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Abstract. A comprehensive assessment of the partitioning of precipitation (P ) into evapotranspi-

ration (E) and runoff (Q) is of major importance for a wide range of socio-economic sectors. For

climatological averages, the Budyko framework provides a simple first order relationship to estimate

water availability represented by the ratioE/P as a function of the aridity index (Ep/P , withEp de-

noting potential evaporation). However, the Budyko framework is limited to steady-state conditions,5

being a result of assuming negligible storage change in the land water balance. Processes leading

to changes in the terrestrial water storage at any spatial and/or temporal scale are hence not repre-

sented. Here we propose an analytically derived modification of the Budyko framework including

a new parameter explicitly representing additional water available to evapotranspiration besides in-

stantaneous precipitation. The modified framework is comprehensively analyzed, showing that the10

additional parameter leads to a rotation of the original water supply limit. We further evaluate the

new formulation in an example application at mean seasonal time scales, showing that the extended

framework is able to represent conditions in which monthly to annual evapotranspiration exceeds

monthly to annual precipitation.

1 Introduction15

The Budyko framework serves as a tool to estimate mean annual water availability as a function

of aridity. It is widely-used and well-established within the hydrological community, both due to

its simplicity and long history, combining experience from over a century of hydrological research.

Budyko (1956, 1974) derived a formulation of the function based on findings of Schreiber (1904)

and Ol’Dekop (1911), but also several other formulations have been postulated, which, however,20
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are numerically very similar (Schreiber, 1904; Ol’Dekop, 1911; Turc, 1955; Mezentsev, 1955; Pike,

1964; Fu, 1981; Choudhury, 1999; Zhang et al., 2001, 2004; Porporato et al., 2004; Yang et al.,

2008; Donohue et al., 2012; Wang and Tang, 2014; Zhou et al., 2015b). Many of these formulations

are empirically derived and only few are analytically determined from simple phenomenological

assumptions (Fu, 1981; Milly, 1994; Porporato et al., 2004; Zhang et al., 2004; Yang et al., 2007;25

Zhou et al., 2015b). Numerous studies further assess controls determining the observed systematic

scatter within the Budyko space. This scatter is, however, inherent, being also justified by the ex-

istence of free parameters within analytically-derived formulations of the Budyko curve (Fu, 1981;

Choudhury, 1999; Zhang et al., 2004; Yang et al., 2007). A variety of catchment and climate charac-

teristics, such as e.g. vegetation (Zhang et al., 2001; Donohue et al., 2007; Williams et al., 2012; Li30

et al., 2013; Zhou et al., 2015a), seasonality characteristics (Milly, 1994; Potter et al., 2005; Gentine

et al., 2012; Chen et al., 2013; Berghuijs et al., 2014), soil properties (Porporato et al., 2004; Shao

et al., 2012; Donohue et al., 2012), and topographic controls (Shao et al., 2012; Xu et al., 2013) have

been proposed to exert a certain influence on the scatter within the Budyko space. Also more complex

approaches to combine various controls (Milly, 1994; Gentine et al., 2012; Donohue et al., 2012; Xu35

et al., 2013) have been considered. Nonetheless, until present no conclusive statement on controls

determining the scatter within the Budyko space has been made. In a recent assessment, Greve et al.

(2015) further suggested a probabilistic Budyko framework by assuming that the combined influence

of all possible controls is actually nondeterministic and follows a probability distribution instead.

In this study we make use of the formulation introduced by Fu (1981) and Zhang et al. (2004).40

They derived a functional form between E/P and Φ = Ep/P at mean annual catchment scales

analytically from simple physical assumptions,

E

P
= 1 + Φ− (1 + (Φ)

ω
)

1
ω , (1)

where ω is a free model parameter. The original formulation introduced by Budyko (1956, 1974)

is best represented by setting ω = 2.6 (Zhang et al., 2004). The obtained function is subject to two45

physical constraints constituting both the water demand and supply limits. The water demand limit

represents E being limited by Ep, whereas the water supply limit determines E to be limited by P

(see Fig. 1). To maintain the supply limit, steady-state conditions are required. Therefore, the storage

term (dS/dt) in the land water balance equation at catchment scales

dS

dt
= P −E−Q (2)50

is assumed to be zero, which is generally a valid assumption at mean annual scales. It is fur-

ther important to note that groundwater flow is not included in equation 2 and neglected throughout

the following analysis. However, the assumption of negligible storage changes constitutes a major
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limitation to the original Budyko framework. As a consequence, the framework is not valid under

conditions in which additional storage water besides instantaneous P is available to E and E > P .55

We note here that by instantaneous P (from here on just referred to as P ) we mean all P within

the considered time interval. Conditions under which the framework is not valid can occur e.g.

at sub-annual or inter-annual time scales due to changes in terrestrial water storage terms such as

soil moisture, groundwater or snow storage. Additional water might be also introduced by land-

scape changes (Jaramillo and Destouni, 2014), human interventions (Milly et al., 2008) or phase60

changes of water within the system or supplied through precipitation (Jaramillo and Destouni, 2014;

Berghuijs et al., 2014). Also long-term changes in soil moisture may happen, e.g. under transient

climate change (Wang, 2005; Orlowsky and Seneviratne, 2013). Only few assessments addressed

this limitation and provided further insights on how the Budyko hypothesis could be extended to

conditions under which E exceeds P (Zhang et al., 2008; Chen et al., 2013). Nonetheless, so far a65

theoretical incorporation of conditions in which E > P into the Budyko framework is missing. Here

we aim to address this issue by analytically deriving a new, modified Budyko formulation from basic

phenomenological assumptions by using the approach of Fu (1981) and Zhang et al. (2004).

2 Deriving a modified formulation

2.1 Preliminary Assumptions70

In the following we will make use of the concept of potential evapotranspiration, which provides

an estimate of the amount of water that would be evaporated under conditions of a well-watered

surface. Fu (1981) and Zhang et al. (2004) suggested that for a given potential evaporation, the rate of

change in evapotranspiration as a function of the rate of change in precipitation (∂E/∂P ) increases

with residual potential evaporation (Ep−E) and decreases with precipitation. Similar assumptions75

were made regarding the rate of change in evapotranspiration as a function of the rate of change in

potential evaporation (∂E/∂Ep) by considering residual precipitation (P −E). Hence, both ratios

can be written as

∂E

∂P
= f(x) (3a)

∂E

∂Ep
= g(y) (3b)80

with

x=
Ep−E
P

(4a)
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y =
P −E
Ep

(4b)

Considering Ep being a natural constraint of E, it follows that

∂E

∂P

∣∣∣∣
x=0

= 0. (5)85

The original approach of Fu (1981) further assumes that P is a natural constraint ofE, constituting

the following boundary condition

∂E

∂Ep

∣∣∣∣
y=0

= 0. (6)

The coupled boundary conditions 5 and 6 mathematically represent the supply and demand limit

of the Budyko framework (see Fig. 1). Considering the definitions of x and y given by equation 4,90

x= 0 yields that E = Ep and y = 0 yields E = P . Equation 5 thus states that conditional on x= 0,

i.e E = Ep, no further change in E occurs no matter how P changes, since E is already limited

by Ep (constituting the demand limit). Equation 6 states that conditional on y = 0, i.e E = P , no

further change in E occurs no matter how Ep changes, since E is already limited by P (constituting

the supply limit). In case x 6= 0 or y 6= 0, the gradients ∂E/∂P or ∂E/∂Ep are not (necessarily)95

zero.

The boundary condition 6 further requires steady-state conditions and is consequently considered

to be valid at mean annual catchment scales (such that P −E ≥ 0) only. However, as mentioned in

the introduction, a wealth of possible mechanisms and processes can induce conditions in which E

exceeds P . In such cases,Ep remains the only constraint ofE. Consequently, since we explicitly aim100

to account for conditions of E ≥ P , the value y = (P −E)/Ep (see equation 4) is not necessarily

positive, but larger than -1 since we assume that E ≤ Ep. The minimum value of y, denoted as

ymin, thus lies within the interval between −1 and 0 and depends on the additional amount of water

being available forE besides water supplied by P . For convenience we define y0 =−ymin (and thus

y0 ∈ [0,1]). As a consequence the boundary condition 6 is then redefined as105

∂E

∂Ep

∣∣∣∣
−y0

= 0. (7)

2.2 Solution

Solving the system of the differential equations 3a,b using boundary condition 5 and the new condi-

tion 7 yields the following solution (details are provided in Appendix A):

E = Ep +P − ((1− y0)κ−1Eκp +Pκ)
1
κ (8)110
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with κ being a free model parameter. It follows

E

P
= F (Φ,κ,y0) = 1 + Φ−

(
1 + (1− y0)κ−1 (Φ)

κ) 1
κ . (9)

Similar to the traditional Budyko approach a free model parameter (named κ to avoid confusion

with the traditional ω) is obtained. The second parameter y0, as introduced in the previous section,

is directly related to the new boundary condition. Hence, in contrast to κ, which is a mathematical115

constant, y0 has a physical interpretation as it accounts for additional water (i.e. storage water).

However, similar to the ω-parameter in Fu’s equation, κ can be interpreted as an integrator of the

variety of factors other than the aridity index that influence the partitioning pf P into Q and E.

3 Characteristics of the modified framework

The newly derived formulation given (equation 9) is similar to the classical solution (equation 1),120

but includes y0 as a new parameter. For different values of y0 and κ= 2.6 (corresponding to the

best fit to the original Budyko function with ω = 2.6 in Fu’s equation), Fig. 2 shows a set of curves

providing insights on the basic characteristics of the modified equation.

In case y0 = 0 (being the original boundary condition), the obtained curve corresponds to the

steady-state framework of Fu (1981) and Zhang et al. (2004). This shows that both model formu-125

lations are consistently transferable. If y0 > 0, the supply limit is systematically exceeded. The ex-

ceedance of the supply limit increases with increasing y0. If y0 = 1, the curve follows the demand

limit. All curves are further continuous and strictly increasing.

Taking a closer look at the underlying boundary conditions and definitions (see section 2.1) re-

veals that y0 explicitly accounts for the maximum amount of additional water (besides water supplied130

through P ) at a certain location and within a certain time period that is available to E. Since ymin

is defined to be the minimum of y = (P −E)/Ep, the quantity y0 =−ymin physically represents

the maximum fraction of E relative to Ep, which is not originating from P . A larger fraction con-

sequently results in higher y0-values and thus in a stronger exceedance of the original supply limit.

Further details on y0 are provided in section 4.135

The partial derivative ∂F (Φ,κ,y0)/∂Φ under varying κ and for three preselected values of y0

is illustrated in Fig. 3. The sensitivity ∂F (Φ,κ,y0)/∂Φ for different values of y0 and κ shows the

effect of the parameter choice on changes in E/P relative to changes in Φ. In general, the sensitivity

is largest for small Φ (humid conditions), due to the fact that changes in E/P basically follow the

demand limit (resulting in a sensitivity close to 1) regardless of parameter set (κ,y0). For different140

parameter settings, the sensitivity generally decreases with increasing Φ. For small values of y0

(close to zero), sensitivity becomes smallest with increasing Φ, since small values of y0 indicate

conditions similar to the classical solution (equation 1). Further, the smallest sensitivity is reached
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for large values of κ. Large values of y0 (close to 1) indicate conditions mainly constrained by the

demand limit, thus implying a sensitivity close to 1.145

A similar analysis is performed for varying values of κ under three preselected levels of y0

(see Fig. 4). For y0 = 0 (steady-state conditions), the sensitivity ∂F/∂Φ is under humid conditions

(Φ< 1) rather large, since changes in E/P are mainly constrained by demand limit. This espe-

cially applies for large values of κ. Under more arid conditions (Φ> 1), the Budyko curve slowly

converges towards the (horizontal) supply limit, resulting in a near-zero sensitivity. For y0 = 0.2,150

denoting conditions relatively similar to steady-state conditions, the decrease in sensitivity with in-

creasing Φ is weaker, whereas for y0 = 0.8, denoting conditions where E is mainly constraint by the

demand limit, sensitivity is large for large κ-values and decreases rather slowly with increasing Φ.

4 Interpreting the new parameter y0

The new parameter y0 is, in contrast to κ, physically well defined. The combination of equation 4b155

and 7 shows that y0 is explicitly related to the amount of additional water (besides water supplied

through P ), which is available to E. If we rewrite equation 4b with respect to y0

y0 =−ymin =−
(
P −E
Ep

)
min

≤−Pmin−Emax
Ep

, if Pmin−Emax < 0, (10)

where Pmin and Emax are chosen in order to minimize ymin for a given Ep, we obtain a linear

equation in terms of aridity index160

(
E

P

)
max

= y0

(
Ep
Pmin

)
+ 1, (11)

which constitutes the mathematical interpretation of y0 within the modified framework. That is,

that y0 determines the maximum slope of the upper limit, against which the obtained curve from

equation 9 asymptotically converges to if κ→∞ (see Fig. 5). Physically, y0 determines the maxi-

mum E/P that is reached in relation to Φ within a certain time period and spatial domain. It thus165

represents an estimate of the maximum amount of additional water that contributes to E and orig-

inates from other sources than P . Technically speaking, y0 determines the slope of the upper limit

such that all possible pairs (Φ, E/P ) are just below the line y0Φ + 1. It is further important to note

that for mean annual conditions (P −E ≥ 0), y0 = 0 is considered, which results in a zero slope

and thus determines the original supply limit of 1. Please also note, that this approach is not valid if170

Pmin = 0.

However, the actual slope m of the upper limit is smaller than y0, but directly related to both y0

and κ as follows (see Appendix B for more information)

m= 1− (1− y0)1− 1
κ . (12)
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The relative difference between the maximum slope y0 and the actual slope m of the upper limit175

(being the ratio of y0/m) is thus determined following the relationship

y0

m
= (1− y0)1/k. (13)

The ratio y0/m as a function of both y0 and κ is illustrated in Fig. 6. For small κ and large y0 (close

to 1), the difference between the actual slope m and the maximum slope y0 is large, whereas for

large κ the actual slope m converges towards y0. However, in any case, y0 determines the maximum180

overshoot allowed with respect to the original supply limit at y0 = 0.

5 Example application: Seasonal carryover effects in terrestrial water storage

At monthly time scales, changes in terrestrial water storage (due to changes in water storage com-

ponents such as soil moisture, snow or groundwater) potentially play an important role in E and Q

and are by no means negligible. Such changes can provide a significant source of additional water185

that is (besides P ) available to E. Here we analyse the climatological mean seasonal cycle of E/P

by using gridded, monthly data estimates of P , E and Ep. This allows us to evaluate the capability

of the obtained framework (given by equation 9) to represent additional water sources at such time

scales.

We employ the following, well-established, gridded data products: (i) the Global Precipitation190

Climatology Project (GPCP) P dataset (Adler et al., 2003), (ii) anEp estimate (Sheffield et al., 2006,

2012) based on the Penman-Monteith Ep algorithm (Monteith, 1965; Sheffield et al., 2012) with the

stomatal conductance set to zero and aerodynamic resistance defined after (Maidment, 1992), and

(iii) the LandFlux-EvalE dataset (Mueller et al., 2013). All data is bilinearly interpolated to a unified

1◦-grid and the mean seasonal cycle for the 1990-2000 period is calculated at gridpoint-scale. Please195

note that the combination of datasets used here is arbitrary and only used to illustrate the capability

of the newly developed framework to represent the climatological mean annual cycle of E/P .

We estimate the parameter set (κ,y0) from equation 9 by minimizing the residual sum of squares

(see Fig. 7). This means that at every gridpoint 12 monthly climatologies of E/P (representing the

mean seasonal cycle of E/P ) are used to determine one specific parameter set (for all months).200

To evaluate the modified framework, the derived parameter sets at each gridpoint are used in

equation 9 to compute mean seasonal cycles of E/P . The correlation between the computed and the

observed seasonal cycle is shown in Fig. 8a. The correlations are relatively large in most regions.

Largest correlations (>0.9) are found in most mid to high latitude and tropical areas, clearly showing

the capability of the modified formulation to represent the seasonal cycle in E/P . Correlations are205

generally somewhat lower in drier regions, especially in parts of Africa and Central Asia, probably

occurring due to more complex seasonal patterns in E/P and phenology, which is not considered
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here. Using instead Fu’s original equation (or setting y0 = 0) to estimate the mean seasonal cycle of

E/P shows overall lower correlations, especially in semi-arid regions (Fig. 8b).

Taking a closer look at the mean seasonal cycle for example gridpoints in (i) Central Europe210

(humid climate) and (ii) Africa (semi-arid climate) clearly shows the improvement gained through

the use of the modified formulation (Fig. 9). In Central Europe, additional water is available in the

early summer months due to e.g. depletion of soil moisture or snow melt, resulting in values of

E/P exceeding the original supply limit. The modified formulation has the ability to represent this

exceedance, whereas the original formulation is naturally bounded to 1. This is even more evident215

for the example grid point in Africa, showing a large overshoot of the original supply limit under dry

season conditions.

6 Conclusions

In conclusion we present an extension to the Budyko framework that explicitly accounts for condi-

tions under which E is also driven by other water sources than P (i.e. changes in water storage).220

The original Budyko framework is limited to mean annual catchment scales that constitute P and

Ep to be natural constraints of E. Here we assume that the boundary condition constituted by Ep

remains overall valid, whereas the boundary condition constituted by P is also subject to additional

water stemming from other sources. Such additional water could e.g. originate from changes in the

terrestrial water storage, landscape changes and human interventions.225

In order to account for such additional water, we modified the set of equations underlying the

derivation of Fu’s equation (Fu, 1981; Zhang et al., 2004) and obtained a similar formulation in-

cluding an additional parameter. The additional parameter is physically well defined and technically

rotates the original supply limit upwards. Similar to the original Budyko framework, the derived two-

parameter Budyko model represents the influence of first-order controls (namely P andEp) on water230

availability. The integrated influence of second-order controls (like e.g. vegetation, topography, etc.)

is, comparable to Fu’s equation, represented by the first parameter. Analyzing such controls in Fu’s

formula was subject to numerous studies, but no conclusive assessment was conducted until present.

Assessing the combined influence of climatic and catchment controls is hence clearly beyond the

scope of this study. However, the additional second parameter of the modified formulation y0 does235

have a clear physical interpretation as it represents a measure of the maximum amount of additional

water being (besides P ) available to E at a certain location and within a particular time period.

Besides this study, a limited number of previous studies assessed the Budyko hypothesis under

conditions of E exceeding P , especially at seasonal time scales. In a top-down approach, Zhang

et al. (2008) was showing that the Budyko model has to be extended in order to model the water240

balance on shorter than mean annual time scales. Their extended Budyko model (which was also

based on Fu (1981)) was showing good performance in modeling monthly Q, but includes four
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additional parameters that require extensive calibration. Chen et al. (2013) further introduced an

approach (referring to Wang (2012)) that is based on replacing P by effective precipitation, which

is the difference between P and soil water storage change. This allows to extend the framework to245

seasonal time scales, but requires explicit knowledge of changes in the soil water storage. In our

approach we, however, provide an analytical derivation of an extension to Fu’s equation that is able

to account for conditions under which E exceeds P by including only one additional parameter.

However, the framework is also subject to some limitations. The estimation of the parameter y0 is,

similar to the estimation of the ω in Fu’s equation (Fu, 1981), nontrivial and the parameter apparently250

varies in space and potentially also in time, therefore questioning steady-state assumptions. The

framework is further not capable to directly estimate Q. Since in contrast to the original Budyko

framework changes in terrestrial water storage are not negligible, the runoff ratio Q/P can not be

assessed through 1−E/P . Hence, explicit knowledge of changes in the terrestrial water storage is

required, therefore aggravating assessments of Q.255

The new framework was validated for the special case of average seasonal changes in water stor-

age by using monthly climatologies of global, gridded standard estimates of P , E and Ep. The

computed gridpoint-specific seasonal cycle of E/P using the modified framework did adequately

represent mean seasonal storage changes for many parts of the world. However, the application of

the modified framework is by no means limited to this case and could be extended to a variety of260

climatic conditions under which additional water besides P is available to E.

Appendix A: Complete Solution

Equations 3, 5 and 7 form a system of differential equations. A necessary condition to solve this

system is

∂f(x)

∂Ep
+
∂f(x)

∂E
g(y) =

∂g(y)

∂P
+
∂g(y)

∂E
f(x) (A1)265

Combining equation A1 with equation 4 yields

∂f(x)

∂Ep
=
∂f(x)

∂Ep

∂x

∂x
=

1

P

(
1− ∂E

∂Ep

)
∂f(x)

∂x
=

1

P
(1− g(y))

∂f(x)

∂x
(A2a)

∂f(x)

∂E
=
∂f(x)

∂E

∂x

∂x
=

1

P

(
∂Ep
∂E
− 1

)
∂f(x)

∂x
=

1

P

(
1

g(y)
− 1

)
∂f(x)

∂x
(A2b)

∂g(y)

∂P
=
∂g(y)

∂P

∂y

∂y
=

1

Ep

(
1− ∂E

∂P

)
∂g(y)

∂y
=

1

Ep
(1− f(x))

∂g(y)

∂y
(A2c)
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∂g(y)

∂E
=
∂g(y)

∂E

∂y

∂y
=

1

Ep

(
∂P

∂E
− 1

)
∂g(y)

∂y
=

1

Ep

(
1

f(x)
− 1

)
∂g(y)

∂y
(A2d)270

Substituting the factors in equation A1 with those given in equations A2 gives:

∂f(x)

∂x

(
(1− g(y)) +

(
1

g(y)
− 1

)
g(y)

)
=

P

Ep

∂g(y)

∂y

(
(1− f(x)) +

(
1

f(x)
− 1

)
f(x)

)
(1− g(y))

∂f(x)

∂x
=

P

Ep
(1− f(x))

∂g(y)

∂y
(A3)

Expanding P/Ep yields under consideration of equations 4275

P

Ep
=

Ep+P−E
Ep

Ep+P−E
P

=
1 + P−E

Ep

1 +
Ep−E
P

=
1 + y

1 +x
(A4)

From equation A3 and equation A4 follows

(1− g(y))
∂f(x)

∂x
=

1 + y

1 +x
(1− f(x))

∂g(y)

∂y

1 +x

1− f(x)

∂f(x)

∂x
=

1 + y

1− g(y)

∂g(y)

∂y
(A5)

280

where each side is a function of x or y only. Assuming the result of each side is α it follows

1 +x

1− f(x)

∂f(x)

∂x
= α (A6a)

1 + y

1− g(y)

∂g(y)

∂y
= α (A6b)

Integrating equation A6a under consideration of the boundary condition given by equation 5 leads

to the following expression for f(x)285

x∫
0

1

1− f(t)

∂f(t)

∂t
dt= α

x∫
0

1

1− t
dt

[− ln(1− f(t))]
x
0 = α [ln(1 + t)]

x
0

ln(1− f(x)) =−α ln(1 +x)

1− f(x) = (1 +x)−α

f(x) = 1− (1 +x)−α (A7)290
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Integrating equation A6b is different from the traditional solution given in Zhang et al. (2004), as

we are using the new boundary condition given by equation 7

y∫
−y0

1

1− g(t)

∂g(t)

∂t
dt= α

y∫
−y0

1

1− t
dt

[− ln(1− g(t))]
y
−y0 = α [ln(1 + t)]

y
−y0295

ln(1− g(y))− ln(1− g(−y0)) = α(ln(1− y0)− ln(1 + y))

ln(1− g(y)) = α ln

(
1− y0

1 + y

)
1− g(y) =

(
1− y0

1 + y

)α
g(y) = 1−

(
1− y0

1 + y

)α
(A8)

300

Considering the expansion from equation A4 finally gives

∂E/∂P = 1− (1 +x)−α = 1−
(

P

Ep +P −E

)α
(A9)

∂E/∂E0 = 1− (1− y0)α(1 + y)−α = 1− (1− y0)α
(

E0

E0 +P −E

)α
(A10)

In the next step, equation A9 is integrated over P . As equation A9 is identical to those in Zhang

et al. (2004), we follow their substitution approach. It follows305

E = E0 +P − (k+Pα+1)
1

α+1 (A11)

where k is a function of E0 only. Differentiate equation A11 with respect to E0 gives an estimate

of ∂E/∂E0, which used with equation A10 determines k

∂E

∂E0
= 1− 1

α+ 1
(k+Pα+1)−

α
α+1

∂k

∂E0
= 1− (1− y0)α

(
E0

E0 +P −E

)α
(A12)

This leads under consideration of equation A11 to the following expression310
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∂k

∂E0
= (α+ 1)(1− y0)α

(
E0

E0 +P −E

)α
(k+Pα+1)

α
α+1

= (α+ 1)(1− y0)α

(
E0

E0 +P − (E0 +P − (k+Pα+1)
1

α+1 )

)α
(k+Pα+1)

α
α+1

= (α+ 1)(1− y0)αEα0

k = (α+ 1)(1− y0)α
∫
Eα0 dE0

k = (1− y0)αEα+1
0 +C (A13)315

with C being an integration constant. Substituting equation A13 back into equation A11, one

obtains the following expression

E = E0 +P − ((1− y0)αEα+1
0 +C +Pα+1)

1
α+1 (A14)

and as lim
P→0

E = 0 follows C = 0. Substituting κ= α+ 1 finally gives320

E = Ep +P − ((1− y0)κ−1Eκp +Pκ)
1
κ (A15)

and further provides by writing Φ = Ep/P

E

P
= 1 + Φ−

(
1 + (1− y0)κ−1 (Φ)

κ) 1
κ (A16)

F

(
E

Ep
,κ,y0

)
=

E

Ep
= 1 +

P

Ep
−
(

(1− y0)κ−1 +

(
P

Ep

)κ) 1
κ

(A17)

Appendix B: Solution of the actual slope325

The actual slope m of the upper limit against which the obtained Budyko curve is converging to

is smaller than y0. We introduced equation 12 to calculate m and in the following we provide the

complete solution in order to obtain equation 12.

The value of m is the slope of the linear function mΦ + 1 that forms the asymptote to F (Φ,κ,y0)

given by equation 9. Hence,330

lim
Φ→∞

[F (Φ,κ,y0)− (mΦ + 1)] = 0. (B1)

12



Using equation 9 and dividing by Φ yields

lim
Φ→∞

(1 + (1− y0)κ−1 (Φ)
κ) 1

κ

Φ
+ 1−m

= 0. (B2)

By raising the term in brackets to the power of κ one obtains

lim
Φ→∞

[
(1−m)κ−Φ−κ(1 + Φκ(1− y0)κ−1)

]
= 0, (B3)335

and it follows

lim
Φ→∞

[
(1−m)κ− (1− y0)κ−1−Φ−κ

]
= 0. (B4)

Since Φ−κ→ 0 for Φ→∞ we obtain

(1−m)κ = (1− y0)κ−1. (B5)

Solving for m yields340

m= (1− y0)1− 1
κ . (B6)
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Figure 1. The original Budyko (1956) curve (red), limited by both the demand limit (E = Ep) and the supply

limit (E = P ).
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Figure 2. Set of curves of the new framework for κ= 2.6 and different y0. Note that the obtained curve for the

parameter set (κ,y0) = (2.6,0) corresponds to the original Budyko curve (ω = 2.6). The supply limit (dashed

black line) is systematically exceeded if y0 > 0 and the demand limit (solid black line) is reached if y0 = 1.
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Figure 3. The sensitivity ∂F/∂Φ under varying y0, for κ= 2.6 (left, similar to the original Budyko framework

if y0 = 0), κ= 1.6 (center) and κ= 4 (right). Blueish colors denote high, reddish colors low sensitivity.
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Figure 4. The sensitivity ∂F/∂Φ under varying κ, for y0 = 0 (left), y0 = 0.2 (center) and y0 = 0.8 (right).

Blueish colors denote high, reddish colors low sensitivity.
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Figure 5. Difference between the actual (solid colored lines) and maximum slope (solid black line) of the supply

limit for different values of κ (red: κ= 1.5, green: κ= 2.6 and blue: κ= 6) and y0 = 0.3. The maximum slope

(m= y0 = 0.3) is reached if κ→∞.
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Figure 6. The ratio y0/m as a function of both y0 and κ estimated from equation 13.
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Figure 7. Estimated values of κ (subfigure a) and y0 (subfigure b) estimated in a least squares fitting using

standard monthly datasets of P , E and Ep within the 1990-2000 period.
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Figure 8. Correlation between the mean seasonal cycle of E/P computed from equation 9 and observed E/P

for a) a grid-point specific parameter set (κ,y0) and b) (κ,0) (Fu’s equation).
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Figure 9. Data cloud of monthly climatologies within the Budyko space for a gridpoints in a) central Europe

(51.5◦N , 12◦E) and b) central Africa (5.5◦N , 20◦). The black solid line denotes the demand limit, the dashed

line denotes the original supply limit. The blue line depicts the obtained curve using the modified formulation of

Fu’s equation, whereas the red line shows the original Fu curve. Numbers within the dots denote the particular

month of the year. c), d) Observed (grey) and computed mean seasonal cycles at both gridponts. The blue line

depicts the obtained seasonal cycle using the modified formulation of Fu’s equation, whereas the red line shows

the seasonal cycle obtained using Fu’s equation. Please note that axes are different in each plot.
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