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Abstract 6 

Soil water content (SWC) is crucial to rainfall-runoff response at the watershed scale. 7 

A model was used to decompose the spatiotemporal SWC into a time-stable pattern 8 

(i.e, temporal mean), a space-invariant temporal anomaly, and a space-variant 9 

temporal anomaly. The space-variant temporal anomaly was further decomposed 10 

using the empirical orthogonal function (EOF) for estimating spatially distributed 11 

SWC. This model was compared to a previous model that decomposes the 12 

spatiotemporal SWC into a spatial mean and a spatial anomaly, with the latter being 13 

further decomposed using the EOF. These two models are termed temporal anomaly 14 

(TA) model and spatial anomaly (SA) model, respectively. We aimed to test the 15 

hypothesis that underlying (i.e., time-invariant) spatial patterns exist in the 16 

space-variant temporal anomaly at the small watershed scale, and to examine the 17 

advantages of the TA model over the SA model in terms of the estimation of spatially 18 

distributed SWC. For this purpose, a dataset of near surface (0–0.2 m) and root zone 19 

(0–1.0 m) SWC, at a small watershed scale in the Canadian prairies, was analyzed. 20 

Results showed that underlying spatial patterns exist in the space-variant temporal 21 
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anomaly because of the permanent controls of “static” factors such as depth to the 22 

CaCO3 layer and organic carbon content. Combined with time stability analysis, the 23 

TA model improved the estimation of spatially distributed SWC over the SA model, 24 

especially for dry conditions. Further application of these two models demonstrated 25 

that the TA model outperformed the SA model at a hillslope in the Chinese Loess 26 

Plateau, but the performance of these two models in the GENCAI network (~250 km²) 27 

in Italy was equivalent. The TA model has potential to construct a spatially distributed 28 

SWC at small watershed scales from remote sensed SWC. 29 

Keywords: Soil moisture; Soil water downscaling; Empirical orthogonal function; 30 

Statistical models; Time stability 31 

1. Introduction 32 

  Soil water content (SWC) of surface soils exerts a major influence on a series of 33 

hydrological processes such as runoff and infiltration (Famiglietti et al., 1998; 34 

Vereecken et al., 2007; She et al., 2013a). Soil water content in the root zone is, in 35 

many cases, linked to vegetative growth (Wang et al., 2012; Ward et al., 2012; Jia and 36 

Shao, 2013). Obtaining accurate information on the spatiotemporal SWC is crucial for 37 

improving hydrological prediction and soil water management (Venkatesh et al., 2011; 38 

Champagne et al., 2012; She et al., 2013b; Zhao et al., 2013). While remote sensing 39 

has advanced SWC measurements of surface soils (<5 cm thick) at basin 40 

(2,500–25,000 km2) and continental scales (Robinson et al., 2008), characterization of 41 

spatially distributed SWC at small watershed (0.1–80 km2) scales still poses a 42 
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challenge. A method is needed for estimating spatially distributed SWC in the near 43 

surface and root zone at watershed scales. 44 

Time stability of SWC, which refers to similar spatial patterns of SWC across 45 

different measurement times (Vachaud et al., 1985; Brocca et al., 2009), has been used 46 

for estimating spatially distributed SWC (Starr, 2005; Perry and Niemann, 2007; 47 

Blöschl et al., 2009). This method is conceptually-appealing, but assumes completely 48 

time-stable spatial patterns of SWC.  49 

The time-stable pattern does not explain all of the spatial variances in SWC, 50 

indicating the existence of time-variant components (Starr, 2005). In order to identify 51 

underlying patterns of SWC that have time-variant components, the spatiotemporal 52 

SWC was decomposed into a spatial mean and a spatial anomaly. The spatial anomaly 53 

of the SWC was further decomposed into the sum of the product of time-invariant 54 

spatial patterns (EOFs) and temporally varying, but spatially constant coefficients 55 

(ECs) using the empirical orthogonal function (EOF) (Fig. 1) (Jawson and Niemann, 56 

2007; Perry and Niemann, 2007, 2008; Joshi and Mohanty, 2010; Korres et al., 2010; 57 

Busch et al., 2012). Spatially distributed SWC estimates based on the decomposition 58 

of spatial anomaly outperformed those based on time-stable patterns (Perry and 59 

Niemann, 2007). 60 

Recently, the spatiotemporal SWC was also decomposed into a temporal mean and 61 

a temporal anomaly (Mittelbach and Seneviratne, 2012) (Fig. 1). Previous studies 62 

indicated that the contribution of the temporal anomaly to the total spatial variance 63 

was notable (Mittelbach and Seneviratne, 2012; Brocca et al., 2014; Rӧtzer et al., 64 
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2015). These studies, however, only focused on surface soils at large scales (> 250 65 

km2). Vanderlinden et al. (2012) suggested that the temporal mean may be further 66 

decomposed into its spatial mean and residuals, and the temporal anomaly may be 67 

further decomposed into space-invariant term (i.e., spatial mean of temporal anomaly) 68 

and space-variant term (i.e., spatial residuals of temporal anomaly) (Fig. 1). Note that 69 

the spatial variance in the temporal anomaly (Mittelbach and Seneviratne, 2012) 70 

equals that of the space-variant term of the temporal anomaly (Vanderlinden et al., 71 

2012). The further decomposition of the temporal anomaly may be physically 72 

meaningful, because the space-invariant and space-variant terms in the temporal 73 

anomaly may be forced differently. However, the models of Mittelbach and 74 

Seneviratne (2012) and Vanderlinden et al. (2012) have not been used for estimating 75 

spatially distributed SWC. If the space-variant terms are ignored during the estimation 76 

of spatially distributed SWC, their models are equivalent to that based on time-stable 77 

patterns. Therefore, estimation of spatially distributed SWC may be improved by 78 

incorporating the space-variant term of the temporal anomaly if underlying (i.e., 79 

time-invariant) spatial patterns exist in the temporal anomaly. 80 

To our knowledge, the importance of the space-variant term of the temporal 81 

anomaly and its physical meaning at small watershed scales is not well-known. Based 82 

on previous studies (Perry and Niemann, 2007; Mittelbach and Seneviratne, 2012; 83 

Vanderlinden et al., 2012), we assume soil water dynamics at watershed scales can be 84 

decomposed into three components (Fig. 1): (1) time-stable pattern (i.e., temporal 85 

mean, spatial forcing): the “static” factors such as soil and topography control the 86 
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pattern; (2) space-invariant temporal anomaly (temporal forcing): the “dynamic” 87 

factors such as meteorological variables and vegetation change with time, and 88 

therefore modify SWC in time, regardless of spatial locations; and (3) space-variant 89 

temporal anomaly (interactions between spatial forcing and temporal forcing): this 90 

term represents interactions between “static” and “dynamic” factors. For example, 91 

SWC recharge introduced by a rainfall may be modified by topography through 92 

runoff processes; SWC loss triggered by evapotranspiration may be regulated by 93 

topography through solar radiation exposure.  94 

The “static” factors may be persistent in the space-variant temporal anomaly, and 95 

their impacts on the space-variant temporal anomaly likely change with time. Thus, 96 

we hypothesize that some underlying (i.e., time-invariant) spatial patterns exist in the 97 

space-variant temporal anomaly, and their impacts can be modulated by a time 98 

coefficient, both of which can be obtained by the EOF method (Fig. 1). If the 99 

hypothesis is true, the estimation of spatially distributed SWC utilizing the EOF 100 

decomposition may outperform the one suggested by Perry and Niemann (2007). This 101 

is because: (1) the spatial anomaly which was decomposed using the EOF in Perry 102 

and Niemann (2007) lumped the time-stable pattern and space-variant temporal 103 

anomaly together (Fig. 1); (2) the underlying spatial patterns in the spatial anomaly 104 

may not fully capture both time-stable patterns and patterns in the space-variant 105 

temporal anomaly due to the possible nonlinear relations between these two terms.  106 

Therefore, the objectives were (1) to test the hypothesis that underlying spatial 107 

patterns exist in the space-variant temporal anomaly at small watershed scales and (2) 108 
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to examine whether the decomposition of the space-variant temporal anomaly using 109 

the EOF has any advantages over the decomposition of the spatial anomaly (Perry and 110 

Niemann, 2007) for estimating spatially distributed SWC. Two steps were included in 111 

the estimation of spatially distributed SWC. First, the spatial mean SWC was upscaled 112 

from the SWC measurement at the most time-stable location using time stability 113 

analysis. Following this, the spatially distributed SWC was downscaled from the 114 

estimated spatial mean SWC. For the purpose of this study, spatiotemporal SWC 115 

datasets at depths of near surface (0–0.2 m) and root zone (0–1.0 m) from a Canadian 116 

prairie landscape were used. Spatiotemporal SWC of samples taken 0–0.06 m from a 117 

hillslope (100 m) in the Chinese Loess Plateau and 0–0.15 m from the GENCAI 118 

network (~250 km²) in Italy were also used to further demonstrate conditions under 119 

which the decomposition of the spatial anomaly was beneficial to the estimation of 120 

spatially distributed SWC. 121 

2. Materials and methods 122 

2.1 Study area and data collection 123 

This study was conducted in the Canadian prairie pothole region at St. Denis 124 

National Wildlife Area (52°12′ N, 106°50′ W) with an area of 3.6 km2. This area has a 125 

humid continental climate (Peel et al., 2007), and had a mean annual air temperature 126 

of 1.9 °C and a mean annual precipitation of 402 mm during the study period (Fig. 2). 127 

A variety of depressions, knolls, and knobs result in a sequence of undulating slopes 128 

(Biswas et al., 2011). The elevation varies from 554.8 to 557.5 m. The soils are 129 
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dominated by clay loam textured Mollisols (Soil Survey Staff, 2010) and covered by 130 

mixed grass, i.e., smooth brome grass (Bromus inermis) and alfalfa (Medicago sativa 131 

L.). The near surface soil porosity ranges from 38% (knolls) to 70% (depressions). 132 

Calcium carbonates (CaCO3) derived mostly from fragments of limestone rocks are 133 

common in the Canadian Prairies. The CaCO3 is dissolved by the slightly acidic 134 

rainwater moving through the upper horizons and deposited to lower horizons. The 135 

heterogeneous amount of infiltrated water resulted in a varying depth of CaCO3 layer 136 

ranging from almost 0 m in the knolls to 2.1 m in the depressions. A 576 m long 137 

sampling transect with 128 sampling locations spaced at 4.5 m intervals was 138 

established over several rounded knolls and depressions. At each location, a time 139 

domain reflectometry probe was used to measure SWC of the near surface soil (0–0.2 140 

m), and a neutron probe was used to collect SWC measurements at 0.2 m intervals 141 

between a depth of 0.2 and 1.0 m. The SWC was measured on a volumetric basis and 142 

expressed as a percentage (%) volume of water per unit soil volume. The SWC of the 143 

root zone was calculated by averaging the SWC of 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, 144 

and 0.8–1.0 m. Soil water content was measured on 23 dates from July 17, 2007 to 145 

September 29, 2011. The SWC dataset was collected in all seasons except winter, and 146 

accurately portrays the variations in soil water conditions in the study area. In addition 147 

to the SWC dataset, the soil, vegetative, and topographical properties were obtained at 148 

each sampling location. These properties included soil particle components (clay, silt, 149 

and sand contents), bulk density, soil organic carbon (SOC) content for the surface 150 

layer, A horizon depth, C horizon depth, depth to the CaCO3 layer, leaf area index, 151 
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elevation, cos(aspect), slope, curvature, gradient, upslope length, solar radiation, 152 

specific contributing area, convergence index, wetness index, and flow connectivity. 153 

Detailed information on the measurements can be found in Biswas et al. (2012). 154 

2.2 Statistical models for decomposing soil water content  155 

  Spatiotemporal SWC at small watershed scales was decomposed into three 156 

components: time-stable pattern, space-invariant temporal anomaly, and space-variant 157 

temporal anomaly. This model was compared to the one that decomposed SWC into 158 

spatial mean and spatial anomaly (Perry and Niemann, 2007). Both the space-variant 159 

temporal anomaly and spatial anomaly were decomposed using the EOF method. The 160 

two models are termed temporal anomaly (TA) model and spatial anomaly (SA) 161 

model, respectively. Figure 1 displays the differences between the two models. Each 162 

component will be explained in detail later. The explanation of nomenclatures is listed 163 

in Table A1. Because we focus on estimating spatial distribution of SWC at any given 164 

time, only spatial variances of SWC were taken into account. Therefore, the variance 165 

or covariance denotes the quantity in space without specifications. 166 

2.2.1 The SA model 167 

Perry and Niemann (2007) expressed SWC at location n and time t ( tnS ) as (Fig. 168 

1):  169 

 ˆ= +tn tntnS S Z ,        (1) 170 

where ˆtnS  is the spatial mean SWC at time t (temporal forcing) and tnZ  is the 171 

spatial anomaly of SWC (lumped spatial forcing and interactions). The subscript n̂  172 

( t̂ ) indicates a space (time) averaged quantity. 173 

According to Perry and Niemann (2007), ˆtnS  can be estimated by remote sensing, 174 
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water balance models, and in situ soil water measurement at a representative (or 175 

time-stable) location. The in situ soil water measurement method was selected 176 

because the representative location can be easily determined with prior SWC datasets. 177 

By measuring SWC only at the most time-stable location (s) and future time t ( tsS ), 178 

ˆtnS  can be estimated using (Grayson and Western, 1998): 179 

ˆ
ˆ1

ts
tn

ts

SS
δ

=
+

 ,       (2) 180 

where the s was identified using the time stability index of mean absolute bias error 181 

(Hu et al., 2010, 2012). The t̂sδ  is the temporal mean relative difference of SWC at 182 

the s, which was calculated with prior measurements. 183 

Spatial anomaly ( tnZ ) can be reconstructed by the sum of the product of 184 

time-invariant spatial structures (EOFs) and temporally varying coefficients (ECs) 185 

using the EOF method (Perry and Niemann, 2007; Joshi and Mohanty, 2010; 186 

Vanderlinden et al., 2012). The ECs correspond to the eigenvectors of the matrix of 187 

spatial covariance of the tnZ , and the EOFs are obtained by projecting the tnZ  onto 188 

the matrix ECs as: sZtn EC EOFs = . The number of EOF (or EC) series equals the 189 

number of sampling dates. Each EOF series corresponds to one value at each location, 190 

and each EC series has one value at each measurement time. Each EOF is chosen to 191 

be orthogonal to other EOFs, and the lower-order EOFs account for as much variance 192 

as possible. The sum of variances of all EOFs equals the sum of variances of tnZ  193 

from all measurement times.  194 

Usually, a substantial amount of variance can be explained by a small number of 195 

EOFs. Johnson and Wichern (2002) suggested the eigenvalue confidence limits 196 
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method for selecting the number of EOFs. Once the number of significant EOFs at a 197 

confidence level of 95% is selected, tnZ  can be estimated as the sum of the product 198 

of significant EOFs and associated ECs as: 199 

EOF (EC )sigsig T
tnZ = ×∑ ,              (3) 200 

where  EOFsig  represents the significant EOFs of the tnZ  obtained during model 201 

development, ECsig  is the associated temporally varying coefficient, and the 202 

superscript T represents matrix transpose. Following Perry and Niemann (2007), the 203 

associated significant EC at time t ( ECt ), is estimated by the cosine relationship 204 

between EC and ˆtnS  developed using prior measurements:  205 

     ˆ
2EC cost tna b S d
c
π = + − 

 
,             (4) 206 

where a, b, c, and d are the fitted parameters using prior measurements and ˆtnS  is 207 

estimated from Eq. (2). By using the continuous function, ECt can be estimated at 208 

any ˆtnS  values, which allows for the estimation of spatially distributed SWC at any 209 

soil water conditions. 210 

2.2.2 The TA model 211 

Mittelbach and Seneviratne (2012) decomposed the tnS  into a time-stable pattern 212 

(i.e., temporal mean) and a temporal anomaly component (Fig. 1):  213 

ˆ= +ttn tnnS M A ,                    (5) 214 

where t̂nM  is the time-stable pattern (spatial forcing) controlled by “static” factors 215 

such as soil properties and topography; tnA  refers to the temporal anomaly (lumped 216 

temporal forcing and interactions). The variance of SWC ( ( )2
n̂ tnSσ ) is the sum of 217 

variance of the t̂nM  ( ( )2
ˆn̂ tnMσ ), variance of the tnA  ( ( )2

n̂ tnAσ ), and two times of 218 
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covariance between t̂nM  and tnA  ( ),cov(2 ˆ tnnt AM ), which can be expressed as: 219 

( ) ( ) ( )2 2 2
ˆ ˆˆ ˆ ˆ2cov( , )n tn n tn n tntn tnS M M A Aσ σ σ= + + .           (6) 220 

Because the tnA  in Mittelbach and Seneviratne (2012) is a lumped term, it can be 221 

further decomposed into space-invariant temporal anomaly ( ˆtnA , i.e., temporal 222 

forcing) and space-variant temporal anomaly ( tnR , i.e., interactions) (Vanderlinden et 223 

al., 2012). At a watershed scale, the ˆtnA  is controlled by temporally varying factors 224 

such as meteorological variables and vegetation. Positive and negative ˆtnA  225 

correspond to relatively wet and dry periods, respectively. The tnR  refers to the 226 

redistribution of ˆtnA  among different locations due to the interactions between 227 

spatial forcing and temporal forcing. For example, soil and topography regulate how 228 

much rainfall enters soil and how much water runs off or runs on at a location. This, 229 

in turn, dictates vegetation growth in a water-limited environment. Therefore, tnS  230 

can also be expressed as (Fig. 1):  231 

ˆ ˆ= + +tn tntntnS M A R .               (7) 232 

The temporal trends of ˆtnA  in Eq. (7) and ˆtnS  in Eq. (1) are the same as both 233 

represent temporal forcing. Because the ˆtnA  is space-invariant and orthogonal to the 234 

t̂nM  and tnR  in a space, ( )2
n̂ tnSσ  in Eq. (6) can also be written as: 235 

( ) ( ) ( )2 2 2
ˆ ˆˆ ˆ ˆ2cov( , )n tn n tn n tntn tnS M M R Rσ σ σ= + + ,        (8) 236 

where ˆcov( , )tntnM R  is the covariance between the t̂nM  and tnR , and ( )2
n̂ tnRσ  is 237 

the variance of the tnR . Apparently, ˆ2cov( , )tntnM R  equals ˆ2cov( , )tntnM A , and 238 

( )2
n̂ tnRσ  equals ( )2

n̂ tnAσ . The percent (%) contributions of ( )2
ˆn̂ tnMσ , 239 

ˆ2cov( , )tntnM R , and ( )2
n̂ tnRσ  to the ( )2

n̂ tnSσ  are calculated. The ˆcov( , )tntnM R  240 
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can be negative at some conditions, for example, when the depressions correspond to 241 

greater t̂nM  and more negative tnR  values in the discharge periods. This resulted 242 

in percentage contributions of ( )2
ˆn̂ tnMσ  and ( )2

n̂ tnRσ  > 100% and percentage 243 

contributions of ˆ2cov( , )tntnM R  < 0% (Mittelbach and Seneviratne, 2012; Brocca et 244 

al., 2014; Rӧtzer et al., 2015). If tnR  is zero at any time or location, there are no 245 

interactions between spatial forcing and temporal forcing, ( )2
n̂ tnSσ  and the spatial 246 

trends of SWC are consistent over time. Therefore, tnR  is directly responsible for 247 

temporal change in the spatial variability of SWC.  248 

If some underlying spatial patterns exist in tnR , tnR  can be reconstructed by the 249 

sum of the product of time-invariant spatial structures (EOFs) and time-dependent 250 

coefficients (ECs) using the EOF method. Note that the number of EOF (or EC) series 251 

also equals the number of sampling dates. 252 

For estimation of spatially distributed SWC, tnR  is estimated by the same method 253 

as tnZ  using Eq. (3). The t̂nM  is estimated with prior measurements by: 254 

1
ˆ

1 m

tn
j

tnM S
m =

= ∑ ,                (9) 255 

where m is the number of previous measurement times, and 
ˆtnA  is estimated by: 256 

ˆˆ ˆˆ tn tntnA S M= − ,                (10) 257 

where ˆˆtnM  is the spatial mean of t̂nM , and ˆtnS  is estimated from SWC 258 

measurements at the most time-stable location using Eq. (2). 259 

The Pearson correlation coefficient (R) is used to explore the linear relationships 260 

between various spatial components in the two models (i.e., EOF1 of the tnZ  in the 261 

SA model, t̂nM , and EOF1 of the tnR  in the TA model) and environmental factors 262 
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(i.e., soil, vegetative, and topographical properties). The multiple stepwise regressions 263 

are conducted to determine the percentage of variations in the spatial components 264 

which the controlling factors explain.  265 

2.3 Validation and performance parameter 266 

The TA model is more complicated than the SA model. In order to evaluate the two 267 

models for parsimony, AICc values are calculated (Burnham and Anderson, 2002) as: 268 

)1/()1(2)/ln(2AICc   −−+++= knkknRSSnk ,         (11) 269 

where k is the number of parameters, n is the sample size, and RSS is the residual sum 270 

of squares. 271 

Both cross validation and external validation are used to estimate SWC distribution 272 

with both models. For the cross validation, an iterative removal of 1 of the 23 dates is 273 

made for model development, and the SWC along the transect corresponding to the 274 

removed date is estimated iteratively. For the external validation, SWC from 14 dates 275 

of the first two years (from July 17, 2007 to May 27, 2009) is used for model 276 

development, and the SWC distribution of 9 dates in the second two years (from July 277 

21, 2009 to September 29, 2011) is estimated. 278 

The Nash-Sutcliffe coefficient of efficiency (NSCE) is used to evaluate the quality 279 

of estimation of spatially distributed SWC, which is expressed as: 280 

2

2 NSCE 1
measure

εσ
σ

= − ,         (12) 281 

where 2
measureσ  is the variance of measured SWC, and 2

εσ  is the mean squared 282 

estimation error. A larger NSCE value implies a better quality of estimation. A paired 283 

samples T-test is used to test whether the NSCE values between the TA model and the 284 
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SA model are statistically significant at P<0.05.  285 

  Many factors may affect the relative performance of spatially distributed SWC 286 

estimation between the TA model and the SA model. First, the degree of 287 

outperformance of the TA model over the SA model may depend on the amount of 288 

tnR  variance considered in the TA model. On one hand, the two models are identical 289 

if variance of tnR  is close to zero or there are negligible interactions between the 290 

spatial and temporal components (Fig. 1). On the other hand, if no underlying spatial 291 

patterns exist in the tnR  or the underlying spatial patterns contributed little to the 292 

total variance of the tnR , the outperformance will also be very limited. Therefore, the 293 

greater the variance of tnR  considered in the TA model, the more likely the TA 294 

model can outperform the SA model. Second, the way of EOF decomposition may 295 

also affect the relative performance. In the SA model, EOF decomposition is 296 

performed on lumped time-stable patterns ( t̂nM ) and space-variant temporal anomaly 297 

( tnR ). In the TA model, however, EOF decomposition is made only on the tnR . In 298 

theory, the two models will be identical if the t̂nM  and the first underlying spatial 299 

pattern (i.e., EOF1) of the tnR  were perfectly correlated. If a nonlinear relationship 300 

exists between them, lumping the t̂nM  and tnR  together, as in the SA model, 301 

would weaken the model performance as compared to the TA model. From this aspect, 302 

the greater deviation from a linear relationship between the t̂nM  and EOF1 of the 303 

tnR , may lead to a greater outperformance of the TA model over the SA model. 304 

Finally, the performances of both models rely on the estimation accuracy of the ECt305 

which depends on both goodness of fit of the cosine function (i.e., Eq. 4) and 306 
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estimation accuracy of the ˆtnS . Because the same ˆtnS  values are used for the two 307 

models, the relative performance of the two models is related to the goodness of fit of 308 

Eq. (4).  309 

3. Results 310 

3.1 Components of SWC and their controls 311 

3.1.1 Spatial mean ( ˆtnS ) and spatial anomaly ( tnZ ) 312 

The values of spatial mean ( ˆtnS ) in the SA model varied with the seasons (Fig. 3a). 313 

In the spring, such as May 2, 2008 and April 20, 2009, snowmelt infiltration resulted 314 

in relatively great ˆtnS  values. In the summer, however, even one month after large 315 

rainfall events (such as on July 19, 2008 and June 21, 2009), the high 316 

evapotranspiration by fast-growing vegetation resulted in small ˆtnS  values. The 317 

values of ˆtnS  also varied between inter-annual meteorological conditions. In 2008, 318 

there was less precipitation and higher air temperature than in 2010 (Fig. 2). As a 319 

result, ˆtnS  was relatively smaller in 2008 than in 2010. 320 

The spatial patterns of spatial anomaly ( tnZ ) were similar to those of original SWC 321 

patterns. The values of tnZ  in wet periods (e.g., May 13, 2011) were much greater 322 

than in dry periods (e.g., August 23, 2008) in depressions (e.g., at a distance of 123 323 

and 250 m); at other locations, however, the spatial anomaly was slightly less in wet 324 

periods than in dry periods for both soil layers. Moreover, the spatial anomaly in 325 

depressions during the wet periods was much greater in the near surface than in the 326 

root zone. 327 
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When SWCs of all 23 dates were used for model development, only EOF1 was 328 

statistically significant (Fig. 4a), which accounted for 84.3% (0–0.2 m) and 86.5% 329 

(0–1.0 m) of the variances in the tnZ . Correlation analysis indicated that the spatial 330 

pattern of EOF1 in the tnZ  was identical to the time-stable patterns ( t̂nM ) in the TA 331 

model (R=1.0). The controls of EOF1 was therefore the same as those of t̂nM , and 332 

will be discussed later. The relationship between associated EC1 and ˆtnS  can be 333 

fitted well by the cosine function (R2=0.73 at both the near surface and root zone) (Fig. 334 

4b). 335 

3.1.2 Time-stable pattern ( t̂nM ), space-invariant temporal anomaly ( ˆtnA ), and 336 

space-variant temporal anomaly ( tnR ) 337 

Figure 3b displays the three components in the TA model. The first component 338 

t̂nM  fluctuated along the transect, with high values in depressions and low values on 339 

knolls; the t̂nM  also had greater spatial variability in the near surface (variance 340 

=36.7%2) than in the root zone (variance=19.5%2). For both soil layers, SOC, depth to 341 

the CaCO3 layer, sand content, and wetness index are the dominant factors of t̂nM ; 342 

they together explained 74.5% (near surface ) and 75.6% (root zone) of the variances 343 

in the t̂nM  (Table 1). In addition, the temporal trend of ˆtnA  was the same as that of 344 

ˆtnS  in the SA model (Fig. 3a) as both represent temporal forcing. 345 

The tnR  varied among landscape positions. At a sampling distance of 123 m (in a 346 

depression), tnR was negative in dry periods such as August 23, 2008 and positive in 347 

wet periods such as May 13, 2011. This was true for all depressions for both the near 348 

surface and the root zone. Therefore, topographically lower positions usually 349 
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corresponded to more positive tnR  during the wet periods and more negative tnR  350 

during the dry periods. This implies that topographically lower locations gained more 351 

water during recharge and lost more water during discharge due to the interactions of 352 

spatial and temporal forcing. Furthermore, the absolute values of tnR  were generally 353 

greater in the near surface than the root zone, indicating a greater space-variant 354 

temporal anomaly for shallower depths.  355 

The SWC variances and associated components (Eq. 8) also varied with time (Fig. 356 

5). Often, wetter conditions corresponded to greater ( )2
n̂ tnSσ , as further indicated by 357 

moderate correlation between ( )2
n̂ tnSσ  and ˆtnS  (R2 of 0.51 and 0.38 for the near 358 

surface and the root zone, respectively). This was in agreement with others 359 

(Gómez-Plaza et al., 2001; Martínez-Fernández and Ceballos, 2003; Hu et al., 2011). 360 

Furthermore, there were greater ( )2
n̂ tnSσ  values at near surface than in the root zone, 361 

indicating greater variability of SWC in the near surface.  362 

The time-invariant ( )2
ˆn̂ tnMσ  contributed to the ( )2

n̂ tnSσ  with percentages 363 

ranging from 25 to 795% for the near surface and from 40 to 174% for the root zone 364 

(Fig. 5). The ( )2
ˆn̂ tnMσ  exceeded the ( )2

n̂ tnSσ  mainly under dry conditions, such as 365 

July–October in 2008 and 2009. This excess was offset by the ( )2
n̂ tnSσ  and366 

ˆ2cov( , )tntnM R , with the latter contributing negatively to the ( )2
n̂ tnSσ  with mean 367 

percentages of 210% for the near surface and 17% for the root zone. In the dry period, 368 

the negative contribution from ˆ2cov( , )tntnM R  was up to 1327% for the near surface 369 

and 122% for the root zone. These values are comparable to those in Mittelbach and 370 

Seneviratne (2012) and Brocca et al. (2014). 371 
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The ( )2
n̂ tnRσ  contributed less than other components (Fig. 5). The percentages of 372 

( )2
n̂ tnRσ  ranged from 11 to 632% (arithmetic average of 118%) for the near surface 373 

and from 6 to 48% (arithmetic average of 19%) for the root zone; ( )2
n̂ tnRσ  tended to 374 

contribute more in drier periods. This indicates that the space-variant temporal 375 

anomaly cannot be ignored, particularly in dry conditions. Furthermore, the 376 

contribution of ( )2
n̂ tnRσ  was greater in the near surface than in the root zone, 377 

confirming stronger temporal dynamics of soil water at the near surface. Compared 378 

with larger scale studies (Mittelbach and Seneviratne, 2012; Brocca et al., 2014), 379 

( )2
n̂ tnRσ  of the near surface contributed more to ( )2

n̂ tnSσ , with a mean percentage 380 

contribution of 118%, versus 9–68% in the other, larger scale studies. This indicates 381 

that interactions between spatial and temporal forcing were stronger, resulting in 382 

relatively more intensive temporal dynamics of soil water in our study area than at 383 

larger scales. 384 

Three significant EOFs of tnR  for both soil layers were identified when SWC of 385 

all 23 dates were used for model development. The first three EOFs explained 61.1, 386 

13.4, and 8.1% respectively, of the total tnR  variance for the near surface, and 44.3, 387 

20.2, and 12.4%, respectively, of the total tnR  variance in the root zone. Therefore, 388 

our hypothesis that underlying spatial patterns exist in the tnR  was accepted. Due to 389 

the negligible contribution of EOF2 and EOF3 to the estimation of spatially 390 

distributed SWC, only EOF1 is shown in Fig. 6a. The associated EC1 changed with 391 

soil water conditions ( ˆtnS ) (Fig. 6b). When SWC was close to average levels, the EC1 392 

was close to 0, resulting in negligible tnR . This was in accordance with Mittelbach 393 
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and Seneviratne (2012) and Brocca et al. (2014), who showed that the spatial variance 394 

of the temporal anomaly was the smallest when water contents were close to average 395 

levels. The cosine function (Eq. 4) explained a large amount of the variances in EC1 396 

for both soil layers (R2=0.76 at the near surface and 0.88 in the root zone).  397 

The contribution of EOF1 to the space-variant temporal anomaly can be examined 398 

through the product of the EOF1 and the associated EC1. The EC1 values tended to 399 

be positive during wet periods and negative during dry periods (Fig. 6b); more 400 

positive EOF1 values were usually observed at locations with greater t̂nM  values 401 

(Figs. 3b and 6a). Therefore, the product of EOF1 and EC1 led to greater temporal 402 

SWC dynamics at wetter locations of both layers in both the wet and dry periods. 403 

Depth to the CaCO3 layer and SOC had significant, positive correlations with 404 

EOF1 for both soil layers (R ranging from 0.76 to 0.88; Table 1). They jointly 405 

accounted for 81.6% (near surface) and 81.0% (root zone) of the variances in EOF1. 406 

This implies that locations with a greater depth to the CaCO3 layer and SOC, which 407 

correspond to wetter locations such as depressions, usually have greater temporal 408 

SWC dynamics during both wet and dry periods. 409 

3.2 Estimation of spatially distributed SWC 410 

When all 23 datasets were used and only EOF1 was considered, the TA model had 411 

an AICc value of 4093 for the near surface and 562 for the root zone, while the 412 

corresponding values for the SA model were 6370 and 3460. This indicated that even 413 

when penalty to complexity was given, the TA model was better than the SA model. 414 

The two models in terms of spatially distributed SWC estimation are compared below.  415 
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3.2.1 The TA model 416 

  The tnR  terms and associated EOFs differed slightly with each validation. The 417 

number of significant EOFs varied between one (accounting for 60% of the total cases) 418 

and three for both soil layers. A paired samples T-test indicated that more EOFs did 419 

not result in a significant increase of NSCE in the estimation of spatially distributed 420 

SWC for both validation methods, because AICc values increased greatly with the 421 

increasing number of parameters resulting from more EOFs (data not shown). This 422 

indicates that higher-order EOFs, even if they are statistically significant, are 423 

negligible for SWC prediction. Therefore, SWC distribution was estimated with 424 

EOF1 only. 425 

Estimated SWCs generally approximated those measured at different soil water 426 

conditions during the cross validation (Fig. 7). However, on October 27, 2009, there 427 

were unsatisfactory estimates at the 100–140 and 220–225 m locations near the 428 

surface. Unsatisfactory NSCE values of -4.05, -1.83, and -3.81 were obtained in the 429 

near surface in only three of the 23 dates, which were all in the fall (October 22, 2008, 430 

August 27, 2009, and October 27, 2009, respectively). The poor performance obtained 431 

with the TA model on those dates was a result of overestimation in depressions, where 432 

strong evapotranspiration and deep drainage resulted in a much lower SWC than in 433 

the spring. These dates also corresponded to a high percentage of contribution of 434 

( )2
n̂ tnRσ  to the ( )2

n̂ tnSσ  (203–439%). For August 23 and September 17 in 2008, 435 

which were in dry periods, ( )2
n̂ tnRσ  of the near surface also contributed highly to the 436 

( )2
n̂ tnSσ  (580 and 630%). Because a fair amount of ( )2

n̂ tnRσ  was accounted for 437 
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with the TA model, the TA model performed satisfactorily (NSCE of 0.43 and 0.60). 438 

For the remaining 20 dates, the resulting NSCE value ranged from 0.38 to 0.90 in the 439 

near surface and from 0.65 to 0.96 in the root zone (Fig. 8). This suggests that the TA 440 

model was generally satisfactory, with better performance in the root zone than in the 441 

near surface. 442 

During the external validation, the TA model resulted in SWC estimations with 443 

NSCE values ranging from 0.61 to 0.85 near the surface and from 0.32 to 0.92 in the 444 

root zone, with exception of two days (August 27, 2009 and October 27, 2009 with 445 

NSCE values of -2.63 and -5.12, respectively) at 0–0.2 m (Fig. 8). This suggested that 446 

the TA model performed well in estimating spatially distributed SWC patterns except 447 

on August 27, 2009 and October 27, 2009 at 0–0.2 m. The estimation in the root zone 448 

was also generally better than in the near surface. 449 

3.2.2 Comparison with the SA model 450 

One significant EOF of tnZ  was identified for both soil layers, irrespective of the 451 

validation method. The SA model with only EOF1 produced reasonable SWC 452 

estimations for both validations in all dates in the root zone and in every date except 453 

five dates (August 23, 2008, September 17, 2008, October 22, 2008, August 27, 2009, 454 

and October 27, 2009) in the near surface (Fig. 8). Similarly, when more EOFs were 455 

included, NSCE values did not increase significantly (data not shown) and 456 

consequently, estimation of spatially distributed SWC was not improved. This was 457 

because EOF2 and EOF3 together explained a very limited (<10%) amount of 458 

variability of tnZ  and thus had low predictive power in terms of variance. 459 
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The difference in NSCE values between the TA and SA models for both validations 460 

are presented in Fig. 9. Generally, the difference decreased as ˆtnA  increased, and 461 

then slightly increased with a further increase in ˆtnA . A paired samples T-test 462 

indicated that the NSCE values of the TA model were significantly (P<0.05) greater 463 

than those of the SA model for both soil layers, irrespective of validation methods. 464 

This indicates that the TA model outperformed the SA model, particularly in dry 465 

conditions. This was because when the soil was dry, there was a high contribution of 466 

( )2
n̂ tnRσ , and thus strong variability in the space-variant temporal anomaly.  467 

3.3 Further application at other two sites with different scales 468 

3.3.1 A hillslope in the Chinese Loess Plateau 469 

Along a hillslope of 100 m in length in the Chinese Loess Plateau, SWC of 0–0.06 470 

m was measured 136 times from June 25, 2007 to August 30, 2008 by a Delta-T 471 

Devices Theta probe (ML2x) at 51 locations (Hu et al., 2011). The hillslope was 472 

covered by Stipa bungeana Trin. and Medicago sativa L. in sandy loam and silt loam 473 

soils. On average, the ( )2
ˆn̂ tnMσ , ( )2

n̂ tnRσ , and ˆ2cov( , )tntnM R  contributed 53, 74 474 

and -27% to the ( )2
n̂ tnSσ , indicating that both time-stable pattern and temporal 475 

anomalies were the main contributors to the ( )2
n̂ tnSσ . The EOF analysis showed that 476 

only the EOF1 was statistically significant for both the tnR  and tnZ , and the EOF1 477 

explained 23% and 47% of the total variances of tnR  and tnZ , respectively. This 478 

illustrated that underlying spatial patterns exist in the tnR  on the hillslope. Cross 479 

validation was used to estimate the spatially distributed SWC along the hillslope. The 480 

results showed that the NSCE varied from -4.25 to 0.83 (TA model) and from -4.30 to 481 
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0.81 (SA model), with a mean value of 0.25 and 0.18, respectively. A paired samples 482 

T-test showed that the NSCE values for the TA model were significantly (P<0.05) 483 

greater than those for the SA model, indicating that the TA model outperformed the 484 

SA model. As Fig. 10a shows, the outperformance was greater when SWC deviated 485 

from intermediate conditions, especially for dry conditions, which was similar to the 486 

Canadian site.  487 

3.3.2  The GENCAI network in Italy 488 

In the GENCAI network (~250 km²) in Italy, SWC of 0–0.15 m was measured by a 489 

TDR probe at 46 locations, 34 times from February to December in 2009 (Brocca et 490 

al., 2012, 2013). The GENCAI area was dominated by grassland with a flat 491 

topography, in silty clay soils. The ( )2
ˆn̂ tnMσ , ( )2

n̂ tnRσ , and ˆ2cov( , )tntnM R  492 

contributed 38, 68, and -7% to the ( )2
n̂ tnSσ  (Brocca et al., 2014), indicating the 493 

dominant contribution of temporal anomalies on SWC variability. The first three 494 

EOFs of the tnR  explained 19, 16, and 8% of the total ( )2
n̂ tnRσ , and no EOFs were 495 

statistically significant, indicating that no underlying spatial patterns exist in the tnR . 496 

The EOF1 of the tnZ  was significant and accounted for 37% of the variances in the 497 

tnZ . Although the EOF1 of the tnR  was not significant, it was considered in the TA 498 

model for estimating spatially distributed SWC. The cross validation indicates that the 499 

NSCE varied from -0.79 to 0.50 (TA model) and from -0.87 to 0.56 (SA model), with 500 

mean values of 0.09 and 0.08, respectively. The SWC estimation based on these two 501 

models was not satisfactory except for a few days. As Fig. 10b shows, the differences 502 

in NSCE values between the two models were scattered around 0. A paired samples 503 
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T-test showed that the NSCE values between the TA model and the SA model were 504 

not significant (P<0.05), indicating no differences in estimating spatially distributed 505 

SWC between these two models.  506 

4 Discussion 507 

4.1  Controls of the t̂nM  and tnR  508 

The tnR  played an important role in the temporal change in spatial patterns of the 509 

SWC. The underlying spatial patterns and physical meaning in the tnR were 510 

examined in our study for the first time. Although three significant EOFs of the tnR  511 

existed in some cases, only EOF1 rather than higher-order EOFs of the tnR  should 512 

be considered for the spatially distributed SWC estimation. Among many factors 513 

influencing the EOF1 of the tnR , depth to the CaCO3 layer followed by the SOC, 514 

were the most important factors. Depressions have deeper CaCO3 layers than knolls, 515 

and the shallow CaCO3 layer on knolls limited water infiltration during rainfall or 516 

snowmelt, resulting in less water recharge on knolls than in depressions. The depth to 517 

CaCO3 layer and SOC were negatively correlated with elevation (R=-0.54, P<0.01). 518 

Therefore, the influence of depth to CaCO3 layer and SOC partially reflected the role 519 

of topography in driving snowmelt runoff along slopes in the spring, which 520 

contributes to increasing water recharge in depressions. Locations with greater SOC 521 

usually corresponded to vegetation with a larger leaf area index (R=0.23, P<0.05), 522 

which would also result in higher evapotranspiration and more water loss during 523 

discharge periods.  524 
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As Table 1 shows, both the depth to the CaCO3 layer and SOC controlled the t̂nM . 525 

This was because deeper CaCO3 layers and higher SOC were observed in depressions 526 

where soils were usually wetter in most of the year because of the snowmelt runoff in 527 

the spring and rainfall runoff in the summer and autumn (van der Kamp et al., 2003). 528 

Therefore, the roles of soil and topography were two-fold: On one hand, they were 529 

highly correlated with the time-stable patterns and thus the time stability of SWC 530 

(Gómez-Plaza et al., 2000; Mohanty and Skaggs, 2001; Grant et al., 2004); On the 531 

other hand, soil and topography, interplaying with temporal forcing, triggered 532 

local-specific soil water change and destroyed time stability of SWC. Their roles in 533 

protecting time stability persisted, but their roles in destroying time stability varied 534 

with time. Greater ( )2
n̂ tnRσ  implies greater contribution of these factors in soil water 535 

dynamics, resulting in less time stability of SWC. 536 

4.2  Model performance for spatially distributed SWC estimation 537 

The outperformance of the TA model for estimating spatial SWC at the Canadian 538 

site and Chinese site can be partly explained by the high contribution percentages 539 

(average of 19–118%) of the ( )2
n̂ tnRσ  to the total variance. When SWC is close to 540 

average levels, tnR  is also close to zero, resulting in negligible variance contribution 541 

from tnR  to the total variance. In this case, the soil water patterns are stable, the SA 542 

model performs well, and there will be little differences between these two models. 543 

As is well known, the spatial patterns in soil water content are inherently time 544 

unstable. For example, when evapotranspiration becomes the dominant process at the 545 

small watershed scale, more water will be lost in depressions due to the denser 546 
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vegetation than on knolls (Millar, 1971; Biswas et al., 2012), effectively diminishing 547 

the spatial patterns and increasing temporal instability. In this case, the ( )2
n̂ tnRσ  548 

contributes more to the total variance (e.g., high up to 632%) and the TA model may 549 

outperform the SA model. This explained why the outperformance of the TA model 550 

was more obvious in the dry conditions. For the GENCAI network in Italy, although 551 

the ( )2
n̂ tnRσ  contributed 68% of the total variance, the performance of the TA model 552 

was identical to the SA model. This was because there were no underlying spatial 553 

patterns in the tnR . Similarly, because the first underlying spatial pattern (i.e., EOF1) 554 

explained greater percentages of the ( )2
n̂ tnRσ  at the Canadian site (44–61%) than the 555 

Chinese site (23%), the outperformance of the TA model over the SA model was more 556 

obvious at the former site (Fig. 9 and 10a). Therefore, the TA model is advantageous 557 

only if the contribution of ( )2
n̂ tnRσ  to the total variance is substantial and underlying 558 

spatial patterns exist in the tnR . 559 

The existence of underlying spatial patterns in the tnR  is related to the controlling 560 

factors, which may be scale-specific. At small scales, “static” factors such as the depth 561 

to the CaCO3 layer and SOC at the Canadian site may affect not only the time-stable 562 

patterns but also the tnR . The persistent influence of “static” factors on the tnR  563 

resulted in significant underlying spatial patterns in the tnR . Thus, the TA model 564 

outperformed the SA model at the small scales. At large scales such as the basin scale 565 

or greater, time-stable patterns may be controlled by, in addition to soil and 566 

topography (Mittelbach and Seneviratne, 2012), the climate gradient (Sherratt and 567 

Wheater, 1984); at those scales, tnR  is more likely to be controlled by the 568 
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meteorological anomaly (i.e., spatially random variation) (Walsh and Mostek, 1980), 569 

and the effects of soil and topography may be reduced. Consequently, spatial patterns 570 

in the tnR  may be weakened and the TA model may have no advantages over the SA 571 

model such as for the Italian site.  572 

The t̂nM  and the underlying spatial patterns (EOF1) in the tnR  were controlled 573 

by the same spatial forcing (e.g., depth to CaCO3 layer and SOC) at the Canadian site 574 

(Table 1), and they were correlated with an R2 of 0.83 for the near surface and 0.42 for 575 

the root zone. Although the relationships between t̂nM  and tnR  were strong, they 576 

were not strictly linear, suggesting that t̂nM  and tnR  were affected differently by 577 

these factors. Therefore, the nonlinear relationship between t̂nM  and tnR  partially 578 

contributed to the outperformance of the TA model over the SA model.  579 

The relationship between the ˆtnS  and EC1 was better fitted by the cosine function 580 

in the TA model than the SA model (Figs. 4b and 6b), with R2 of 0.76 versus 0.73 in 581 

the near surface and 0.88 versus 0.73 in the root zone. The reduced scatter in the ˆtnS  582 

and EC1 relationship for the TA model may also partly explain the outperformance of 583 

the TA model over the SA model.  584 

Therefore, the outperformance of the TA model over the SA model depends on 585 

counterbalance among the variance of tnR  explained in the TA model, the linear 586 

correlation between the t̂nM  and EOF1 of the tnR , and the goodness of fit for the 587 

ˆtnS  and EC1 relationship. For example, the variance of EOF1 in the tnR  for the near 588 

surface (i.e., 264%2) was much greater than that for the root zone (i.e., 43%2). 589 

However, t̂nM  and underlying spatial patterns (EOF1) in the tnR  in the root zone 590 
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deviated more from a linear relationship, and the reduced scatter in the ˆtnS  and EC1 591 

relationship in the TA model was more obviously in the root zone than in the near 592 

surface. As a result, the outperformance of the TA model was comparable between the 593 

near surface and root zone at the Canadian site (Fig. 9). 594 

In the real world, the relations between the t̂nM  and underlying spatial patterns in 595 

the tnR  may rarely be perfectly linear. Therefore, when underlying spatial patterns 596 

exist in the tnR  and the tnR  has substantial variances, the TA model is preferable 597 

to the SA model for the estimation of spatially distributed SWC. Because the TA 598 

model was not worse than the SA model for the whole range of SWC, the TA model is 599 

suggested for the estimation of spatially distributed SWC at different soil water 600 

conditions.  601 

Previous studies on SWC decomposition mainly focus on near surface layers 602 

(Jawson and Niemann, 2007; Perry and Niemann, 2007, 2008; Joshi and Mohanty, 603 

2010; Korres et al., 2010; Busch et al., 2012). This study decomposed spatiotemporal 604 

SWC using the TA model for both the near surface and the root zone. The results 605 

showed that the estimation of spatially distributed SWC at small watershed scales was 606 

improved by the TA method that considers the tnR . Because of the stronger time 607 

stability of SWC in deeper soil layers (Biswas and Si, 2011), SWC evaluation in 608 

thicker soil layers was more accurate than in shallow soil layers. This is particularly 609 

important because SWC data for deeper soil layers in a watershed is more difficult to 610 

collect than that of surface soil. 611 
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5 Conclusions 612 

The TA model was used to decompose spatiotemporal SWC into time-stable 613 

patterns t̂nM , space-invariant temporal anomaly ˆtnA , and space-variant temporal 614 

anomaly tnR . This study indicated that underlying spatial patterns may exist in the 615 

tnR  at small scales (e.g., small watersheds and hillslope) but may not exist at large 616 

scales such as the GENCAI network (~250 km²) in Italy. This was because the tnR  617 

at small scales was driven by “static” factors such as depth to the CaCO3 layer and 618 

SOC at the Canadian site, while the tnR  at large scales may be dominated by 619 

“dynamic” factors such as meteorological anomaly. Compared to the SA model, 620 

estimation of spatially distributed SWC was improved with the TA model at small 621 

watershed scales. This was because the TA model considered a fair amount of spatial 622 

variance in the tnR , which was ignored in the SA model. Furthermore, the improved 623 

performance was observed mainly when there was less or more soil water than the 624 

average level, especially in drier conditions due to the high ( )2
n̂ tnRσ  value.   625 

This study showed that outperformance of the TA model over the SA model is 626 

possible when ( )2
n̂ tnRσ  contributes substantial variance to the total variance of SWC, 627 

and significant spatial patterns (or EOFs) exist in the tnR . Further application of the 628 

TA model for the estimation of spatially distributed SWC at different scales and 629 

hydrological backgrounds is recommended. If the TA model parameters (i.e., t̂nM , 630 

EOF1 of the tnR , and relationship between EC and ˆtnS ) are obtained from historical 631 

SWC datasets, a detailed spatially distributed SWC of near surface soil at watershed 632 

scales can be constructed from remote sensed SWC. Note that both models rely on 633 
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previous SWC measurements for model parameters. Therefore, the future study 634 

should be directed to estimate spatially distributed SWC in un-gauged watersheds 635 

based on the estimation of the model parameters using pedotransfer functions. Since 636 

the TA model needs one more spatial parameter (i.e., t̂nM ) than the SA model, the 637 

advantage of the TA model may be weakened. Nevertheless, the TA model may be 638 

preferred if it estimates spatial SWC much better than the SA model such as under dry 639 

conditions. The codes for decomposing SWC with the SA and TA models and related 640 

EOF analysis were written in Matlab and are freely available from the authors upon 641 

request. 642 
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Figure captions 790 

Figure 1. Decomposition of spatiotemporal soil water content (SWC) in different 791 

models.  792 

Figure 2. Daily mean air temperature and precipitation during the study period.  793 

Figure 3. Components of soil water content in (a) the SA model (spatial mean soil 794 

water content ˆtnS  and spatial anomaly tnZ ) and in (b) the TA model (time-stable 795 

pattern t̂nM , space-invariant temporal anomaly ˆtnA , and space-variant temporal 796 

anomaly tnR ) for 0–0.2 and 0–1.0 m. Also shown is the elevation.  797 

Figure 4. (a) The EOF1 of the spatial anomaly tnZ  and (b) relationships of 798 

associated EC1 versus spatial mean soil water content tnZ  fitted by the cosine 799 

function (Eq. 4). 800 

Figure 5. Spatial variances of different components in Eq. (8) expressed in %2 (upper 801 

panel) and as percentage (lower panel) for (a) 0–0.2 and (b) 0–1.0 m. Spatial mean 802 

soil water content ˆtnS  on each measurement day is also shown. 803 

Figure 6. (a) The EOF1 of the space-variant temporal anomaly tnR  and (b) 804 

relationships of associated EC1 versus spatial mean soil water content ˆtnS  fitted by 805 

the cosine function (Eq. 4). 806 

Figure 7. Estimated soil water content (SWC) versus measured SWC for three dates 807 

at different soil water conditions (August 23, 2008, October 27, 2009, and May 13, 808 

2011 are associated with relatively dry, medium, and wet days, respectively) using the 809 

TA model for (a) 0–0.2 and (b) 0–1.0 m. 810 

Figure 8. The Nash-Sutcliffe coefficient of efficiency (NSCE) of soil water content 811 

38 
 



estimation using the TA and SA models for (a) 0–0.2 and (b) 0–1.0 m for both cross 812 

validation (CV) and external validation (EV). At 0–0.2 m, negative Nash-Sutcliffe 813 

coefficient of efficiency values for three dates (October 22, 2008, August 27, 2009, 814 

and October 27, 2009) are not shown. Spatial mean soil water content ˆtnS  on each 815 

measurement day is also shown. 816 

Figure 9. Difference between the Nash-Sutcliffe coefficient of efficiency (NSCE) of 817 

soil water content estimation by both cross validation (CV) and external validation 818 

(EV) using the TA and SA models as a function of space-invariant temporal anomaly 819 

ˆtnA  for (a) 0–0.2 and (b) 0–1.0 m. 820 

Figure 10. Difference between the Nash-Sutcliffe coefficient of efficiency (NSCE) of 821 

soil water content evaluation by the cross validation using the TA and SA models as a 822 

function of space-invariant temporal anomaly ˆtnA  for (a) 0–0.06 m of the Chinese 823 

Loess Plateau hillslope and (b) 0–0.15 m of the GENCAI network in Italy. 824 
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Table 1. Pearson correlation coefficients between time-stable pattern t̂nM , EOF1 of 

space-variant temporal anomaly tnR  and various properties.  

1percent of variance explained by the controlling factors obtained by the multiple stepwise regressions. 
*Significant at P<0.05; ** Significant at P<0.01.

 0–0.2 m  0–1.0 m 
 

 
t̂nM  EOF1 t̂nM  EOF1 

Sand content -0.52** -0.36** -0.66** -0.26** 
Silt content 0.29** 0.14 0.40** 0.06 
Clay content 0.43** 0.38** 0.51** 0.33** 
Organic carbon 0.78** 0.83** 0.73** 0.76** 
Wetness index 0.64** 0.59** 0.68** 0.56** 
Depth to CaCO3 layer 0.77** 0.84** 0.65** 0.88** 
A horizon depth 0.51** 0.62** 0.44** 0.65** 
C horizon depth 0.66** 0.69** 0.58** 0.76** 
Bulk density -0.58** -0.67** -0.46** -0.62** 
Elevation -0.24** -0.28** -0.24** -0.32** 
Specific contributing area 0.20* 0.24** 0.24** 0.23** 
Convergence index -0.58** -0.56** -0.55** -0.58** 
Curvature -0.10 -0.08 -0.19* -0.16 
Cos(aspect) 0.05 0.04 0.08 0.05 
Gradient -0.12 -0.09 -0.21* -0.02 
Slope -0.51** -0.48** -0.56** -0.44** 
Upslope length 0.19* 0.21* 0.21* 0.25** 
Solar radiation -0.07 0.03 -0.11 0.08 
Flow connectivity 0.45** 0.43** 0.49** 0.49** 
Leaf area index -0.07 0.06 -0.10 -0.14 

Variance explained1 74.5% 81.6% 75.6% 81.0% 
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Table A1. Notations. 

ˆˆtnM  spatial mean of t̂nM  

tnR  space-variant temporal anomaly of SWC at location n and time t 

ˆtnA  space-invariant temporal anomaly of SWC at time t 

tnZ  spatial anomaly of SWC at location n and time t 

ˆtnS  spatial mean SWC at time t 

2
n̂σ  spatial variance 

tnA  temporal anomaly of SWC at location n and time t 

ˆδ tn  temporal mean relative difference of SWC at location n 

cov  spatial covariance 

tnS  SWC at location n and time t 

t̂nM  time-stable pattern of SWC 

ECs temporally-varying coefficients of tnR  (or tnZ ) 

EOFs time-invariant spatial structures of tnR  (or tnZ ) 

NSCE Nash-Sutcliffe coefficient of efficiency 

R Pearson correlation coefficient 

SWC soil water content 
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Fig. 1. Decomposition of spatiotemporal soil water content (SWC) in different 

models.  
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Fig. 2. Daily mean air temperature and precipitation during the study period.
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Fig. 3. Components of soil water content in (a) the SA model (spatial mean soil water 

content ˆtnS  and spatial anomaly tnZ ) and in (b) the TA model (time-stable pattern 

t̂nM , space-invariant temporal anomaly ˆtnA , and space-variant temporal anomaly 

tnR ) for 0–0.2 and 0–1.0 m. Also shown is the elevation.  
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Fig. 4. (a) The EOF1 of the spatial anomaly tnZ  and (b) relationships of associated 

EC1 versus spatial mean soil water content tnZ  fitted by the cosine function (Eq. 4). 
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Fig. 5. Spatial variances of different components in Eq. (8) expressed in %2 (upper 

panel) and as percentage (lower panel) for (a) 0–0.2 and (b) 0–1.0 m. Spatial mean 

soil water content ˆtnS  on each measurement day is also shown. 
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Fig. 6. (a) The EOF1 of the space-variant temporal anomaly tnR  and (b) 

relationships of associated EC1 versus spatial mean soil water content ˆtnS  fitted by 

the cosine function (Eq. 4). 
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Fig. 7. Estimated soil water content (SWC) versus measured SWC for three dates at 

different soil water conditions (August 23, 2008, October 27, 2009, and May 13, 2011 

are associated with relatively dry, medium, and wet days, respectively) using the TA 

model for (a) 0–0.2 and (b) 0–1.0 m. 
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Fig. 8. The Nash-Sutcliffe coefficient of efficiency (NSCE) of soil water content 

estimation using the TA and SA models for (a) 0–0.2 and (b) 0–1.0 m for both cross 

validation (CV) and external validation (EV). At 0–0.2 m, negative Nash-Sutcliffe 

coefficient of efficiency values for three dates (October 22, 2008, August 27, 2009, 

and October 27, 2009) are not shown. Spatial mean soil water content ˆtnS  on each 

measurement day is also shown. 
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Fig. 9. Difference between the Nash-Sutcliffe coefficient of efficiency (NSCE) of soil 

water content estimation by both cross validation (CV) and external validation (EV) 

using the TA and SA models as a function of space-invariant temporal anomaly ˆtnA  

for (a) 0–0.2 and (b) 0–1.0 m. 
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Fig. 10. Difference between the Nash-Sutcliffe coefficient of efficiency (NSCE) of 

soil water content evaluation by the cross validation using the TA and SA models as a 

function of space-invariant temporal anomaly ˆtnA  for (a) 0–0.06 m of the Chinese 

Loess Plateau hillslope and (b) 0–0.15 m of the GENCAI network in Italy. 
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