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Abstract 11 

Soil water content (SWC) is crucial to rainfall-runoff response at the watershed scale. 12 

A model was used to decompose the spatiotemporal SWC into a time-stable pattern 13 

(i.e, temporal mean), a space-invariant temporal anomaly, and a space-variant 14 

temporal anomaly. The space-variant temporal anomaly was further decomposed 15 

using the empirical orthogonal function (EOF) for estimating spatially distributed 16 

SWC. This model was compared to a previous model that decomposes the 17 

spatiotemporal SWC into a spatial mean and a spatial anomaly, with the latter being 18 

further decomposed using the EOF. These two models are termed temporal anomaly 19 

(TA) model and spatial anomaly (SA) model, respectively. We aimed to test the 20 

hypothesis that underlying (i.e., time-invariant) spatial patterns exist in the 21 
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space-variant temporal anomaly at the small watershed scale, and to examine the 22 

advantages of the TA model over the SA model in terms of the estimation of spatially 23 

distributed SWC. For this purpose, a dataset of near surface (0–0.2 m) and root zone 24 

(0–1.0 m) SWC, at a small watershed scale in the Canadian prairies, was analyzed. 25 

Results showed that underlying spatial patterns exist in the space-variant temporal 26 

anomaly because of the permanent controls of “static” factors such as depth to the 27 

CaCO3 layer and organic carbon content. Combined with time stability analysis, the 28 

TA model improved the estimation of spatially distributed SWC over the SA model, 29 

especially for dry conditions. Further application of these two models demonstrated 30 

that the TA model outperformed the SA model at a hillslope in the Chinese Loess 31 

Plateau, but the performance of these two models in the GENCAI network (~250 km²) 32 

in Italy was equivalent. The TA model can be used to construct a high-resolution 33 

distribution of SWC at small watershed scales from coarse-resolution remotely sensed 34 

SWC products. 35 

Keywords: Soil moisture; Soil water downscaling; Empirical orthogonal function; 36 

Statistical models; Time stability 37 

1. Introduction 38 

  Soil water content (SWC) of surface soils exerts a major influence on a series of 39 

hydrological processes such as runoff and infiltration (Famiglietti et al., 1998; 40 

Vereecken et al., 2007; She et al., 2013a). Soil water content in the root zone is, in 41 

many cases, linked to vegetative growth (Wang et al., 2012; Ward et al., 2012; Jia and 42 
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Shao, 2013). Obtaining accurate information on the spatiotemporal SWC is crucial for 43 

improving hydrological prediction and soil water management (Venkatesh et al., 2011; 44 

Champagne et al., 2012; She et al., 2013b; Zhao et al., 2013). While remote sensing 45 

has advanced SWC measurements of surface soils (<5 cm in depth) at basin 46 

(2,500–25,000 km
2
) and continental scales (Robinson et al., 2008), characterization of 47 

spatially distributed SWC at small watershed (0.1–80 km
2
) scales still poses a 48 

challenge. A method is needed for estimating spatially distributed SWC in the near 49 

surface and root zone at watershed scales. 50 

Time stability of SWC, which refers to similar spatial patterns of SWC across 51 

different measurement times (Vachaud et al., 1985; Brocca et al., 2009), has been used 52 

for estimating spatially distributed SWC (Starr, 2005; Perry and Niemann, 2007; 53 

Blöschl et al., 2009). This method is conceptually-appealing, but assumes completely 54 

time-stable spatial patterns of SWC.  55 

The time-stable pattern does not explain all of the spatial variances in SWC, 56 

indicating the existence of time-variant components (Starr, 2005). In order to identify 57 

underlying patterns of SWC that have time-variant components, the spatiotemporal 58 

SWC was decomposed into a spatial mean and a spatial anomaly. The spatial anomaly 59 

of the SWC was further decomposed into the sum of the product of time-invariant 60 

spatial patterns (EOFs) and temporally varying, but spatially constant coefficients 61 

(ECs) using the empirical orthogonal function (EOF) (Fig. 1) (Jawson and Niemann, 62 

2007; Perry and Niemann, 2007, 2008; Joshi and Mohanty, 2010; Korres et al., 2010; 63 

Busch et al., 2012). Spatially distributed SWC estimates based on the decomposition 64 
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of spatial anomaly outperformed those based on time-stable patterns (Perry and 65 

Niemann, 2007). 66 

Recently, the spatiotemporal SWC was also decomposed into a temporal mean and 67 

a temporal anomaly (Mittelbach and Seneviratne, 2012) (Fig. 1). Previous studies 68 

indicated that the contribution of the temporal anomaly to the total spatial variance 69 

was notable (Mittelbach and Seneviratne, 2012; Brocca et al., 2014; Rӧtzer et al., 70 

2015). These studies, however, only focused on surface soils at large scales (> 250 71 

km
2
). Vanderlinden et al. (2012) suggested that the temporal mean may be further 72 

decomposed into its spatial mean and residuals, and the temporal anomaly may be 73 

further decomposed into space-invariant term (i.e., spatial mean of temporal anomaly) 74 

and space-variant term (i.e., spatial residuals of temporal anomaly) (Fig. 1). Note that 75 

the spatial variance in the temporal anomaly (Mittelbach and Seneviratne, 2012) 76 

equals that of the space-variant term of the temporal anomaly (Vanderlinden et al., 77 

2012). The further decomposition of the temporal anomaly may be physically 78 

meaningful, because the space-invariant and space-variant terms in the temporal 79 

anomaly may be forced differently. However, the models of Mittelbach and 80 

Seneviratne (2012) and Vanderlinden et al. (2012) have not been used for estimating 81 

spatially distributed SWC. If the space-variant terms are ignored during the estimation 82 

of spatially distributed SWC, their models are equivalent to that based on time-stable 83 

patterns. Therefore, estimation of spatially distributed SWC may be improved by 84 

incorporating the space-variant term of the temporal anomaly if underlying (i.e., 85 

time-invariant) spatial patterns exist in the temporal anomaly. 86 
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To our knowledge, the importance of the space-variant term of the temporal 87 

anomaly and its physical meaning at small watershed scales is not well-known. Based 88 

on previous studies (Perry and Niemann, 2007; Mittelbach and Seneviratne, 2012; 89 

Vanderlinden et al., 2012), we assume soil water dynamics at watershed scales can be 90 

decomposed into three components (Fig. 1): (1) time-stable pattern (i.e., temporal 91 

mean, spatial forcing): the “static” factors such as soil and topography control the 92 

pattern; (2) space-invariant temporal anomaly (temporal forcing): the “dynamic” 93 

factors such as meteorological variables and vegetation change with time, and 94 

therefore modify SWC in time, regardless of spatial locations; and (3) space-variant 95 

temporal anomaly (interactions between spatial forcing and temporal forcing): this 96 

term represents interactions between “static” and “dynamic” factors. For example, 97 

SWC recharge introduced by a rainfall may be modified by topography through 98 

runoff processes; SWC loss triggered by evapotranspiration may be regulated by 99 

topography through solar radiation exposure.  100 

The “static” factors may be persistent in the space-variant temporal anomaly, and 101 

their impacts on the space-variant temporal anomaly likely change with time. Thus, 102 

we hypothesize that some underlying (i.e., time-invariant) spatial patterns exist in the 103 

space-variant temporal anomaly, and their impacts can be modulated by a time 104 

coefficient, both of which can be obtained by the EOF method (Fig. 1). If the 105 

hypothesis is true, the estimation of spatially distributed SWC utilizing the EOF 106 

decomposition may outperform the one suggested by Perry and Niemann (2007). This 107 

is because: (1) the spatial anomaly which was decomposed using the EOF in Perry 108 
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and Niemann (2007) lumped the time-stable pattern and space-variant temporal 109 

anomaly together (Fig. 1); (2) the underlying spatial patterns in the spatial anomaly 110 

may not fully capture both time-stable patterns and patterns in the space-variant 111 

temporal anomaly due to the possible nonlinear relations between these two terms.  112 

Therefore, the objectives were (1) to test the hypothesis that underlying spatial 113 

patterns exist in the space-variant temporal anomaly at small watershed scales and (2) 114 

to examine whether the decomposition of the space-variant temporal anomaly using 115 

the EOF has any advantages over the decomposition of the spatial anomaly (Perry and 116 

Niemann, 2007) for estimating spatially distributed SWC. Two steps were included in 117 

the estimation of spatially distributed SWC. First, the spatial mean SWC was upscaled 118 

from the SWC measurement at the most time-stable location using time stability 119 

analysis. Following this, the spatially distributed SWC was downscaled from the 120 

estimated spatial mean SWC. For the purpose of this study, spatiotemporal SWC 121 

datasets at depths of near surface (0–0.2 m) and root zone (0–1.0 m) from a Canadian 122 

prairie landscape were used. Spatiotemporal SWC of samples taken 0–0.06 m from a 123 

hillslope (100 m) in the Chinese Loess Plateau and 0–0.15 m from the GENCAI 124 

network (~250 km²) in Italy were also used to further demonstrate conditions under 125 

which the decomposition of the spatial anomaly was beneficial to the estimation of 126 

spatially distributed SWC. 127 

2. Materials and methods 128 

2.1 Study area and data collection 129 
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This study was mainly conducted in the Canadian prairie pothole region (hereafter 130 

abbreviated as Canadian site) at St. Denis National Wildlife Area (52°12′ N, 106°50′ 131 

W) with an area of 3.6 km
2
. This area has a humid continental climate (Peel et al., 132 

2007), and had a mean annual air temperature of 1.9 °C and a mean annual 133 

precipitation of 402 mm during the study period (Fig. 2). A variety of depressions, 134 

knolls, and knobs result in a sequence of undulating slopes (Biswas et al., 2011). The 135 

elevation varies from 554.8 to 557.5 m. The soils are dominated by clay loam textured 136 

Mollisols (Soil Survey Staff, 2010) and covered by mixed grass, i.e., smooth brome 137 

grass (Bromus inermis) and alfalfa (Medicago sativa L.). The near surface soil 138 

porosity ranges from 38% (knolls) to 70% (depressions). Calcium carbonates (CaCO3) 139 

derived mostly from fragments of limestone rocks are common in the Canadian 140 

Prairies. The CaCO3 is dissolved by the slightly acidic rainwater moving through the 141 

upper horizons and deposited to lower horizons. The heterogeneous amount of 142 

infiltrated water resulted in a varying depth of CaCO3 layer ranging from almost 0 m 143 

in the knolls to 2.1 m in the depressions. A 576 m long sampling transect with 128 144 

sampling locations spaced at 4.5 m intervals was established over several rounded 145 

knolls and depressions. At each location, a time domain reflectometry probe was used 146 

to measure SWC of the near surface soil (0–0.2 m), and a neutron probe was used to 147 

collect SWC measurements at 0.2 m intervals between a depth of 0.2 and 1.0 m. The 148 

SWC was measured on a volumetric basis and expressed as a percentage (%) volume 149 

of water per unit soil volume. The SWC of the root zone was calculated by averaging 150 

the SWC of 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1.0 m. Soil water content was 151 
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measured on 23 dates from July 17, 2007 to September 29, 2011. The SWC dataset 152 

was collected in all seasons except winter, and accurately portrays the variations in 153 

soil water conditions in the study area. In addition to the SWC dataset, the soil, 154 

vegetative, and topographical properties were obtained at each sampling location. 155 

These properties included soil particle components (clay, silt, and sand contents), bulk 156 

density, soil organic carbon (SOC) content for the surface layer, A horizon depth, C 157 

horizon depth, depth to the CaCO3 layer, leaf area index, elevation, cos(aspect), slope, 158 

curvature, gradient, upslope length, solar radiation, specific contributing area, 159 

convergence index, wetness index, and flow connectivity. Detailed information on the 160 

measurements can be found in Biswas et al. (2012). The datasets from the Canadian 161 

site were used to demonstrate the following two aspects in detail: (1) different 162 

components of spatiotemporal SWC and their contributing factors, and (2) the 163 

advantages of the new decomposition method over the method suggested by Perry and 164 

Niemann (2007) in terms of the estimation of spatially distributed SWC. 165 

To further test the applicability of the new method, we compared its performance at 166 

two other sites, covering both the hillslope and the large watershed scale. Along a 167 

hillslope of 100 m in length in the Chinese Loess Plateau, SWC of 0–0.06 m was 168 

measured 136 times from June 25, 2007 to August 30, 2008 by a Delta-T Devices 169 

Theta probe (ML2x) at 51 locations (Hu et al., 2011). The hillslope was covered by 170 

Stipa bungeana Trin. and Medicago sativa L. in sandy loam and silt loam soils. In the 171 

GENCAI network (~250 km²) in Italy, SWC of 0–0.15 m was measured by a TDR 172 

probe at 46 locations, 34 times from February to December in 2009 (Brocca et al., 173 
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2012, 2013). The GENCAI area was dominated by grassland with a flat topography, 174 

in silty clay soils.  175 

2.2 Statistical models for decomposing soil water content  176 

  Spatiotemporal SWC at small watershed scales was decomposed into three 177 

components: time-stable pattern, space-invariant temporal anomaly, and space-variant 178 

temporal anomaly. This model was compared to the one that decomposed SWC into 179 

spatial mean and spatial anomaly (Perry and Niemann, 2007). Both the space-variant 180 

temporal anomaly and spatial anomaly were decomposed using the EOF method. The 181 

two models are termed temporal anomaly (TA) model and spatial anomaly (SA) 182 

model, respectively. Figure 1 displays the differences between the two models. Each 183 

component will be explained in detail later. The explanation of nomenclatures is listed 184 

in Table A1. Because we focus on estimating spatial distribution of SWC at any given 185 

time, only spatial variances of SWC were taken into account. Therefore, the variance 186 

or covariance denotes the quantity in space without specifications. 187 

2.2.1 The SA model 188 

Perry and Niemann (2007) expressed SWC at location n and time t ( tnS ) as (Fig. 189 

1):  190 

 
ˆ tn tntn

S S Z ,        (1) 191 

where ˆtnS  is the spatial mean SWC at time t (temporal forcing) and tnZ  is the 192 

spatial anomaly of SWC (lumped spatial forcing and interactions). The subscript n̂  193 

( t̂ ) indicates a space (time) averaged quantity. 194 

According to Perry and Niemann (2007), ˆtnS  can be estimated by remote sensing, 195 

water balance models, and in situ soil water measurement at a representative (or 196 
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time-stable) location. The in situ soil water measurement method was selected 197 

because the representative location can be easily determined with prior SWC datasets. 198 

By measuring SWC only at the most time-stable location (s) and future time t ( tsS ), 199 

ˆtnS  can be estimated using (Grayson and Western, 1998): 200 

ˆ

ˆ1

ts
tn

ts

S
S





 ,       (2) 201 

where the s was identified using the time stability index of mean absolute bias error 202 

(Hu et al., 2010, 2012). The 
t̂s
  is the temporal mean relative difference of SWC at 203 

the s, which was calculated with prior measurements. 204 

Spatial anomaly ( tnZ ) can be reconstructed by the sum of the product of 205 

time-invariant spatial structures (EOFs) and temporally varying coefficients (ECs) 206 

using the EOF method (Perry and Niemann, 2007; Joshi and Mohanty, 2010; 207 

Vanderlinden et al., 2012). The ECs correspond to the eigenvectors of the matrix of 208 

spatial covariance of the tnZ , and the EOFs are obtained by projecting the tnZ  onto 209 

the matrix ECs as: sZtn EC EOFs  . The number of EOF (or EC) series equals the 210 

number of sampling dates. Each EOF series corresponds to one value at each location, 211 

and each EC series has one value at each measurement time. Each EOF is chosen to 212 

be orthogonal to other EOFs, and the lower-order EOFs account for as much variance 213 

as possible. The sum of variances of all EOFs equals the sum of variances of tnZ  214 

from all measurement times.  215 

Usually, a substantial amount of variance can be explained by a small number of 216 

EOFs. Johnson and Wichern (2002) suggested the eigenvalue confidence limits 217 

method for selecting the number of EOFs. Once the number of significant EOFs at a 218 
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confidence level of 95% is selected, tnZ  can be estimated as the sum of the product 219 

of significant EOFs and associated ECs as: 220 

EOF (EC )
sigsig T

tnZ   ,              (3)
 

221 

where  EOFsig
 represents the significant EOFs of the tnZ  obtained during model 222 

development, ECsig  is the associated temporally varying coefficient, and the 223 

superscript T represents matrix transpose. Following Perry and Niemann (2007), the 224 

associated significant EC at time t ( ECt ), is estimated by the cosine relationship 225 

between EC and ˆtnS  developed using prior measurements:  226 

     ˆ

2
E C c o st t na b S d

c

 
   

 
,             (4) 227 

where a, b, c, and d are the fitted parameters using prior measurements and ˆtnS  is 228 

estimated from Eq. (2). By using the continuous function, ECt can be estimated at 229 

any ˆtnS  values, which allows for the estimation of spatially distributed SWC at any 230 

soil water conditions. 231 

2.2.2 The TA model 232 

Mittelbach and Seneviratne (2012) decomposed the tnS  into a time-stable pattern 233 

(i.e., temporal mean) and a temporal anomaly component (Fig. 1):  234 

ˆ 
ttn tnn

S M A ,                    (5) 235 

where 
t̂n

M  is the time-stable pattern (spatial forcing) controlled by “static” factors 236 

such as soil properties and topography; tnA  refers to the temporal anomaly (lumped 237 

temporal forcing and interactions). The variance of SWC (  2

n̂ tnS ) is the sum of 238 

variance of the 
t̂n

M  (  2

ˆn̂ tn
M ), variance of the tnA  (  2

n̂ tnA ), and two times of 239 

covariance between 
t̂n

M  and tnA  ( ),cov(2 ˆ tnnt
AM ), which can be expressed as: 240 
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     2 2 2

ˆ ˆˆ ˆ ˆ2cov( , )n tn n tn n tntn tn
S M M A A     .           (6) 241 

Because the tnA  in Mittelbach and Seneviratne (2012) is a lumped term, it can be 242 

further decomposed into space-invariant temporal anomaly (
ˆtn

A , i.e., temporal 243 

forcing) and space-variant temporal anomaly ( tnR , i.e., interactions) (Vanderlinden et 244 

al., 2012). At a watershed scale, the 
ˆtn

A  is controlled by temporally varying factors 245 

such as meteorological variables and vegetation. Positive and negative 
ˆtn

A  246 

correspond to relatively wet and dry periods, respectively. The tnR  refers to the 247 

redistribution of 
ˆtn

A  among different locations due to the interactions between 248 

spatial forcing and temporal forcing. For example, soil and topography regulate how 249 

much rainfall enters soil and how much water runs off or runs on at a location. This, 250 

in turn, dictates vegetation growth in a water-limited environment. Therefore, tnS  251 

can also be expressed as (Fig. 1):  252 

ˆ ˆ  tn tntntn
S M A R .               (7) 253 

The temporal trends of 
ˆtn

A  in Eq. (7) and ˆtnS  in Eq. (1) are the same as both 254 

represent temporal forcing. Because the 
ˆtn

A  is space-invariant and orthogonal to the 255 

t̂n
M  and tnR  in a space,  2

n̂ tnS  in Eq. (6) can also be written as: 256 

     2 2 2

ˆ ˆˆ ˆ ˆ2cov( , )n tn n tn n tntn tn
S M M R R     ,        (8) 257 

where ˆcov( , )tntn
M R  is the covariance between the 

t̂n
M  and tnR , and  2

n̂ tnR  is 258 

the variance of the tnR . Apparently, ˆ2cov( , )tntn
M R  equals ˆ2cov( , )tntn

M A , and 259 

 2

n̂ tnR  equals  2

n̂ tnA . The percent (%) of  2

ˆn̂ tn
M , ˆ2cov( , )tntn

M R , and 260 

 2

n̂ tnR  out of the  2

n̂ tnS  are calculated. The ˆcov( , )tntn
M R  can be negative at 261 

some conditions, for example, when the depressions correspond to greater 
t̂n

M  and 262 
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more negative tnR  values in the discharge periods. This resulted in percentage of 263 

 2

ˆn̂ tn
M  and  2

n̂ tnR  > 100% and percentage of ˆ2cov( , )tntn
M R  < 0% 264 

(Mittelbach and Seneviratne, 2012; Brocca et al., 2014; Rӧtzer et al., 2015). If tnR  265 

is zero at any time or location, there are no interactions between spatial forcing and 266 

temporal forcing,  2

n̂ tnS  and the spatial trends of SWC are consistent over time. 267 

Therefore, tnR  is directly responsible for temporal change in the spatial variability 268 

of SWC.  269 

If some underlying spatial patterns exist in tnR , tnR  can be reconstructed by the 270 

sum of the product of time-invariant spatial structures (EOFs) and time-dependent 271 

coefficients (ECs) using the EOF method. Note that the number of EOF (or EC) series 272 

also equals the number of sampling dates. 273 

For estimation of spatially distributed SWC, tnR  is estimated by the same method 274 

as tnZ  using Eq. (3). The 
t̂n

M  is estimated with prior measurements by: 275 

1
ˆ

1 m

tn

j
tn

M S
m 

  ,                (9) 276 

where m  is the number of previous measurement times, and 
ˆtn

A  is estimated by: 277 

ˆˆ ˆˆ tn tntn
A S M  ,

 
               (10) 278 

where ˆˆtn
M  is the spatial mean of 

t̂n
M , and ˆtnS  is estimated from SWC 279 

measurements at the most time-stable location using Eq. (2). 280 

The Pearson correlation coefficient (R) is used to explore the linear relationships 281 

between various spatial components in the two models (i.e., EOF1 of the tnZ  in the 282 

SA model, 
t̂n

M , and EOF1 of the tnR  in the TA model) and environmental factors 283 

(i.e., soil, vegetative, and topographical properties). The multiple stepwise regressions 284 
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are conducted to determine the percentage of variations in the spatial components 285 

which the controlling factors explain.  286 

2.3 Validation and performance parameter 287 

The TA model is more complicated than the SA model. In order to evaluate the two 288 

models for parsimony, AICc values are calculated (Burnham and Anderson, 2002) as: 289 

)1/()1(2)/ln(2AICc    knkknRSSnk ,         (11) 290 

where k is the number of parameters, n is the sample size, and RSS is the residual sum 291 

of squares. 292 

Both cross validation and split sample validation are used to estimate SWC 293 

distribution with both models. For the cross validation, an iterative removal of 1 of the 294 

23 dates is made for model development, and the SWC along the transect 295 

corresponding to the removed date is estimated iteratively. For the split sample 296 

validation, SWC from 14 dates of the first two years (from July 17, 2007 to May 27, 297 

2009) is used for model development, and the SWC distribution of 9 dates in the 298 

second two years (from July 21, 2009 to September 29, 2011) is estimated. 299 

The Nash-Sutcliffe coefficient of efficiency (NSCE) is used to evaluate the quality 300 

of estimation of spatially distributed SWC, which is expressed as: 301 

2

2
 NSCE 1

measure




  ,         (12) 302 

where 
2

measure  is the variance of measured SWC, and 
2

  is the mean squared 303 

estimation error. A larger NSCE value implies a better quality of estimation. A paired 304 

samples T-test is used to test whether the NSCE values between the TA model and the 305 

SA model are statistically significant at P<0.05.  306 
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  Many factors may affect the relative performance of spatially distributed SWC 307 

estimation between the TA model and the SA model. First, the degree of 308 

outperformance of the TA model over the SA model may depend on the amount of 309 

tnR  variance considered in the TA model. On one hand, the two models are identical 310 

if variance of tnR  is close to zero or there are negligible interactions between the 311 

spatial and temporal components (Fig. 1). On the other hand, if no underlying spatial 312 

patterns exist in the tnR  or the underlying spatial patterns accounted for little 313 

variance of the tnR , the outperformance will also be very limited. Therefore, the 314 

greater the variance of tnR  considered in the TA model, the more likely the TA 315 

model can outperform the SA model. Second, the way of EOF decomposition may 316 

also affect the relative performance. In the SA model, EOF decomposition is 317 

performed on lumped time-stable patterns (
t̂n

M ) and space-variant temporal anomaly 318 

( tnR ). In the TA model, however, EOF decomposition is made only on the tnR . In 319 

theory, the two models will be identical if the 
t̂n

M  and the first underlying spatial 320 

pattern (i.e., EOF1) of the tnR  were perfectly correlated. If a nonlinear relationship 321 

exists between them, lumping the 
t̂n

M  and tnR  together, as in the SA model, 322 

would weaken the model performance as compared to the TA model. From this aspect, 323 

the greater deviation from a linear relationship between the 
t̂n

M  and EOF1 of the 324 

tnR , may lead to a greater outperformance of the TA model over the SA model. 325 

Finally, the performances of both models rely on the estimation accuracy of the ECt326 

which depends on both goodness of fit of the cosine function (i.e., Eq. 4) and 327 

estimation accuracy of the ˆtnS . Because the same ˆtnS  values are used for the two 328 
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models, the relative performance of the two models is related to the goodness of fit of 329 

Eq. (4).  330 

3. Results 331 

3.1 Components of SWC and their controls 332 

3.1.1 Spatial mean ( ˆtnS ) and spatial anomaly ( tnZ ) 333 

The values of spatial mean ( ˆtnS ) in the SA model varied with the seasons (Fig. 3a). 334 

In the spring, such as May 2, 2008 and April 20, 2009, snowmelt infiltration resulted 335 

in relatively great ˆtnS  values. In the summer, however, even one month after large 336 

rainfall events (such as on July 19, 2008 and June 21, 2009), the high 337 

evapotranspiration by fast-growing vegetation resulted in small ˆtnS  values. The 338 

values of ˆtnS  also varied between inter-annual meteorological conditions. In 2008, 339 

there was less precipitation and higher air temperature than in 2010 (Fig. 2). As a 340 

result, ˆtnS  was relatively smaller in 2008 than in 2010. 341 

The spatial patterns of spatial anomaly ( tnZ ) were similar to those of the original 342 

SWC patterns (Fig. 3a). The values of tnZ  in wet periods (e.g., May 13, 2011) were 343 

much greater than in dry periods (e.g., August 23, 2008) in depressions (e.g., at a 344 

distance of 123 and 250 m); at other locations, however, the spatial anomaly was 345 

slightly less in wet periods than in dry periods for both soil layers. Moreover, the 346 

spatial anomaly in depressions during the wet periods was much greater in the near 347 

surface than in the root zone. 348 

When SWCs of all 23 dates were used for model development, only EOF1 was 349 
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statistically significant (Fig. 4a), which accounted for 84.3% (0–0.2 m) and 86.5% 350 

(0–1.0 m) of the variances in the tnZ . Correlation analysis indicated that the spatial 351 

pattern of EOF1 in the tnZ  was identical to the time-stable patterns (
t̂n

M ) in the TA 352 

model (R=1.0). The controls of EOF1 was therefore the same as those of 
t̂n

M , and 353 

will be discussed later. The relationship between associated EC1 and ˆtnS  can be 354 

fitted well by the cosine function (R
2
=0.73 at both the near surface and root zone) (Fig. 355 

4b). 356 

3.1.2 Time-stable pattern (
t̂n

M ), space-invariant temporal anomaly (
ˆtn

A ), and 357 

space-variant temporal anomaly ( tnR ) 358 

Figure 3b displays the three components in the TA model. The first component 359 

t̂n
M  fluctuated along the transect, with high values in depressions and low values on 360 

knolls; the 
t̂n

M  also had greater spatial variability in the near surface (variance 361 

=36.7%
2
) than in the root zone (variance=19.5%

2
). For both soil layers, SOC, depth to 362 

the CaCO3 layer, sand content, and wetness index are the dominant factors of 
t̂n

M ; 363 

they together explained 74.5% (near surface ) and 75.6% (root zone) of the variances 364 

in the 
t̂n

M  (Table 1). In addition, the temporal trend of 
ˆtn

A  was the same as that of 365 

ˆtnS  in the SA model (Fig. 3a) as both represent temporal forcing. 366 

The tnR  varied among landscape positions (Fig. 3b). At a sampling distance of 367 

123 m (in a depression), tnR was negative in dry periods such as August 23, 2008 and 368 

positive in wet periods such as May 13, 2011. This was true for all depressions for 369 

both the near surface and the root zone. Therefore, topographically lower positions 370 

usually corresponded to more positive tnR  during the wet periods and more negative 371 
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tnR  during the dry periods. Furthermore, the absolute values of tnR  were generally 372 

greater in the near surface than the root zone, indicating a greater space-variant 373 

temporal anomaly for shallower depths.  374 

The SWC variances and associated components (Eq. 8) also varied with time (Fig. 375 

5). Often, wetter conditions corresponded to greater  2

n̂ tnS , as further indicated by 376 

moderate correlation between  2

n̂ tnS  and ˆtnS  (R
2
 of 0.51 and 0.38 for the near 377 

surface and the root zone, respectively). This was in agreement with others 378 

(Gómez-Plaza et al., 2001; Martínez-Fernández and Ceballos, 2003; Hu et al., 2011). 379 

Furthermore, there were greater  2

n̂ tnS  values at near surface than in the root zone, 380 

indicating greater variability of SWC in the near surface.  381 

The time-invariant  2

ˆn̂ tn
M  accounted for the  2

n̂ tnS  with percentages 382 

ranging from 25 to 795% for the near surface and from 40 to 174% for the root zone 383 

(Fig. 5). The  2

ˆn̂ tn
M  exceeded the  2

n̂ tnS  mainly under dry conditions, such as 384 

July–October in 2008 and 2009. This excess was offset by the  2

n̂ tnR  and 385 

ˆ2cov( , )tntn
M R , with the latter accounting for the  2

n̂ tnS  negatively with mean 386 

absolute percentages of 210% for the near surface and 17% for the root zone. In the 387 

dry period, the absolute percentage of ˆ2cov( , )tntn
M R  was up to 1327% for the near 388 

surface and 122% for the root zone. These values are comparable to those in 389 

Mittelbach and Seneviratne (2012) and Brocca et al. (2014).  390 

The  2

n̂ tnR  accounted for less percentage of the  2

n̂ tnS  than other 391 

components did (Fig. 5). The percentages of  2

n̂ tnR  ranged from 11 to 632% 392 

(arithmetic average of 118%) for the near surface and from 6 to 48% (arithmetic 393 
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average of 19%) for the root zone; the percentage of  2

n̂ tnR  tended to be greater in 394 

drier periods. This indicates that the space-variant temporal anomaly cannot be 395 

ignored, particularly in dry conditions. Furthermore, the percentage of  2

n̂ tnR  was 396 

greater in the near surface than in the root zone, confirming stronger temporal 397 

dynamics of soil water at the near surface. Compared with larger scale studies 398 

(Mittelbach and Seneviratne, 2012; Brocca et al., 2014), the percentage of  2

n̂ tnR  399 

out of the  2

n̂ tnS at the near surface was greater, with a mean percentage of 118%, 400 

versus 9–68% in the other, larger scale studies. This indicates that interactions 401 

between spatial and temporal forcing were stronger, resulting in relatively more 402 

intensive temporal dynamics of soil water in our study area than at larger scales. 403 

Three significant EOFs of tnR  for both soil layers were identified when SWC of 404 

all 23 dates were used for model development. The first three EOFs explained 61.1, 405 

13.4, and 8.1% respectively, of the total tnR  variance for the near surface, and 44.3, 406 

20.2, and 12.4%, respectively, of the total tnR  variance in the root zone. Therefore, 407 

our hypothesis that underlying spatial patterns exist in the tnR  was supported. Due 408 

to the negligible contribution of EOF2 and EOF3 to the estimation of spatially 409 

distributed SWC, only EOF1 is shown in Fig. 6a. The associated EC1 changed with 410 

soil water conditions ( ˆtnS ) (Fig. 6b). When SWC was close to average levels, the EC1 411 

was close to 0, resulting in negligible tnR . This was in accordance with Mittelbach 412 

and Seneviratne (2012) and Brocca et al. (2014), who showed that the spatial variance 413 

of the temporal anomaly was the smallest when water contents were close to average 414 

levels. The cosine function (Eq. 4) explained a large amount of the variances in EC1 415 
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for both soil layers (R
2
=0.76 at the near surface and 0.88 in the root zone).  416 

The contribution of EOF1 to the space-variant temporal anomaly can be examined 417 

through the product of the EOF1 and the associated EC1. The EC1 values tended to 418 

be positive during wet periods and negative during dry periods (Fig. 6b); more 419 

positive EOF1 values were usually observed at locations with greater 
t̂n

M  values 420 

(Figs. 3b and 6a). Therefore, the product of EOF1 and EC1 led to greater temporal 421 

SWC dynamics at wetter locations of both layers in both the wet and dry periods. 422 

Depth to the CaCO3 layer and SOC had significant, positive correlations with 423 

EOF1 for both soil layers (R ranging from 0.76 to 0.88; Table 1). They jointly 424 

accounted for 81.6% (near surface) and 81.0% (root zone) of the variances in EOF1. 425 

This implies that locations with a greater depth to the CaCO3 layer and SOC, which 426 

correspond to wetter locations such as depressions, usually have greater temporal 427 

SWC dynamics during both wet and dry periods. 428 

3.2 Estimation of spatially distributed SWC 429 

When all 23 datasets were used and only EOF1 was considered, the TA model had 430 

an AICc value of 4093 for the near surface and 562 for the root zone, while the 431 

corresponding values for the SA model were 6370 and 3460. This indicated that even 432 

when penalty to complexity was given, the TA model was better than the SA model. 433 

The two models in terms of spatially distributed SWC estimation are compared below.  434 

3.2.1 The TA model 435 

  The tnR  terms and associated EOFs differed slightly with each validation. The 436 

number of significant EOFs varied between one (accounting for 60% of the total cases) 437 
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and three for both soil layers. A paired samples T-test indicated that more EOFs did 438 

not result in a significant increase of NSCE in the estimation of spatially distributed 439 

SWC for both validation methods. This is also supported by the increasing AICc 440 

values with the increasing number of parameters resulting from more EOFs (data not 441 

shown). This indicates that higher-order EOFs, even if they are statistically significant, 442 

are negligible for SWC prediction. Therefore, SWC distribution was estimated with 443 

EOF1 only. 444 

Estimated SWCs generally approximated those measured at different soil water 445 

conditions during the cross validation (Fig. 7). However, on October 27, 2009, there 446 

were unsatisfactory overestimates at the 100–140 and 220–225 m locations near the 447 

surface (Fig. 7a). Unsatisfactory NSCE values of -4.05, -1.83, and -3.81 were 448 

obtained in the near surface in only three of the 23 dates, which were all in the fall 449 

(October 22, 2008, August 27, 2009, and October 27, 2009, respectively). The poor 450 

performance obtained with the TA model on those dates (Fig. 8a) was a result of 451 

overestimation in depressions, which is shown for example on October 27, 2009 (Fig. 452 

7a). These dates also corresponded to a high percentage of  2

n̂ tnR  to the  2

n̂ tnS  453 

(203–439%). For August 23 and September 17 in 2008, which were in dry periods, 454 

the percentage of  2

n̂ tnR  at the near surface was also high (580 and 630%). 455 

Because a fair amount of  2

n̂ tnR  was accounted for with the TA model, the TA 456 

model performed satisfactorily (NSCE of 0.43 and 0.60). For the remaining 20 dates, 457 

the resulting NSCE value ranged from 0.38 to 0.90 in the near surface and from 0.65 458 

to 0.96 in the root zone (Fig. 8). This suggests that the TA model was generally 459 
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satisfactory, with better performance in the root zone than in the near surface. 460 

During the split sample validation, the TA model resulted in SWC estimations with 461 

NSCE values ranging from 0.61 to 0.85 near the surface and from 0.32 to 0.92 in the 462 

root zone, with exception of two days (August 27, 2009 and October 27, 2009 with 463 

NSCE values of -2.63 and -5.12, respectively) at 0–0.2 m (Fig. 8). This suggested that 464 

the TA model performed well in estimating spatially distributed SWC patterns except 465 

on August 27, 2009 and October 27, 2009 at 0–0.2 m. The estimation in the root zone 466 

was also generally better than in the near surface. 467 

3.2.2 Comparison with the SA model 468 

One significant EOF of tnZ  was identified for both soil layers, irrespective of the 469 

validation method. The SA model with only EOF1 produced reasonable SWC 470 

estimations for both validations in all dates in the root zone and in every date except 471 

five dates (August 23, 2008, September 17, 2008, October 22, 2008, August 27, 2009, 472 

and October 27, 2009) in the near surface (Fig. 8). Similarly, when more EOFs were 473 

included, NSCE values did not increase significantly (data not shown) and 474 

consequently, estimation of spatially distributed SWC was not improved. This was 475 

because EOF2 and EOF3 together explained a very limited (<10%) amount of 476 

variability of tnZ  and thus had low predictive power in terms of variance. 477 

The difference in NSCE values between the TA and SA models for both validations 478 

are presented in Fig. 9. Generally, the difference decreased as 
ˆtn

A  increased, and 479 

then slightly increased with a further increase in 
ˆtn

A . A paired samples T-test 480 

indicated that the NSCE values of the TA model were significantly (P<0.05) greater 481 
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than those of the SA model for both soil layers, irrespective of validation methods. 482 

This indicates that the TA model outperformed the SA model, particularly in dry 483 

conditions. This was because when the soil was dry, there was a high percentage of 484 

 2

n̂ tnR , and thus strong variability in the space-variant temporal anomaly.  485 

3.3 Further application at other two sites with different scales 486 

3.3.1 A hillslope in the Chinese Loess Plateau 487 

On average, the  2

ˆn̂ tn
M ,  2

n̂ tnR , and ˆ2cov( , )tntn
M R  accounted for 53, 74 488 

and -27% out of the  2

n̂ tnS , indicating that both time-stable pattern and temporal 489 

anomalies were the main contributors to the  2

n̂ tnS . The EOF analysis showed that 490 

only the EOF1 was statistically significant for both the tnR  and tnZ , and the EOF1 491 

explained 23% and 47% of the total variances of tnR  and tnZ , respectively. This 492 

illustrated that underlying spatial patterns exist in the tnR  on the hillslope. Cross 493 

validation was used to estimate the spatially distributed SWC along the hillslope. The 494 

results showed that the NSCE varied from -4.25 to 0.83 (TA model) and from -4.30 to 495 

0.81 (SA model), with a mean value of 0.25 and 0.19, respectively (Fig. 10a). A paired 496 

samples T-test showed that the NSCE values for the TA model were significantly 497 

(P<0.05) greater than those for the SA model, indicating that the TA model 498 

outperformed the SA model. As Fig. 10a shows, the outperformance was greater when 499 

SWC deviated from intermediate conditions, especially for dry conditions, which was 500 

similar to the Canadian site.  501 

3.3.2  The GENCAI network in Italy 502 

The  2

ˆn̂ tn
M ,  2

n̂ tnR , and ˆ2cov( , )tntn
M R  accounted for 38, 68, and -7% out 503 
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of the  2

n̂ tnS  (Brocca et al., 2014), indicating the dominant role of temporal 504 

anomalies in SWC variability. The first three EOFs of the tnR  explained 19, 16, and 505 

8% of the total  2

n̂ tnR , and no EOFs were statistically significant, indicating that no 506 

underlying spatial patterns exist in the tnR . The EOF1 of the tnZ  was significant 507 

and accounted for 37% of the variances in the tnZ . Although the EOF1 of the tnR  508 

was not significant, it was considered in the TA model for estimating spatially 509 

distributed SWC. The cross validation indicates that the NSCE varied from -0.79 to 510 

0.50 (TA model) and from -0.87 to 0.56 (SA model), with mean values of 0.09 and 511 

0.08, respectively (Fig. 10b). The SWC estimation based on these two models was not 512 

satisfactory except for a few days. As Fig. 10b shows, the differences in NSCE values 513 

between the two models were scattered around 0. A paired samples T-test showed that 514 

the NSCE values between the TA model and the SA model were not significant 515 

(P<0.05), indicating no differences in estimating spatially distributed SWC between 516 

these two models.  517 

4 Discussion 518 

4.1  Controls of the 
t̂n

M  and tnR  519 

The tnR  played an important role in the temporal change in spatial patterns of the 520 

SWC. The underlying spatial patterns and physical meaning in the tnR were 521 

examined in our study for the first time. Although three significant EOFs of the tnR  522 

existed in some cases, only EOF1 rather than higher-order EOFs of the tnR  should 523 

be considered for the spatially distributed SWC estimation. Among many factors 524 
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influencing the EOF1 of the tnR , depth to the CaCO3 layer followed by the SOC, 525 

were the most important factors. Depressions have deeper CaCO3 layers than knolls, 526 

and the shallow CaCO3 layer on knolls limited water infiltration during rainfall or 527 

snowmelt, resulting in less water recharge on knolls than in depressions. The depth to 528 

CaCO3 layer and SOC were negatively correlated with elevation (R=-0.54, P<0.01). 529 

Therefore, the influence of depth to CaCO3 layer and SOC partially reflected the role 530 

of topography in driving snowmelt runoff along slopes in the spring, which 531 

contributes to increasing water recharge in depressions. As already demonstrated, 532 

topographically lower positions corresponded to more negative tnR  during the dry 533 

periods. This implies that depressions lost more water during discharge. This is 534 

because depressions usually corresponded to vegetation with a larger leaf area index, 535 

which would result in higher evapotranspiration and more water loss during discharge 536 

periods.  537 

As Table 1 shows, both the depth to the CaCO3 layer and SOC controlled the 
t̂n

M . 538 

This was because deeper CaCO3 layers and higher SOC were observed in depressions 539 

where soils were usually wetter in most of the year because of the snowmelt runoff in 540 

the spring and rainfall runoff in the summer and autumn (van der Kamp et al., 2003). 541 

Therefore, the roles of soil and topography were two-fold: On one hand, they were 542 

highly correlated with the time-stable patterns and thus the time stability of SWC 543 

(Gómez-Plaza et al., 2000; Mohanty and Skaggs, 2001; Grant et al., 2004); On the 544 

other hand, soil and topography, interplaying with temporal forcing, triggered 545 

local-specific soil water change and destroyed time stability of SWC. Their roles in 546 
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protecting time stability persisted, but their roles in destroying time stability varied 547 

with time. Greater  2

n̂ tnR  implies greater contribution of these factors in soil water 548 

dynamics, resulting in less time stability of SWC. 549 

4.2  Model performance for spatially distributed SWC estimation 550 

The outperformance of the TA model for estimating spatial SWC at the Canadian 551 

site and Chinese site can be partly explained by the high percentages (average of 552 

19–118%) of the  2

n̂ tnR  out of the total variance. When SWC is close to average 553 

levels, tnR  is also close to zero, resulting in negligible percentage of  2

n̂ tnR . In 554 

this case, the soil water patterns are stable in time, the SA model performs well, and 555 

there will be little differences between these two models. As is well known, the spatial 556 

patterns in soil water content are inherently time unstable. For example, when 557 

evapotranspiration becomes the dominant process at the small watershed scale, more 558 

water will be lost in depressions due to the denser vegetation than on knolls (Millar, 559 

1971; Biswas et al., 2012), effectively diminishing the spatial patterns and increasing 560 

temporal instability. In this case, the  2

n̂ tnR  accounts for more percentage of the 561 

total variance (e.g., high up to 632%) and the TA model may outperform the SA 562 

model. This explained why the outperformance of the TA model was more obvious in 563 

the dry conditions. For the GENCAI network in Italy, although the  2

n̂ tnR  564 

accounted for 68% of the total variance, the performance of the TA model was 565 

identical to the SA model. This was because there were no underlying spatial patterns 566 

in the tnR . Similarly, because the first underlying spatial pattern (i.e., EOF1) 567 

explained greater percentages of the  2

n̂ tnR  at the Canadian site (44–61%) than the 568 
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Chinese site (23%), the outperformance of the TA model over the SA model was more 569 

obvious at the former site (Fig. 9 and 10a). Therefore, the TA model is advantageous 570 

only if the percentage of  2

n̂ tnR  out of the total variance is substantial and 571 

underlying spatial patterns exist in the tnR . 572 

The existence of underlying spatial patterns in the tnR  is related to the controlling 573 

factors, which may be scale-specific. At small scales, “static” factors such as the depth 574 

to the CaCO3 layer and SOC at the Canadian site may affect not only the time-stable 575 

patterns but also the tnR . The persistent influence of “static” factors on the tnR  576 

resulted in significant underlying spatial patterns in the tnR . Thus, the TA model 577 

outperformed the SA model at the small scales. At large scales such as the basin scale 578 

or greater, time-stable patterns may be controlled by, in addition to soil and 579 

topography (Mittelbach and Seneviratne, 2012), the climate gradient (Sherratt and 580 

Wheater, 1984); at those scales, tnR  is more likely to be controlled by the 581 

meteorological anomaly (i.e., spatially random variation) (Walsh and Mostek, 1980), 582 

and the effects of soil and topography may be reduced. Consequently, spatial patterns 583 

in the tnR  may be weakened and the TA model may have no advantages over the SA 584 

model such as for the Italian site.  585 

The 
t̂n

M  and the underlying spatial patterns (EOF1) in the tnR  were controlled 586 

by the same spatial forcing (e.g., depth to CaCO3 layer and SOC) at the Canadian site
 

587 

(Table 1), and they were correlated with an R
2
 of 0.83 for the near surface and 0.42 for 588 

the root zone. Although the relationships between 
t̂n

M  and tnR  were strong, they 589 

were not strictly linear, suggesting that 
t̂n

M  and tnR  were affected differently by 590 
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these factors. Therefore, the nonlinear relationship between 
t̂n

M  and tnR  partially 591 

contributed to the outperformance of the TA model over the SA model.  592 

The relationship between the ˆtnS  and EC1 was better fitted by the cosine function 593 

in the TA model than the SA model (Figs. 4b and 6b), with R
2
 of 0.76 versus 0.73 in 594 

the near surface and 0.88 versus 0.73 in the root zone. The reduced scatter in the ˆtnS  595 

and EC1 relationship for the TA model may also partly explain the outperformance of 596 

the TA model over the SA model.  597 

Therefore, the outperformance of the TA model over the SA model depends on 598 

counterbalance among the variance of tnR  explained in the TA model, the linear 599 

correlation between the 
t̂n

M  and EOF1 of the tnR , and the goodness of fit for the 600 

ˆtnS  and EC1 relationship. For example, the variance of EOF1 in the tnR  for the 601 

near surface (i.e., 264%
2
) was much greater than that for the root zone (i.e., 43%

2
). 602 

However, 
t̂n

M  and underlying spatial patterns (EOF1) in the tnR  in the root zone 603 

deviated more from a linear relationship, and the reduced scatter in the ˆtnS  and EC1 604 

relationship in the TA model was more obviously in the root zone than in the near 605 

surface. As a result, the outperformance of the TA model was comparable between the 606 

near surface and root zone at the Canadian site (Fig. 9). 607 

In the real world, the relations between the 
t̂n

M  and underlying spatial patterns in 608 

the tnR  may rarely be perfectly linear. Therefore, when underlying spatial patterns 609 

exist in the tnR  and the tnR  has substantial variances, the TA model is preferable 610 

to the SA model for the estimation of spatially distributed SWC. On the other hand, 611 

when underlying spatial patterns do not exist in the tnR  or the tnR  has negligible 612 
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variances, the SA model may be selected although these two models yield the same 613 

quality of SWC estimation. This is because the TA model needs one more spatial 614 

parameter (i.e., 
t̂n

M ) than the SA model.  615 

Previous studies on SWC decomposition mainly focus on near surface layers 616 

(Jawson and Niemann, 2007; Perry and Niemann, 2007, 2008; Joshi and Mohanty, 617 

2010; Korres et al., 2010; Busch et al., 2012). This study decomposed spatiotemporal 618 

SWC using the TA model for both the near surface and the root zone. The results 619 

showed that the estimation of spatially distributed SWC at small watershed scales was 620 

improved by the TA method that considers the tnR . The  2

ˆn̂ tn
M  was greater than 621 

the  2

n̂ tnR  (Fig. 5), indicating that time stability was more important than time 622 

instability for SWC estimation. For the three dates in the fall (i.e., October 22, 2008, 623 

August 27, 2009, and October 27, 2009), strong evapotranspiration and deep drainage 624 

in depressions resulted in a much lower SWC at the near surface than in the spring. 625 

This resulted in reduced time stability of SWC patterns and poor performance of both 626 

models in terms of SWC evaluation (Fig. 8a). Because of the stronger time stability of 627 

SWC in deeper soil layers (Biswas and Si, 2011), SWC evaluation was more accurate 628 

for soil layers extending from the surface to greater depth. This is particularly 629 

important because SWC data for deeper soil layers in a watershed is more difficult to 630 

collect than that of surface soil. 631 

5 Conclusions 632 

The TA model was used to decompose spatiotemporal SWC into time-stable 633 
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patterns 
t̂n

M , space-invariant temporal anomaly 
ˆtn

A , and space-variant temporal 634 

anomaly tnR . This study indicated that underlying spatial patterns may exist in the 635 

tnR  at small scales (e.g., small watersheds and hillslope) but may not exist at large 636 

scales such as the GENCAI network (~250 km²) in Italy. This was because the tnR  637 

at small scales was driven by “static” factors such as depth to the CaCO3 layer and 638 

SOC at the Canadian site, while the tnR  at large scales may be dominated by 639 

“dynamic” factors such as meteorological anomaly. Compared to the SA model, 640 

estimation of spatially distributed SWC was improved with the TA model at small 641 

watershed scales. This was because the TA model considered a fair amount of spatial 642 

variance in the tnR , which was ignored in the SA model. Furthermore, the improved 643 

performance was observed mainly when there was less or more soil water than the 644 

average level, especially in drier conditions due to the high  2

n̂ tnR  value.   645 

This study showed that outperformance of the TA model over the SA model is 646 

possible when  2

n̂ tnR  accounts for substantial variance of SWC, and significant 647 

spatial patterns (or EOFs) exist in the tnR . Further application of the TA model for 648 

the estimation of spatially distributed SWC at different scales and hydrological 649 

backgrounds is recommended. If the TA model parameters (i.e., 
t̂n

M , EOF1 of the 650 

tnR , and relationship between EC and ˆtnS ) are obtained from historical in-situ SWC 651 

datasets, a detailed spatially distributed SWC of near surface soil at watershed scales 652 

can be constructed from remotely sensed SWC. Note that both models rely on  653 

in-situ SWC measurements for model parameters. Therefore, future research should 654 

be conducted to estimate spatially distributed SWC in un-gauged watersheds based on 655 
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the estimation of the model parameters using pedotransfer functions. The codes for 656 

decomposing SWC with the SA and TA models and related EOF analysis were written 657 

in Matlab and are freely available from the authors upon request. 658 
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Figure captions 807 

Figure 1. Decomposition of spatiotemporal soil water content (SWC) in different 808 

models.  809 

Figure 2. Daily mean air temperature and precipitation during the study period.  810 

Figure 3. Components of soil water content in (a) the SA model (spatial mean soil 811 

water content ˆtnS  and spatial anomaly tnZ ) and in (b) the TA model (time-stable 812 

pattern 
t̂n

M , space-invariant temporal anomaly 
ˆtn

A , and space-variant temporal 813 

anomaly tnR ) for 0–0.2 and 0–1.0 m. Also shown is the elevation.  814 

Figure 4. (a) The EOF1 of the spatial anomaly tnZ  and (b) relationships of 815 

associated EC1 versus spatial mean soil water content tnZ  fitted by the cosine 816 

function (Eq. 4). 817 

Figure 5. Spatial variances of different components in Eq. (8) expressed in %
2
 (upper 818 

panel) and as percentage (lower panel) for (a) 0–0.2 and (b) 0–1.0 m. Spatial mean 819 

soil water content ˆtnS  on each measurement day is also shown. 820 

Figure 6. (a) The EOF1 of the space-variant temporal anomaly tnR  and (b) 821 

relationships of associated EC1 versus spatial mean soil water content ˆtnS  fitted by 822 

the cosine function (Eq. 4). 823 

Figure 7. Estimated soil water content (SWC) versus measured SWC for three dates 824 

at different soil water conditions (August 23, 2008, October 27, 2009, and May 13, 825 

2011 are associated with relatively dry, medium, and wet days, respectively) using the 826 

TA model for (a) 0–0.2 and (b) 0–1.0 m. 827 

Figure 8. The Nash-Sutcliffe coefficient of efficiency (NSCE) of soil water content 828 



39 
 

estimation using the TA and SA models for (a) 0–0.2 and (b) 0–1.0 m for both cross 829 

validation (CV) and split sample validation (SV). At 0–0.2 m, three dates (October 22, 830 

2008, August 27, 2009, and October 27, 2009) as indicated by green lines present 831 

negative NSCE values (-4.05, -1.83, and -3.81, respectively, for the CV on the three 832 

dates; -2.63 and -5.12, respectively, for the SV on the latter two dates). Spatial mean 833 

soil water content ˆtnS  on each measurement day is also shown. 834 

Figure 9. Nash-Sutcliffe coefficient of efficiency (NSCE) difference between the TA 835 

and SA models in terms of soil water content estimation using both cross validation 836 

(CV) and split sample validation (SV) as a function of space-invariant temporal 837 

anomaly 
ˆtn

A  for (a) 0–0.2 and (b) 0–1.0 m. 838 

Figure 10. Nash-Sutcliffe coefficient of efficiency (NSCE) difference between the TA 839 

and SA models in terms of soil water content estimation using cross validation as a 840 

function of space-invariant temporal anomaly 
ˆtn

A  for (a) 0–0.06 m of the Chinese 841 

Loess Plateau hillslope and (b) 0–0.15 m of the GENCAI network in Italy. The NSCE 842 

values for both models are also shown. 843 
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Table 1. Pearson correlation coefficients between time-stable pattern 
t̂n

M , EOF1 of 

space-variant temporal anomaly tnR  and various properties.  

1
percent of variance explained by the controlling factors obtained by the multiple stepwise regressions. 

*
Significant at P<0.05; 

** 
Significant at P<0.01.

 0–0.2 m  0–1.0 m 

 

 

t̂n
M  

EOF1 t̂n
M  

EOF1 

Sand content -0.52
**

 -0.36
**

 -0.66
**

 -0.26
**

 

Silt content 0.29
**

 0.14 0.40
**

 0.06 

Clay content 0.43
**

 0.38
**

 0.51
**

 0.33
**

 

Organic carbon 0.78
**

 0.83
**

 0.73
**

 0.76
**

 

Wetness index 0.64
**

 0.59
**

 0.68
**

 0.56
**

 

Depth to CaCO3 layer 0.77
**

 0.84
**

 0.65
**

 0.88
**

 

A horizon depth 0.51
**

 0.62
**

 0.44
**

 0.65
**

 

C horizon depth 0.66
**

 0.69
**

 0.58
**

 0.76
**

 

Bulk density -0.58
**

 -0.67
**

 -0.46
**

 -0.62
**

 

Elevation -0.24
**

 -0.28
**

 -0.24
**

 -0.32
**

 

Specific contributing area 0.20
*
 0.24

**
 0.24

**
 0.23

**
 

Convergence index -0.58
**

 -0.56
**

 -0.55
**

 -0.58
**

 

Curvature -0.10 -0.08 -0.19
*
 -0.16 

Cos(aspect) 0.05 0.04 0.08 0.05 

Gradient -0.12 -0.09 -0.21
*
 -0.02 

Slope -0.51
**

 -0.48
**

 -0.56
**

 -0.44
**

 

Upslope length 0.19
*
 0.21

*
 0.21

*
 0.25

**
 

Solar radiation -0.07 0.03 -0.11 0.08 

Flow connectivity 0.45
**

 0.43
**

 0.49
**

 0.49
**

 

Leaf area index -0.07 0.06 -0.10 -0.14 

Variance explained
1
 74.5% 81.6% 75.6% 81.0% 
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Table A1. Notations. 

ˆˆtn
M  spatial mean of 

t̂n
M  

tnR  space-variant temporal anomaly of SWC at location n and time t 

ˆtn
A  space-invariant temporal anomaly of SWC at time t 

tnZ  spatial anomaly of SWC at location n and time t 

ˆtnS  spatial mean SWC at time t 

2

n̂  spatial variance 

tnA  temporal anomaly of SWC at location n and time t 

ˆtn
 temporal mean relative difference of SWC at location n 

cov  spatial covariance 

tnS  SWC at location n and time t 

t̂n
M  time-stable pattern of SWC 

ECs temporally-varying coefficients of tnR  (or tnZ ) 

EOFs time-invariant spatial structures of tnR  (or tnZ ) 

NSCE Nash-Sutcliffe coefficient of efficiency 

R Pearson correlation coefficient 

SWC soil water content 
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Fig. 1. Decomposition of spatiotemporal soil water content (SWC) in different 

models.  
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Fig. 2. Daily mean air temperature and precipitation during the study period.
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Fig. 3. Components of soil water content in (a) the SA model (spatial mean soil water 

content ˆtnS  and spatial anomaly tnZ ) and in (b) the TA model (time-stable pattern 

t̂n
M , space-invariant temporal anomaly 

ˆtn
A , and space-variant temporal anomaly 

tnR ) for 0–0.2 and 0–1.0 m. Also shown is the elevation.  
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Fig. 4. (a) The EOF1 of the spatial anomaly tnZ  and (b) relationships of associated 

EC1 versus spatial mean soil water content tnZ  fitted by the cosine function (Eq. 4). 
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Fig. 5. Spatial variances of different components in Eq. (8) expressed in %
2
 (upper 

panel) and as percentage (lower panel) for (a) 0–0.2 and (b) 0–1.0 m. Spatial mean 

soil water content ˆtnS  on each measurement day is also shown. 
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Fig. 6. (a) The EOF1 of the space-variant temporal anomaly tnR  and (b) 

relationships of associated EC1 versus spatial mean soil water content ˆtnS  fitted by 

the cosine function (Eq. 4). 
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Fig. 7. Estimated soil water content (SWC) versus measured SWC for three dates at 

different soil water conditions (August 23, 2008, October 27, 2009, and May 13, 2011 

are associated with relatively dry, medium, and wet days, respectively) using the TA 

model for (a) 0–0.2 and (b) 0–1.0 m. 



49 
 

 

Fig. 8. The Nash-Sutcliffe coefficient of efficiency (NSCE) of soil water content 

estimation using the TA and SA models for (a) 0–0.2 and (b) 0–1.0 m for both cross 

validation (CV) and split sample validation (SV). At 0–0.2 m, three dates (October 22, 

2008, August 27, 2009, and October 27, 2009) as indicated by green lines present 

negative NSCE values (-4.05, -1.83, and -3.81, respectively, for the CV on the three 

dates; -2.63 and -5.12, respectively, for the SV on the latter two dates). Spatial mean 

soil water content ˆtnS  on each measurement day is also shown. 



50 
 

 

Fig. 9. Nash-Sutcliffe coefficient of efficiency (NSCE) difference between the TA and 

SA models in terms of soil water content estimation using both cross validation (CV) 

and split sample validation (SV) as a function of space-invariant temporal anomaly 

ˆtn
A  for (a) 0–0.2 and (b) 0–1.0 m. 
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Fig. 10. Nash-Sutcliffe coefficient of efficiency (NSCE) difference between the TA 

and SA models in terms of soil water content estimation using cross validation as a 

function of space-invariant temporal anomaly 
ˆtn

A  for (a) 0–0.06 m of the Chinese 

Loess Plateau hillslope and (b) 0–0.15 m of the GENCAI network in Italy. The NSCE 

values for both models are also shown. 

 


