value is comparable
with the ones of the 30-60 min accumulations oletdiim this paper. The GSS values relative
to the threshold of 5.0 mm fhare much lower. They oscillate between 0.15 aAd for the

first lead time and become very low and close taft@rwards. Thus, the predictability of
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The area under the ROC curve values characterizmgotential discrimination power of the
probabilistic forecast of exceeding 0.5 mni hstart at 0.92-0.95 at 30 min lead time and
decrease to 0.69-0.79 at 120 min. For the prolssibiliorecast of exceeding 5.0 mmtthey
start at 0.88-0.90 and decrease to 0.62 for theemtive cases and to 0.50 for the stratiform

cases (no discrimination).
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maximum lead time of 2 hours in STEPS-BE is a gohdice. Extending this lead time
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requires blending the radar-extrapolation nowcati the output of NWP models to increase

the, predictability of precipitation. -~ Formatted: Fot:Not talc
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5 Conclusions

The Short-Term Ensemble Prediction System (STE®®) probabilistic nowcasting system
based on the extrapolation of radar images devdloge the Australian Bureau of
Meteorology in collaboration with the UK MetOffic&he principle behind STEPS is to
produce an ensemble forecast by perturbing a detistio extrapolation nowcast with
stochastic noise. The perturbations are designedepooduce the spatial and temporal
correlations of the forecast errors and the sceafgeddence of the predictability of

precipitation.

This paper presented the local implementation, tadiap and verification of STEPS at the
Royal Meteorological Institute of Belgium, referredas STEPS-BE. STEPS-BE produces in
real-time 20 member ensemble nowcasts at 1 km améhSesolutions up to 2 hours lead
time using the 4 C-band radar composite of BelgiuBmmpared with the original
implementation, STEPS-BE includes a kernel-basegtpnlation of optical flow vectors to
obtain smoother velocity fields and an improventengenerate stochastic noise only within
the advected radar composite to respect the waliditnain of the nowcasts.

The performance of STEPS-BE was verified using#tlar observations as reference on four

years 2013 and 2014. The ensemble mean forectst oext four 30 min accumulations was
verified using the multiplicative bias, the RMSEwasll as some categorical scores derived
from the contingency table: the probability of dwien, false alarm ratio and Gilbert skill
score (Equitable skill score). The spatial distiidyu of multiplicative biases revealed regions
of systematic over- and undestimation by STEPS. The underestimations are often
associated with the locations of convective iniiatand thunderstorm growth, which cannot

be predicted by STEPS. On the other hand, the megib overestimation are mostly due to

forecast and observation biases, detailed knowlatiget the spatial distribution of the radar

measurement errors for a given weather situatioeézled. The multiplicative biases over the
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point to integrate STEPS nowcasts as iapnto sewer system hydraulic models. The
categorical forecast verification helped discovgrithe places with low probability of

detection due to convective initiation at the frofithe rain band and high false alarm ratio at
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the rear of the rain band, likely due to a too staimfall extrapolation by STEPS. Reliability
diagrams demonstrated that probabilistic forecasesxceeding 0.5 mm Hrhave skill up to

60-90 min lead time. On the contrary, convectivatdees exceeding 5.0 mmhare only
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observed that the forecasts of convective events haore skill than the ones on stratiform

events. The STEPS ensembles are characterizeddyaén degree of under-estimation of the
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The current contribution focused on the verificatmf STEPS-BE nowcasts using only four

precipitation cases of different character. Theedrinistic and categorical verification

require many more cases to analyze the climatabdgiistribution of the forecast errors, e.g.
as done in Foresti and Seed (2015). On the othed,héhe probabilistic and ensemble

verification pool the data in both space and timé& eonverges much faster to stable statistics.

From a research perspective, STEPS-BE could alsextended by including a stochastic
model to account for the residual radar measureramors, in particular to obtain more
accurate estimations of the forecast uncertaintghatt rangeThe STEPS framework also

allows blending the extrapolation nowcast with thaetput of NWP models, which is a

necessary step to increase the predictability @fipitation for lead times beyond 2 hours.
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Appendix A: Forecast verification scores

Forecast verification is an important aspect obredasting system. A forecast without an

estimation of its accuracy is not very informativer an in-depth description of forecast

verification science and corresponding scores \igr te Jolliffe and Stephenson (2011) and

the verification website maintained at the Bure&ivieteorology http://www.cawcr.gov.au/

projects/verification/.

The STEP®nsemble mean forecast was verified using the following scores:

Multiplicative bias:

. 1y F+b
bias=— » 10log,,| =—— |, 1
N2 gm[ o b] @)
/{ Deleted: accumulation
whereF; is the forecast rainfait a given grid pointG; is the observed rainfgllt a .- { peleted: accumuiatio

given grid poinf b=2 mm hi* is an offset to eliminate the division by zero and
reduce the contribution of the forecast errorsoat tainfall intensities, andll is the
number of samples. For the specific case of théicagion of the spatial distribution
of forecast biases, the summation is performed tree. ThusN corresponds to the
number of forecasts where either the forecast ®wotiserved rainfall are greater than
0.1 mm ht* at a given grid point (denoted as weak conditiaeaification). The bias
is given in decibels [dB] in order to obtainnaore symmetric distribution of the
multiplicative errors centered at 0, which is nosgible with the simple power ratio
F/O. The following table summarizes the corresponddreteveen the decibel scale
and the power ratio:

dB -6 -3 -1 -0.5| 0+0.5| +1 +3 +6

Power ratio (F/O) 0.251| 0.501| 0.794/ 0.891( 1| 1.122( 1.259| 1.995| 3 .981

For example, a bias of +3 dB occurs when the fate@@nfall F is twice as much as

the observed rainfal.

N
Root mean square err(RMSE= %Z(Fi -0). )
i=1

Contingency table of a dichotomous (yes/no) forecas

23



N o o~ WwN

10

11
12

13

14

15
16

17

18
19

Observed
Yes No Total
% Yes hits false alarms |forecast ye$
(]
E No misses |correct negativg forecast no
Totall observed yes| observed no total

where thehitsis the number of times that both the observatimhthe forecast exceed

a given rainfall threshold (at a given grid poirtt)e false alarms is the number of

times that the forecast exceeds the thresholdheublbservation does not, timesses is

the number of times that the forecast does noteskt®e threshold but the observation

does and theorrect negatives is the number of times that both the observatiahthe

forecast do not exceed the threshold.

Different scores can be derived from the continggable to characterize a particular

feature or skill of the forecasting system:

(o]

(0]

(0]

hits _ hits
hits+misses observed yes’

Probability of detection (hit rate POD= 3)

The POD characterizes the fraction of observed events Weak correctly

forecast and is also known as hit rat&}.

False alarm ratio:

FAR = falsealarms =falsealarms
hits+ falsealarms  forecast yes'

(4)

The FAR characterizes the fraction of forecast events thate wrongly
forecast.

falsealarms _ falsealarms

False alarm rat¢F = — = .
falsealarms + correct negatives  observed no

®)

The false alarm rate is conditioned on the observations, while thedamrm

ratio FAR on the forecasts.
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o0 Gilbert skill score (Equitable threat score):

hits — hitS, ,.som
hits + misses + falsealarms - hits,, .

(6)

(hits + misses)(hits + false alarms) _
total

(observed yes)( forecast yes)

where it =
Srandom total

()

is the number of hits obtained by random chancegctwis calculated by

multiplying the marginal sums of the observed aockdast events (such as
computing the theoretical frequencies for the Chissed test). The GSS
characterizes the detection skill of the forecgstipstem w.r.t. random chance.
In practice it corresponds to the Critical sucdestex (CSl) adjusted for the

hits obtained by random chance.

The accuracy of probabilistic forecasts can befieeriin various ways. In this paper we
employ the reliability diagram and the Receiver @fiag Characteristic curve (ROC). The
reliability diagram compares the forecast probgbikith the observed frequency. Reliability
characterizes the agreement between the forecalsalpiity and observed frequency. For a
reliable forecasting system the two values shoddHe same, which happens for example
when we observe rain 80% of the time when it id¢ast with 80% probability (in average,
diagonal line of Fig. 8). Unreliable forecasts dxhidepartures from this optimum (bias).

Resolution characterizes the ability of the foréxde categorize the observed frequencies

into distinct classes. The complete lack of resofubccurs when the forecast probabilities ;

are completely unable to distinguish the observeguencies, whichhenerally corresponds to/

Deleted: corresponds to the
climatological frequency of
exceeding a given rainfall
threshold during that event

the climatological frequency of exceeding a giveecppitation thresholghorizontal dashed | Formatted: Engish (UK) |
i Fig. 8). The B kil BSS) ch he e ¢ /"_{ Formatted: English (UK) |
ine in Fig. 8). The Brier skill score (BS3) characterizes the nedataccuracy of the o’ | Formatted: English (UK) |
probabilistic forecast compared to a referenceesystsee Jolliffe and Stephenson, Zoﬂ)./{Formatted: English (U.K.) ]
Although the_climatology or sample climatology bEtevent is often used as a reference,/Ihe{ Formatted: English (UK.) |

7777777777777777777777777777777777777777777777 Formatted: English (UK.) |

forecasting method or even a deterministic forécgsinethod treated as a probab|llst|c/

binary forecast. However, in such cases it is mssible to draw a unique horizontal line of

Deleted: The Brier skill score
characterizes the relative skill of
the probabilistic forecast compared
with the one obtained by using the
climatological frequency (see
Jolliffe and Stephenson, 2011)

no skill in Figure 8 The region where the probabilistic forecast thmsatlveg Si.e. it |s A

Deleted: Brier skill score ]

skill line are closer to thelimatological frequencynd produce a negatiy#gss Rellablllty o

Deleted: simply taking the
climatological frequency as
forecast

N

Deleted: (see Fig. 8) ]

diagrams usually contain the histogram of the faseprobabilities to analyze the sharpnes {

Deleted: climatological }

frequency
\

of the forecasts (small inset in Fig. 8). Sharpness cheaniaes the ability to forecast

(

Deleted: Brier skill score J
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probabilities that are different from tiyeference forecasiSharp forecasting systems are {f?:qﬁﬁcyc"mamlog'cal

“confident” about their predictions and give mamplmbilities around one and zero.

The ROC curve is used to analyze the discriminagiower of a probabilistic forecast of

exceeding a given rainfall threshold. It is constied by plotting the hit rates and false alarm
rates evaluated at increasing probability threshtddnake the binary decision whether it will
rain or not. The ROC curve of a random probabdi$tirecast system lies on the diagonal
where the hit rate equals the false alarm rateskil: the forecast probabilities do not have

discrimination power. When the false alarm ratdigher than the hit rate the forecast is

- { Deleted: the one

is observed when the hit rates are higher than fétge alarm rates, which draws a
characteristic curve. The area under the ROC o&U&€) measures the discrimination power
of the probabilistic forecasts, with a maximum alof 1 (100% of hits and 0% of false
alarms) and a minimum value of 0.5 for a randonedasting system. Values below 0.5
denote a forecasting system that performs worse fdwadom chance. The AUC is computed
by integrating over all the trapezoids that cardbsvn below the ROC curve. The AUC is
not sensitive to the forecast bias and the reltghif the forecast could be still improved

through calibration. For this reason the AUC isyanimeasure of potential skill.

The ensemble forecasts are verified to detect vendtiere is over- or under-dispersion. It is

common practice to compare thskill” (error) of the ensemble mean with the ensemble

- { Deleted: 3

i=1 m=1

spread :,:\I.Ii\/Ml_li(Fim_Fi)z 9)

Field Code Changed

| Formatted: English (U.K.)

ensemble member arfg is the ensemble mean forecésta given grid point)Since we are
A A <

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A

7| Formatted: English (U.K.)

{
(
( Field Code Changed
(
(

not analyzing the spatial or temporal distributadrihe ensemble spread,corresponds to the - { Formatted: English (UK.)

o JU JL

total number of samples in space and time, whichasnumber of forecasts within a rainfall
event multiplied by the number of grid points witha radar field. The weak conditional
verification is also applied to the computation thfe spread. The ensemble spread

characterizes the variability of the ensemble memladout the ensemble mean (standard

- { Deleted: well calibrated

the average variability of the observations abtat énsemble mean, as measured by the

26



g b W N P

© 00 N O

10
11
12
13
14
15
16
17

18

19

20
21
22
23
24

RMSE of the ensemble mean (Eqg. (2)). If the spiedarger than the RMSE, the ensemble is
overestimating the forecast uncertainty (over-disipa), otherwise it is underestimating it

(under-dispersion)t is interesting to mentions that the ensemblem®RBISE and ensemble

spread could also be computed starting from tharltdgn of rainfall rates to account for the

skewed distribution of precipitation (not usedhistpaper).

Another way to analyze the spread of ensemble &steds based on rank histograms (also
known as Talagrand diagram). First, the precimitatvalues of the ensemble members are
ranked in increasing order. Then, the rank of theeovation is evaluated by checking in

which of theM+1 bins it falls. By repeating the operation for g number of cases and

_ { Deleted: well calibrated

flat histogram, i.e. the observations are indistisgable from the forecasts and each
ensemble member is an equi-probable realizatidgheofuture state of the atmosphere. A bell-
shaped histogram with a peak in the middle is akesbin case of ensemble over-dispersion.
On the contrary, a U-shape histogram with peakleatedges is observed in case of ensemble

| under-dispersion, which is more comm@m particular for NWP_ensembledh this case the

values of the observations often fall below or abthe lowest or highest value of the ranked

. { Deleted: values of the
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City Date Event start [UTC]Event end [UTC] Duration PredominantMain wind direction
precipitation

Ghent| 10 Nov. 2013 13:50 22:00 8h 10min  Stratiform WNW > NNW

Ghent| 3Jan.2014 03:00 14:00 11h Stratiform SW-> WSW

Leuven| 9-10 June 2014  06:30, ¢ 15:30, 16 33h  Convective S

Leuven| 19-20 July 2014 22:00, 1§ 06:30,2¢"  8h 30min Convective SSW

B { Deleted: flooding

-
-
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1 Table 2. Summary of the forecast verification ssopé the next four 30 min accumulation
2 forecasts for the precipitation events in Ghent Bagven. The lead time shown is the end of
3 | the 30 min accumulation period (e.g. 60 min istietato the 30-6Qnin accumulation). Iﬁhg,,/"{De'eted:mmUte
4 | bias valuescorrespond 1o the standard deviation of the mittgive bias, which is more -~ C¥:<
5 interesting than its mean (often close to 0).
Event Bias 30min Bias 60min  Bias 90min Bias 120mjrRMSE 30min RMSE 60min RMSE 90min RMSE 120min
[dB] [mm hr]
10.11.2018 0.30 0.49 0.61 0.70 0.38 0.59 0.71 0.78
03.01.2014 0.54 0.74 0.82 0.89 0.95 1.39 1.53 1.48
9-10.06.2014 0.52 0.63 0.66 0.69 2.45 3.26 3.40 3.38
19-20.07.2014 0.84 1.18 1.30 1.35 1.84 2.36 2.49 2.52
POD30mir POD 60min  POD 90min POD 120minFAR 30min FAR 60min FAR 90min  FAR 120min
Event Forecast >= 0.5 mm fr Forecast >= 0.5 mm fr
10.11.2013 0.83 0.71 0.62 0.54 0.17 0.30 0.38 0.46
03.01.2014 0.80 0.63 0.49 0.33 0.10 0.25 0.45 0.65
9-10.06.2014 0.78 0.65 0.55 0.46 0.15 0.32 0.44 0.54
19-20.07.2014 0.86 0.75 0.66 0.58 0.17 0.36 0.50 0.61
GSS 30min GSS 60min  GSS 90min  GSS 120mirGSS 30min~ GSS 60min - GSS 90min  GSS 120min
Event Forecast >= 0.5 mm fr Forecast >= 5.0 mm fir
10.11.2013 0.58 0.38 0.27 0.20 0.15 0.02 0.0 0.0
03.01.2014 0.64 0.40 0.20 0.08 0.28 0.06 0.0 0.0
9-10.06.2014 0.59 0.38 0.26 0.17 0.44 0.20 0.09 0.04
19-20.07.2014 0.58 0.29 0.14 0.07 0.27 0.09 0.04 0.02
AUC 30mir AUC 60min  AUC 90min AUC 120mi AUC 30min  AUC 60min  AUC 90min  AUC 120min
Event Forecast >= 0.5 mm fr Forecast >= 5.0 mm fir
10.11.2013 0.95 0.89 0.84 0.79 0.88 0.67 0.56 0.50
03.01.2014 0.92 0.85 0.78 0.69 0.90 0.72 0.57 0.50
9-10.06.2014 0.93 0.86 0.81 0.76 0.89 0.77 0.68 0.62
19-20.07.2014 0.94 0.87 0.82 0.77 0.88 0.75 0.68 0.62
6
7
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Uccle-Ukkel (synop station + webcam) MEAN=2.80 mm/h [11:40-11:45 UTC]

STEPS-BE Mon Mar 2 10:50:00 2015 + 55 min

@ _P@ @| 11:40—_11:452 nowcast ensemble mean P

EEEEE

Timestep @5 @ 30

4h

v

Temporal accumulation: 5 min
Spatial resolution: 1 kem’

Figure 1Web platform of STEPS-BE showing the ensemble niieaatast.
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Period start: 2013-11-10 03:00 UTC Period start: 2013-11-10 03:00 UTC
Period end:  2013-11-10 14:00 UTC Period end:  2013-11-10 14:00 UTC

Mean forecast rainfall rate Mean observed rainfall rate
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Figure 2. Average forecast and observed rainfalliamlations for the Ghent cases.
a) Forecast and b) observed 0-30 min rainfall acdations on 10 November 2013.
¢) Forecast and d) observed 0-30 min rainfall azdations on 03 January 2014.
The mean and standard deviation of the field withen120 km range of the radars are shown
on the bottom left corner. Field values are showly @ there are at least 10 samples for the
computation of the mean. The red triangles derfiwddcation of the Wideumont (WID,

coordinates: 438 km East / -405 km North), Zaven{8iV, 363/-296), Jabbeke (JAB, 266/-
263) and Avesnois (AVE, 317/-382) radars. The 120r&nge from the radar is displayed as
a dashed circle. The mountain range of the Ardenaesrs the three most southern districts

of Belgium and Luxembourg (LUX).
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Period start: 2014-06-09 06:30 UTC Period start: 2014-06-09 06:30 UTC
Period end:  2014-06-10 15:30 UTC Period end:  2014-06-10 15:30 UTC
Mean forecast rainfall rate Mean observed rainfall rate

200 100:00 200 4
63.00
40.00
25.00
16.00
F -300 10.00 F -300
£ £
= 630 = o
£ 400 E £
5 250 5
2 2
] 160
400 1.00 400,
0.63
0.40
] 025
0.10
500 500
- ! boe) P
200 00 400 200 300 400
mean: 1.94 Easting [km] lead time: +0-30 min mean: 2.10 Easting [km] lead time: +0-30 min
st.devi 155 st.dev: 1.92
Period start: 2014-07-19 22:00 UTC Period start: 2014-07-19 22:00 UTC
Period end:  2014-07-20 06:30 UTC Period end:  2014-07-20 06:30 UTC
Mean forecast rainfall rate Mean observed rainfall rate

&

8

S
&
8
38

Northing [km]
mm/hr
Northing [km]

S
3
3

200 300 400 500 300 400 500
mean: 1.88 Easting [km] lead time: +0-30 min mean: 1.92 Easting [km] lead time: +0-30 min
st.dev: 1.36 st.dev: 1.99

Figure 3. Average observed and forecast rainfallawlations for the Leuven cases.
a) Forecast and b) observed 0-30 min rainfall medations on 9-10 June 2014.
¢) Forecast and d) observed 0-30 min rainfall amdations on 19-20 July 2014.
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Period start: 2013-11-10 03:00 UTC Period start: 2014-01-03 13:50 UTC

Period end:” 2013-11-10 14:00 UTC Period end:” 2014-01-03 22:00 UTC
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Figure 4 Average 0-30 min multiplicative forecast biases for
the Ghent cases on a) 10 November 2013 and on kgrgary 2014 and
the Leuven cases on ¢) 9-10 June 2014 and on 20 J8dy 2014.
The interpretation of under- and over-estimationSHEPS as systematic rainfall growth and

decay or simply as radar measurement biases iedubjinterpretation as explained in text.
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Period start: 2014-07-19 22:00 UTC

Period start: 2014-01-03 13:50 UTC
2014-07-20 06:30 UTC

Period end:  2014-01-03 22:00 UTC Period end:
Root mean square error
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2 Figure 5. Average 0-30 min forecast RMSE for a)@meent winter case on 03 January 2014
and b) the Leuven summer case on 19-20 July 2014.
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Period start: 2014-07-19 22:00 UTC Period start: 2014-07-19 22:00 UTC
Period end:  2014-07-20 06:30 UTC Period end:  2014-07-20 06:30 UTC

Probability of detection, R >= 0.5 mm/hr False alarm ratio, R >= 0.5 mm/hr
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3 Figure 6a) POD, b) FAR and c) GSS of the 30-60 min ensemiglan forecast of exceeding
0.5 mm ht* for the Leuven case on 19-20 July 2014.
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Figure 7 Reliability diagrams for the Ghent case on 03 Jan2814 relative to the

probabilistic forecast of exceeding a) 0.5 mitdmd b) 5.0 mm ht.
¢, d) Same as a,b) but for the Leuven case on 1RH3®014.
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a)

Period start: 2014-01-03 13:50 UTC
2014-01-03 22:00 UTC
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Figure 8. ROC curves relative to the probabilifti@cast of exceeding 0.1 mmi'tfor

a) the Ghent case on 03 January 2014 and b) theeherase on 19-20 July 2014.
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a)

Figure 9. Comparison of ensemble spread and RMS3keatnsemble mean forecast at 5 min
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resolution for a) the Ghent case on 03 January 2084
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Figure 10. Rank histograms for the Leuven case%a0lJuly 2014 for a lead time of

a) 5 minutes and b) 60 minutes.
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We thank Geoff Pegram for his positive review. It helped us clarifying some
additional details and confirming some of our conclusions. Below we present the
answers to each question point by point.

6836, 4: 512x512 kilometer?
Well spotted. We will specify that the domain size is given in kilometers.

6837, 2: does the compositing algorithm select from the lowest CAPPI, at what level,
and what about the bright band? | think more detail is required.

The used CAPPI is at 1500 m.a.s.l. The correction for the bright band and for the
vertical profile of reflectivity is only taken into account in a more advanced
guantitative precipitation estimation (QPE) product. Unfortunately, this new product is
not yet used as input in STEPS because it only works on single radars at the moment
(there is no composite yet).

6841, 24: 'a series of blocks’ of what size?

The block size is 60x60 grid points (see page 6842, line 2). The block size was
adapted to obtain a robust optical flow estimation of the large precipitation scales,
which is expected to increase the predictability of the Lagrangian extrapolation at
longer lead times.

6842, 10: 'previous’ in place of ’ last’
Corrected.

Same page, 17 - 19: The sentence 'Since ... radars.” Needs rewording

The original STEPS implementation (Bowler et al., 2006) was designed to blend the
radar extrapolation nowcasts with the output of NWP models. The domain covered
by the radars is smaller than the rectangular domain of the NWP model and small
amounts of stochastic noise are generated by default also outside of the radar
composite. This setting was not adapted for radar-based nowcasts

without NWP blending and needed some adaptation. We will give more details in text
to explain this issue.

6843, 6: 'that’ in place of 'the one’
Corrected.

6845, 6: ‘field vectors based on the observations and then’ in place of 'field vectors
and’
Corrected as proposed.

Same page: It would help the reader if the last sentence (omitting the word 'More’) i.e
'Details about the forecast verification setup and scores are given in Appendix A.’
was placed after 'scores.’ in line 10

Good suggestion. We will move the sentence.

Same page, 25: comment - It is not clear to me what the figures show - is Fig 2(a)

showing the average of 30 min accums over 35 hours? Please revise the text as it is
muddling. Aha - | get the explanation in line 17 on the next page

46



O©CO~NOUTA,WDNPE

We will try explain this concept at the beginning so that the reader does not have to
wait for the explanation.

6847, 5: 'Contrary to expectation’ in place of 'Contrarily to the expectations’
Corrected.

Same page [lines 8, 12, 25] and elsewhere, the use of the word 'comprised’ is not
good grammar in this context - in many cases it can be omitted.
We will use a more appropriate term or remove it.

6848 last sentence. That makes sense, so the model is good, but please check my
remark below on the passage on page 6853, lines 4 & 5.

The observation that the skill of nowcasting systems is higher along the path of a
thunderstorm compared to its edges should not depend on small biases that appear
at low rainfall intensities (see answer below).

6849, 14: 'likely’ in place of 'sufficient’ ?
Much better alternative.

6850, 7-9: this last sentence is a result which makes good sense
Thank you for agreeing with our statement.

Same page, 20: remove 'the’ before 'highest’
Corrected.

6851, 13: 'grows’ in place of 'augments’
Corrected.

Same page, 16: 'lowest cascade level’ | thought that the highest spatial frequencies
were in the top level of the multiplicative cascade ...?

Good point. The terminology may be misleading but it was already used in the
previous STEPS papers. We will specify that the top levels are the lowest
frequencies (levels 0-1-2) and the bottom levels are the

highest frequencies (levels 6-7-8).

And 21: 'comprised’ again - please remove

Ok.

6852, 2: ' .. of the two stratiform cases’ please add 'as might be expected’
Added.

Same page, 17: a comment. Overall, what is the summarised take-home message of
this complex and compact paragraph? In my opinion, it is a bit abrupt and needs
another sentence or two, drawing conclusions, before the overall 'Conclusions’

The take-home message is that there is not much predictability in the small
precipitation scales beyond 2 hours lead time. Therefore, a maximum lead time of 2
hours in STEPS-BE is a good choice.

Extending this lead time would require blending the radar-extrapolation nowcast with
the output of NWP models to gain some predictability. It is a good idea to add a small
paragraph discussing these points.
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6853, 4-5: 'an improvement to generate stochastic noise only within the advected
radar composite’. Please remind me - is the noise variance linked to the reflectivity -
i.e. is a constant noise added to the log of reflectivity? If not, the low rainfall values
will be penalised. In fact, the low rainfall values will be biased upward and spoil the
error scores ...

The noise is not added to the log of reflectivity (dBZ) but is added to the log of rainfall
intensity (dBR). The noise is thus multiplicative when working in original units of
rainfall intensity (R). We did not detect strong biases at low rainfall rates, although
the small and light rainfall cells have tendency to gradually dissipate, which has more
to do with the numerical diffusion of the highest frequencies during the advection of
the levels at the bottom of the cascade (e.g. levels 6-7-8).

6854, 16: 'Fi is the forecast rainfall accumulation’ is this over the whole field? It
seems from Figure 4 this is done per pixel, so needs a mention.

We will remove the word "accumulation” to avoid confusion. Fi is the forecast rainfall
at a single pixel and the summation is performed over time using the rules for the
online computation of the statistics.

6858, eq (8): why not just square the first bracket under the square root sign?
Thanks for the suggestion.

6859, 13: 'is not enough dispersive to’ should read ’is not dispersive enough to’
Corrected.
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We thank Pekka Rossi for the useful remarks and also for spotting some mistakes in
the paper (reference+equation). Below you will find the answers to your questions.

1. Introduction: | think it is quite widely accepted that the term “nowcasting” refers to
very short range forecasting in the time range 0-6 hours (e.qg.
https://lwww.wmo.int/pages/prog/amp/pwsp/Nowcasting.htm). To avoid confusion, it
would be better to first define the term nowcasting with this definition, and then
specify that this paper considers only the first two nowcasting hours.

Good idea. We will define the term nowcasting in the introduction and mention that
we only focus on the first two hours. Nowcasting is strongly based on the use and
extrapolation of real-time observations. During recent years there has been
significant progress in NWP modelling with radar data assimilation techniques, which
reduces the length of the nowcasting time range (e.g. the AMS glossary of
meteorology cites 3 hours). In the future we expect to have a seamless transition
between the observations, empirical and NWP forecasts, which will make the
definition of the nowcasting time range even fuzzier.

2. Introduction: The paper underlines advantages of radar-based nowcasting over
NWP during the first nowcasting hours. To be fair, authors should better
acknowledge that NWP typically outperform radar-based nowcasting after a few
forecast hours, which is still in the nowcasting time range (assuming that the
definition of 0-6 hours is adopted). | also think the paper should acknowledge that
NWP community working very hard to improve the nowcasting of rainfall (see e.g.
Sun, J., and Coauthors, 2014: Use of NWP for Nowcasting Convective Precipitation:
Recent Progress and Challenges. Bulletin of the American Meteorological Society,
95, 409-426.).

Exactly, NWP can already provide useful skill over extrapolation techniques after 2-3
hours lead time. We will cite the progress in the NWP community, but also the
practical fact that rapid-update (5-10 minutes) high-resolution radar-data assimilating
ensembles in the nowcasting range are not yet a reality nowadays. Thunderstorms
can exhibit significant evolution over a few tens of minutes and the current
operational NWP systems are not able to reach the resolution, update frequency and
skill of empirical nowcasting techniques in the first couple of hours.

3. The verification was performed with four case studies. This is not very extensive
verification, given the availability of radar data and low computational costs
nowadays. | do not feel strongly enough about this to make it a major issue, but
perhaps Authors could underline that more extensive evaluation would be needed to
capture full performance of the system.

Yes, indeed we verified only 2 convective and 2 stratiform precipitation cases. The
deterministic verification can give quite different results depending on the cases.
More data would be needed to better highlight the climatological spatial distribution of
STEPS forecast errors (e.g. as done in Foresti and Seed, 2015). On the other hand,
the probabilistic verification converges much faster to stable statistics. This is due to
the fact that the probabilistic verification pools the data in both space and time, which
gives many more samples to compute the statistics.
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4. | was a bit surprised that Authors did not do any comparison against a reference
system (e.g. basic deterministic extrapolation). It would have been interesting to see
differences between a legacy system and STEPS-BE (e.g. in terms of RMSE, GSS).
Indeed, it could have been an additional analysis. In Foresti and Seed (2015) we
presented a comparison of the STEPS ensemble mean and the Eulerian persistence
forecast. The STEPS ensemble mean was better most of the time except for the
regions with reduced visibility due to orography and far from the radar. Comparing
the ensemble mean forecast to a deterministic control forecast in terms of pixel-
based RMSE would reward the ensemble mean. In fact, the smoothing effect due to
ensemble averaging filters out the unpredictable features and reduces the double
penalty error occurring when forecasting for example a storm at the wrong location.
Comparing the probabilistic forecast error of

STEPS against the probabilistic error of a single deterministic forecast (issuing only 0
or 100% probability of rain) also suffers from the dependence of scores with the
ensemble size. In fact, larger is the ensemble size smaller is the Brier score (Ferro,
2007), which complicates the comparison of ensemble prediction systems composed
of different members (20 for STEPS and "1" for the deterministic control forecast).
We could have done a comparison to show that STEPS is better than a deterministic
nowcast, but a fair comparison that considers the influence of ensemble size and the
different statistical properties of the competing forecast models (e.g. smoothness)
would have been much more complex.

5. P. 6850: “Another explanation for this underestimation is due to not using a model
for the radar measurement errors, in particular due to the space— time variability of
the Z-R relationship”. It is not clear to me how errors due to initial conditions can be
observed in this verification, because the reference data applied in the verification
data is obtained from the same erroneous radar data.

We will add some sentences to better formulate this concept. The last observed
rainfall field is extrapolated using a fixed Z-R relationship. The same Z-R relationship
is used to convert the observed reflectivity to the rainfall rates that are used for the
verification. However, spatial and temporal changes in the drop size distribution
(DSD) can lead to changes in the estimated rainfall rate that is used for the
verification. Therefore, there could be a mismatch between the “fixed" DSD of the
forecasts and the variable DSD underlying the verifying observations.

Another possible source of mismatch could be due to the advection correction with
optical flow. The forecast accumulations are computed by advecting forward the
previous rainfall field. On the other hand, the observed accumulations are computed
by reversing the optical flow vectors and advecting the rainfall field backwards. This
choice increases the differences when comparing the +0-5 min forecast
accumulations (advection of the "0" min image forward) with the +0-5 min observed
accumulations a posteriori (advection of the "+5" min image backwards). We will add
these details to the text.

6. Authors might want to revise the use of the term skill. Isn’t it by definition a
measure of forecast accuracy with respect to the accuracy of a reference forecast?
The term is quite widely used throughout the text.

Good remark. We will revise the text and replace the term skill with a more
appropriate one to be consistent with the terminology used in forecast verification.
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7. P. 6587 and p. 6849 (Brier score and Brier skill score), also related to my previous
comment. Brier score (BS) is a measure of accuracy, and BSS compares BS of two
systems. Thus, | believe it would be better to say that “The Brier skill score
characterizes the relative accuracy of the probabilistic forecast compared to a
reference system”. Although climatology or sample climatology is often used as a
reference, BSS can also be computed against other reference forecasts, e.g. another
probability forecasting method or even a deterministic forecasting method treated as
a probabilistic binary forecast.

Thanks. We will specify that the reference can be different than the sample
climatological frequency.

8. P. 6858: Foresti et al. (2013). | couldn’t find it in the reference list. Foresti et al.
(2014)?
Well spotted. It is the paper on the analogues written in 2013 but published in 2015.

9. eg. (8). It seems that index m is not defined. Shouldn’t the index i under the square
root be replaced with m?

Thanks for remarking the typo in the equation. The second summation is done from
m=1 to M.
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We thank the anonymous reviewer for the positive feedback. Below we present the
answers to the raised issues point by point.

1) A major concerns that | have with this work is that the authors have failed to
discriminate the impact of work with respect to previous contributions where STEPS
was used. Sure the area of focus is different (Belgium in this case), but it would be
nice if the authors could address this issue a bit further in the manuscript.

Thanks for the remark. A comparison of STEPS-BE and the original STEPS
implementation is provided in Section 3.2. We will try to specify better what is the
contribution of our paper w.r.t. the use of STEPS in other countries (e.g. UK,
Australia, etc) and related publications.

2) Page 6846 lines 7-8 and Fig. 2 a,b: The authors mention here the impact of the
bright band resulting in high rainfall rates around the radar. For the current example
in Fig. 2 a,b the impact of hitting the bright band is rather smaller, as the forecasted
accumulation is quite similar to the observed accumulation around the Zaventem
radar. | get the feeling that this is mainly due to the relatively low horizontal velocity
field of this event. | am wondering what the quality of the forecast is for larger lead
times or for cases where the horizontal velocity is larger.

The bright band effect influences both the radar observations and the nowcasts
based on their extrapolation. At longer lead times the local rainfall over-estimation
due to the bright band is extrapolated far from the location of the radar. However, the
stochastic perturbations of STEPS gradually damp this effect and reduce the amount
of over-estimation. The bright band affects more the observations used for the
verification, in particular when the rainfall is advected from upstream over

the radar region. In such case, the forecast is detected as if it under-estimates the
rainfall, which is not true. However, bright band effects might not be so important for
urban hydrological applications. In fact, except for the two stratiform cases presented
in this paper, pluvial floods mainly happen in summer with convective precipitation
events, during which the bright band is absent or negligible.

3) In line with the previous remark, | was wondering whether the authors have opted
to apply some kind of bright band correction method as the bright band is observed
at relatively low elevation (500-2000) during the fall and winter season in Belgium
(see Hazenberg et al., 2013). For this period of the year my expectation is that many
CAPPI images are contaminated with the impact of the bright band and its impact will
be extrapolated while running the STEPS-BE algorithm. As the precipitation
intensities are overestimated within the bright band, these forecasts will lead to
incorrect urban hydrological model simulations.

The correction for the bright band and for the vertical profile of reflectivity is only
taken into account in a more advanced quantitative precipitation estimation (QPE)
product. Unfortunately, this new product was not yet working in real-time when
developing STEPS and it currently works only on single radars (there is ho composite
available yet, which significantly reduces the nowcast lead time).

4) Page 6850 lines 26-29 Another explanation ... Z-R relationship: Since all the
Marshall-Palmer relationship was used to convert radar reflectivities into rainfall
estimates, | do not understand why space time variations in Z-R lead to a higher
under-dispersion at a lead times of 5 minutes. Please elaborate on this in the text.
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We will add some sentences to better formulate this concept. The last observed
rainfall field is extrapolated using a fixed Z-R relationship. The same Z-R relationship
is used to convert the observed reflectivity to the rainfall rates that are used for the
verification. However, spatial and temporal changes in the drop size distribution
(DSD) can lead to changes in the estimated rainfall rate that is used for the
verification. Therefore, there could be a mismatch between the "fixed" DSD of the
forecasts and the variable DSD underlying the verifying observations.

Another possible source of mismatch could be due to the advection correction with
optical flow. The forecast accumulations are computed by advecting forward the
previous rainfall field. On the other hand, the observed accumulations are computed
by reversing the optical flow vectors and advecting the rainfall field backwards. This
choice increases the differences when comparing the +0-5 min forecast
accumulations (advection of the "0" min image forward) with the +0-5 min observed
accumulations a posteriori (advection of the "+5" min image backwards). We will add
these details to the text.

- Page 6837 lines 1-2: Please add the elevation of the CAPPI.
The CAPPI is at 1500 m.a.s.l. We will specify it in text.

-Page 6843 lines 22-23: | would suggest to remove the line “Thus, a ... MPI
implementations).”
We will remove this sentence.

-Page 6850 line 26: Add a “.” after times.
Corrected.
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