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Referee comment

Referee #1:

The authors have improved the manuscript, yet many major comments of the different reviewers were
not correctly addressed/implemented. Overall the revision seems rushed.
I still believe that some of the derivation should be further explained and justified, in particular the 
assumption in eq. 6 dE/dEp=0, which we know is incorrect (Complementary relationship). Also the 
steady state assumption used on monthly time scales (even whil including storage) deserves a 
discussion. There are some implied time scale assumptions there (stepwise varying storage on 
monthly time scales or annual time scales whereas in reality E, P and runoff constrain the water 
balance and thus "y0".

We thank the reviewer for his general and specific comments. It is our assessment that most of the 
criticism of the reviewer stems from a misunderstanding of the equations (especially eq. 6) provided in
section 2.1 of the manuscript. In the revised version we now include a more detailed explanation of the
underlying assumptions.
It is important to note that dE/dEp=0 (as the reviewer writes it) is not eq. 6. In the manuscript eq. 6 is 
instead given as: 

There is a fundamental difference between the equation provided by the reviewer (which is obviously 
wrong) and equation 6. The additional vertical bar defines that conditional on y=0, the gradient dE/dEP
=0. This means in all cases when y≠0 the gradient dE/dEp is not (necessarily) zero and the gradient 
dE/dEp is only necessarily zero if y=0. Since y = (P-E)/Ep (eq. 4b in the manuscript) it follows that y=0 
only if P=E. Under steady-state conditions where no additional water from storage changes is 
available, it is not possible that E increases further, even though Ep might increase. This is exactly 
what is expressed by eq. 6.This boundary conditions thus simply constitutes the supply limit of the 
Budyko framework (see Fig. 1). Similarly constitutes eq. 5 the demand limit. This is further identical to 
the well-established approach of Fu (1981) and Zhang et al. (2004).  
These boundary conditions thus ensure steady-state conditions within the set of differential equations 
provided in section 2.1. Since we modify the boundary condition (eq. 7) we resolve steady-state 
conditions and we are thus in fact not assuming steady-state on monthly time scales. The additional 
parameter y0 represents the non-steady-state part of the water balance, thus modifying the original 
set of differential equations provided by Fu and Zhang.
We revised the respective part accordingly to make this clearer.

Specific comments:

l10: change beside precipitation: it is always precipitation that generates the storage, it is a matter of 
time scale considered. Maybe something like beside monthly precipitation (but this is specific to the 
monthly analysis)



 We now write instantaneous precipitation and include a short explanation in the main text.

l11: upward rotation is unclear

Thanks. We removed the word “upward”.

l13: in which monthly or annual E exceeds monthly or annual P

We changed the wording accordingly.

l19: sth is missing here: Before and after Budyko.

We changed the wording accordingly.

l21: replace surprisingly

We removed the word “surprisingly”.

l35: could be made, replace with has been made. L34 to 37 seem out of place

We changed the wording to improve this part.

l43: replace numerically reproduced by maybe best fitted (not the same expression)

We now say “best represented”

l46: steady-state conditions is confusing because then there is a dS/dt equation. What about dividing 
into two sentences?

We rephrased this part accordingly.

l52: change beside precipitation (see above)

See above.

in equation 2 you should include groundwater flow in and out (not storage of GW) and say that you 
neglect it or take large watersheds so that the contribution is small (perimeter vs area contribution) 
(this was in my previous review)

Thanks. We now included an additional sentence stating that we neglect groundwater flow.

l69: how do you define EP, there are multiple definitions (see Lhomme 2000) (this was in my previous 
review)

We now include a sentence on how we define potential evapotranspiration.

You need to justify your steady state assumption (especially on monthly time scales), this is clearly not
obvious.

See above.

l78: Ep being a natural constraint: replace constraint by upper bound on



Changed.

After eq 5 add i.e. in very humid environments

This is exactly what equation 5 already shows.

After eq 6 add i.e. in very dry environments
Eq 6 is wrong (see previous review), we know that based on the complementary relationship, the 
slope is only zero in very wet conditions, not dry ones. Please justify more.

This is exactly what equation 6 already shows.

l101: be more explicit: say that this is storage that you are capturing with y0

We changed it accordingly.

 l107: corresponding to the original Budyko function: not exactly: best fit

Changed.

l110->114: maybe you should mention how you can have both storage dependence and steady state 
assumption.

In case y0 = 0, we assume that E never exceeds P (no additional water, no storage change), 
which fulfills the steady-state assumptions of the original Budyko framework.

eq 10 is wrong (mentioned in my previoius review) take two parabolic curves shifted and this is 
obvious. Instead: - (P-E)_min <= -P_min + E_max

We changed it. Thanks!

l169: play an important role in E and runoff

Changed.

l170-171: change besides P

See above.

l204: reframe other water sources than P: be more explicit: this is storage that you are looking at

We changed the text accordingly.

l 175 for the Ep estimate say what assumptions are made on rs, ra and albedo

We added some information on this in the text. However, we used the Ep dataset only to 
illustrate the general performance of the modified framework. Due to this it is our assessment 
that an in-depth explanation of the underlying assumptions is not necessary. We further 
reference several studies that provide more detailed information on the dataset

l180: multi-year mean: replace by climatological

Changed.



l189-191: The lower correlations are also due to phenology which is not included in your method and 
should be discussed (at least one sentence)

We added this point. Thanks! However, we do not include an extensive discussion on this 
topic, since this is clearly beyond the scope of this study
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Abstract.

A comprehensive assessment of the partitioning of precipitation (P ) into evapotranspiration (E)

and runoff (Q) is of major importance for a wide range of socio-economic sectors. For climatolog-

ical averages, the Budyko framework provides a simple first order relationship to estimate water

availability represented by the ratio E/P as a function of the aridity index (Ep/P , with Ep denot-5

ing potential evaporation). However, a major downside of the Budyko framework is its limitation

to steady state conditions, being a result of assuming negligible storage change in the land water

balance. Processes leading to changes in the terrestrial water storage at any spatial and/or temporal

scale are hence not represented. Here we propose an analytically derived modification of the Budyko

framework including a new parameter explicitly representing additional water available to evapotran-10

spiration besides
:::::::::::
instantaneousprecipitation. The modified framework is comprehensively analyzed,

showing that the additional parameter leads to an upward
:
a
:
rotation of the original water supply limit.

We further evaluate the new formulation in an example application at mean seasonal time scales,

showing that the extended framework is able to represent conditions in which evapotranspiration

exceeds
::::::
monthly

:::
to

:::::
annual

::::::::::::::::
evapotranspiration

::::::
exceeds

::::::::
monthly

::
to

:::::
annual

:
precipitation.15

1 Introduction

The Budyko framework serves as a tool to predict mean annual water availability as a function of

aridity. It is widely-used and well-established within the hydrological community, both due to its

simplicity and long history, combining experience from over a century of hydrological research.

Before and after Budyko (1956, 1974) derived a formulation of the function based on findings of20

Schreiber (1904) and Ol’Dekop (1911),
:::
but

:::
also

:
several other formulations have been postulated,
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whichhowever are numerically surprisingly ,
::::::::
however,

:::
are

::::::::::
numerically

::::
very similar (Schreiber, 1904;

Ol’Dekop, 1911; Turc, 1955; Mezentsev, 1955; Pike, 1964; Fu, 1981; Choudhury, 1999; Zhang et al.,

2001, 2004; Porporato et al., 2004; Yang et al., 2008; Donohue et al., 2012; Wang and Tang, 2014;

Zhou et al., 2015b). Many of these formulations are empirically derived and only few are analyt-25

ically determined from simple phenomenological assumptions (Fu, 1981; Milly, 1994; Porporato

et al., 2004; Zhang et al., 2004; Yang et al., 2007; Zhou et al., 2015b). Numerous studies further

assess controls determining the observed systematic scatter within the Budyko space. A variety of

catchment and climate characteristics, such as e.g. vegetation (Zhang et al., 2001; Donohue et al.,

2007; Williams et al., 2012; Li et al., 2013; Zhou et al., 2015a), seasonality characteristics (Milly,30

1994; Potter et al., 2005; Gentine et al., 2012; Chen et al., 2013; Berghuijs et al., 2014), soil prop-

erties (Porporato et al., 2004; Shao et al., 2012; Donohue et al., 2012), and topographic controls

(Shao et al., 2012; Xu et al., 2013) have been proposed to exert a certain influence on the scatter

within the Budyko space. Also more complex approaches to combine various controls (Milly, 1994;

Gentine et al., 2012; Donohue et al., 2012; Xu et al., 2013) have been considered. Nonetheless,35

until present no conclusive statement on controls determining the scatter within the Budyko space

could be
:::
has

::::
been

:
made. In a recent assessment, Greve et al. (2015)

::::::
further suggested a probabilis-

tic Budyko framework by assuming that the combined influence of all possible controls
::
is

:::::::
actually

:::::::::::::
nondeterministic

::::
and follows a probability distribution

::::::
instead.

In this study we make use of the formulation introduced by Fu (1981) and Zhang et al. (2004).40

They derived a functional form between E/P and Φ = Ep/P at mean annual catchment scales

analytically from simple physical assumptions,

E

P
= 1 + Φ− (1 + (Φ)

ω
)

1
ω , (1)

where ω is a free model parameter. The original formulation introduced by Budyko (1956, 1974)

is numerically reproduced
:::
best

::::::::::
represented

:
by setting ω = 2.6 (Zhang et al., 2004). The obtained45

function is subject to two physical constraints constituting both the water demand and supply limits.

The water demand limit representsE being limited byEp, whereas the water supply limit determines

E to be limited by P (see Fig. 1). Regarding
::
To

::::::::
maintain the supply limit, steady-state conditions

::
are

::::::::
required.

:::::::::
Therefore,

:::
the

:::::::
storage

::::
term

:::::::
(dS/dt)

:
in the land water balance

:::::::
equation at catchment

scales50

dS

dt
= P −E−Q (2)

are required and the storage term (dS/dt) is consequently
:
is assumed to be zero, which is generally

a valid assumption at mean annual scales.
:
It

::
is

::::::
further

::::::::
important

::
to

::::
note

:::
that

:::::::::::
groundwater

::::
flow

::
is

:::
not

:::::::
included

::
in

::::::::
equation

:
2
::::
and

::::::::
neglected

::::::::::
throughout

:::
the

::::::::
following

::::::::
analysis. However, the assumption

2



of negligible storage changes constitutes a major limitation to the original Budyko framework. As a55

consequence, the framework is not valid under conditions in which additional water (besides
::::::
storage

::::
water

:::::::
besides

:::::::::::
instantaneous

:
P ) is available to E and E > P .

::
We

::::
note

::::
here

::::
that

::
by

::::::::::::
instantaneous

::
P

:::::
(from

::::
here

::
on

::::
just

::::::
referred

:::
to

::
as

:::
P )

:::
we

::::
mean

:::
all

::
P

::::::
within

:::
the

:::::::::
considered

::::
time

:::::::
interval.

::::::::::
Conditions

:::::
under

:::::
which

:::
the

:::::::::
framework

::
is

:::
not

:::::
valid Such conditionscan occur e.g. at sub-annual or inter-annual

time scales due to changes in terrestrial water storage terms such as soil moisture, groundwater60

or snow storage. Additional water might be also introduced by landscape changes (Jaramillo and

Destouni, 2014), human interventions (Milly et al., 2008) or phase changes of water within the

system or supplied through precipitation (Jaramillo and Destouni, 2014; Berghuijs et al., 2014). Also

long-term changes in soil moisture may happen, e.g. under transient climate change (Wang, 2005;

Orlowsky and Seneviratne, 2013). Only few assessments addressed this limitation and provided65

further insights on how the Budyko hypothesis could be extended to conditions under which E

exceeds P (Milly, 1993; Potter and Zhang, 2007; Zhang et al., 2008; Zarnado et al., 2012; Chen

et al., 2013). Nonetheless, so far a theoretical, rigorous incorporation of conditions in which E > P

into the Budyko framework is missing. Here we aim to address this issue by analytically deriving a

new, modified Budyko formulation from basic phenomenological assumptions by using the approach70

of Fu (1981) and Zhang et al. (2004).

2 Deriving a modified formulation

2.1 Preliminary Assumptions

::
In

:::
the

::::::::
following

:::
we

::::
will

:::::
make

:::
use

:::
of

:::
the

:::::::
concept

::
of

::::::::
potential

::::::::::::::::
evapotranspiration,

:::::
which

::::::::
provides

::
an

:::::::
estimate

::
of
::::

the
::::::
amount

::
of
::::::

water
:::
that

::::::
would

::
be

:::::::::
transpired

:::
and

::::::::::
evaporated

:::::
under

:::::::::
conditions

::
of

::
a75

::::::::::
well-watered

:::::::
surface.

:
Fu (1981) and Zhang et al. (2004) suggested that for a given potential evap-

oration, the rate of change in evapotranspiration as a function of the rate of change in precipitation

(∂E/∂P ) increases with residual potential evaporation (Ep−E) and decreases with precipitation.

Similar assumptions were made regarding the rate of change in evapotranspiration as a function of

the rate of change in potential evaporation (∂E/∂Ep) by considering residual precipitation (P −E).80

Hence, both ratios can be written as

∂E

∂P
= f(x) (3a)

∂E

∂Ep
= g(y) (3b)
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with

x=
Ep−E
P

(4a)85

y =
P −E
Ep

(4b)

Considering Ep being a natural constraint of E, it follows
:::
that

∂E

∂P

∣∣∣∣
x=0

= 0. (5)

The original approach of Fu (1981) further assumes that P is a natural constraint ofE, constituting

the following boundary condition90

∂E

∂Ep

∣∣∣∣
y=0

= 0. (6)

This assumption
:::
The

:::::::
coupled

::::::::
boundary

:::::::::
conditions

::
5

:::
and

::
6

:::::::::::::
mathematically

::::::::
represent

:::
the

::::::
supply

:::
and

:::::::
demand

::::
limit

:::
of

:::
the

:::::::
Budyko

:::::::::
framework

::::
(see

::::
Fig.

:::
1).

:::::::::::
Considering

:::
the

:::::::::
definitions

::
of

::
x
::::

and
::
y

::::
given

:::
by

:::::::
equation

::
4,
::::::
x= 0

:::::
yields

:::
that

:::::::
E = Ep::::

and
:::::
y = 0

:::::
yields

:::::::
E = P .

::::::::
Equation

:
5
::::
thus

:::::
states

::::
that

:::::::::
conditional

:::
on

:::::
x= 0,

:::
i.e

:::::::
E = Ep,

::
no

::::::
further

:::::::
change

::
in

::
E

:::::
occurs

:::
no

::::::
matter

:::
how

:::
P

:::::::
changes,

:::::
since

::
E95

:
is
:::::::
already

::::::
limited

::
by

:::
Ep:::::::::::

(constituting
:::
the

::::::
demand

::::::
limit).

:::::::
Equation

::
6
:::::
states

:::
that

::::::::::
conditional

::
on

::::::
y = 0,

::
i.e

:::::::
E = P ,

::
no

::::::
further

::::::
change

::
in
:::
E

:::::
occurs

:::
no

:::::
matter

::::
how

:::
Ep::::::::

changes,
::::
since

:::
E

:
is
:::::::

already
::::::
limited

:::
by

::
P

::::::::::
(constituting

:::
the

::::::
supply

::::::
limit).

::
In

::::
case

:::::
x 6= 0

::
or

::::::
y 6= 0,

:::
the

:::::::
gradients

::::::::
∂E/∂P

::
or

::::::::
∂E/∂Ep :::

are
:::
not

::::::::::
(necessarily)

:::::
zero.

:::
The

::::::::
boundary

::::::::
condition

::
6

::::::
further requires steady-state conditions and is consequently considered100

to be valid at mean annual catchment scales (such that P −E ≥ 0) only. However, as mentioned in

the introduction, a wealth of possible mechanisms and processes can induce conditions in which E

exceeds P . In such cases,Ep remains the only constraint ofE. Consequently, since we explicitly aim

to account for conditions of E ≥ P , the value y = (P −E)/Ep (see equation 4).
:
is not necessarily

positive(,
:

but larger than -1 since we assume that E ≤ Ep.
:

The minimum value of y, denoted as105

ymin(see equation 4), thus lies within the interval between −1 and 0 and depends on the additional

amount of water being available for E besides water supplied by P . For convenience we define

y0 =−ymin (and thus y0 ∈ [0,1]). As a consequence the boundary condition 6 is then redefined as

∂E

∂Ep

∣∣∣∣
−y0

= 0. (7)
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2.2 Solution110

Solving the system of the differential equations 3a,b using boundary condition 5 and the new condi-

tion 7 yields the following solution (details are provided in Appendix A):

E = Ep +P − ((1− y0)κ−1Eκp +Pκ)
1
κ (8)

with κ being a free model parameter. It follows

E

P
= F (Φ,κ,y0) = 1 + Φ−

(
1 + (1− y0)κ−1 (Φ)

κ) 1
κ . (9)115

Similar to the traditional Budyko approach a free model parameter (named κ to avoid confusion

with the traditional ω) is obtained. The second parameter y0, as introduced in the previous section,

is directly related to the new boundary condition. Hence, in contrast to κ, which is a mathematical

constant, y0 has a physical interpretation as it accounts for additional water .
:::
(i.e.

::::::
storage

:::::::
water).

However, similar to the ω-parameter in Fu’s equation, κ could
:::
can

:
be interpreted as an integrator of120

the variety of catchment properties other than the aridity index.

3 Characteristics of the modified framework

The newly derived formulation given (equation 9) is similar to the classical solution (equation 1), but

includes y0 as a new parameter. Assuming e.g. κ= 2.6 (corresponding to the
::::
best

::
fit

::
to

:::
the original

Budyko function with ω = 2.6 in Fu’s equation) and example values of y0-values, Fig. 2 shows a set125

of curves providing insights on the basic characteristics of the modified equation.

In case y0 = 0 (being the original boundary condition), the obtained curve corresponds to the

steady-state framework of Fu (1981) and Zhang et al. (2004). This shows that both model formu-

lations are consistently transferable. If y0 > 0, the supply limit is systematically exceeded. The ex-

ceedance of the supply limit increases with increasing y0. If y0 = 1, the curve follows the demand130

limit. All curves are further continuous and strictly increasing.

Taking a closer look at the underlying boundary conditions and definitions (see section 2.1) reveals

that y0 explicitly accounts for the amount of additional water (besides water supplied through P )

available for E. Since ymin is defined to be the minimum of y = (P −E)/Ep, the quantity y0 =

−ymin physically represents the maximum fraction of E relative to Ep, which is not originating135

from P . A larger fraction consequently results in higher y0-values and thus in a stronger exceedance

of the original supply limit. Further details on y0 is provided in section 4.

The sensitivity ∂F (Φ,κ,y0)/∂Φ under varying κ and for three preselected values of y0 is illus-

trated in Fig. 3. The sensitivity ∂F (Φ,κ,y0)/∂Φ for different values of y0 and κ shows the effect of

the parameter choice on changes inE/P relative to changes in Φ. In general, the sensitivity is largest140

5



for small Φ (humid conditions), due to the fact that changes in E/P basically follow the demand

limit (resulting in a sensitivity close to 1) regardless of parameter set (κ,y0). For different parameter

settings, the sensitivity generally decreases with increasing Φ. For small values of y0 (close to zero),

sensitivity becomes smallest with increasing Φ, since small values of y0 indicate conditions similar

to the classical solution (equation 1). Further, the smallest sensitivity is reached for large values of145

κ. Large values of y0 (close to 1) indicate conditions mainly constrained by the demand limit, thus

implying a sensitivity close to 1.

A similar analysis is performed for varying values of κ under three preselected levels of y0

(see Fig. 4). For y0 = 0 (steady-state conditions), the sensitivity ∂F/∂Φ is under humid conditions

(Φ< 1) rather large, since changes in E/P are mainly constrained by demand limit. This espe-150

cially applies for large values of κ. Under more arid conditions (Φ> 1), the Budyko curve slowly

converges towards the (horizontal) supply limit, resulting in a near-zero sensitivity. For y0 = 0.2,

denoting conditions relatively similar to steady-state conditions, the decrease in sensitivity with in-

creasing Φ is weaker, whereas for y0 = 0.8, denoting conditions where E is mainly constraint by the

demand limit, sensitivity is large for large κ-values and decreases rather slowly with increasing Φ.155

4 Interpreting the new parameter y0

The new parameter y0 is, in contrast to κ, physically well defined. The combination of equation 4b

and 7 shows that y0 is explicitly related to the amount of additional water (besides water supplied

through P ), which is available to E. If we rewrite equation 4b with respect to y0

y0 =−ymin =−
(
P −E
Ep

)
min

=≤
:
− Pmin−Emax

Ep
, if Pmin−Emax < 0, (10)160

where Pmin and Emax are chosen in order to minimize ymin for a given Ep, we obtain a linear

equation in terms of aridity index

(
E

P

)
max

= y0

(
Ep
Pmin

)
+ 1, (11)

which constitutes the mathematical interpretation of y0 within the modified framework. That is,

that y0 determines the maximum slope of the upper limit, against which the obtained curve from165

equation 9 asymptotically converges to if κ→∞ (see Fig. 5). Physically, y0 determines the maxi-

mum E/P that is reached in relation to Φ within a certain time period and spatial domain. It thus

represents an estimate of the maximum amount of additional water that contributes to E and orig-

inates from other sources than P . Technically speaking, y0 determines the slope of the upper limit

such that all possible pairs (Φ, E/P ) are just below the line y0Φ + 1. It is further important to note170

that for mean annual conditions (P −E ≥ 0), y0 = 0 is considered, which results in a zero slope
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and thus determines the original supply limit of 1. Please also note, that this approach is not valid if

Pmin = 0.

However, the actual slope m of the upper limit is smaller than y0, but directly related to both y0

and κ as follows (see Appendix B for more information)175

m= 1− (1− y0)1− 1
κ . (12)

The relative difference between the maximum slope y0 and the actual slope m of the upper limit

(being the ratio of y0/m) is thus determined following the relationship

y0

m
= (1− y0)1/k. (13)

The ratio y0/m as a function of both y0 and κ is illustrated in Fig. 6. For small κ and large y0 (close180

to 1), the difference between the actual slope m and the maximum slope y0 is large, whereas for

large κ the actual slope m converges towards y0. However, in any case, y0 determines the maximum

overshoot allowed with respect to the original supply limit at y0 = 0.

5 Example application: Seasonal carryover effects in terrestrial water storage

At monthly time scales, changes in terrestrial water storage (due to changes in water storage compo-185

nents such as soil moisture, snow or groundwater) potentially play an important role
::
in

::
E

:::
and

::
Q

:
and

are by no means negligible. Such changes can provide a significant source of additional water that

is (besides P ) available to E. Here we analyse the multi-year
:::::::::::
climatological

:
mean seasonal cycle

of E/P by using gridded, monthly data estimates of P , E and Ep. This allows us to evaluate the

capability of the obtained framework (given by equation 9) to represent additional water sources at190

such time scales.

We employ the following, well-established, gridded data products: (i) the Global Precipitation

Climatology Project (GPCP) P dataset (Adler et al., 2003), (ii) anEp estimate (Sheffield et al., 2006,

2012) based on the Penman-Monteith Ep algorithm (Monteith, 1965; Sheffield et al., 2012)
::::
with

:::
the

:::::::
stomatal

::::::::::
conductance

:::
set

::
to

::::
zero

::::
and

:::::::::::
aerodynamic

::::::::
resistance

:::::::
defined

::::
after

::::::::::::::::
(Maidment, 1992) , and195

(iii) the LandFlux-EvalE dataset (Mueller et al., 2013). All data is bilinearly interpolated to a unified

1◦-grid and the mean seasonal cycle for the 1990-2000 period is calculated at gridpoint-scale. Please

note that the combination of datasets used here is arbitrary and only used to illustrate the capability

of the newly developed framework to represent the multi-year
::::::::::::
climatological mean annual cycle of

E/P .200

We estimate the parameter set (κ,y0) from equation 9 by minimizing the residual sum of squares

.
:::
(see

::::
Fig.

::
7).

:
This means that at every gridpoint 12 monthly climatologies of E/P (representing the

mean seasonal cycle of E/P ) are used to determine a specific parameter set.
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To evaluate the modified framework, the derived parameter sets at each gridpoint are used in

equation 9 to compute mean seasonal cycles of E/P . The correlation between the computed and the205

observed seasonal cycle is shown in Fig. 8a. The correlations are relatively large in most regions.

Largest correlations (>0.9) are found in most mid to high latitude and tropical areas, clearly showing

the capability of the modified formulation to represent the seasonal cycle in E/P . Correlations are

generally somewhat lower in drier regions, especially in parts of Africa and Central Asia, probably

occurring due to more complex seasonal patterns in E/P
:::
and

::::::::::
phenology,

:::::
which

::
is
:::
not

::::::::::
considered210

:::
here. Using instead Fu’s original equation (or setting y0 = 0) to estimate the mean seasonal cycle of

E/P shows overall lower correlations, especially in semi-arid regions (Fig. 8b).

Taking a closer look at the mean seasonal cycle for example gridpoints in (i) Central Europe

(humid climate) and (ii) Africa (semi-arid climate) clearly shows the improvement gained through

the use of the modified formulation (Fig. 9). In Central Europe, additional water is available in the215

early summer months due to e.g. depletion of soil moisture or snow melt, resulting in values of

E/P exceeding the original supply limit. The modified formulation has the ability to represent this

exceedance, whereas the original formulation is naturally bounded to 1. This is even more evident

for the example grid point in Africa, showing a large overshoot of the original supply limit under dry

season conditions.220

6 Conclusions

In conclusion we present an extension to the Budyko framework that explicitly accounts for condi-

tions under which E is also driven by other water sources than P
:::
(i.e.

:::::::
changes

::
in

:::::
water

:::::::
storage).

The original Budyko framework is limited to mean annual catchment scales that constitute P and

Ep to be natural constraints of E. Here we assume that the boundary condition constituted by Ep225

remains overall valid, whereas the boundary condition constituted by P is also subject to additional

water stemming from other sources. Such additional water could e.g. originate from changes in the

terrestrial water storage, landscape changes and human interventions.

In order to account for such additional water, we modified the set of equations underlying the

derivation of Fu’s equation (Fu, 1981; Zhang et al., 2004) and obtained a similar formulation in-230

cluding an additional parameter. The additional parameter is physically well defined and technically

rotates the original supply limit upwards. Similar to the original Budyko framework, the derived two-

parameter Budyko model represents the influence of first-order controls (namely P andEp) on water

availability. The integrated influence of second-order controls (like e.g. vegetation, topography, etc.)

is, comparable to Fu’s equation, represented by the first parameter. Analyzing such controls in Fu’s235

formula was subject to numerous studies, but no conclusive assessment was conducted until present.

Assessing the combined influence of climatic and catchment controls is hence clearly beyond the

scope of this study. However, the additional second parameter of the modified formulation y0 does

8



have a clear physical interpretation as it represents a measure of additional water being (besides P )

available to E.240

The framework was validated for the special case of average seasonal changes in water storage by

using monthly climatologies of global, gridded standard estimates of P , E and Ep. The computed

gridpoint-specific seasonal cycle of E/P using the modified framework did adequately represent

mean seasonal storage changes for many parts of the world. However, the application of the mod-

ified framework is by no means limited to this case and could be extended to a variety of climatic245

conditions under which additional water besides P is available to E.

Appendix A: Complete Solution

Equations 3, 5 and 7 form a system of differential equations. A necessary condition to solve this

system is

∂f(x)

∂Ep
+
∂f(x)

∂E
g(y) =

∂g(y)

∂P
+
∂g(y)

∂E
f(x) (A1)250

Combining equation A1 with equation 4 yields

∂f(x)

∂Ep
=
∂f(x)

∂Ep

∂x

∂x
=

1

P

(
1− ∂E

∂Ep

)
∂f(x)

∂x
=

1

P
(1− g(y))

∂f(x)

∂x
(A2a)

∂f(x)

∂E
=
∂f(x)

∂E

∂x

∂x
=

1

P

(
∂Ep
∂E
− 1

)
∂f(x)

∂x
=

1

P

(
1

g(y)
− 1

)
∂f(x)

∂x
(A2b)

∂g(y)

∂P
=
∂g(y)

∂P

∂y

∂y
=

1

Ep

(
1− ∂E

∂P

)
∂g(y)

∂y
=

1

Ep
(1− f(x))

∂g(y)

∂y
(A2c)

∂g(y)

∂E
=
∂g(y)

∂E

∂y

∂y
=

1

Ep

(
∂P

∂E
− 1

)
∂g(y)

∂y
=

1

Ep

(
1

f(x)
− 1

)
∂g(y)

∂y
(A2d)255

Substituting the factors in equation A1 with those given in equations A2 gives:

∂f(x)

∂x

(
(1− g(y)) +

(
1

g(y)
− 1

)
g(y)

)
=

P

Ep

∂g(y)

∂y

(
(1− f(x)) +

(
1

f(x)
− 1

)
f(x)

)
(1− g(y))

∂f(x)

∂x
=

P

Ep
(1− f(x))

∂g(y)

∂y
(A3)

Expanding P/Ep yields under consideration of equations 4260

P

Ep
=

Ep+P−E
Ep

Ep+P−E
P

=
1 + P−E

Ep

1 +
Ep−E
P

=
1 + y

1 +x
(A4)
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From equation A3 and equation A4 follows

(1− g(y))
∂f(x)

∂x
=

1 + y

1 +x
(1− f(x))

∂g(y)

∂y

1 +x

1− f(x)

∂f(x)

∂x
=

1 + y

1− g(y)

∂g(y)

∂y
(A5)

265

where each side is a function of x or y only. Assuming the result of each side is α it follows

1 +x

1− f(x)

∂f(x)

∂x
= α (A6a)

1 + y

1− g(y)

∂g(y)

∂y
= α (A6b)

Integrating equation A6a under consideration of the boundary condition given by equation 5 leads

to the following expression for f(x)270

x∫
0

1

1− f(t)

∂f(t)

∂t
dt= α

x∫
0

1

1− t
dt

[− ln(1− f(t))]
x
0 = α [ln(1 + t)]

x
0

ln(1− f(x)) =−α ln(1 +x)

1− f(x) = (1 +x)−α

f(x) = 1− (1 +x)−α (A7)275

Integrating equation A6b is different from the traditional solution given in Zhang et al. (2004), as

we are using the new boundary condition given by equation 7

y∫
−y0

1

1− g(t)

∂g(t)

∂t
dt= α

y∫
−y0

1

1− t
dt

[− ln(1− g(t))]
y
−y0 = α [ln(1 + t)]

y
−y0280

ln(1− g(y))− ln(1− g(−y0)) = α(ln(1− y0)− ln(1 + y))

ln(1− g(y)) = α ln

(
1− y0

1 + y

)
1− g(y) =

(
1− y0

1 + y

)α
g(y) = 1−

(
1− y0

1 + y

)α
(A8)

285
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Considering the expansion from equation A4 finally gives

∂E/∂P = 1− (1 +x)−α = 1−
(

P

Ep +P −E

)α
(A9)

∂E/∂E0 = 1− (1− y0)α(1 + y)−α = 1− (1− y0)α
(

E0

E0 +P −E

)α
(A10)

In the next step, equation A9 is integrated over P . As equation A9 is identical to those in Zhang

et al. (2004), we follow their substitution approach. It follows290

E = E0 +P − (k+Pα+1)
1

α+1 (A11)

where k is a function of E0 only. Differentiate equation A11 with respect to E0 gives an estimate

of ∂E/∂E0, which used with equation A10 determines k

∂E

∂E0
= 1− 1

α+ 1
(k+Pα+1)−

α
α+1

∂k

∂E0
= 1− (1− y0)α

(
E0

E0 +P −E

)α
(A12)

This leads under consideration of equation A11 to the following expression295

∂k

∂E0
= (α+ 1)(1− y0)α

(
E0

E0 +P −E

)α
(k+Pα+1)

α
α+1

= (α+ 1)(1− y0)α

(
E0

E0 +P − (E0 +P − (k+Pα+1)
1

α+1 )

)α
(k+Pα+1)

α
α+1

= (α+ 1)(1− y0)αEα0

k = (α+ 1)(1− y0)α
∫
Eα0 dE0

k = (1− y0)αEα+1
0 +C (A13)300

with C being an integration constant. Substituting equation A13 back into equation A11, one

obtains the following expression

E = E0 +P − ((1− y0)αEα+1
0 +C +Pα+1)

1
α+1 (A14)

and as lim
P→0

E = 0 follows C = 0. Substituting κ= α+ 1 finally gives305

E = Ep +P − ((1− y0)κ−1Eκp +Pκ)
1
κ (A15)
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and further provides by writing Φ = Ep/P

E

P
= 1 + Φ−

(
1 + (1− y0)κ−1 (Φ)

κ) 1
κ (A16)

F

(
E

Ep
,κ,y0

)
=

E

Ep
= 1 +

P

Ep
−
(

(1− y0)κ−1 +

(
P

Ep

)κ) 1
κ

(A17)

Appendix B: Solution of the actual slope310

The actual slope m of the upper limit against which the obtained Budyko curve is converging to

is smaller than y0. We introduced equation 12 to calculate m and in the following we provide the

complete solution in order to obtain equation 12.

The value of m is the slope of the linear function mΦ + 1 that forms the asymptote to F (Φ,κ,y0)

given by equation 9. Hence,315

lim
Φ→∞

[F (Φ,κ,y0)− (mΦ + 1)] = 0. (B1)

Using equation 9 and dividing by Φ yields

lim
Φ→∞

(1 + (1− y0)κ−1 (Φ)
κ) 1

κ

Φ
+ 1−m

= 0. (B2)

By raising the term in brackets to the power of κ one obtains

lim
Φ→∞

[
(1−m)κ−Φ−κ(1 + Φκ(1− y0)κ−1)

]
= 0, (B3)320

and it follows

lim
Φ→∞

[
(1−m)κ− (1− y0)κ−1−Φ−κ

]
= 0. (B4)

Since Φ−κ→ 0 for Φ→∞ we obtain

(1−m)κ = (1− y0)κ−1. (B5)

Solving for m yields325

m= (1− y0)1− 1
κ . (B6)
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Figure 1. The original Budyko (1956) curve (red), limited by both the demand limit (E = Ep) and the supply

limit (E = P ).
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Figure 2. Set of curves of the new framework for κ= 2.6 and different y0. Note that the obtained curve for the

parameter set (κ,y0) = (2.6,0) corresponds to the original Budyko curve (ω = 2.6). The supply limit (dashed

black line) is systematically exceeded if y0 > 0 and the demand limit (solid black line) is reached if y0 = 1.
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Figure 3. The sensitivity ∂F/∂Φ under varying y0, for κ= 2.6 (left, similar to the original Budyko framework

if y0 = 0), κ= 1.6 (center) and κ= 4 (right). Blueish colors denote high, reddish colors low sensitivity.
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Figure 4. The sensitivity ∂F/∂Φ under varying κ, for y0 = 0 (left), y0 = 0.2 (center) and y0 = 0.8 (right).

Blueish colors denote high, reddish colors low sensitivity.
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Figure 5. Difference between the actual (solid colored lines) and maximum slope (solid black line) of the supply

limit for different values of κ (red: κ= 1.5, green: κ= 2.6 and blue: κ= 6) and y0 = 0.3. The maximum slope

(m= y0 = 0.3) is reached if κ→∞.
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Figure 6. The ratio y0/m as a function of both y0 and κ estimated from equation 13.
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Figure 7. Estimated values of κ (subfigure a) and y0 (subfigure b) estimated in a least squares fitting using

standard monthly datasets of P , E and Ep within the 1990-2000 period.
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Figure 8. Correlation between the mean seasonal cycle of E/P computed from equation 9 and observed E/P

for a) a grid-point specific parameter set (κ,y0) and b) (κ,0) (Fu’s equation).
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Figure 9. Data cloud of monthly climatologies within the Budyko space for a gridpoints in a) central Europe

(51.5◦N , 12◦E) and b) central Africa (5.5◦N , 20◦). The black solid line denotes the demand limit, the dashed

line denotes the original supply limit. The blue line depicts the obtained curve using the modified formulation of

Fu’s equation, whereas the red line shows the original Fu curve. Numbers within the dots denote the particular

month of the year. c), d) Observed (grey) and computed mean seasonal cycles at both gridponts. The blue line

depicts the obtained seasonal cycle using the modified formulation of Fu’s equation, whereas the red line shows

the seasonal cycle obtained using Fu’s equation. Please note that axes are different in each plot.
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