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Abstract

The Short-Term Ensemble Prediction System (STEBSinplemented in real-time at the
Royal Meteorological Institute (RMI) of Belgium. €main idea behind STEPS is to quantify
the forecast uncertainty by adding stochastic peations to the deterministic Lagrangian
extrapolation of radar images. The stochastic peations are designed to account for the
unpredictable precipitation growth and decay preessnd to reproduce the dynamic scaling
of precipitation fields, i.e. the observation thatge scale rainfall structures are more
persistent and predictable than small scale coiweatells. This paper presents the
development, adaptation and verification of theteaysSTEPS for Belgium (STEPS-BE).
STEPS-BE provides in real-time 20 member ensemideigitation nowcasts at 1 km and 5
min resolution up to 2 hours lead time using a #a@d radar composite as input. In the
context of the PLURISK project, STEPS forecastsewggnerated to be used as input in sewer
system hydraulic models for nowcasting urban intinda in the cities of Ghent and Leuven.
Comprehensive forecast verification was perfornredrder to detect systematic biases over
the given urban areas and to analyze the reliplafipprobabilistic forecasts for a set of case
studies in 2013 and 2014. The forecast biasesthbeetities of Leuven and Ghent were found
to be small, which is encouraging for future intgm of STEPS nowcasts into the hydraulic
models. Probabilistic forecasts of exceeding 0.5 hithare reliable up to 60-90 min lead
time, while the ones of exceeding 5.0 mrit fare only reliable up to 30 min. The STEPS
ensembles are slightly under-dispersive and reptesdy 75-90% of the forecast errors.
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1 Introduction

The use of radar measurements for urban hydrolbgpgdications has substantially increased
during the last years (e.g. Berne et al., 2004fdiet al., 2004; Bruni et al., 2015). Given the
fast response time of urban catchments and sewstersy, radar-based very short-term
precipitation forecasting (nowcasting) has potéribaextend the lead time of hydrological

and hydraulic flow predictions.

Nowcasting concerns the accurate description ofctlreent weather situation together with
very-short term forecasts obtained by extrapolathmg real-time observations. Quantitative
precipitation nowcasting (QPN) is traditionally @oby estimating the apparent movement of
radar precipitation fields using optical flow orriaional echo tracking techniques and
extrapolating the last observed precipitation fiaekd the future (e.g. Germann and Zawadzki,
2002; Bowler et al., 2004a). During recent yeaeydrhas been significant progress in NWP
modelling with radar data assimilation techniquese(a review in Sun et al., 2014), which
reduces the useful lead time of extrapolation-basegdcasts compared with NWP forecasts.
The development of seamless forecasting systentsofitamally blend the extrapolation

nowcast with the output of NWP models makes théndei of the nowcasting time range

even fuzzier (see e.g. Pierce et al., 2010).

Due to the lack of predictability of rainfall growvand decay processes at small spatial scales
(Radhakrishna et al., 2012), it is very importaot provide together with a forecast an
estimation of its uncertainty. The established meétto represent the forecast uncertainty in
Numerical Weather Prediction (NWP) is to generateeasemble of forecasts by perturbing
the initial conditions of the model in the directexhibiting the largest error growth, which
amplify more the spread of the obtained ensembtaveder, in the nowcasting range the
computation of large NWP ensembles (50-100 memlbleas)resolve features at the scales of
1 km and are updated every 5 min is still imposgstbl achieve. Consequently, the efforts in
nowcasting research have recently focused on dewejo heuristic techniques for
probabilistic precipitation nowcasting, which wdse ttopic of theHeuristic Probabilistic

Forecasting Workshop that was organized in Munich, Germany (Foressil¢t2014).

Probabilistic QPN methods can be categorized ihteet main classes: analogue, local
Lagrangian and stochastic approaches. The analmagesl approach derives the forecast
probability density function (p.d.f.) by retrievirsgset of similar situations from an archive of
precipitation events (Panziera et al., 2011; Foegsdl., 2015), the local Lagrangian approach
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derives the p.d.f. by collecting the precipitati@lues in a neighborhood of a given grid point
in Lagrangian frame of reference (Hohti et al., Z0Germann and Zawadzki, 2004) and the
stochastic approach exploits a random number geEmeaacompute an ensemble of equally
likely precipitation fields, for example by addistpchastic perturbations to a deterministic
extrapolation nowcast (Pegram and Clothier, 20Q081b; Bowler et al., 2006; Metta et al.,

2009; Berenguer et al., 2011; Seed et al., 2018né&a and Zawadzki, 2014; Dai et al.,

2015). The stochastic approach is also extensivedy to produce ensembles of precipitation
fields that characterize the radar measurementriaicty (e.g. Jordan et al., 2003; Germann
et al., 2009) and for design storm studies (e.dleviis, 2001a; Paschalis et al., 2013).

Uncertainty quantification is nowadays an integualt of both weather and hydrological
forecasting (Pappenberger and Beven, 2006). Ngtrisurgly, an important part of hydro-
meteorological research aims at understanding howpropagate the uncertainty of
precipitation observations and forecasts into thérdiogical models (e.g. Willems, 2001b;
Cloke and Pappenberger, 2009; Collier, 2009, Zapdh, 2010).

Several studies already analyzed the value of ni@testic nowcasting systems for catchment
hydrology (e.g. Berenguer et al., 2005) and fotdvetontrol of urban drainage systems (e.g.
Achleitner et al., 2009; Verworn et al., 2009; Tibathl and Rasmussen, 2013). Since an
important fraction of the uncertainty of hydrologii@redictions is due to the uncertainty of
the input rainfall observations and forecasts, rd@@ed ensemble nowcasting systems are
increasingly used as inputs for flood and sewetesysmodeling (e.g. Ehret et al., 2008;
Silvestro and Rebora, 2012; Silvestro et al., 20dBan et al., 2009; Xuan et al., 2014). At
longer forecast ranges, the NWP ensembles areegfdoited for uncertainty propagation into
hydrological models (see Roulin and Vannitsem, 200%elen et al., 2009; Schellekens et
al., 2011).

The Short-Term Ensemble Prediction System (STER®) probabilistic nowcasting system
developed at the Australian Bureau of Meteorology the UK MetOffice (see the series of
papers Seed, 2003; Bowler et al., 2006; Seed ,eR@13). STEPS is operationally used at
both weather services and provides short-term epigepnecipitation forecasts using both the
extrapolation of radar images and the downscaledipitation output of NWP models. The

main idea behind STEPS is to represent the unogytdue to the unpredictable precipitation
growth and decay processes by adding stochastiturpations to the deterministic

extrapolation of radar images. The stochastic peations are designed to represent the scale-
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dependence of the predictability of precipitatiowd &0 reproduce the correct spatio-temporal

correlation and growth of the forecast errors.

One of the first applications of STEPS in hydrologyresented in Pierce et al. (2005), who
used the STEPS ensemble nowcasts to quantify tugaay of flow predictions in a medium-
sized catchment in UK. The value of STEPS nowcfstsirban hydrology was extensively
analyzed by Liguori and Rico-Ramirez, 2012; Ligustral., 2012; Liguori and Rico-Ramirez,
2013; Xuan et al., 2014). Liguori and Rico-Ramif2@12) concluded that the performance of
the radar-based extrapolation nowcast can be inegrafter 1 hour lead time if blended with
the output of a NWP model. They also found thatoeting to the Receiver Operating
Characteristic (ROC) curve, the probabilistic nogstsahave more discrimination power than
the deterministic ones. Liguori et al. (2012) imeggd STEPS nowcasts as inputs into sewer
system hydraulic models in an urban catchment irk¥are (UK). They concluded that the
blending of radar and NWP forecasts has potenbaintrease the lead time of flow
predictions, but is strongly limited by the low acacy of the NWP model in forecasting
small scale features. Liguori and Rico-Ramirez @Qferformed a detailed verification of the
accuracy of flow predictions and concluded that SiEEPS ensembles provide similar
performance than using a deterministic STEPS cbfdrecast, but the ensembles lead to a
slight underestimation of the flow predictions. Xuat al. (2014) used ensemble STEPS
nowcasts as inputs in a lumped hydrological modelad medium-sized catchment in the
South-West of UK. The hydrological model calibratedh rain gauges had lower RMSE
than the one using radar data, but the ability ®EBS in accounting for the forecast
uncertainty was useful to capture some of the Hagh peaks and extending the forecast lead
time. However, the conclusions of the previous issicire strongly affected by the limited
number of flood events analyzed. An extensive rewé the usage of precipitation forecast
systems for operational hydrological predictions UK from very-short to long range
(including STEPS) is provided in Lewis et al. (2D15

The goal of this paper is to present the developraed verification of the STEPS system at
the Royal Meteorological Institute of Belgium (RMteferred to as STEPS-BE. STEPS-BE
provides in real-time 20 member ensemble precipitanowcasts at 1 km and 5 min
resolutions up to 2 hours lead time on a 512x51@veter domain using the Belgian 4 C-
band radar composite as input. It was developethenframework of the Belspo project

PLURISK for better management of rainfall-inducesks in the urban environment. With
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respect to the original implementation of STEPSwW®Ro et al., 2006), STEPS-BE includes
two main improvements, which are designed to geeepatter STEPS nowcasts without
NWP blending. The first one is related to the agtitow algorithm, which is extended with a
kernel-based interpolation method to obtain smaoteocity fields. The second one
concerns the generation of stochastic noise ontljinvihe advected radar composite. While
the verification of STEPS nowcasts with NWP bleigdiras already been extensive (Bowler
et al., 2006; Seed et al., 2013), this paper aralylze accuracy of STEPS ensemble nowcasts

without NWP blending in the 0-2 hours forecastiagge.

Ensemble STEPS nowcasts are computed for a setar overflow cases that affected the
cities of Leuven and Ghent in 2013 and 2014. Thiiacy of the ensemble mean forecast is
verified using both continuous verification scofesiltiplicative bias, RMSE) and categorical
scores derived from the contingency table (proligbdf detection, false alarm ratio and
Gilbert skill score). However, the most interestpayt of this paper is the probabilistic and
ensemble verification of STEPS nowecasts using xithtiform and convective rainfall
events. Probabilistic nowcasts are verified usel@bility diagrams and ROC curves. On the
other hand, the dispersion of the nowcast ensenlesrified using rank histograms and by

comparing the ensemble spread to the error ofrikereble mean.

The paper is structured as follows. Section 2 pisséhe radar data processing and case
studies that are used to generate and verify thePSTforecasts. Section 3 describes the
nowcasting system STEPS, its extension and logalleimentation for Belgium (STEPS-BE).

Section 4 illustrates the forecast verificationutess Section 5 concludes the paper and

discusses future perspectives.

2 Radar data and precipitation case studies

STEPS-BE integrates as input a composite imageupest from the C-band radars of
Wideumont (RMI, single-pol), Zaventem (Belgocontrsihgle-pol), Jabbeke (RMI, dual-pol)
and Avesnois (Meteo-France, dual-pol). The compositproduced on a 500 m resolution
grid by combining single-radar pseudo Constanttédi Plan Position Indicators (CAPPI) at
a height of 1500 m.a.s.l.. The compositing algomittakes the maximum reflectivity value

from each radar at each grid point.
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The radars have different hardware, scanning giiegeand are operated by different agencies
(RMI, Belgocontrol and Meteo-France), which inelltaleads to differences in the data
processing. The Wideumont and Zaventem radars redii@mithe non-meteorological echoes
using standard Doppler filtering. The Jabbeke radeludes an additional clutter filtering
which uses a fuzzy logic algorithm based on thd-gakarization moments (essentially the
co-polar correlation coefficient, the texture oé ttifferential reflectivity and the texture of
the specific differential phase shift). A statiognd clutter map and a statistical filter are used
by Meteo-France to remove the non-meteorologidabes of the Avensois radar. The French
radar data processing chain is described in Taf2097) and in Figueras i Ventura and
Tabary (2013).

Since the Zaventem radar is mainly used for aviaipplications, its scanning strategy is

optimized for the measurement of winds. Excepttifiar lowest elevation scan, a dual PRF
mode (1200/800 Hz) is used. The azimuths that @ered with a high PRF (1200 Hz) only

have a maximum range of 125 km and are more affdnfehe second trip echoes caused by
convective cells located beyond the 125 km range.

All radars use the standard Marshall-Palmer rafatiip Z=200R°to convert the measured
reflectivity to rainfall rate. A composite imagettvimore advanced radar-based quantitative
precipitation estimation (QPE), that includes kregeound clutter removal algorithms and
also a correction for the bright band, was recedélyeloped and the verification of the new

product is ongoing.

STEPS forecasts were generated and verified fat afssewer system overflow cases that
affected the cities of Ghent and Leuven (see Tapl&he Ghent cases have a more stratiform
character and occurred in late autumn and winterti@® other hand, the Leuven cases are
more convective and occurred in summer months. faildd climatology of convective
storms in Belgium can be found in Goudenhoofdt @etbbbe (2009).

3 Short-Term Ensemble Prediction System (STEPS)

3.1 STEPS description

The Short-Term Ensemble Prediction System (STEPS&3 yointly developed by the
Australian Bureau of Meteorology (BOM) and the UKet®@ffice (Bowler et al., 2006).
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STEPS forecasts are produced operationally at Wwetither services and are distributed to

weather forecasters and a number of external usgpsyticular the hydrological services.

The key idea behind STEPS is to account for theadigtable rainfall growth and decay
processes by adding stochastic perturbations tddterministic extrapolation of radar images
(Seed, 2003). In order to be effective, the staohagrturbations need to reproduce important

statistical properties of both the precipitatioglds and the forecast errors:
1. Spatial scaling of precipitation fields,
2. Dynamic scaling of precipitation fields,
3. Spatial correlation of the forecast errors,
4. Temporal correlation of the forecast errors.

The spatial scaling considers the precipitation field as arising fromltiplicative cascade
processes (Schertzer and Lovejoy, 1987; Seed, 2068)presence of spatial scaling can be
demonstrated by computing the 2D Fourier power tspec(PS) of a precipitation field. A
1D PS can be obtained by radially averaging theP& The precipitation field is said to be
scaling if the 1D PS draws a straight line on the log4gt of the power against the spatial
frequency (power law), which can be parametrizedalmne or two spectral exponents (see
e.g. Seed et al. 2013; Foresti and Seed, 2014hiMtite multiplicative framework, a rainfall
field is not represented as a collection of conveatells of a characteristic size but rather as
a hierarchy of precipitation structures embedde@anh other over a continuum of scales.
STEPS considers the spatial scaling by decompo#iieg radar rainfall field into a
multiplicative cascade using a fast Fourier tramafdFFT) to isolate a set of 8 spatial
frequencies (Seed, 2003; Bowler et al., 2006, ®ted., 2013). The top cascade levels (0, 1
and 2) represent the low spatial frequencies (largeipitation structures), while the bottom
cascade levels (5, 6, 7) represent the high sfatigliencies (small precipitation structures).
Another important behavior of rainfall fields is dwn asdynamic scaling, which is the
empirical observation that the rate of temporaleligment of rainfall structures is a power
law function of their spatial scale (Venugopal &t 4999; Foresti and Seed, 2014). This
means that large precipitation features are morsigtent and hence predictable compared
with small precipitation cells, which is closelylaged to concept of scale-dependence of the

predictability of precipitation (Germann and Zawkig2002; Turner et al., 2004).
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The stochastic perturbations should be able tecethe properties of the forecast errors.
Generating spatially and temporally correlated ¢dast errors is mandatory for hydrological
applications, in particular when the correlationdth of the errors is comparable or superior
to the size and response time of the catchnigatially correlated stochastic noise can be
constructed by applying a power law filter to a t®hnoise field (Schertzer and Lovejoy,
1987). In practice it consists of three steps: amng the FFT of a white noise field,
multiplying the obtained components in frequencyndm by a given filter and applying the
inverse FFT to return back to the spatial domalre ID or 2D power spectra of the rainfall
field can be used as filter to obtain noise fietdat have the same scaling and spatial
correlation of the rainfall field. The 1D PS of tpeecipitation fields often appears to be a
power law of the spatial frequency and explains wWie/procedure is also called power law
filtering of white noise. In order to represent #m@sotropies of the precipitation field the 2D
PS can also be used as filter. In the absencéavfiat precipitation field from which to derive
the PS, the filter can be parametrized by usingnaatological power law (see Seed et al.,
2013). Finally, thetemporal correlations are imposed by auto-regressive (AR) filtering. A
hierarchy of AR processes defines the temporalutinl of the cascade levels. With the
exception of forecast lead times beyond 2-3 hoitercia and Zawadzki, 2014), an AR
process of order 1 or 2 is already a good appraxamao describe the temporal decorrelation
of the forecast errors.

The practical implementation of STEPS to reprodilgse important properties consists of
the following steps (see Bowler et al., 2006; For@sd Seed, 2014):

1. Estimation of the velocity field using optical floen the last two radar rainfall images
(Bowler et al., 2004a).

2. Decomposition of both rainfall fields into a multgative cascade using an FFT to

isolate a set of 8 spatial frequencies.

3. Estimation of the rate of temporal evolution ofnfail features at each level of the
cascade (Lagrangian auto-correlation).

4. Generation of a cascade of spatially correlatechststic noise using as filter the 1D or
2D power spectra of the last observed radar rdifiddl. A Gaussian filter is used to

isolate a given spatial frequency (see ForestiGewtl, 2014).

5. Stochastic perturbation of the rainfall cascadagifiie noise cascade (level by level).
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6. Extrapolation of the cascade levels using a sergrdragian advection scheme.

7. Application of the AR(1) or AR(2) model for the tporal update of the cascade levels
at each forecast lead time using the Lagrangiam-@artrelations estimated in step (3).

8. Recomposition of the cascade into a rainfall field.

9. Probability matching of the forecast rainfall fieWdth the original observed field
(Ebert, 2001).

10.Computation of the forecast rainfall accumulatidresn the instant forecast rainfall
rates. This procedure is known as advection coor@nd consists of advecting the
instant rainfall rate forward over the 5 min periog discretizing the advection into

smaller time steps.

3.2. STEPS implementation at RMI (STEPS-BE)

Bowler et al. (2006) introduced a general frameworkblending a radar-based extrapolation
nowcast with one or more outputs of downscaled NWielels (see also Pierce et al., 2010,
and Seed et al., 2013). Because of being desigmedrtban applications, the maximum lead
time of STEPS-BE is restricted to 2 hours. The apenal NWP model of RMI (ALARO)
runs only 4 times daily using a grid spacing ofrd. IConsidering the model spin-up time and
the absence of radar data assimilation, it is uetikely that ALARO provides useful skill for
blending its output with a radar-based extrapotatioowcast within the considered
nowcasting range. It must also be reminded thatetfextive resolution of NWP models is
much larger than the grid spacing. For instanceas§&y (2000) estimates the effective
resolution to be at least 4 times the grid spaaciigle Skamarock (2004) estimates it to be up
to 7 times the grid spacing. ALARO would then oblg able to resolve features that are
greater than 20 km. For all these reasons, STEPS8HBEiInvolves an extrapolation nowcast
without NWP blending.

The STEPS-BE forecast domain is smaller than thengxf the 4 C-band radars composite
(see Fig. 1). The radar field was upscaled fromotinginal resolution of 500 m to 1 km and a

sub-region of 512x512 grid points centered ovegBeh was extracted. The forecast domain
was extended by 32 pixels on each side to redwcedbe effects due to the FFT. This leads
to an 8-levels multiplicative cascade representiregfollowing spatial scales (rounded to the
nearest integer): 576-256, 2%64-51, 11451-23, 5123-11, 2311-4, 114-2, 42-1 and 21
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km. Italic characters mark the scales on whichGlhessian filter is centered (see Foresti and
Seed, 2014, for a more detailed explanation anghlimation of the Gaussian FFT filter). One
can notice that the spatial scales are not exaltiphes of 2. In fact, a multiplication factor of
2,246 was employed to match the enlarged STEPSeRtanh size.

STEPS-BE includes a couple of improvements compartddthe original implementation of
the BOM:

1. Kernel interpolation of optical flow vectors,
2. Generation of stochastic noise only within the ate® radar mask.

The optical flow algorithm of Bowler et al. (2004@3timates the velocity field by dividing
the radar domain into a series of blocks withinalihthe optical flow equation is solved. The
minimization of the field divergence is only perfoed at the level of the block, which leaves
sharp discontinuities in the velocity field betwdée blocks. In order to overcome this issue,
a Gaussian kernel regression was applied to ingahe velocity vectors located at the
center of the blocks onto the fine radar grid. Hamdwidth of the Gaussian kernel was
chosen to be = 24km = 0.4k, where k=60 grid points is the bletke. This setting has the
advantage of obtaining velocity fields that areslaffected by the differential motion of small
rainfall features and the presence of ground aluf¢oo precise velocity field would provide
increased predictability at very-short lead times Wworse forecasts at longer lead times due
to excessive convergence and divergence of pratigmt features during the advection.
Smooth velocity fields could also be obtained byngsa smaller block size and by

compensating with a larger bandwidth of the smawmttiernel.

In STEPS-BE the 1D power spectrum of the last olegkbrainfall field is used as filter to
generate the spatially correlated stochastic demtions. The PS is parameterized using two
spectral slopes to account for a scaling breakithaften observed at the wavelength of 40
km (see Seed et al., 2013; Foresti and Seed, 20b43implify the computations, an auto-
regressive model of order 1 (AR(1)) was employedifigposing the temporal correlations
and to model the growth of forecast errors.

The original STEPS implementation (Bowler et aDP@) was designed to blend the radar
extrapolation nowcasts with the output of NWP medelowever, the domain covered by the
radars is smaller than the rectangular domain ef (WP model and small amounts of

stochastic noise are generated by default alsadeuts the radar composite. This setting was

10
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not adapted for radar-based nowcasts without NVéRdihg and needed some adaptation. In
fact, when advecting the radar mask over sevara steps, large areas with small amounts
of stochastic rain appear outside of the validigmdin of the forecast and perturb the
probability matching. In STEPS-BE the stochastidyreations are only generated within the

advected radar domain and set to zero elsewhere.

STEPS-BE can also account for the uncertainty endgstimation of the velocity field. The
STEPS version that is implemented in UK (Bowlealet2006) includes a detailed procedure
to generate velocity perturbations that reproduegious statistical properties of the
differences between the forecast velocity and ttead future diagnosed velocity (see details
in Bowler et al.,, 2004b). In the BOM and RMI implemations a simpler procedure is
applied. The diagnosed velocity field is multiplieg a single facto€ that is drawn from the

following distribution:
C = 101.5N /10 ’ (1)

whereN is a normally distributed random variable with@enean and unit variance. In other
words, the velocity field is accelerated or dealsnl by a single random factor without
affecting the direction of the vectors. In facte tbhncertainty on the diagnosed speed was

observed to be higher than that of the directiomo¥ement (Bowler et al., 2006).

The BOM and RMI versions of STEPS also include eclsstic model for the radar
measurement error, a broken-line model to accoomthie unknown future evolution of the
mean areal rainfall and the possibility to use tiaggged ensembles. However, a nowcasting
model with too many components is harder to calbeand complicates the interpretation of
the forecast fields. Because of these reasons, STHEPonly exploits the basic stochastic
model for the velocity field and for the evolutiof rainfall fields (due to growth and decay

processes).

The core of STEPS-BE is implemented in C/C++ arel gloduction of figures in python.
Bash scripts were written to call multiple STEPStamces and compute the ensemble
members in parallel over several processors. Olhtleeaensemble members are computed, a
separate script collects the corresponding netCidés fand calculates the forecast
probabilities. Most of the computational cost ofEF’IS consists of filtering the white noise
field with FFT, advecting and updating the radasceale with the AR model. The re-

11
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calculation of optical flow fields on each procesdakes less than 10% of the total

computational time.

The python matplotlib library is used to read tle¢GDF files, export the PNG figures and the
time series of observed and forecast rainfall a&t Iltbcation of major cities and weather
stations. A single STEPS nowcast generates more@@@ figures, which takes a significant
fraction of the total computational time. In order optimize the timing, a bash script
monitors continuously the directory with incomirgpdar composites and triggers STEPS-BE
once a field with a new time stamp is found. Akdk implementation details ensure that the
user/forecaster can have access to an ensembleSSh&WKcast in less than 5 min after

receiving the radar composite image.

The visualization system of STEPS-BE is very simtla the one of INCA-BE, the local
Belgian implementation of the Integrated Nowcastthgough Comprehensive Analysis
system (INCA, Haiden et al., 2011) developed atAbstrian weather office (ZAMG). Figure

1 illustrates the web interface with an examplawfensemble mean nowcast. The user can
highlight the major cities, weather stations andkcto visualize the time series of observed
and forecast precipitation/probability, which apgeat the bottom of the web page. The
navigation through the observations and forecast tenes is facilitated by the scroll wheel
of the mouse. On the other hand, by clicking on ithage it is possible to easily scroll
through the various ensemble members or probalditgls for a given lead time. Scrolling
the ensemble members at different lead times ig mstructive and can make the user aware
of the forecast uncertainty. In fact, at a leadetioi 5 min the ensemble members agree very
well on the intensity and location of precipitatiorhis means that the ensemble spread is
small and the probabilistic forecast is sharp,mest of the forecast probabilities are close to
1 or O (see an explanation in Appendix A). On thieephand, at 1 or 2 hours lead time the
ensemble members disagree on the location andsititeof rainfall, which enhances the
ensemble spread and decreases the sharpness pfotiebilistic forecast. The web page
includes extensive documentation to guide the ws®et a set of case studies to help
understanding the strengths and limitations of SIERhe visualization system was
implemented with great attention to take full adeage of the multi-dimensional information

content of probabilistic and ensemble forecasts.

12



© 0 N O O b~ W

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27
28
29

4 Forecast verification

4.1 Verification set-up

This section presents the verification of STEPSf8fecasts using a set of case studies (see
Sect. 2). The accumulated radar observations wepoged as reference for the verification.
The rainfall rates are accumulated over the lasirbby reversing the field vectors based on
the observations and then performing the adveat@mmnection. The 30 min ensemble mean
forecast was verified against the observed 30 awiar accumulations using both continuous
and categorical verification scores. The deterrtimigerification procedure follows the one
presented in Foresti and Seed (2015), which waigmkss to analyze the spatial distribution
of the forecast errors. More details about thedase verification setup and scores are given
in Appendix A.

The continuous scores include the multiplicativasbiand the root mean squared error
(RMSE), while the categorical scores include thebpbility of detection (POD), false alarm
ratio (FAR) and Gilbert skill score (GSS) derivadm the contingency table for rainfall
thresholds of 0.5 mm Hrand 5.0 mm ht. The rainfall thresholds are given in equivalent
intensity independently of the forecast rainfat@mulation. Thus, a threshold of 5.0 mn hr
on a 30 min accumulation corresponds to 2.5 mmaof. rThe multiplicative bias and the
RMSE were evaluated only at the locations wherefahecast or the verifying observations
exceeded 0.1 mm Ty which can be referred to asweakly conditional verification. The
probabilistic forecast of exceeding 0.1, 0.5, 5.0 tr* was verified using the reliability
diagrams and ROC curves. Finally, the dispersionthe ensemble was analyzed by
comparing the ensemble spread to the RMSE of tlseneble mean and by using rank
histograms. The probabilistic and ensemble vetifica does not consider the spatial
distribution of the errors and pools the data tbgetn both space and time to derive the

statistics.

4.2 Deterministic verification

Figures 2 and 3 show the average forecast and\ausesinfall rates corresponding to the O-
30 min ensemble mean accumulation nowcast for tirenGand Leuven cases respectively. In

other words, they represent the average forecaksbhserved rainfall rates over the duration
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of the precipitation event (for the 0-30 min leadd). The average was computed using the

weak conditional principle explained above.

The average forecast and observed accumulatioresajgnagree very well for the 0-30 min

lead time forecast. The Ghent case on 10 NovembEB PFigs. 2a and 2b) is the only one
with northwesterly flows and is characterized by tdowest average rainfall rates. The
Avesnois radar demonstrates very well the rangemn#gnce of the average rainfall rates,
which gradually decrease with increasing distangsnfthe radar. On the contrary, the smaller
ring of high rainfall rates around the Zaventemarad mostly due to the bright band (Fig.
2b).

The bright band effect influences the radar obgemsa and hence the nowcasts based on
their extrapolation. At longer lead times the largenfall estimates due to the bright band are
extrapolated far from the location of the radare ®tochastic perturbations of STEPS can
help to gradually dissolve the circular patterrtsaduced by the bright band effect. However,
the bright band affects more the observations @isethe verification, in particular when the
rainfall is advected from upstream over the radgran. In such case, the local larger rainfall
estimates lead to a verification bias and the fastcare wrongly accused of rainfall under-
estimation. In spite of these issues, bright bafeces might not be so important for urban
hydrological applications. In fact, except for osgatiform case presented in this paper,
pluvial floods mainly happen in summer with conweetprecipitation events, during which

the bright band is absent or negligible.

The Ghent case on 3 January 2014 has higher Harafek and the elongated structures of
precipitation areas demonstrate well the southwlgdtew regime (Figs. 2c and 2d). For this

case the measurements of the Zaventem radar araffédsted by second trip echoes, which
appear as a set of radially oriented rainfall dtres North-West of the radar. These

alternating patterns are explained by the dual RieEte of Zaventem (see Sect. 2).

The Leuven cases on 9 June 2014 and 19-20 July2®4elan important convective activity

(Figs. 3a, 3b, 3c and 3d). The maximum averagdalamates are located over the Ardennes
mountain range and the city of Leuven respectiv@igce urban flash floods can be triggered
by a single convective cell, the average rainfatik rover the duration of the event may not be

as high in the considered city (e.g. Fig. 3b).

Figure 4 illustrates the multiplicative bias of 0 min nowcast averaged over each of the

4 events. A detailed interpretation of such forebésses using Australian radar data and their
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connection to orographic features is given in Rbesd Seed (2015), which point out that an
important fraction of the forecast errors is causgdthe biases of the verifying radar
observations rather than systematic rainfall groarid decay processes due to orography. In
Fig. 4a it is easy to notice the effect of briglnd, which causes a series of systematic
forecast biases around the Zaventem radar and nmbcpdarly oriented with respect to the
prevailing flow direction (NW). Systematic rainfalnderestimation occurs along the Belgian
coast of the North Sea. One factor which contribtitethis underestimation is the absence of
visibility of the radar at longer ranges. The inéogprecipitation is suddenly detected by the
radar and therefore strongly underestimated by STHPe only situation where the range
dependence of the rainfall estimation does notcatfe forecast verification occurs when the
velocity field is perfectly rotational and centered the radar (assuming no beam blockage).
All the other cases have to deal with the fact thatrainfall nowcast also extrapolates the
biases of the radar observations! Contrary to exgtiea, on the upwind side of the Ardennes
there is overestimation, which may depict a regibaystematic rainfall decay. The bias over
the city of Ghent is fortunately small and is ird#a in the range from 0 to +0.5 dB (light
overestimation, rainfall decay). Having small systic biases over the cities of interest is
very important for future integration of STEPS nasts as input in hydraulic models. In Fig.
4b the systematic underestimation is also locafestream with respect to the prevailing
winds (SW). The strong overestimations in Germamy &he Netherlands are mostly due to
the underestimation of rainfall by the verifyingdea observations rather than caused by
systematic rainfall decay. This is particularly ible after a range of 125 km from the
Zaventem radar, which demonstrates again that wliseoties and biases in the radar
observations lead to biases in the extrapolatioactst. Also in this case the bias over the
city of Ghent is small but in the range from -0k G dB (light underestimation, rainfall
growth). A similar radar bias is visible in Fig. #at this time located at a range of 240 km
North of the Wideumont radar when entering the ar@eered by the Jabbeke radar. This
forecast bias is mainly explained by the negatadébration bias of the Jabbeke radar, which
is known to slightly underestimate the rainfallesatwith respect to the Wideumont radar.
Strong underestimation occurs over the Ardennestaltiee systematic initiation and growth
of convection that cannot be predicted by STEPS§. (#¢). Fortunately the city of Leuven is
located in a region with small biases in the rafrgen -0.5 to +0.5 dB. Figure 4d is quite
interesting since strong underestimations are éutcat front of the rain band (from Charleroi

to Leuven and beyond) and overestimations at theakthe rain band (West of the Jabbeke
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radar). The underestimations are due to systemati€all initiation in front of the rain band,

while the overestimations are probably caused tpyoaslow extrapolation of rainfall, which

tends to drag at the rear of the rain band. Theldarads of underestimations South of Leuven
are caused by two different thunderstorms. The éire passed over the city of Leuven and
had a stronger westerly component with respedtdégptevailing southerly flow. The second
thunderstorm was weaker and had a stronger eastamyonent. When isolated convection
does not follow the prevailing movement of the falinfield, strong biases can appear in the

nowcast during the first lead times.

Figure 5 shows the spatial distribution of the RMIBE the stratiform event on 3 January
2014 in Ghent and the convective event on 20 Jolyi2n Leuven. If compared with Figs. 2d
and 3d it is clear that the RMSE is strongly cated with the regions having the highest
mean rainfall accumulations (proportional effed@tf)us, it is not surprising that the RMSE of
the convective case (Fig. 5b) displays values alingel0 mm ht over the city of Leuven.

The winter case only shows RMSE values below 2 mihoker the city of Ghent.

Figure 6 illustrates an example of categorical fisaiion of the 30-60 min ensemble mean
forecast for the Leuven case on 19-20 July 201ativel to the rainfall threshold of 0.5 mm
hr'. The probability of detection is high everywhemmef@n of 0.75) except in the
neighborhood of Antwerp and South of Leuven, wheeeinitiation of thunderstorms could

not be predicted by STEPS (Fig. 6a). The falsaralatio is quite low (mean of 0.36) and the
regions with high values are mainly located at tear of the front where the rainfall is
advected too slowly compared with the actual moveroéthe front (Fig. 6b). A high Gilbert

skill score generally coincides with the regionghwthe highest rainfall accumulations and
becomes lower at the edges of the rain areas @ay. This finding can be explained
conceptually if one thinks about the verificatidntloe future path of a single convective cell.
The regions with the highest uncertainty are latasdong the edges of the predicted
thunderstorm path and the highest skill is obtaingtie center of the predicted path.

4.3 Probabilistic verification

Figure 7 shows the reliability diagrams relativethie probabilistic forecast of exceeding the
0.5 and 5.0 mm Hrrainfall thresholds for the Ghent case on 03 JanR@14 (Figs. 7a and
7b) and the Leuven case on 19-20 July 2014 (Figsaand 7d). The reference probabilistic

forecast is taken as the climatological frequerfogxaeeding a given rainfall threshold during
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that precipitation event (horizontal dashed lindexpectedly, the forecasts of the stratiform
case in Ghent are less reliable than the oneseatdhvective case in Leuven for both rainfall
thresholds. Probabilistic forecasts of exceedifigrdm hi' for the Ghent case have a good
reliability and positive Brier skill score (BSS) wp 60 min lead time (Fig. 7a). The higher
rainfall threshold of 5.0 mm Hris harder to predict and there is skill only uB®min lead
time (Fig. 7b). The convective case in Leuven isrenpredictable and the probabilistic
forecast of exceeding 0.5 mm™hexhibits skill up to 90 min lead time (Fig. 7c}. ié
interesting to note that forecast probabilitiest thee close to the climatological frequency
(intersection of lines around the probability 0.DBjen fall outside of the skillful region. In
fact, a small systematic forecast bias is likelypéoworse than the event climatology at those
frequencies. The rainfall threshold of 5.0 mrit Bhows again a limit of predictability of 30
min (Fig. 7d). Despite having a negative BSS, thiWing lead times (Fig. 7d) have higher

resolution than the stratiform case in Ghent (Flp.

Figure 8 illustrates the ROC curves relative tophababilistic forecast of exceeding 0.1 mm
hr' for the Ghent case on 03 January 2014 (Figs. &jtenLeuven case on 19-20 July 2014
(Figs. 8b). All the ROC curves are very far frone thiagonal line of no skill. The probability
level that is marked with a cross is the one whi@ximizes the difference between the hit
rate HR and the false alarm rate (not to be confused with the false alarm ratio clhis
conditioned on the forecasts). This point is lodatéthin the probabilities 0.1 and 0.2, which
means that an optimal forecast of the probabilityam is achieved when only 10-20% of the
ensemble members exceed the 0.1 mfh threshold. A forecaster who is not scared of
making false alarms would choose a lower probgtdiiel to increase the number of hits. On
the contrary, an unconfident forecaster who woikd to minimize the false alarms would
choose a higher probability level, which has howekie consequence of reducing the number
of hits. As expected, the area under the ROC cu{®&sC) decreases for increasing lead
times. The discrimination skill for the convectigeent in Leuven is slightly higher than the
one of the stratiform event in Ghent, which con8frthe findings on the reliability diagrams
(Fig. 7). This does not mean that small scale featare easier to forecast than larger scales
features, which is known to be false (see Forestl &eed, 2014). It means that the
predictability of well defined and organized contwee systems is higher than the one of more
moderate convection with shorter lifetime, at Idasthe cases analyzed in this paper.
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4.4 Ensemble verification

Figure 9 compares the error of the ensemble me®SE and the ensemble spread for the
Ghent case on 03 January 2014 and the Leuven nak@20 July 2014 (see interpretation of
ensemble spread in Appendix A). In both cases M&R increases up to a lead time of 50-
60 min and then starts a slow decrease, which eacobnter-intuitive. However, it must be
reminded that the ensemble mean forecast beconmstisen for increasing lead times, which
reduces the double penalty error due to forecastittginderstorm at the wrong location. The
ensemble spread also increases up to 50-60 mirtiteacand then slowly stabilizes. For both
the Ghent and Leuven cases the ensemble spreagdasthan the error of the ensemble mean
at all lead times, which suggests that the ensefobdeasts are under-dispersive. The degree
of under-dispersion is highest at a lead time ofiB, with the spread values being equal to
60% of the forecast error for the winter event ine@t (Fig. 9a) and 70% for the summer
event in Leuven (Fig. 9b). Except for the 5 mindl¢iane, the ensemble spread represents 75-
90% of the forecast error for the Ghent case (F&).and 75-80% for the Leuven case (Fig.
9b), which is a good result. It is not yet cleanywthe RMSE at a lead time of 5 min is higher

than the one at 10 min for the winter case in Gieigt 9a).

The under-estimation of the ensemble dispersidheatirst lead time can be attributed to both
the under-estimation of the ensemble spread andwbeestimation of the ensemble mean
RMSE, but with different degrees according to tifeecent causes. High RMSEs at the start
of the nowcast can be due to using a very smodtctivg field for the advection (see Section
3.2), which does not exploit sufficiently the vesihiort term predictability of small scale
precipitation features, but is optimized for preédiocs at longer lead times. Another
explanation for this underestimation of ensembbpelision could be due to the space-time
variability of the Z-R relationship. Spatial andrjgoral changes in the drop size distribution
(DSD) can lead to changes in the estimated raiméa# that is used for the verification.
Therefore, there could be a mismatch between tixed'f DSD of the forecasts and the
variable DSD underlying the verifying observatiodsother possible source of mismatch
could be due to the advection correction with @itiftow when computing the rainfall
accumulations. The forecast accumulations are ctedpoy advecting forward the previous
rainfall field. On the other hand, the observeduamglations are computed by reversing the
optical flow vectors and advecting the rainfallldidbackwards (see Section 4.1). This choice

increases the differences when comparing the +0R5fonecast accumulations (advection of
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the 0 min image forward) with the +0-5 min obseraadumulations a posteriori (advection
of the +5 min image backwards). The ideal approachld be to derive the accumulation by
advecting both the previous image forward and @& image backwards. An optimal
accumulation could be computed by a weighted aeer@gthe two advected images by
discretizing the 5 min interval. However, such a@goh is not very pragmatic and would
require additional computational time in order totaon a marginal improvement on the

forecasts.

Figure 10 illustrates the rank histograms for tleuten case on 19-20 July 2014 for lead
times of 5 and 60 min. The U-shape of the rankolgistms demonstrates again a certain
degree of ensemble under-dispersion. In particalathe ensemble members for the 5 min
lead time are inferior to the observations in ~1@0he cases (Fig. 10a), while for the 60 min
lead time it happens in more than ~30% of the cédB&s 10b). On the other hand, the
fraction of observations falling below the valuetbé lowest ensemble member is only 8%
for both lead times. Despite the fact that STEP®8dsigned to reproduce the space-time
variability of rainfall, it underestimates a cerntdraction of the observed rainfall extremes.
This underestimation grows with increasing leadetiamd depicts an increasing smoothness
of the STEPS ensembles, which is probably duedativection of the radar rainfall cascade
(see Sect. 3, step 6). In fact, the small scalefathifeatures represented by the bottom
cascade levels suffer more from numerical diffusturing the Lagrangian extrapolation,

which is observed as a gradual loss of variahifitihe forecast ensembles.

4.5 Verification summary of the events

Table 2 provides a comparison of the verificatioarss for each event. The average standard
deviation of the multiplicative biases of the 30nnead time forecast is in the range 0.3-0.8.
Except for the event on 19-20 July 2014 the biasewin well below 1 dB for all lead times,
which is a positive result. Of course, these areraye values and locally they can even
exceed 3 dB (see Fig. 4).

On the other hand, the RMSE values mark more thiindtion between the two winter cases
in Ghent and the two summer cases in Leuven. Ferwimter cases the RMSE values
increase from 0.38-0.95 at a lead time of 30 mirDf68-1.48 at 120 min, while for the

summer cases from 1.84-2.45 to 2.52-3.38 mth Tihus, the RMSE of a 30 min lead time
nowcast of the two convective cases is higher thanRMSE of a 120 min nowcast of the
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two stratiform cases, as might be expected. htisrésting to mention that linear verification
scores such as the RMSE strongly depend on thangariof the data. Consequently, it would
be difficult to compare the error of the STEPS emde mean nowcast with the one of a
deterministic nowcast, for example computed by INBR. In fact, the ensemble averaging
process filters out the unpredictable precipitafestures and is rewarded in terms of RMSE.
Similar results were already observed in Forestalet(2015), who also pointed out the
difficulty of comparing ensemble prediction systeh@sing a different number of ensemble

members.

The probability of detection relative to the 0.5 nhrit threshold decreases from 78-86% to
33-58%, while the false alarm ratio increases fad¥l 7% to 46-65%. The Gilbert skill score
starts with values of 0.58-0.64 and 0.29-0.40 at3f and 60 min lead times respectively and
decays to values of 0.08-0.20 at 120 min. Wand,. ¢2@09) reported a Critical success index
value of 0.45 for STEPS nowcasts of 0-60 accumratielative to the 1 mm frthreshold.
Considering that the GSS is the CSI corrected bgom chance, this value is comparable
with the ones of the 30-60 min accumulations olet@im this paper. The GSS values relative
to the threshold of 5.0 mm fhare much lower. They oscillate between 0.15 add €or the
first lead time and become very low and close tafterwards. Thus, the predictability of

rainfall structures exceeding 5.0 mm*marely exceeds 30 min according to the GSS.

The area under the ROC curve values characteribmgotential discrimination power of the
probabilistic forecast of exceeding 0.5 mni* Istart at 0.92-0.95 at 30 min lead time and
decrease to 0.69-0.79 at 120 min. For the prolssibiiorecast of exceeding 5.0 mm'hhey
start at 0.88-0.90 and decrease to 0.62 for theemtive cases and to 0.50 for the stratiform

cases (no discrimination).

From all these results we can conclude that trereot much predictability beyond 2 hours
lead time by extrapolating the 4 C-band composiigar image in Belgium. Therefore, a
maximum lead time of 2 hours in STEPS-BE is a gobdice. Extending this lead time
requires blending the radar-extrapolation nowcast the output of NWP models to increase

the predictability of precipitation.
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5 Conclusions

The Short-Term Ensemble Prediction System (STER®) probabilistic nowcasting system
based on the extrapolation of radar images develoge the Australian Bureau of
Meteorology in collaboration with the UK MetOffic&he principle behind STEPS is to
produce an ensemble forecast by perturbing a detetio extrapolation nowcast with
stochastic noise. The perturbations are designedepooduce the spatial and temporal
correlations of the forecast errors and the scefgeddence of the predictability of

precipitation.

This paper presented the local implementation, tadiap and verification of STEPS at the
Royal Meteorological Institute of Belgium, referredas STEPS-BE. STEPS-BE produces in
real-time 20 member ensemble nowcasts at 1 km amihSresolutions up to 2 hours lead
time using the 4 C-band radar composite of Belgiuumpared with the original
implementation, STEPS-BE includes a kernel-basé&ztpolation of optical flow vectors to
obtain smoother velocity fields and an improventengenerate stochastic noise only within
the advected radar composite to respect the waliditnain of the nowcasts.

The performance of STEPS-BE was verified using#igar observations as reference on four
case studies that caused sewer system floods initiee of Ghent and Leuven during the
years 2013 and 2014. The ensemble mean forectts okxt four 30 min accumulations was
verified using the multiplicative bias, the RMSE sl as some categorical scores derived
from the contingency table: the probability of dwien, false alarm ratio and Gilbert skill
score (Equitable skill score). The spatial disttidno of multiplicative biases revealed regions
of systematic over- and under-estimation by STEFBe underestimations are often
associated with the locations of convective iniatand thunderstorm growth, which cannot
be predicted by STEPS. On the other hand, the megib overestimation are mostly due to
the underestimation of rainfall by the verifyingselvations rather than systematic rainfall
decay (see Foresti and Seed, 2015, for a mordetetiiscussion). In order to disentangle the
forecast and observation biases, detailed knowlatiget the spatial distribution of the radar
measurement errors for a given weather situatioeésled. The multiplicative biases over the
cities of Leuven and Ghent are very low (from -85to + 0.5 dB), which is a good starting
point to integrate STEPS nowcasts as inputs inteesesystem hydraulic models. The
categorical forecast verification helped discowgrithe places with low probability of

detection due to convective initiation at the frohthe rain band and high false alarm ratio at
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the rear of the rain band, likely due to a too stamfall extrapolation by STEPS. Reliability
diagrams demonstrated that probabilistic forecasexceeding 0.5 mm frhave skill up to
60-90 min lead time. On the contrary, convectivatiees exceeding 5.0 mm™hare only
predictable up to 30 min. In terms of reliabilityda discrimination ability, it was also
observed that the forecasts of convective events here skill than the ones on stratiform
events. The STEPS ensembles are characterizeddiyain degree of under-estimation of the

forecast uncertainty, with values of the ensemptead close to 75-90% of the forecast error.

The current contribution focused on the verificatmf STEPS-BE nowcasts using only four
precipitation cases of different character. Theeneinistic and categorical verification
require many more cases to analyze the climatagiistribution of the forecast errors, e.g.
as done in Foresti and Seed (2015). On the othed, hthe probabilistic and ensemble

verification pool the data in both space and timé eonverges much faster to stable statistics.

From a research perspective, STEPS-BE could alsextended by including a stochastic
model to account for the residual radar measureragwots, in particular to obtain more
accurate estimations of the forecast uncertaintyhatt range. The STEPS framework also
allows blending the extrapolation nowcast with th&put of NWP models, which is a

necessary step to increase the predictability @fipitation for lead times beyond 2 hours.
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Appendix A: Forecast verification scores

Forecast verification is an important aspect obeedasting system. A forecast without an

estimation of its accuracy is not very informatiV@r an in-depth description of forecast

verification science and corresponding scores \ar te Jolliffe and Stephenson (2011) and

the verification website maintained at the Bure&ivieteorology http://www.cawcr.gov.au/

projects/verification.

The STEP&nsemble mean forecast was verified using the following scores:

Multiplicative bias:

. 1y F+b
bias=— » 10log,,| —— |, 1
NZl gm(qmj (@)

whereF; is the forecast rainfall at a given grid poi@x,is the observed rainfall at a
given grid point,b=2 mm hi* is an offset to eliminate the division by zero and
reduce the contribution of the forecast errorsoat fainfall intensities, andll is the
number of samples. For the specific case of thdicaion of the spatial distribution
of forecast biases, the summation is performed tinex. ThusN corresponds to the
number of forecasts where either the forecast @othserved rainfall are greater than
0.1 mm ht* at a given grid point (denoted as weak conditiaaification). The bias
is given in decibels [dB] in order to obtain a magmmetric distribution of the
multiplicative errors centered at 0, which is nosgible with the simple power ratio
F/O. The following table summarizes the corresponderetgveen the decibel scale
and the power ratio:

dB -6 -3 -1 -0.5| 0 +0.5| +1 +3 +6

Power ratio (F/O)0.251| 0.501| 0.794] 0.891| 1| 1.122| 1.259| 1.995| 3 .981

For example, a bias of +3 dB occurs when the fate@@nfallF is twice as much as

the observed rainfal.

N
Root mean square err(tRMSE= \/%Z(F, -0 V). 2)

i=1

Contingency table of a dichotomous (yes/no) forecas
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Observed
Yes No Total
% Yes hits false alarms |forecast yes
(&)
LBL No misses  |correct negativg forecast no
Totall observed yes| observed no total

where thehitsis the number of times that both the observatimhthe forecast exceed

a given rainfall threshold (at a given grid poirtt)e false alarms is the number of

times that the forecast exceeds the thresholdheublbservation does not, thnesses is

the number of times that the forecast does notezktlee threshold but the observation

does and theorrect negatives is the number of times that both the observatimhthe

forecast do not exceed the threshold.

Different scores can be derived from the contingeable to characterize a particular

feature or skill of the forecasting system:

o

o

hits _ hits

Probability of detection (hit rate POD=— - = ,
hits+ misses observed yes

®3)

The POD characterizes the fraction of observed events Weae correctly

forecast and is also known as hit rat].
False alarm ratio:

_ falsealarms =falsealarms
hits+ falsealarms forecast yes'

(4)

The FAR characterizes the fraction of forecast events thate wrongly
forecast.

falsealarms _ falsealarms

False alarm rateF = — = .
falsealarms+ correct negatives  observed no

(5)

The false alarm ratg is conditioned on the observations, while thedakrm
ratio FAR on the forecasts.
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o Gilbert skill score (Equitable threat score):

_ hits — hits, o
hits+ misses + falsealarms - hits,_,

(6)

where _ (hits+ misses)(hits + falsealarms) _ (observed yes)( forecast yes) (7)
NS arom = total B total

is the number of hits obtained by random chancegclwis calculated by

multiplying the marginal sums of the observed aockdast events (such as
computing the theoretical frequencies for the Qhissed test). The GSS
characterizes the detection skill of the forecastipstem w.r.t. random chance.
In practice it corresponds to the Critical succesex (CSI) adjusted for the

hits obtained by random chance.

The accuracy of probabilistic forecasts can befieeriin various ways. In this paper we
employ the reliability diagram and the Receiver @piag Characteristic curve (ROC). The
reliability diagram compares the forecast probabivith the observed frequency. Reliability
characterizes the agreement between the forecalsalglity and observed frequency. For a
reliable forecasting system the two values sho@dhe same, which happens for example
when we observe rain 80% of the time when it iedast with 80% probability (in average,
diagonal line of Fig. 8). Unreliable forecasts dxhidepartures from this optimum (bias).
Resolution characterizes the ability of the forézde categorize the observed frequencies
into distinct classes. The complete lack of resotubccurs when the forecast probabilities
are completely unable to distinguish the observeguencies, which generally corresponds to
the climatological frequency of exceeding a giveecppitation threshold (horizontal dashed
line in Fig. 8). The Brier skill score (BSS) chaexizes the relative accuracy of the
probabilistic forecast compared to a referenceesystsee Jolliffe and Stephenson, 2011).
Although the climatology or sample climatology bétevent is often used as a reference, the
BSS can also be computed against other referencafsts, e.g. another probability
forecasting method or even a deterministic forémgsimethod treated as a probabilistic
binary forecast. However, in such cases it is msisfple to draw a unique horizontal line of
no skill in Figure 8. The region where the probisbi forecast has a positive BSS, i.e. it is
better than the climatological frequency, is grageatl In fact, the points located below the no
skill line are closer to the climatological freqegrand produce a negative BSS. Reliability
diagrams usually contain the histogram of the faseprobabilities to analyze the sharpness

of the forecasts (small inset in Fig. 8). Sharpnebkaracterizes the ability to forecast
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probabilities that are different from the refererfoeecast. Sharp forecasting systems are

“confident” about their predictions and give manglgabilities around one and zero.

The ROC curve is used to analyze the discriminapower of a probabilistic forecast of

exceeding a given rainfall threshold. It is consted by plotting the hit rates and false alarm
rates evaluated at increasing probability threshtddmnake the binary decision whether it will
rain or not. The ROC curve of a random probabdistirecast system lies on the diagonal
where the hit rate equals the false alarm rateskily: the forecast probabilities do not have
discrimination power. When the false alarm ratdnigher than the hit rate the forecast is
worse than that obtained by random chance (belevditigonal). A skilled forecasting system
iIs observed when the hit rates are higher thanfétee alarm rates, which draws a
characteristic curve. The area under the ROC oi\J) measures the discrimination power
of the probabilistic forecasts, with a maximum walof 1 (100% of hits and 0% of false

alarms) and a minimum value of 0.5 for a randonedasting system. Values below 0.5
denote a forecasting system that performs worse dm@dom chance. The AUC is computed
by integrating over all the trapezoids that cardlbswvn below the ROC curve. The AUC is

not sensitive to the forecast bias and the religbdf the forecast could be still improved

through calibration. For this reason the AUC isyanmeasure of potential skill.

The ensemble forecasts are verified to detect vehneliere is over- or under-dispersion. It is
common practice to compare the “skill” (error) dietensemble mean with the ensemble
spread (Whitaker and Loughe, 1998; Foresti eRall5):

spread :%i\/ﬁi(ﬁm—ﬁy 9)

i=1 m=1
whereM is the number of ensemble members (ensemble dizg} the forecast of a given

ensemble member arﬁ is the ensemble mean forecast (at a given gridtpd@ince we are

not analyzing the spatial or temporal distributadrihe ensemble spread,corresponds to the
total number of samples in space and time, whichesnumber of forecasts within a rainfall
event multiplied by the number of grid points witha radar field. The weak conditional
verification is also applied to the computation thfe spread. The ensemble spread
characterizes the variability of the ensemble memladout the ensemble mean (standard
deviation). For a good ensemble prediction systim,ensemble spread should be equal to

the average variability of the observations abdat énsemble mean, as measured by the
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RMSE of the ensemble mean (Eq. (2)). If the spredarger than the RMSE, the ensemble is
overestimating the forecast uncertainty (over-disip@), otherwise it is underestimating it
(under-dispersion). It is interesting to mentionattthe ensemble mean RMSE and ensemble
spread could also be computed starting from tharltign of rainfall rates to account for the

skewed distribution of precipitation (not usedhistpaper).

Another way to analyze the spread of ensemble &steds based on rank histograms (also
known as Talagrand diagram). First, the preciptatvalues of the ensemble members are
ranked in increasing order. Then, the rank of theeovation is evaluated by checking in
which of theM+1 bins it falls. By repeating the operation for agka number of cases and
forecasts it is possible to construct a histogrargood ensemble prediction system displays a
flat histogram, i.e. the observations are indistisgable from the forecasts and each
ensemble member is an equi-probable realizatigheofuture state of the atmosphere. A bell-
shaped histogram with a peak in the middle is alegbm case of ensemble over-dispersion.
On the contrary, a U-shape histogram with peakBeaedges is observed in case of ensemble
under-dispersion, which is more common (in paréicdibr NWP ensembles). In this case the
values of the observations often fall below or abthe lowest or highest value of the ranked

ensemble, which is not dispersive enough to caph&extremes.
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Table 1. List of precipitation events that causeder system floods in Ghent and Leuven.

1
City Date Event start [UTC]Event end [UTC] Duration PredominantMain wind direction
precipitation
Ghent| 10 Nov. 2013 13:50 22:00 8h 10min  Stratiform WNW > NNW
Ghent| 3Jan. 2014 03:00 14:00 11h Stratiform SW-> WSW
Leuven| 9-10 June 2014  06:30, ¢’ 15:30, 18" 33h  Convective Sw
Leuven| 19-20 July 2014  22:00, 14 06:30, 2§ 8h 30min Convective SSW




1 Table 2. Summary of the forecast verification ssapé the next four 30 min accumulation
2 forecasts for the precipitation events in Ghent e@aven. The lead time shown is the end of
3 the 30 min accumulation period (e.g. 60 min istredato the 30-60 min accumulation). The
4  bias values correspond to the standard deviatioth@fmultiplicative bias, which is more
5 interesting than its mean (often close to 0).
Event Bias 30min Bias 60min  Bias 90min  Bias 120mjiRMSE 30min RMSE 60min RMSE 90min RMSE 120min
[dB] [mm hr?]
10.11.2018 0.30 0.49 0.61 0.70 0.38 0.59 0.71 0.78
03.01.2014 0.54 0.74 0.82 0.89 0.95 1.39 1.53 1.48
9-10.06.2014 0.52 0.63 0.66 0.69 2.45 3.26 3.40 3.38
19-20.07.201¢4 0.84 1.18 1.30 1.35 1.84 2.36 2.49 2.52
POD30mir POD 60min  POD 90min POD 120minFAR 30min ~ FAR 60min  FAR 90min  FAR 120min
Event Forecast >= 0.5 mm Hir Forecast >= 0.5 mm fir
10.11.2018 0.83 0.71 0.62 0.54 0.17 0.30 0.38 0.46
03.01.2014 0.80 0.63 0.49 0.33 0.10 0.25 0.45 0.65
9-10.06.2014 0.78 0.65 0.55 0.46 0.15 0.32 0.44 0.54
19-20.07.2014 0.86 0.75 0.66 0.58 0.17 0.36 0.50 0.61
GSS 30min GSS 60min  GSS 90min  GSS 120mirGSS 30min ~ GSS 60min  GSS 90min  GSS 120min
Event Forecast >= 0.5 mm fir Forecast >= 5.0 mm fir
10.11.2018 0.58 0.38 0.27 0.20 0.15 0.02 0.0 0.0
03.01.2014 0.64 0.40 0.20 0.08 0.28 0.06 0.0 0.0
9-10.06.2014 0.59 0.38 0.26 0.17 0.44 0.20 0.09 0.04
19-20.07.201¢4 0.58 0.29 0.14 0.07 0.27 0.09 0.04 0.02
AUC 30mir AUC 60min AUC 90min AUC 120miy AUC 30min  AUC 60min  AUC 90min  AUC 120min
Event Forecast >= 0.5 mm Hir Forecast >= 5.0 mm fir
10.11.2018 0.95 0.89 0.84 0.79 0.88 0.67 0.56 0.50
03.01.2014 0.92 0.85 0.78 0.69 0.90 0.72 0.57 0.50
9-10.06.2014 0.93 0.86 0.81 0.76 0.89 0.77 0.68 0.62
19-20.07.201¢4 0.94 0.87 0.82 0.77 0.88 0.75 0.68 0.62
6
7
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Uccle-Ukkel (synop station + webcam) MEAN=2.80 mmy/h [11:40-11:45 UTC]

STEPS-B E Mon Mar 2 10:50:00 2015 + 55 min
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Spatial resolution: L km®

Figure 1Web platform of STEPS-BE showing the ensemble nieatast.
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Figure 2. Average forecast and observed rainfalialations for the Ghent cases.

a) Forecast and b) observed 0-30 min rainfall acdations on 10 November 2013.

c) Forecast and d) observed 0-30 min rainfall aedations on 03 January 2014.
The mean and standard deviation of the field withen120 km range of the radars are shown
on the bottom left corner. Field values are showly d there are at least 10 samples for the
computation of the mean. The red triangles derwéddcation of the Wideumont (WID,
coordinates: 438 km East / -405 km North), ZaventgAV, 363/-296), Jabbeke (JAB, 266/-
263) and Avesnois (AVE, 317/-382) radars. The 120r&nge from the radar is displayed as
a dashed circle. The mountain range of the Ardenaesrs the three most southern districts

of Belgium and Luxembourg (LUX).
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Figure 3. Average observed and forecast rainfailianulations for the Leuven cases.
a) Forecast and b) observed 0-30 min rainfall aedations on 9-10 June 2014.
c) Forecast and d) observed 0-30 min rainfall aedations on 19-20 July 2014.
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Figure 4 Average 0-30 min multiplicative forecast biases for
the Ghent cases on a) 10 November 2013 and on dgrigary 2014 and
the Leuven cases on ¢) 9-10 June 2014 and on @) Dedy 2014.

The interpretation of under- and over-estimationSHEPS as systematic rainfall growth and

|
a
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underestimation (growth) dB overestimation (decay)
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decay or simply as radar measurement biases is@ubjinterpretation as explained in text.
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2 Figure 5. Average 0-30 min forecast RMSE for a)@ment winter case on 03 January 2014
3 and b) the Leuven summer case on 19-20 July 2014.

40



Period start: 2014-07-19 22:00 UTC Period start: 2014-07-19 22:00 UTC

Period end:  2014-07-20 06:30 UTC Period end:  2014-07-20 06:30 UTC
Probability of detection, R >= 0.5 mm/hr False alarm ratio, R >= 0.5 mm/hr
. . Ve

10 10
0.9 0.9
0.8 0.8
0.7 0.7

E - 06 E- 05

= =

2 0.5 2 0.5

Z Z

E E 04

2 0.4 s ;
0.3 0.3
0.2 0.2
0.1 0.1
0.0 0.0

200 00 400 200 0 400
mean: 0.75 Easting [km] lead time: +30-60 min mean: 0.36 Easting [km] lead time: +30-60 min
a) st.dev: 023 b) st.dev; 025

Period start: 2014-07-19 22:00 UTC
Period end:  2014-07-20 06:30 UTC

Northing [km]

200 0 400
mean: 0.29 Easting [km] lead time: +30-60 min
C) st.dev: 025
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resolution for a) the Ghent case on 03 January 204
b) the Leuven case on 19-20 July 2014.
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a) 5 minutes and b) 60 minutes.
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