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Abstract 7 

Gridded statistical downscaling methods are the main means of preparing climate model data 8 

to drive distributed hydrological models. Past work on the validation of climate downscaling 9 

methods has focused on temperature and precipitation, with less attention paid to the ultimate 10 

outputs from hydrological models. Also, as attention shifts towards projections of extreme 11 

events, downscaling comparisons now commonly assess methods in terms of climate 12 

extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded 13 

downscaling models to replicate historical properties of climate and hydrologic extremes, as 14 

measured in terms of temporal sequencing (i.e., correlation tests) and distributional properties 15 

(i.e., tests for equality of probability distributions). Outputs from seven downscaling methods 16 

– bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with 17 

quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), 18 

BCSD using minimum/maximum temperature (BCSDX), climate imprint delta method (CI), 19 

and bias corrected CI (BCCI) – are used to drive the Variable Infiltration Capacity (VIC) 20 

model over the snow-dominated Peace River basin, British Columbia. Outputs are tested 21 

using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic 22 

extremes indices (3-day peak flow and 7-day peak flow). To characterize observational 23 

uncertainty, four atmospheric reanalyses are used as climate model surrogates and two 24 

gridded observational datasets are used as downscaling target data. The skill of the 25 

downscaling methods generally depended on reanalysis and gridded observational dataset. 26 

However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 27 

7-day low flow events, regardless of reanalysis or observational dataset. Overall, DBCCA 28 

passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is 29 

designed to more accurately resolve event-scale spatial gradients, passed the greatest number 30 
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of tests for hydrologic extremes. Non-stationarity in the observational/reanalysis datasets 1 

complicated the evaluation of downscaling performance. Comparing temporal homogeneity 2 

and trends in climate indices and hydrological model outputs calculated from downscaled 3 

reanalyses and gridded observations was useful for diagnosing the reliability of the various 4 

historical datasets. We recommend that such analyses be conducted before such data are used 5 

to construct future hydro-climatic change scenarios. 6 

1 Introduction 7 

Water resources infrastructure is designed to accommodate hydrologic extremes such as 8 

floods and droughts (Cunderlik and Ouarda, 2009; Cunderlik et al., 2004; Ouarda et al., 9 

2006). The frequency and magnitude of extreme hydrologic events, such as floods and 10 

droughts have changed with climate and there is broad agreement that changes will continue 11 

with projected increases in greenhouse gases (IPCC, 2013). The direction and magnitude of 12 

change is not uniform across the globe, but regionally specific, distinguishable by hydrologic 13 

regime and by local changes to temperature and  precipitation (Cunderlik and Ouarda, 2009; 14 

Monk et al., 2011; Sheffield et al., 2012; Stahl et al., 2010, 2012). For example, in Canada, 15 

floods in snowmelt dominated regimes decreased in magnitude while floods in rainfall fed 16 

regimes had no significant trend over 1974 to 2003 (Cunderlik and Ouarda, 2009). 17 

Conversely, Canadian annual low-flow indices showed spatially uniform decreases over 1970 18 

to 2005 (Monk et al., 2011). Thus, future changes in hydrologic extremes need to be 19 

estimated at regionally relevant resolutions (~10 km) and consider both temperature and 20 

precipitation effects. 21 

Global climate models (GCMs) are one of our only tools for projecting the future climate, but 22 

they operate at scales too coarse (~100 km) for use in regional studies. Hence, before 23 

projecting changes in hydrologic extremes some intervening steps are required. Approaches to 24 

converting coarse scale GCM simulations to project changes to peak flows and low flows 25 

vary. Some examples include: direct downscaling of streamflow extremes by sparse Bayesian 26 

learning and multiple linear regression (Joshi et al., 2013); weather generators combined with 27 

hydrologic models (Cunderlik and Simonovic, 2007); regional frequency analysis of regional 28 

climate model (RCM) projections (Clavet-Gaumont et al., 2013); and, most commonly, 29 

statistical downscaling of GCM or RCM projections run through a physically based 30 

hydrologic model (Elsner et al., 2010a; Maurer et al., 2010; Schnorbus et al., 2014; Shrestha 31 

et al., 2012; Bürger et al., 2011). The uncertainty in hydrologic projections from GCMs is 32 
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greater than that from emissions scenarios or model parameterizations (Bennett et al., 2012; 1 

Prudhomme and Davies, 2008) and all GCMs represent the climate imperfectly in different 2 

ways (Gleckler et al., 2008; Knutti et al., 2008); therefore to fully characterize the uncertainty 3 

in projected hydrological extremes an ensemble of GCMs is required.  4 

Gridded statistical downscaling methods provide a computationally efficient and effective 5 

means of producing plausible hydro-climatology from a large ensemble of GCMs (Salathe et 6 

al., 2007; Salathé, 2005; Wood et al., 2004). A number of studies have compared multiple 7 

statistical downscaling methods for use in climatological or hydrological projections. Maurer 8 

and Hidalgo (2008) compared constructed analogues (CA) and bias correction spatial 9 

disaggregation (BCSD) using the National Centers for Environmental Prediction / National 10 

Center for Atmospheric Research Reanalysis I (NCEP1) (Kalnay et al., 1996) as a surrogate 11 

GCM. Methods were comparable in producing precipitation and temperature at a monthly and 12 

seasonal level, but skilfully downscaled daily data depended on the ability of the climate 13 

model to show daily skill. Bürger et al. (2012a) compared five methods for their ability to 14 

represent climatic extremes including BCSD and expanded downscaling (XDS). The fixed 15 

diurnal temperature range in BCSD was seen as a shortcoming in Bürger et al. (2012a). XDS 16 

performed best passing 48% of single tests on average for 27 Climate Indices of Extremes 17 

(ClimDEX) with BCSD close behind passing 45% (Bürger et al., 2012a). Pierce et al. (2013) 18 

found that projected increases in annual precipitation versus decreases in California were due 19 

to disagreements in the occurrence of the heaviest precipitation days (>60 mm day-1) 20 

amongst three dynamical and two statistical downscaling methods (BCCA and BCSD). 21 

Maurer et al. (2010) compared BCSD, BCCA and CA for their ability to reproduce 22 

hydrologic extremes. BCCA, when combined with the Variable Infiltration Capacity (VIC) 23 

model, consistently outperformed the other methods in simulating 3-day peak flow and 7-day 24 

low flow. BCCA is an improvement over CA because it includes bias correction and over 25 

BCSD because it includes daily GCM anomalies (Maurer et al., 2010). An additional method 26 

described as Statistical Downscaling and Bias Correction (Abatzoglou and Brown, 2012) and 27 

as Asynchronous Regression (Gutmann et al., 2014), both of which interpolate from the GCM 28 

to fine scale and then apply quantile mapping bias correction (i.e., basically reversing the 29 

steps of BCSD), was found to reproduce extreme precipitation events at the grid-scale, but 30 

overestimate them on aggregate scales (Maraun, 2013). Studies to date have not assessed the 31 

strength of downscaling methods for use with climatic and hydrologic extremes concurrently. 32 
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The first generation National Centers for Environment Prediction / National Center for 1 

Atmospheric Research Reanalysis I (NCEP1) reanalysis (Kalnay et al., 1996) is often used as 2 

a surrogate GCM when testing downscaling techniques (Bürger et al., 2012a; Gutmann et al., 3 

2014; Maurer et al., 2010), primarily because of its long record length. Recently new 4 

reanalysis products have come on line bringing to light possible issues with NCEP1, such as a 5 

spurious pattern in precipitation fields at high latitudes (Sheffield et al., 2012), and lack of 6 

skill in producing daily air temperature at high-altitudes versus other reanalyses (Hofer et al., 7 

2012). Reanalyses differ due to variations in assimilated observational data, assimilation 8 

methods, representations of surface and boundary layer processes, physics packages, and 9 

dynamical cores, and the resulting uncertainty in output fields can be considerable, especially 10 

for climatic extremes (Sillmann et al., 2013). For instance, discrepancies between reanalyses 11 

for some climate extreme indices, such as frost days in some regions, are sometimes as large 12 

as the typical inter-model spread of the Coupled Model Intercomparison Project ensembles, 13 

(Sillmann et al., 2013). These differences arise because near surface temperature and 14 

precipitation extremes are calculated from variables that are relatively poorly constrained by 15 

observations in reanalyses. Additionally, non-stationarity exists in some reanalysis products 16 

because they amalgamate observational datasets from different sources over time (Donat et 17 

al., 2014). In the context of historical validation of downscaling methods, statistical 18 

downscaling methods may perform poorly simply because reanalysis outputs are not 19 

stationary over the calibration and validation periods (Maurer et al., 2013). All of these 20 

factors suggest that multiple reanalysis products should be used as GCM surrogates to ensure 21 

methods are not failing due to irreparable errors in reanalyses, and also to explore the 22 

variability in results due to reanalysis uncertainty. 23 

Gridded climate observations underpin hydrologic projections. They are used to calibrate the 24 

downscaling technique and the hydrologic model, serving as targets and inputs respectively. 25 

Gridded observations are commonly evaluated via comparison with station observations 26 

(Hutchinson et al., 2009; Werner et al., 2015), intercomparison with other gridded 27 

observations (Eum et al., 2014) or by using them to drive a hydrologic model and comparing 28 

outputs to observed water balance fluxes and streamflow over large basins (Livneh et al., 29 

2013; Maurer et al., 2002). We know that statistical downscaling methods perform poorly 30 

when non-stationarity occurs between the calibration and validation periods (Maurer et al., 31 

2013), but we haven’t evaluated how apparent non-stationarity caused by natural climate 32 

variability (Huang et al., 2014; Maraun, 2012) is amplified or diminished with methods used 33 
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to create gridded observations, which could also affect the success of downscaling methods. 1 

Furthermore, stationarity in mean annual precipitation and temperature does not dictate 2 

stationarity in climatic or hydrologic extremes. Not all, but some previous studies have 3 

included as many years as possible in the calibration, with the goal of maximizing the 4 

available historical record available for resampling in the temporal disaggregation step 5 

applied in BCSD (Bürger et al., 2012a; Salathé, 2005; Werner, 2011). This approach is also 6 

supported by other studies that found bias correction is more robust for larger samples from 7 

longer time series, especially for extremes, such as flood events (Huang et al., 2014; Themeßl 8 

et al., 2011). The pros and cons of this extended calibration period have not been fully 9 

evaluated. This investigation will help the hydrologic modelling community build a better 10 

evaluation system for gridded observations to ensure their strength not only for projections of 11 

mean monthly changes over large basins ~100,000 km2, but also to extremes in basins as 12 

small as 500 km2. 13 

When used to make climate change projections, distributed hydrologic models such as VIC 14 

are best driven with gridded daily data, which is usually produced via gridded statistical 15 

downscaling techniques such as BCSD, CA and BCCA, three gridded methods that have been 16 

tested to date. Applying BCSD using minimum and maximum monthly temperature instead of 17 

mean monthly temperature has not been tested and may correct some issues with diurnal 18 

temperature range (Bürger et al., 2012a). It is important to note that the effect of BCSD on 19 

daily temperature range (DTR) when used with daily data and ways to ensure minimum 20 

temperature is less than maximum temperature has been tested by Thrasher et al. (2012) and 21 

is not the focus of this study. A few other methods have been developed recently that warrant 22 

investigation. These include double bias corrected constructed analogue (DBCCA), which is 23 

similar to BCCA but applies a second quantile mapping bias correction as a post-processing 24 

step to correct drizzle and other residual biases (Maurer et al., 2010). Additionally, the climate 25 

imprint delta method (CI) (Hunter and Meentemeyer, 2005) and the “reverse” BCSD (similar 26 

to SDBC in Ahmed et al., 2013; and AR in Gutmann et al., 2014), which we refer to as bias 27 

corrected climate imprint (BCCI) due to its use of CI for interpolation, have not been explored 28 

for their applicability to hydrology. A recently developed hybrid of BCCA and BCCI, 29 

referred to as BCCAQ (Murdock et al., 2013, 2014) has the potential to be an improvement 30 

versus other gridded statistical downscaling techniques and has not been tested with 31 
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hydrologic extremes. This work will also help to inform use of the resulting BCSD and 1 

hydrologic model output provided by the Pacific Climate Impacts Consortium (PCIC)1. 2 

Finally, PCIC also makes available Canada-wide downscaled climate change projections 3 

using both BCSD and BCCAQ methods1. This study provides the first rigorous 4 

intercomparison of these two methods. 5 

The ClimDEX indices are recommended by the World Meteorological Organization Expert 6 

Team on Climate Change Detection and Indices (ETCCDI) (Zhang et al., 2011) as a means of 7 

summarizing daily temperature and precipitation statistics focusing particularly on aspects of 8 

climate extremes. They have been developed to allow seamless comparison of climate 9 

conditions on an international basis. There are many projects applying the ETCCDI indices to 10 

detect changes in extremes historically (e.g. Sillmann et al. 2013a), to project future changes 11 

(e.g. Sillmann et al. 2013b) and to provide future changes via data portals to allow local 12 

analysis (http://www.cccma.ec.gc.ca/data/climdex/). Two commonly investigated hydrologic 13 

extremes include 3-day peak flow, which represents potential flood conditions and 7-day low 14 

flow, which represents potential drought conditions (e.g. Maurer et al. 2010). Floods can be 15 

damaging to river and floodplain infrastructure, while droughts can be detrimental for human 16 

water use and aquatic habitat. We follow the framework developed by Bürger et al. (2012a), 17 

evaluating methods for their abilities in producing the temporal sequencing and distributional 18 

properties of climate indices and hydrologic extremes.  19 

The objectives of this study are: 20 

1) To compare several reanalyses in the study region against two gridded observation 21 

datasets. 22 

2) To test the ability of BCCA, DBCCA, BCCI, CI, BCSD (mean temperature), BCSDX 23 

(minimum and maximum temperature) and BCCAQ downscaling techniques to 24 

simulate 26 ClimDEX indices using four reanalyses and two gridded observations. 25 

3) To test the ability of BCCA, DBCCA, BCCI, CI, BCSD (mean temperature), BCSDX 26 

(minimum and maximum temperature) and BCCAQ downscaling techniques, when 27 

used to force the VIC hydrologic model, to simulate 3-day peak flow and 7-day low 28 

flow indices using four reanalyses and two gridded observations. 29 

                                                 
1 http://www.pacificclimate.org/data 

http://www.cccma.ec.gc.ca/data/climdex/
http://www.pacificclimate.org/data
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4) To learn more about the strengths and weaknesses of two gridded observations for use 1 

with hydrologic modelling. 2 

5) To see if strength of a method to downscale for climate extremes relates to abilities for 3 

use with hydrologic extremes. 4 

2 Study Area 5 

The Peace River basin will be the focus of this work. The snow-dominated regime of this 6 

basin makes the findings of this work applicable to many mid-latitude areas. The Peace River 7 

is located in interior north-eastern BC and encompasses the 101,000 km2 drainage area 8 

upstream of Taylor, BC (Figure 1). Elevations range from 400 m to 2800 m. The region is 9 

highly influenced by the Pacific Ocean and Arctic air masses. The region has a continental 10 

climate (Demarchi, 1996), with monthly average temperatures ranging from -12.0°C in 11 

January to 12.3°C in July, averaging 0.2°C. Precipitation follows a seasonal pattern of 12 

summer maximum and spring minimum. The Peace River has a nival regime, with 13 

approximately 54% of the annual precipitation (440 mm) falling as snow (mostly during 14 

October–April) and 64% of the natural streamflow occurring during the freshet months of 15 

May–July. Low flows occur during the winter and early spring in head-water (INGEN) and 16 

downstream (BCGMS) basins (Figure 2). Due to the topographical complexity and strong 17 

climate gradients this region provides a stringent test of downscaling techniques. 18 

Additionally, the Peace River basin is the focus of two studies that explore uncertainty in 19 

hydrologic projections, one due to GCMs, emissions scenarios and parameter sets (Bennett et 20 

al., 2012), the other due to statistically versus dynamically downscaled GCMs (Shrestha et al., 21 

2014a). This study provides a good complement to these by exploring new sources of 22 

uncertainty in the same basin.  23 

3 Methods 24 

3.1 Gridded observations 25 

Two daily, gridded observational datasets were available over the study area. The first was 26 

generated for BC for application with the Variable Infiltration Capacity (VIC) macro-scale 27 

distributed hydrologic model following the methods of Maurer et al. (2002) and Hamlet and 28 

Lettenmaier (2005). Daily gridded surfaces of minimum and maximum temperature and daily 29 

precipitation accumulation were produced at the spatial resolution of 1/16°, which is ~6 km2 30 

depending on latitude, for January 1950 to December 2005. Station data were contributed 31 
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from multiple networks including those of Environment Canada, BC Ministry of Forests, 1 

Lands and Natural Resource Operations, BC Hydro, and the US National Weather Service 2 

Co-operative observer program, each with a varying range of quality control. Stations were 3 

interpolated to grids using the SYMAP inverse-distance weighting algorithm (Shepard, 1984). 4 

The raw gridded fields were temporally homogenized to remove interpolation artefacts 5 

introduced by using a temporally varying mix of stations and corrected for topographic effects 6 

using ClimateWNA, a 1961 to 1990 PRISM-based high-resolution climatology for western 7 

North America (Daly et al., 1994; Wang et al., 2006). This dataset is referred to as VIC 8 

Forcings. 9 

The second dataset was created for all of Canada using the Australian National University 10 

Spline (ANUSPLIN) implementation of trivariate thin plate smoothing splines (Hutchinson et 11 

al., 2009). The Canada-wide ANUSPLIN observational dataset was created at a 1/12° grid 12 

spacing (~10 km) for daily minimum temperature, maximum temperature, and precipitation 13 

amounts for the period 1950-2010 by Hopkinson et al., (2011) and McKenney et al., (2011). 14 

Station data from Environment Canada observing sites were interpolated onto the high-15 

resolution grid using the ANUSPLIN smoothing splines with elevation, longitude, and 16 

latitude as interpolation predictors. Precipitation occurrence and square-root transformed 17 

precipitation amounts were interpolated separately on each day, combined, and transformed 18 

back to original units. Observed station data were quality controlled and corrected for station 19 

relocation, changes in the definition of the climate day and trace precipitation amounts. 20 

3.2 Reanalyses  21 

Four atmospheric reanalysis products were selected to span a range of complexity and spatial 22 

resolution. Chosen methods include NCEP1, European Centre for Medium-Range Weather 23 

Forecasts (ECMWF) Re-Analysis 40 (ERA40), ECMWF Re-Analysis Interim (ERAInt) and 24 

the National Oceanic and Atmospheric Administration – Cooperative Institute for Research in 25 

Environmental Sciences 20th Century Reanalysis V2 (20CR). NCEP1 is a popular reanalysis 26 

product applied in the validation of statistical downscaling techniques (Bürger et al., 2012a; 27 

Maurer et al., 2010). It spans the period from 1948 to present, is ~1.9° in resolution and 28 

includes a wide range of observations assimilated from ships to satellite data (Kalnay et al., 29 

1996). ERA40 is available from 1958 to 2002 and is archived at the coarsest resolution (2.5°) 30 

of the four products selected for this study. It was the first to assimilate satellite radiance data 31 

directly (Uppala et al., 2005). ERAInt covers the satellite era from 1979 through to present. 32 
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Data used here are archived at 1.5°, although the underlying forecast model runs at 0.75°. It 1 

has an improved atmospheric model and assimilation system over that used in ERA40 (Dee et 2 

al., 2011). The 20CR is one of the longest reanalysis records available, starting in 1871 and 3 

running to 2012. At 2° resolution it assimilates only surface observations of synoptic pressure, 4 

monthly sea surface temperature and sea ice distribution (Compo et al., 2011). Table 1 5 

summarizes the availability of the gridded observations and reanalyses.  6 

3.3 Downscaling techniques  7 

Seven statistical approaches are selected based on their wide use and/or potential strength in 8 

downscaling coarse-scale models to gridded observations for representing extremes. BCSD 9 

has been applied across North America (Maurer and Hidalgo, 2008; Salathé, 2005; Schnorbus 10 

et al., 2014; Wood et al., 2002, 2004). Monthly minimum temperature, maximum temperature 11 

and precipitation from GCMs or reanalyses are bias corrected, using quantile mapping, 12 

against gridded observations aggregated to the large-scale model grid. Bias corrected, 13 

spatially disaggregated monthly data are temporally disaggregated to a daily time step via 14 

random sampling of historical months. Days in the selected month are rescaled (multiplicative 15 

for precipitation and additive for temperature) to match the bias corrected monthly 16 

precipitation and average temperature (Figure 3a). Two variations of BCSD are tested; one 17 

derives minimum and maximum temperature from mean temperature in the coarse-scale 18 

model by assuming a uniform monthly diurnal temperature range (BCSD), the other uses 19 

monthly minimum and maximum temperature directly from the large-scale model (BCSDX).  20 

Two constructed analogue downscaling approaches are tested; BCCA and DBCCA (Maurer 21 

et al., 2010). BCCA bias corrects the large-scale temperature and precipitation using quantile 22 

mapping, as in BCSD, except on daily rather than monthly large-scale data. In the constructed 23 

analogue (CA) component, a library of observed daily coarse-resolution and corresponding 24 

high resolution climate patterns of the variable to be downscaled is built (Hidalgo et al., 25 

2008). Daily data are downscaled by selecting 30 days from the coarse-scale library that have 26 

the closest similarity to a given simulated day; optimal weights are determined via ridge 27 

regression and the 30 corresponding fine-scale library patterns are combined using the same 28 

weights (Maurer et al., 2010). In the DBCCA technique, a second quantile mapping bias 29 

correction is then applied at the fine-scale to fix drizzle and other biases caused by the linear 30 

combination of daily fields in the CA step (Figure 3a).  31 
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Two climate imprint methods are tested; CI delta method (Hunter and Meentemeyer, 2005) 1 

and bias corrected CI (BCCI), which applies quantile mapping to the interpolated series from 2 

CI (Figure 3a). For the imprint methods, long-term averages (i.e. 30 years) from the fine-scale 3 

data provide a “spatial imprint” that is used to represent environmental gradients. The ratio of 4 

a daily to average monthly values is multiplied by the fine-scale monthly values for a location 5 

to get the daily precipitation. This is similar for minimum and maximum temperature, except 6 

values are calculated as the difference between the monthly mean and the daily value (Hunter 7 

and Meentemeyer, 2005).  8 

While BCCI applies quantile mapping as a post-processing step to the interpolated fine-scale 9 

outputs from the CI method, BCCAQ is a post-processed version of BCCA where the final 10 

quantile mapping bias correction is based on BCCI. First, the BCCA and BCCI algorithms are 11 

run independently, and then BCCAQ corrects BCCA with BCCI. The daily BCCI outputs at 12 

each fine-scale grid point are reordered within a given month according to the daily BCCA 13 

ranks. Because the optimal weights used to combine the analogues in BCCA are derived on a 14 

day-by-day basis, without reference to the full historical dataset, the algorithm may be prone 15 

to “Huth's paradox”, wherein models that are calibrated based on short-term variability may 16 

be biased and fail to produce realistic long-term trends (Benestad et al., 2008; Huth, 2004). 17 

Reordering data for each fine-scale grid point within a month effectively breaks the overly 18 

smooth representation of sub reanalysis-grid scale spatial variability inherited from BCCI 19 

(Maraun, 2013) thereby resulting in a more accurate representation of event-scale spatial 20 

gradients; this also prevents the downscaled outputs from drifting too far from the BCCI long-21 

term trend. Over longer time-scales, the spatial variability of BCCAQ converges to that of 22 

BCCI. 23 

Statistical methods are calibrated from 1950 to 1990 for 20CR and NCEP1, and from 1958 to 24 

1990 and from 1979 to 1990 for ERA40 and ERAInt, respectively (Table 2). Calibration 25 

periods were selected to include the longest overlapping record between the gridded 26 

observation and reanalyses to replicate the approach taken in Werner et al. (2011). Thus, the 27 

20CR and NCEP1 reanalyses results will serve to evaluate the gridded observations and these 28 

two reanalyses, and also validate the calibration/validation approach taken with BCSD for a 29 

series of studies conducted in this region (Bürger et al., 2012a, 2012b; Schnorbus et al., 2014; 30 

Shrestha et al., 2012; Werner et al., 2013). The resulting modelling framework for these two 31 

gridded observations, four reanalysis products and seven gridded statistical downscaling 32 
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techniques is displayed in Figure 3b. All statistical downscaling methods use precipitation and 1 

temperature as predictors and predictands. 2 

3.4 ClimDEX 3 

ClimDEX is a common climate indices package that computes values for 27 core indices 4 

based on daily precipitation, minimum and maximum temperature (Karl et al., 1999; Peterson, 5 

2005) and (http://etccdi.pacificclimate.org or http://www.clivar.org/panels-and-working-6 

groups/etccdi/etccdi.php/). These indices describe events, such as the number of heavy 7 

precipitation days denoted as days where precipitation is greater than 10 mm or percentage of 8 

days when maximum temperature is greater than the 90th percentile. They do not usually 9 

represent the most extreme events conceivable, but instead represent “the more extreme 10 

aspects of climate,” which are known to be relevant to a broad range of impact fields and are 11 

still statistically manageable so that they can be reliably estimated from current data for the 12 

present and future. ClimDEX has been adopted as a standard for extremes by the World 13 

Climate Research Programme (http://www.clivar.org/organization/extremes). Indices were 14 

computed from downscaled temperature and precipitation from seven statistical downscaling 15 

methods used with four reanalyses and two gridded observations for a total of 56 estimates of 16 

each index. The index of the annual count when daily minimum temperature is > 20ºC, 17 

tropical nights (tr), was dropped for this analysis because this temperature threshold is not 18 

exceeded in the Peace River basin. See Table 1 in Bürger et al. (2012a) for a description of 19 

indices explored in this study. 20 

3.5 Hydrologic Modelling 21 

Hydrologic projections for the Peace River basin are derived using the Variable Infiltration 22 

Capacity (VIC) model (Liang et al., 1994, 1996). The VIC model is a spatially distributed 23 

macro-scale hydrologic model that was originally developed as a soil-vegetation atmosphere 24 

transfer scheme for general circulation models. It has been used to evaluate climate change 25 

impacts on global river systems (Nijssen et al., 2001) and in the mountainous western United 26 

States and BC (Elsner et al., 2010b; Hamlet and Lettenmaier, 2005, 2007; Schnorbus et al., 27 

2014; Shrestha et al., 2012). Its spatially distributed nature makes it suitable for capturing 28 

regional variation in the hydrologic cycle due to topographic, physiographic, and climatic 29 

controls. The VIC model is also process-based allowing for a more plausible extrapolation of 30 

hydrologic processes into future climate regimes (Leavesley, 1994). The VIC model is 31 

http://etccdi.pacificclimate.org/
http://www.clivar.org/panels-and-working-groups/etccdi/etccdi.php/
http://www.clivar.org/panels-and-working-groups/etccdi/etccdi.php/
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applied at a resolution of 1/16° (approximately 27-31 km2, depending upon latitude) and run 1 

at a daily time step (one-hour time step for the snow model). Surface routing between grid 2 

cells is done using the linearized Saint-Venant equations (Lohmann et al., 1996). 3 

The Finlay River above Akie River, Ingenika River above Swannell River, Parsnip River 4 

above Misinchinka River, and Peace River above Pine River sub-basins of the Peace River 5 

were calibrated to observations from Water Survey of Canada (Figure 1). Peace River at 6 

Bennett Dam was calibrated to naturalized flow provided by BC Hydro. The sub-basins range 7 

in drainage area from 4,200 km2 to 83,900 km2 and from a minimum elevation of 392 m to a 8 

maximum of 2799 m (Table 3). All selected basins had strong calibration results over 1990 to 9 

1995 for both the VIC Forcings and ANUSPLIN gridded observations based on the Nash-10 

Sutcliff Efficiency score (Nash and Sutcliffe, 1970), the Nash-Sutcliff Efficiency score of the 11 

log-transformed discharge and the percent volume bias error (Table 4). Nash-Sutcliff 12 

Efficiency score values improved, Nash-Sutcliff Efficiency score of the log-transformed 13 

discharge stayed roughly the same and percent volume bias error differences became larger in 14 

magnitude in the 1985 to 1989 split-sample validation period, negative in VIC Forcings and 15 

positive in ANUSPLIN. 16 

There are several daily streamflow metrics that are useful for water resources design and 17 

management, which are also ecologically relevant (Monk et al., 2011; Richter et al., 1996; 18 

Shrestha et al., 2014b). A recent intercomparison of statistical downscaling techniques for use 19 

with daily streamflow investigated the hydrologic extremes 3-day peak flow and 7-day low 20 

flow (Maurer et al., 2010). To build on that study we investigate the strength of seven 21 

downscaling methods for the same metrics using 3-day peak flow to represent flood and 7-day 22 

low flow, drought. Two low flow periods are investigated because the lowest discharge takes 23 

place in the months of October to April in sub-basins of the Peace River (Figure 2) and 24 

summer low-flows (July to September) are of interest to agriculture and ecology. Hydrologic 25 

models can have low flows in different seasons than observations due to their poor 26 

parameterization of baseflow conditions and because calibration approaches favour good 27 

performance for peak flow (Najafi et al., 2011). This issue can be exaggerated by downscaling 28 

approaches (Shrestha et al., 2014b). Thus, narrowing the window over which low flows are 29 

accessed is important to prevent low flows in one season being compared to low flows in 30 

another. Peak flows are analyzed between May and July. 31 
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3.6 Statistical Tests 1 

The seven statistical downscaling methods vary in their approach, which can result in 2 

differing strengths and weakness. We chose our statistical tests to fully evaluate these 3 

downscaling techniques for the climate and hydrologic results and to follow the framework of 4 

Bürger et al. (2012a). The time period for calibration of the downscaling techniques was 5 

selected to match Bürger et al. (2012a) (pre-1991 depending on the availability of the 6 

reanalyses). Longer calibration periods available for NCEP1 and 20CR were also seen as 7 

favourable when applying bias correction based downscaling methods, especially when 8 

working with extremes (Huang et al., 2014; Themeßl et al., 2011) and assisted with evaluating 9 

the two gridded observations. Validation was set to 1991-2005 to accommodate the overlap of 10 

available reanalyses, gridded observations and observed streamflow records. ERA40 is an 11 

exception with the last full year of available record for 2001. Validation results for ERA40 are 12 

provided for 1991-2001. 13 

Two statistical tests are applied to the ClimDEX results over the Peace River basin: the 14 

Kolmogorov-Smirnov (KS) test and the test for Pearson’s correlation. The KS test is used to 15 

see how well the distribution of climate indices for the statistically downscaled reanalyses 16 

match the distribution of those calculated from the gridded observations used as downscaling 17 

targets. The KS test is a nonparametric test of the equality of continuous one-dimensional 18 

probability distributions. Here, it is used to compare two samples, namely annual climate 19 

indices for the statistically downscaled reanalyses and the associated gridded observation. The 20 

KS test statistic is used to quantify the distance between empirical distribution functions of 21 

these two samples. The null hypothesis is that the two samples are drawn from the same 22 

distribution and is rejected if p value < 0.05. The distributions considered under the null 23 

hypothesis have to be continuous distributions but are otherwise unrestricted. While some of 24 

the climate indices are not strictly continuous (e.g., frost days, etc.), asymptotic critical values 25 

may still be used in the presence of a small number of ties (Janssen, 1994). Pearson’s 26 

correlation is used to test the temporal correspondence between the annual climate indices for 27 

the statistically downscaled reanalyses and the associated gridded observation. Pearson's 28 

product moment correlation coefficient is used to measure the linear correlation between 29 

climate indices from downscaled reanalyses and indices from observations. If the p value was 30 

< 0.05 the downscaled and observed samples were not linearly correlated. 31 
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The 101,000 km2 Peace River basin is represented by 3975 grid cells at the 1/16° resolution 1 

used to run the VIC hydrologic model. The KS test and Pearson’s correlation are evaluated on 2 

each of the grid cells in the Peace River basin for each climate index. Statistical significance 3 

of the KS test and Pearson’s correlation results over the basin as a whole is measured using a 4 

field significance test; the Walker field significance test (Wilks, 2006), where the evaluation 5 

of field significance is done by using the minimum local p value as the global test statistic. 6 

The Walker field significance test was selected because it is relatively insensitive to 7 

correlations among local tests allowing global tests based on data exhibiting both spatial and 8 

temporal correlation to be conducted. Temporal and spatial correlation between climate 9 

indices grids would require a cumbersome procedure to address correctly with conventional 10 

resampling tests. Walker’s test, can be seen as being closely related to the conventional field 11 

significance test (Storch, 1982) based on counting significant local results, except that 12 

Walker’s test statistic is the smallest of the K local p values, rather than the number of K local 13 

tests that are significant at some level. 14 

The KS test and the test for Pearson’s correlation were applied on the 3-day peak flow and 7-15 

day low flow in winter and summer for hydrologic data from the five sub-basins of the Peace 16 

River. In this case, the KS test is used to test how well the distribution of the hydrologic 17 

extremes created by driving the VIC model with the statistically downscaled reanalyses 18 

matched those derived from driving the VIC model with the two gridded observations. 19 

Pearson’s correlation is used to test the temporal correspondence between the hydrologic 20 

extremes created by driving VIC with downscaled reanalyses versus gridded observations. 21 

4 Results 22 

4.1 Gridded observations and Reanalyses 23 

Four reanalyses (NCEP1, ERA40, ERAInt and 20CR) are compared to two gridded 24 

observations (VIC Forcings and ANUSPLIN) over the Peace River basin. Daily precipitation, 25 

minimum temperature and maximum temperature are converted to total monthly precipitation 26 

and average monthly temperatures over the 1950 to 2005. Average minimum and maximum 27 

temperatures in ANUSPLIN and VIC Forcings are similar from year to year in most months 28 

(Figure 4 and Figure 5). However, prior to 1970, ANUSPLIN can be up to five degrees cooler 29 

than the VIC Forcings and reanalyses from December to February. Precipitation totals are 30 

similar from year to year for all months in the two gridded observations, except October when 31 
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precipitation difference can be up to 50 mm (Figure 6). This could be because there is greater 1 

station coverage in the VIC Forcings and an elevation adjustment is made with ClimateWNA. 2 

Differences in these two products resulting from these factors might be more apparent in the 3 

shoulder season.  4 

There is a warm bias in minimum temperature in 20CR and ERA40 from May to November 5 

and a cool bias in NCEP1 from March to October relative to gridded observations (Figure 4). 6 

The biases in NCEP1 tend to be greater over part of the record in some months, such as from 7 

1970 to ~1995 in June. ERAInt is closest to gridded observations for minimum temperature, 8 

but is only available after 1979. Some of the patterns seen in minimum temperature are 9 

repeated in maximum temperature (Figure 5). NCEP1 values are noticeably cooler than 10 

observations and other reanalyses in May, June, July, September and October in some years. 11 

In April, maximum temperature in 20CR and NCEP1 are close to each other and roughly five 12 

degrees less than the other reanalyses and gridded observations. Maximum temperatures for 13 

ERA40 and ERAInt are closest to gridded observations from year to year in all months. 14 

Monthly precipitation in the NCEP1 and ERA40 reanalyses has similar magnitudes and 15 

variability as the gridded observations (Figure 6). ERAInt is close to observations in the fall 16 

and winter months, but has higher precipitation values in March through August. 20CR stands 17 

apart from the other reanalyses and both gridded observations with consistently larger 18 

precipitation amounts, roughly twice the magnitude as observations in September through 19 

April. However, sequencing of events is similar between 20CR and observations.  20 

This confirms that near surface temperature and precipitation values from the selected 21 

reanalyses have different characteristics due to their different resolutions, model physics and 22 

contributing data in the Peace River basin. The two gridded observations also displayed some 23 

dissimilarity in time. Differences between these four reanalyses in this particular region 24 

should act as a stringent test of the downscaling techniques applied. However, we expect that 25 

the time-dependent differences between gridded observations and NCEP1 for minimum and 26 

maximum temperature, and precipitation, will reduce the success rate of any of the 27 

downscaling techniques (Maurer et al., 2013). Nevertheless, we carry NCEP1 through the 28 

analysis to quantify the impacts of using a potentially flawed reanalysis and also to evaluate 29 

VIC Forcings and ANUSPLIN over their full record (1950 to 2005) with two reanalyses 30 

(NCEP1 and 20CR). 31 
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4.2 Impact of downscaling approach and reanalyses on ClimDEX results 1 

Downscaled minimum temperature, maximum temperature and precipitation from seven 2 

gridded downscaling methods, two gridded observations and four reanalyses were used to 3 

generate 26 ClimDEX indices. Results were compared to the indices generated from the 4 

respective gridded observations at their native resolution (VIC Forcings (~6 km) and 5 

ANUSPLIN (~10 km)) for their ability to match the timing (Pearson’s correlation) and 6 

distribution (KS test) of values over the Peace River basin using the Walker field significance 7 

test (Wilks, 2006).  8 

In the calibration (1950-1990) and validation (1991-2005) periods the VIC Forcings and 9 

ANUSPLIN dataset are similar for most temperature based indices and show some large 10 

differences for precipitation based indices (Table 5). Namely, PRCPTOT, annual total wet 11 

day precipitation (> 1 mm), in ANUSPLIN is 18% and 21% less than VIC Forcings in the 12 

calibration and validation periods, respectively. The events on a given day are larger in VIC 13 

Forcings than ANUSPLIN as shown by the higher R95p, RX1day, RX5day, R10mm and 14 

R20mm values. Between the validation and the calibration period PRCPTOT increases more 15 

in VIC Forcings than in ANUSPLIN. The increase in VIC Forcings comes from an increase in 16 

precipitation days (R1mm) rather than an increase in intensity. Magnitudes of the larger 17 

precipitation events actually decrease for VIC Forcings while they increase for ANUSPLIN, 18 

although these events are still larger in VIC Forcings than ANUSPLIN in the validation 19 

period. The percentage of cool nights decrease and the duration of warm spells increase 20 

somewhat equally for both gridded observations. However, increases in the percentage of 21 

warm days and warm nights, and decreases in the percentage of cool days and duration of 22 

cold spells, are greater in ANUSPLIN than VIC Forcings, which suggests that the warming 23 

signal in ANUSPLIN is stronger. Statistically significant increases in annual minimum 24 

temperatures were found by Rodenhuis et al. (2009) in this region. Differing trends in climate 25 

extremes are common in gridded observations due differences in stations, interpolation 26 

techniques and potential corrections for temporal inhomogeneity. Donat et al. (2014) found 27 

that decadal trends in maximum 5 day precipitation amounts (Rx5day) over 1979-2008 28 

ranged from -15 to 5 mm/decade in the Peace River basin region depending on the gridded 29 

observations they studied. VIC Forcings included a monthly temporal adjustment to increase 30 

homogeneity (Hamlet and Lettenmaier, 2005), while ANUSPLIN did not. Additionally, 31 

stations were allowed to drop in and out on a daily bases in ANUSPLIN, whereas stations had 32 
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to be available for a minimum of one year of consecutive days and five years over the record 1 

to be included in VIC Forcings. Hence, trends in some climate extremes differ for these 2 

gridded observations and may or may not match those of “reality” and/or reanalyses.    3 

Irrespective of downscaling method or reanalysis, those methods calibrated and validated 4 

against the ANUSPLIN gridded observations were more successful vs. those based on VIC 5 

Forcings overall (Table 6) although there were some cases where VIC Forcings passed more 6 

tests than ANUSPLIN (Table 8). For example, under the BCCA method, precipitation 7 

amounts on extremely wet days (R95p) for all reanalyses based on VIC Forcing failed the 8 

Walker field significance test for the Pearson’s correlation while those for ANUSPLIN passed 9 

(Figure 7). (Note: time series shown are averages of all of the VIC Forcings or ANUSPLIN 10 

cells in the Peace basin, while the significance of results was based on the Walker field 11 

significance of the correlation tested on each grid cell in the basin.) The largest differences in 12 

the number of tests passed primarily occur for precipitation based indices where ANUSPLIN 13 

passes more than VIC Forcings. VIC Forcings passes 29 more tests than ANUSPLIN for DTR 14 

(Table 7). This result is not unexpected because the differences between the calibration and 15 

validation period are precipitation related in VIC Forcings and temperature related in 16 

ANUSPLIN (Table 5). Step changes in daily temperature range (DTR) from 1950 to 2005 are 17 

apparent in ANUSPLIN (Figure 8). DTR is a strong driver of snow pack generation and melt 18 

and errors in simulating realistic DTR could affect hydrologic modelling results.  19 

The sequencing of precipitation indices, such as CWD, PRCPTOT, R10mm, R20mm, R95p, 20 

R99p, Rx1day, Rx5day and SDII, is most difficult to replicate for all methods, especially 21 

under VIC Forcings. VIC Forcings has a higher station density than ANUSPLIN because it 22 

includes stations from BC Hydro, the BC Ministry of Forests Lands and Natural Resource 23 

Operations, and the Ministry of Environment’s BC River Forecast Centre Snow Survey 24 

Network in addition to those from Environment Canada (Werner et al., 2015). The BC Hydro 25 

network provided a large number of stations in the Peace River basin, most of which were not 26 

available until the 1980s (Werner et al., 2015). The increase in the number of stations after 27 

1980 in the VIC Forcings likely resulted in more complex spatial patterns in precipitation, 28 

despite the monthly temporal adjustment, because it is designed to maintain spatial variability 29 

(Hamlet and Lettenmaier, 2005). Increased spatial variability in the validation period, coupled 30 

with a different interpolation method in VIC Forcings, could have made precipitation patterns 31 

harder to replicate with downscaling. If we are going to rely on these datasets to investigate 32 
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changes to extreme climate and hydrology we should develop a way to maintain temporal and 1 

spatial homogeneity for daily values, while allowing datasets to reflect natural trends. 2 

Minimizing homogeneity problems throughout the record is favourable when using gridded 3 

observations to calibrate statistical downscaling methods (Gutmann et al., 2014; Livneh et al., 4 

2013; Maurer et al., 2002).  5 

Considering results for all downscaling methods and both gridded observations, results based 6 

on ERAInt had the highest score of all four reanalyses for the Pearson’s correlation and KS 7 

tests combined (Table 6). ERAInt results matched sequencing of events most often according 8 

to the Pearson’s correlation test (Figure 7; Table 8) and ERA40 results matched distributions 9 

most often according to the KS test (Figure 9; Table 8). ERAInt passed the correlation test for 10 

both gridded observations for the number of heavy precipitation days (R10mm) when the 11 

other reanalyses did not (Figure 7). ERA40 and ERAInt monthly average minimum and 12 

maximum temperature and total precipitation matched those of the gridded observations most 13 

closely (see Section 4.1). ERAInt is the highest resolution (1.5º) and both ERAInt and ERA40 14 

excluded 1950-1958 in their calibration when NCEP1 and 20CR did not (Table 2), which may 15 

have avoided potential problems with the gridded observations caused by lower station 16 

availability earlier in the record and with reanalysis data from the pre-satellite era (1979-) and 17 

before the expansion and standardization of global radiosonde network (1958-). Results for 18 

SDII for VIC Forcings and ANUSPLIN under all seven downscaling methods show large 19 

differences between gridded observations and downscaled NCEP1 prior to 1958 (Figure 10). 20 

Gutmann et al. (2014) tested four downscaling methods with NCEP1 focusing on the period 21 

containing satellite microwave and infrared atmospheric soundings (1979-) and still found 22 

temporal instabilities in NCEP1 contributed to failure in downscaling techniques for some 23 

metrics. Root mean square error in sea level pressure decreases from 1950 to 2008 strongly in 24 

NCEP1, somewhat in ERA40 and minimally in 20CR (see Figure 10 in (Compo et al., 2011)). 25 

Assimilating only surface pressure reports and using observed monthly sea-surface 26 

temperature and sea-ice distributions as boundary conditions to create 20CR has resulted in a 27 

more temporally consistent product. However, it still has improved over time. Changes in 28 

20CR in combination with changes in the gridded observations over 1950-2005 has resulted 29 

in fewer passed tests for 20CR than ERA40 or ERAInt. Thus, choice of reanalysis, calibration 30 

period and the gridded observation dataset can influence the measured success of the 31 

downscaling approach being tested, irrespective of the method’s inherent strengths and 32 

weaknesses. 33 
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The highest ranked downscaling method based on the combined results for field significance 1 

of Pearson’s correlation and KS test for all gridded observations, reanalyses and ClimDEX 2 

indices was DBCCA (Table 6). It tied for highest rank with CI for correlation, while BCCAQ 3 

superseded all other methods for distribution. Bias remains in results of the BCCA method for 4 

precipitation due to the linear combination of fine-scale analogues and uncorrected “drizzle” 5 

and related biases (Guttmann et al., 2014). All downscaling methods, except CI, include a 6 

quantile mapping bias correction step and are expected to do well in matching distributions 7 

with their respective gridded observation. All methods except CI pass 86% or more of the 8 

tests for distribution (KS test), while CI passes 78%. The correlation of DTR was a problem 9 

for all the downscaling methods and both gridded observations (Figure 8) and for distribution 10 

based on ANUSPLIN (except BCCAQ) but not when based on VIC Forcings. BCCAQ in 11 

combination with ANUSPLIN matched DTR distributions for ERAInt, ERA40 and 20CR 12 

when all other methods failed, which points to the success of its approach of post-processing 13 

BCCA with a final quantile mapping bias correction based on BCCI. As mentioned above 14 

DTR is an important driver in snowpack. Additionally it plays a key role in evaporation 15 

(Sheffield et al., 2012). Rates of evaporation are an important component of projecting future 16 

water availability and drought (Sherwood and Fu, 2014). Therefore, accurately downscaling 17 

DTR should be a priority. Including minimum and maximum monthly temperature predictors 18 

in BCSDX did not improve the correlation of DTR as was hypothesized in previous studies 19 

(Bürger et al., 2012a). 20 

4.3 Impact of downscaling approach and reanalyses on hydrologic extremes 21 

The previous section shows how raw reanalyses and observations differ in the Peace River 22 

basin and how downscaled reanalyses can differ in their representation of climate extremes 23 

when calibrated to one gridded observation versus another. NCEP1 has routinely been used to 24 

compare the performance of statistical downscaling methods in terms of climate and 25 

hydrologic extremes (e.g. Bürger et al. (2012a) and Maurer et al. (2010)). We thus continue 26 

our comparison of multiple gridded observations, reanalyses and downscaling techniques for 27 

hydrologic extremes. Results are compared for 15 years from 1991 to 2005 (inclusive) for the 28 

five sub-basins, except for ERA40 (11 years; 1991 to 2001). We evaluate methods for their 29 

ability to replicate the timing (Pearson’s correlation) and distribution (KS test) of the 3-day 30 

peak flow, 7-day low flow in summer and 7-day low flow in winter.  31 
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Irrespective of reanalysis or downscaling method, VIC hydrologic model simulations based 1 

on the VIC Forcings gridded observations passed 8% more tests than those based on the 2 

ANUSPLIN gridded observations (Table 9), whereas for the ClimDEX indices ANUSPLIN 3 

passed 7% more tests than VIC Forcings (Table 6). The difference in the number of test 4 

passed is not great. Therefore, the success of the downscaling methods does not depend 5 

strongly on which of the gridded observations is applied overall. However, the greater number 6 

of test passed for hydrologic modelling with the VIC Forcings gridded observations could 7 

relate to VIC Forcings being created at the native resolution of the VIC hydrologic model 8 

(1/16°) whereas the ANUSPLIN data was created at 1/12° and remapped to 1/16° using 9 

bilinear interpolation. Additionally, a larger precipitation bias correction was required during 10 

calibration with the ANUSPLIN data than the VIC Forcings data suggesting that ANUSPLIN 11 

precipitation is less representative than VIC Forcings. Out of the two statistical tests and three 12 

metrics the only case where ANUSPLIN passed more tests than VIC Forcings was for 13 

correlation in summer 7-day low flow (Table 10), especially when driven with NCEP1 and 14 

20CR downscaled via BCCA and DBCCA. Similar results were found for ANUSPLIN and 15 

BCCA and DBCCA with the ClimDEX indices (Section 4.2). This suggests that there is 16 

potential for ClimDEX results to act as predictor of hydrologic extremes.  17 

When considering results regardless of gridded observation or downscaling technique the 18 

number of tests past under ERA40 was the highest overall (Table 9). Additionally, the number 19 

of tests passed for the Pearson’s correlation and the KS test were both highest for ERA40. 20 

The truncated validation period for ERA40, 1990-2001 versus 1990-2005 for other 21 

reanalyses, could have avoided some challenging hydrologic extreme events in 2002-2005. 22 

However, ERAInt, which was validated over 1990-2005, passed nearly the same number of 23 

tests as ERA40. Thus, the shorter calibration period in ERA40 and ERAInt avoids step 24 

changes in the gridded observations and reanalyses prior to 1958. Peculiarities with the 25 

gridded observations were apparent from 1950 to 1958 for the monthly average minimum and 26 

maximum temperature (Figure 4 and Figure 5) and for the DTR and SDII ClimDEX indices 27 

(Figure 8 and Figure 10). Avoiding these years could have reduced artefacts in the 28 

downscaled products and hydrologic model results. Nevertheless, many studies have 29 

demonstrated that ERA40 and ERAInt are superior products versus NCEP1 (Donat et al., 30 

2014; Ma et al., 2008, 2009; Sillmann et al., 2013). In our own analysis ERA40 and ERAInt 31 

have similar timing and magnitude in minimum and maximum temperature and precipitation 32 

(Figures 4, 5 and 6) as the gridded observations when NCEP1 and 20CR do not. These results 33 
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confirm that downscaling methods will succeed when applied to reanalyses that have correct 1 

timing, magnitude and trends such as ERA40 and ERAInt more so than when applied to 2 

reanalyses such as NCEP1 and 20CR that have irregular step changes (Maraun, 2013). We 3 

should be able to assume that although the biases in GCMs will be greater than those found in 4 

reanalyses they are consistent over time. The strength of downscaling methods when 5 

downscaling ERA40 and ERAInt versus NCEP1 and 20CR was also found with the 6 

ClimDEX indices.   7 

The BCCAQ method was the best overall performer for the three hydrologic extremes. It was 8 

the best method according to Pearson’s correlation and tied for second place with DBCCA 9 

and BCCI, after BCSD and BCSDX, for the KS test. BCSD and BCSDX passed the fewest 10 

number of tests for correlation, while CI passed the fewest for distribution. In the case of 11 

ClimDEX, BCCAQ ranked third after BCCA and BCCI. The strength of the BCCAQ method 12 

when tested in terms of basin-wide hydrologic modelling and hydrologic extremes, rather 13 

than in terms of ClimDEX indices at individual grid cells, comes from the maintenance of 14 

daily spatial patterns resulting from the combination of BCCA and BCCI methods. Event-15 

scale spatial gradients and magnitudes are preserved by reordering the BCCI outputs based on 16 

the rank order structure from BCCA. In effect, this removes the overly smooth representation 17 

of sub reanalysis-grid scale variability from BCCI (Maraun, 2013) and largely corrects 18 

remnant biases in magnitude from BCCA (Guttmann et al., 2014). Spatial covariability is 19 

much more relevant in hydrologic modelling than the comparison of climate indices between 20 

products on a grid cell to grid cell basis. This method is also better at maintaining long-term 21 

trends, which might explain failed tests in some of the sub-basins when downscaling NCEP1 22 

and 20CR, which, as shown earlier, exhibit inhomogeneities between calibration and 23 

validation periods. BCCAQ could be failing for the “right reason” when the trend in VIC 24 

Forcings or ANUSPLIN for a given metric is opposite that in NCEP1 or 20CR. BCCAQ is 25 

the only method to pass the Pearson’s correlation and KS test in all five sub-basins when 26 

downscaling ERA40 or ERAInt to VIC Forcings or ANUSPLIN for all three hydrologic 27 

extremes. BCCAQ has overcome some of the challenges of BCCA that Maurer et al. (2010) 28 

would not have been able to find using NCEP1 alone as surrogate GCM. It is also more 29 

successful than the BCCI method, which is analogous to the Statistical Downscaling and Bias 30 

Correction (SDBC) method in Ahmed et al. (2013) and Asynchronous Regression (AR) in 31 

Gutmann et al. (2014), by avoiding overestimates of extreme events at aggregate scales 32 

(Maraun, 2013). 33 
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The BCSD methods pass the most tests for distribution for all basins and reanalyses, while 1 

they fail more tests than any other downscaling method for correlation due to their reliance on 2 

random sampling of historical months when temporally disaggregating from the monthly to 3 

daily time step (Table 6). Thus, these methods will get the frequency and magnitude of events 4 

correct, but will get the timing of when these events occur wrong. Again including the 5 

minimum and maximum temperature from the large-scale model (reanalysis) does not 6 

improve the number of tests passed with BCSDX versus BCSD. For 3-day peak flow (Table 7 

11; Figure 11) and 7-day low flow in summer (Table 10; Figure 12) these methods pass the 8 

majority of tests for correlation. Very few tests are passed for correlation in seven-day low 9 

flow in winter (Table 12; Figure 13). Winter low flows are challenging to monitor and to 10 

model. There could be ice on the river causing the stage-discharge relationships to be 11 

incorrect. Also, as mentioned models are not parametrized or calibrated to best represent base 12 

flow. However, BCSD and BCSDX have more trouble than any of the other downscaling 13 

methods. Due to the resampling of daily events from the historical gridded observations there 14 

can be precipitation occurring in combination with temperatures warm enough to generate 15 

runoff (Figure 14). This is because of the stochastic resampling of the historical precipitation, 16 

but is also related to temperature since runoff is occurring when conditions should be near 17 

freezing. Additionally, the random selection of months from the historical record can lead to 18 

large discontinuities across month boundaries, such as in December to January (Figure 14). 19 

This is when it is important to get daily events from the GCM or reanalyses (e.g., as in the CI, 20 

BCCI, BCCA, DBCCA and BCCAQ methods). As calibrated, the VIC model is known to 21 

have limited performance for low flows and additional errors were suspected to have been 22 

contributed by BCSD in downscaled 20C3M GCM results (Shrestha et al., 2014b). Some 23 

sharp spikes on the rising limb of the hydrograph suggest rain-on-snow events caused by the 24 

downscaling-driven results that are not displayed in the runs based on gridded observations. 25 

The CI method is the closest to the delta method that we have investigated. The median and 26 

ranges for CI are much lower for winter 7-day low flow (not shown). The poorer performance 27 

of the CI method for the KS test is due to the lack of quantile mapping bias correction in this 28 

method.  29 

5 Conclusions 30 

We have tested the applicability of seven techniques for downscaling coarse-scale climate 31 

models in terms of ClimDEX indices and hydrologic extremes. The seven approaches 32 
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investigated include several methods commonly used in hydrologic modelling. Some of these 1 

had been explored before (i.e. BCSD and BCCA), but not using multiple reanalyses. Choice 2 

of reanalysis was found to affect the number of tests passed for a given downscaling 3 

technique. Downscaling methods were more successful under ERA40 or ERAInt than they 4 

were under NCEP1 or 20CR. The quality of reanalyses and gridded observations changed 5 

over the calibration period due to changes in availability of satellite/radiosonde data and 6 

station observations. NCEP1, the reanalysis used as a surrogate GCM in many previous 7 

downscaling intercomparisons, had an obviously erroneous step change in temperature over 8 

the Peace River basin. Between the calibration and validation period, changes in ClimDEX 9 

indices were greater for precipitation with VIC Forcings but greater for temperature with 10 

ANUSPLIN. Thus, trends in ClimDEX indices differed in these gridded observations. 11 

ANUSPLIN passed 5% more tests than VIC Forcings, mostly for precipitation related 12 

ClimDEX indices. Through this work we learned a lot about these gridded observations and 13 

discovered evaluation procedures that will be useful for future studies. 14 

BCSDX, DBCCA and BCCAQ downscaling methods had not been evaluated in terms of 15 

ClimDEX indices and hydrologic extremes before now. The BCSDX method included 16 

minimum and maximum temperature from the reanalyses instead of mean as is done in 17 

BCSD, but this did not improve its ability to resolve temperature indices, such as diurnal 18 

temperature range, or hydrologic extremes. DBCCA was an improvement over BCCA and 19 

passed the greatest number of tests for the ClimDEX indices. The double bias correction 20 

proved to reduce some of the drizzle and remnant bias in precipitation amounts found in 21 

BCCA. The BCCAQ method, which combines BCCA and BCCI, performed well in terms of 22 

number of tests passed for the ClimDEX indices, but it really shone for use with modelling 23 

hydrologic extremes. In this context, it exceeded all other methods. BCCAQ provides a more 24 

accurate representation of event-scale spatial gradients, removing the overly smooth 25 

representation of sub reanalysis-grid scale variability inherited from BCCI and correcting 26 

biases from BCCA. These attributes are important for simulating the climate events that occur 27 

over a basin that drive runoff. All methods passed correlation and distribution tests for 3-day 28 

peak flow and 7-day low flow in summer for the majority of sub-basins and reanalyses. 29 

BCSD and BCSDX failed all or most correlation tests and CI failed all or most distribution 30 

tests for 7-day low flow in winter. Based on results from this study, use of a daily 31 

downscaling method, such as BCCAQ, in conjunction with a rigorously constructed and 32 
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validated observational dataset, is recommended to supplement the existing hydrologic 1 

modelling efforts at PCIC and improve projections of hydrologic extremes. 2 

We can build on this work to develop tools that predict changes to hydrologic extremes from 3 

changes in climate extremes without the direct application of a hydrologic model. Similar 4 

emulations have been made by drawing on the relationship between GCMs and hydrologic 5 

model projections (Schnorbus and Cannon, 2014) and by identifying relationships between 6 

GCMs and RCMs (Li et al., 2011). The next step is to identify which of the 26 ClimDEX 7 

indices are predictors of 3-day peak flow and 7-day low flow and avoid those downscaling 8 

methods that simulate them poorly.  9 
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Table 1. Availability of gridded observations and reanalyses. 1 

Reanalysis Product Start  End Resolution Reference  
NCEP1 1948  present ~1.9° Kalnay et al. 1996  
20CR 1871  2011 2° Compo et al. 2011  
ERA40 1958  2001 2.5° Uppala et al. 2005  
ERAInt 1979  present 1.5° Dee et al. 2011  
Gridded Observation Start  End Resolution Reference  
VIC Forcings 1950  2005 ~ 6 km Schnorbus et al. 2014  
ANUSPLIN 1950  2005 ~ 10 km Hutchinson et al. 2009  
  2 



 32 

Table 2. Calibration and validation periods for downscaling methods by reanalyses. 1 

Reanalysis Product Calibration No. Years Validation No. Years 
NCEP1 1950-1990 41 1991-2005 15 
20CR 1950-1990 41 1991-2005 15 
ERA40 1958-1990 33 1991-2001 11 
ERAInt 1979-1990 12 1991-2005 15 
  2 



 33 

Table 3. Metadata for five select sub-basins of the Peace River basin. 1 

Basin Water Survey of Canada ID Drainage Area (km2) Elevation  
(m) 

   mean min max 
BCGMS --- 72,078    
FINAK 07EA005 16,000 1452 693 2799 
INGEN 07EA004 4,200 1503 674 2289 
PARMS 07EE007 4,900 1128 645 2343 
PEAPN 07FA004 83,900 1126 392 2799 
  2 



 34 

Table 4. Calibration and validation statistics for five select sub-basins of the Peace River basin under the under VIC 1 
Forcings and ANUSPLIN gridded observational datasets including the Nash-Sutcliff Efficiency score (NS), the Nash-2 
Sutcliff Efficiency score of the log-transformed discharge (LNS) and the percent volume bias error (%VB). 3 

 VIC Forcings ANUSPLIN 
Basin Calibration  

1990-1995 
Validation  
1985-1989 

Calibration  
1990-1995 

Validation  
1985-1989 

 NS LNS %VB NS LNS %VB NS LNS %VB NS LNS %VB 
BCGMS 0.64 0.81 -1 0.75 0.83 -12 0.72 0.82 3 0.82 0.84 3 
FINAK 0.66 0.85 0 0.83 0.88 -14 0.76 0.81 11 0.73 0.81 30 
INGEN 0.76 0.82 0 0.82 0.78 -15 0.69 0.83 10 0.72 0.85 26 
PARMS 0.78 0.71 0 0.81 0.66 -9 0.78 0.62 10 0.75 0.63 8 
PEAPN 0.65 0.79 -2 0.76 0.87 -10 0.71 0.80 2 0.82 0.85 2 
  4 
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Table 5. Mean annual ClimDEX values for VIC Forcings and ANUSPLIN averaged over the Peace River basin. 1 

 Calibration (1950-1990) Validation (1991-2005) 
Index VIC Forcings ANUSPLIN VIC Forcings ANUSPLIN Units Indicator Name 
cdd 20 19 18 19 Days Consecutive dry days 
csdi 5 9 5 6 Days Cold spell duration 
cwd 9 10 11 12 Days Consecutive wet days 
dtr 11 11 10.6 10.3 °C Diurnal T range 
fd 239 238 233 230 Days Frost days 
gsl 136 131 140 138 Days Growing season 
id 109 122 102 106 Days Ice days 
prcptot 703 578 742 585 mm Annual total wet-day 
r1mm 133 142 150 153 Days Precipitation days 
r10mm 17 8 17 8 Days Heavy prec. days 
r20mm 4 1 4 1 Days Very heavy prec. 
r95p 145 97 142 100 mm Very wet days 
r99p 42 28 38 32 mm Extremely wet days 
rx1day 32 22 31 23 mm Max 1-day prec. 
rx5day 63 46 64 46 mm Max 5-day prec. 
sdii 5 4 5 4 mm day-1 Simple daily intense 
su 7 6 7 7 Days Summer days 
tn10p 11 13 7 8 % Cool nights 
tn90p 10 9 12 14 % Warm nights 
tnn -37 -41 -35.5 -37.6 °C Min Monthly Tn 
tnx 11 11 11.5 11.8 °C Max Monthly Tn 
tx10p 11 11 9 8 % Cool days 
tx90p 10 10 11 14 % Warm days 
txn -27 -29 -24.9 -25.8 °C Min Monthly Tx 
txx 27 27 27.9 27.4 °C Max Monthly Tx 
wsdi 4 5 8 12 Days Warm spell duration 
  2 
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Table 6. Summary of number of tests passed for Pearson’s correlations and similarity in distributions (KS test) based 1 
on the Walker field significance test between ClimDEX indices for downscaled reanalyses versus target gridded 2 
observation over the Peace River basin for 1991-2005 (1991-2001 ERA40), summarized by gridded observation, 3 
reanalysis and downscaling method. Max indicates maximum possible tests to pass in that category. 4 

Gridded 
Observation 

Pearson’s 
correlation 

KS test Combined 

VIC Force 367 578 945 
ANUSPLIN 388 628 1016 
Max 728 728 1456 
 
Reanalyses 
 

Pearson’s 
correlation 

KS test Combined 

NCEP1 159 284 443 
20CR 147 287 434 
ERA40 201 340 541 
ERAInt 248 295 543 
Max 364 364 728 
 
Downscaling 
Method 

Pearson’s 
correlation 

KS test Combined 

BCCA 130 171 301 
DBCCA 139 174 313 
BCCI 131 176 307 
CI 139 154 293 
BCSD 56 175 231 
BCSDX 48 173 221 
BCCAQ 112 183 295 
Max 208 208 416 
  5 
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Table 7. Number of tests passed for each ClimDEX indices for VIC Forcings and ANUSPLIN for 1991-2005 (1991-1 
2001 ERA40). 2 

 VIC Forcings ANUSPLIN Difference 
cdd 48 44 4 
csdi 54 54 0 
cwd 19 31 -12 
dtr 32 3 29 
fd 51 48 3 
gsl 54 52 2 
id 55 47 8 
prcptot 24 33 -9 
r10mm 28 31 -3 
r1mm 24 36 -12 
r20mm 26 42 -16 
r95p 11 28 -17 
r99p 24 41 -17 
rx1day 14 35 -21 
rx5day 30 33 -3 
sdii 2 15 -13 
su 51 50 1 
tn10p 52 52 0 
tn90p 48 43 5 
tnn 42 39 3 
tnx 30 32 -2 
tx10p 52 52 0 
tx90p 50 50 0 
txn 43 44 -1 
txx 41 42 -1 
wsdi 40 39 1 
  3 
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Table 8. Summary of number of tests passed for Pearson’s correlations and similarity in distributions (KS test) based 1 
on the Walker field significance test between ClimDEX indices for downscaled reanalyses versus target gridded 2 
observation over the Peace River basin for 1991-2005 (1991-2001) for reanalysis (ERA40) versus downscaling method 3 
for each gridded observation. 4 

  Pearson’s correlation  KS test   
  NCEP1  20CR  ERA40  ERAInt  Sub NCEP1  20CR  ERA40  ERAInt  Sub Total 

V
IC

 F
or

ci
ng

s 

BCCA 14 14 14 17 59 19 21 24 18 82 141 
DBCCA 15 14 15 18 62 20 22 24 18 84 146 
BCCI 14 14 16 20 64 20 21 24 22 87 151 
CI 13 14 17 22 66 16 14 24 18 72 138 
BCSD 4 6 6 12 28 20 20 24 20 84 112 
BCSDX 4 5 7 11 27 20 20 24 20 84 111 
BCCAQ 15 13 14 19 61 20 21 24 20 85 146 

 Subtotal 79 80 89 119  135 139 168 136   

A
N

U
SP

L
IN

 

BCCA 17 11 23 20 71 22 23 24 20 89 160 
DBCCA 17 13 23 24 77 21 20 24 25 90 167 
BCCI 14 12 18 23 67 21 21 24 23 89 156 
CI 15 14 20 24 73 15 19 24 24 82 155 
BCSD 5 4 8 11 28 24 21 25 21 91 119 
BCSDX 3 3 5 10 21 24 20 25 20 89 110 
BCCAQ 9 10 15 17 51 22 24 26 26 98 149 

 Subtotal 80 67 112 129  149 148 172 159   
  5 
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Table 9. Summary of number of tests passed for Pearson’s correlations and similarity in distributions (KS test) based 1 
on the Walker field significance test between hydrologic extremes for downscaled reanalyses versus target gridded 2 
observation over the Peace basin for 1991-2005 (1991-2001 ERA40), summarized by gridded observation, reanalysis 3 
and downscaling method. Max indicates maximum possible tests to pass in that category. 4 

Gridded 
Observation 

Pearson’s 
correlation 

KS test Combined 

VIC Force 309 404 713 
ANUSPLIN 310 350 660 
Max 420 420 840 
 
Reanalyses 
 

Pearson’s 
correlation 

KS test Combined 

NCEP1 135 188 323 
20CR 125 181 306 
ERA40 180 196 376 
ERAInt 179 189 368 
Max 210 210 420 
 
Downscaling 
Method 

Pearson’s 
correlation 

KS test Combined 

BCCA 102 96 198 
DBCCA 104 111 215 
BCCI 107 111 218 
CI 99 87 186 
BCSD 49 119 168 
BCSDX 48 119 167 
BCCAQ 110 111 221 
Max 120 120 240 
 5 
  6 
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Table 10. Number of basins where downscaled results were significantly correlated and distributions were not 1 
significantly different than those from the VIC Forcings gridded observations derived 3-day peak flow by 2 
downscaling method / reanalysis combinations for 1991-2005 (1991-2001 ERA40). 3 
  Pearson’s correlation  KS test   
  NCEP1 20CR ERA40 ERAInt Sub NCEP1 20CR ERA40 ERAInt Sub Total 

V
IC

 F
or

ci
ng

s 

BCCA 2 2 5 5 14 5 5 5 1 16 30 
DBCCA 1 3 5 5 14 5 5 5 5 20 34 
BCCI 2 5 5 5 17 5 5 5 5 20 37 
CI 5 2 5 5 17 5 5 5 5 20 37 
BCSD 3 2 4 2 11 5 5 5 5 20 31 
BCSDX 3 3 4 2 12 5 5 5 5 20 32 
BCCAQ 3 5 5 5 18 5 5 5 5 20 38 

 Subtotal 19 22 33 29 103 35 35 35 31 136  

A
N

U
SP

L
IN

 

BCCA 5 0 5 5 15 4 4 4 1 13 28 
DBCCA 5 1 5 5 16 5 2 4 5 16 32 
BCCI 5 2 4 5 16 5 2 4 5 16 32 
CI 4 0 5 5 14 5 2 4 5 16 30 
BCSD 2 0 3 3 8 5 5 5 5 20 28 
BCSDX 2 0 3 3 8 5 5 4 5 19 27 
BCCAQ 5 3 5 5 18 5 2 5 5 17 35 

 Subtotal 28 6 30 31 95 34 22 30 31 117  
 4 
  5 
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Table 11. Number of basins where downscaled results were significantly correlated and distributions were not 1 
significantly different than those from the VIC Forcings gridded observations derived summer 7-day low flow for 2 
downscaling method / reanalysis combinations for 1991-2005 (1991-2001 ERA40). 3 

  Pearson’s correlation  KS test   
  NCEP1 20CR ERA40 ERAInt Sub NCEP1 20CR ERA40 ERAInt Sub Total 

V
IC

 F
or

ci
ng

s 

BCCA 3 2 5 5 15 5 5 5 5 20 35 
DBCCA 3 2 5 5 15 5 5 5 5 20 35 
BCCI 3 4 5 5 17 5 5 5 5 20 37 
CI 2 4 5 5 16 5 5 5 5 20 36 
BCSD 2 3 3 4 12 5 5 5 5 20 32 
BCSDX 2 2 3 4 11 5 5 5 5 20 31 
BCCAQ 4 3 5 5 17 5 5 5 5 20 37 

 Subtotal 19 20 31 33 103 35 35 35 35 140  

A
N

U
SP

L
IN

 

BCCA 5 4 5 5 19 5 5 5 1 16 35 
DBCCA 5 5 5 5 20 5 5 5 5 20 40 
BCCI 3 5 5 5 18 5 5 5 5 20 38 
CI 1 5 5 5 16 5 5 5 5 20 36 
BCSD 1 2 4 5 12 5 5 5 5 20 32 
BCSDX 1 2 4 5 12 5 5 5 5 20 32 
BCCAQ 3 5 5 5 18 5 5 5 5 20 38 

 Subtotal 19 28 33 35 115 35 35 35 31 136  
 4 
  5 
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Table 12. Number of basins where downscaled results were significantly correlated and distributions were not 1 
significantly different than those from the VIC Forcings gridded observations derived winter 7-day low flow for 2 
downscaling method / reanalysis combinations for 1991-2005 (1991-2001 ERA40). 3 

  Pearson’s correlation  KS Test   
  NCEP1 20CR ERA40 ERAInt Sub NCEP1 20CR ERA40 ERAInt Sub Total 

V
IC

 F
or

ci
ng

s 

BCCA 5 5 5 5 20 5 5 5 5 20 40 
DBCCA 5 5 5 5 20 5 5 5 5 20 40 
BCCI 5 5 5 5 20 5 5 5 5 20 40 
CI 5 5 4 5 19 4 2 2 0 8 27 
BCSD 0 0 2 0 2 5 5 5 5 20 22 
BCSDX 0 0 2 0 2 5 5 5 5 20 22 
BCCAQ 5 5 5 5 20 5 5 5 5 20 40 

 Subtotal 25 25 28 25 103 34 32 32 30 128  

A
N

U
SP

L
IN

 

BCCA 5 5 4 5 19 1 3 4 3 11 30 
DBCCA 5 5 4 5 19 2 3 5 5 15 34 
BCCI 5 4 5 5 19 2 3 5 5 15 34 
CI 5 5 3 4 17 0 0 0 3 3 20 
BCSD 0 0 2 2 4 4 5 5 5 19 23 
BCSDX 0 1 2 0 3 5 5 5 5 20 23 
BCCAQ 5 4 5 5 19 1 3 5 5 14 33 

 Subtotal 25 24 25 26 100 15 22 29 31 97  
  4 
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 1 

Figure 1. The Peace River basin (above Taylor BC) study area analyzed for ClimDEX indices (black boundary) and 2 
the five sub-basins investigated for hydrologic extremes including the Finlay River above Akie River (FINAK), 3 
Ingenika River above Swannell River (INGEN), Parsnip River above Misinchinka River (PARMS), the Peace River 4 
above Pine River (PEAPN), and the Peace River at Bennett Dam (BCGMS). 5 

  6 
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 1 

 2 

Figure 2. Annual daily hydrograph 1985 to 1995 for (top) Ingenika and (bottom) BCGMS hydrometric sites.  3 
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BCSD BCCA BCCI 

   
BCSDX Same as BCSD except quantile mapping of monthly minimum and maximum 

temperature, versus monthly mean temperature. 
DBCCA Same as BCCA except there is an extra quantile correction at the fine-scale to get rid of 

drizzle and other biases caused by combining patterns from 30 days. 
CI Same as BCCI except without bias correction. A form of delta-method. 
BCCAQ Daily BCCI outputs at each fine-scale grid point are reordered within a given month 

according to the daily BCCA ranks. 
Figure 3a. Diagram of the Bias Corrected Spatial Disaggregation (BCSD), Bias Corrected Constructed Analogues 1 
(BCCA) and Bias Corrected Climate Imprint (BCCI) downscaling methods and a summary of adjustments made to 2 
these methods to create BCSD with monthly minimum and maximum temperature (BCSDX), Double BCCA 3 
(DBCCA), Climate Imprint (CI) and BCCA corrected to BCCI (BCCAQ). 4 

  5 
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 1 
Figure 3b. Workflow diagram for assessment of downscaling techniques in replicating ClimDEX and hydrologic 2 
extremes.  3 

 4 

5 
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 1 

Figure 4. Monthly average minimum temperature by gridded observations (VIC Forcings and ANUSPLIN) and 2 
reanalysis (NCEP1, ERA40, ERAInt, 20CR) over the Peace River basin. 3 
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 1 

Figure 5. Monthly average maximum temperature by gridded observations (VIC Forcings and ANUSPLIN) and 2 
reanalysis (NCEP1, ERA40, ERAInt, 20CR) over the Peace River basin. 3 
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 1 

Figure 6. Monthly total precipitation by gridded observations (VIC Forcings and ANUSPLIN) and reanalysis 2 
(NCEP1, ERA40, ERAInt, 20CR) over the Peace River basin. 3 
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 1 

2 
Figure 7. Field significant correlations based on the Walker field significance test over the Peace River basin between 3 
ClimDEX indices for downscaled reanalysis versus target gridded observation, VIC Forcings (left) and ANUSPLIN 4 
(right), by downscaling method for 1991-2005 (1991-2001 ERA40). Dark grey boxes indicate statistically significant 5 
correlations. 6 

  7 
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1 
Figure 8. Time series of average DTR from VIC Forcings (left) and ANUSPLIN (right) for NCEP1 (top), 20CR 2 
(second), ERA40 (third) and ERAInt (bottom) downscaled using BCCA, DBCCA, BCCI, CI, BCSD, BCSDX and 3 
BCCAQ over the Peace River basin. 4 
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1 
Figure 9. Field significant similarities in distributions based on the Walker field significance test over the Peace River 2 
basin between ClimDEX indices for downscaled reanalysis versus target gridded observation, VIC Forcings (left) and 3 
ANUSPLIN (right), by downscaling method for 1991-2005 (1991-2001 ERA40). Dark grey boxes indicate statistically 4 
significant correlations.  5 



 53 

1 
Figure 10. Time series of average SDII from VIC Forcings (left) and ANUSPLIN (right) for NCEP1 (top), 20CR 2 
(second), ERA40 (third) and ERAInt (bottom) downscaled using BCCA, DBCCA, BCCI, CI, BCSD, BCSDX and 3 
BCCAQ over the Peace River basin. 4 

  5 
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 1 

 2 

Figure 11. Boxplots, time series and distributions of 3-day peak flow in the spring months (May-July) for NCEP1, 3 
20CR, ERA40 and ERAInt in the BCGMS basin based on VIC Forcings (top) ANUSPLIN (bottom). Legend same as 4 
Figure 9.  5 
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 1 

2 
Figure 12. Time series of 7-day low flow in the summer months (July-September) for NCEP1, 20CR, ERA40 and 3 
ERAInt in the BCGMS basin based on VIC Forcings (top) ANUSPLIN (bottom). Legend same as Figure 9.  4 
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 1 

2 
Figure 13. Time series of 7-day low flow in the winter months (November to April) for NCEP1, 20CR, ERA40 and 3 
ERAInt in the BCGMS basin based on VIC Forcings (top) ANUSPLIN (bottom). Legend same as Figure 9.  4 
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1 

  2 
Figure 14. Time series of daily streamflow in the BCGMS basin as driven by ANUSPLIN (base) and ERA40 3 
downscaled to ANUSPLIN with the BCCA, DBCCA, BCCI, CI, BCSD, BCSDX and BCCAQ methods over 1991 to 4 
2005. 5 
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