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Abstract

Hydropower is a major energy source in Sweden aogdgp reservoir management prior to
the spring-flood onset is crucial for optimal proatian. This requires accurate forecasts of the
accumulated discharge in the spring-flood perio@. (the spring-flood volume, SFV).
Today’'s SFV forecasts are generated using a maaebclimatological ensemble approach,
where time series of precipitation and temperaftom historical years are used to force a
calibrated and initialised set-up of the HBV modeilthis study, a number of new approaches
to spring-flood forecasting, that reflect the latdevelopments with respect to analysis and
modelling on seasonal time scales, are presentddeaaluated. Three main approaches,
represented by specific methods, are evaluatedFv Bindcasts for the Swedish river
Vindelalven over a 10-year period with lead timegween 0 and 4 months. In the first
approach, historically analogue years with resp@dhe climate in the period preceding the
spring flood are identified and used to composedauced ensemble. In the second, seasonal
meteorological ensemble forecasts are used to dneeHBV model over the spring-flood
period. In the third approach, statistical relasiops between SFV and the large-sale
atmospheric circulation are used to build foreaastdels. None of the new approaches
consistently outperform the climatological ensemblgproach, but for early forecasts
improvements of up to 25% are found. This potensiakasonably well realised in a multi-
method system, which over all forecast dates retiube error in SFV by ~4%. This

improvement is limited but potentially significafior e.g. energy trading.

1 Introduction

In Sweden, seasonal (or long-term) hydrologicaledasts are used primarily by the
hydropower industry for dam regulation and produciplanning (e.g. Arheimer et al., 2011).
The forecasts may be used to optimise the balagsiveekbn a sufficiently large water volume
for optimal power production and a sufficient remiag capacity to safely handle sudden
inflows. In northern Sweden, the spring-flood fast is the most important seasonal

hydrological forecast and it generally covers tr@msnowmelt period in May, June and July.

Traditionally, discharge and spring-flood forecagtat seasonal time scales have been based
on two approaches. The first utilises statistiedhtionships between accumulated discharge
during the forecasting period and predictors sugkreow water equivalent and accumulated
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precipitation that represent the hydrological statethe forecast date (e.g. Garen, 1992;
Pagano et al., 2009). The other approach is basadgdrological model, which is initialised
with observed data up to the forecast issue datehsn forced with historical meteorological
inputs over the forecasting period (e.g. Day, 19%nz et al., 2003). In addition, hybrid
approaches, applying model-derived information le tstatistical regression, have been
proposed (e.g. Nilsson et al., 2006; Rosenberly,2Gi1L1).

Recently, substantial progress has been made ifielldeof seasonal climate forecasting. It
may be distinguished between dynamical and stistapproaches. In the dynamical
approach, numerical atmospheric models (globaluEiton models - GCMs) have been
developed to predict seasonal climate, i.e. theageeclimate for three consecutive months,
several months ahead (Goddard et al., 2001). Tieatdc basis of such predictions is that
the sea surface temperature (SST), that chardaotaliig evolves slowly, drives the
predictable part of the climate. Consequently, mliog to a GCM model the information
about the variations in SST makes possible thecéste of seasonal climate. The SST
information may be provided to the GCM by using 8feT field as a boundary condition or
by coupling the GCM to an ocean model that will thprovide the necessary SST
information. GCM seasonal forecasts may be dowedcdlynamically (e.g. Graham et al.
2007; Bastola et al. 2013; Bastola and Misra, 2@43tatistically (e.g. Uvo and Graham,
1998; Landman et al 2001; Nilsson et al. 2008hédtter represent regional interests.

An early attempt to use climate model output fodimogical forecasting in a coastal
Californian basin during winter 1997/1998 was mageKim et al. (2000). They found an
overall decent agreement between simulated and@akeischarge. Low (high) flows were
however systematically overestimated (underestid)atehich was attributed primarily to
climate model precipitation bias. To tackle thislgem of climate model biases, Wood et al.
(2002) proposed bias-correction by a percentilethasapping of the climate model output to
the climatological distributions of the input vdsies. Recently, several investigations have
focused on the relative role of uncertainties ia thitial state and in the climate forecast,
respectively, for the hydrological forecast skdld. Li et al., 2009; Shukla and Lettenmaier,
2011).

In a climate-based statistical approach, connestlmiween climate phenomena that affects
the large-scale atmospheric circulation and theagient hydro-meteorological development

in specific locations are identified and utilised.g. Jonsdoétir and Uvo, 2009). Such
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connections are known as teleconnections as thiy ghenomena occurring in widely
separated regions of the world. The impacts of EheNifio-Southern Oscillation on the
tropical climate are the most commonly use of steleconnections in seasonal forecast
(Troccoli, 2010). Teleconnections can be also @ sfor seasonal forecast in high latitudes
such as the impacts of the North Atlantic Oscifiatin the winter climate in Scandinavia (e.g.
Uvo, 2003) and the more recently identified impaaftshe Scandinavian Pattern on summer
climate in southern Sweden (Engstrom, 2011; Foaster Uvo, 2012; Foster et al. 2015).
Teleconnection indices have also been used ascpoeslin regression-based approaches to

seasonal hydrological forecasting (e.g. RobertsahVdang, 2012).

In light of the above described progress of th&lfié is time to explore ways of updating
operational practices by incorporating the new kedge acquired and methods developed.
The objective of this study has been to develogt, dad evaluate new approaches to spring-
flood forecasting in Sweden. The current springdldorecasting practice at the Swedish
Meteorological and Hydrological Institute (SMHI) & example of the traditional model-
based approach. It is a climatological ensemblecggh based on the HBV hydrological
model (e.g. Bergstrom, 1976; Lindstrom et al., )99FVhe main scientific hypothesis
examined is that the application of large-scalenate data (historical and forecasted) can
improve forecast skill, as compared with today'sgadure. A secondary hypothesis is that a
combination of approaches provides an added vasegcompared with each individual
approach. Three different approaches have beerdtast evaluated: (1) identifying analogue
historical years that resemble the weather in theeat year, (2) using meteorological
seasonal forecasts as input to the HBV model andaf®lying statistical relationships
between large-scale circulation variables and ggitood volume. The new approaches were
evaluated for the spring-flood forecasts 2000-28%0ed in January, March and May for the

river Vindelalven in Sweden.

2 Material

2.1 Study area, local data and models

The catchment of the river Vindeldlven has beend use testing spring-flood forecast.
Vindelalven is unregulated and two stations werecsed for evaluation of the forecast
methods; Sorsele located in the upstream parteob#sin and Vindeln at basin outlet (Fig.

4
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la). The catchment's elevation range is ~260-848.9. and ~5% of the area consists of
lakes. The annual mean temperature is -0.7°C agclpgmation ~780 mm. Fig. 2a shows the
mean hydrograph for station Vindeln (1981-2010)Yha period January-July, which is the
period of interest in this study. In January-Febyuhe temperature is generally below -10°C
and very little runoff is generated. Melting gerlgratarts in late April and the subsequent
spring flood extends throughout July, followed bgvated discharge levels also in August-
October.

In this study we focus on forecasts of #eeumulated discharge in the spring-flood period

(May-July), which is the key variable deliveredtb@ hydropower industry. This quantity will
in the following be referred to as SFV (spring-fioeolume). The mean SFV in station
Vindeln (Table 1), corresponds to an average drgehan the spring-flood period of ~ 380
m3/s. SFV has a pronounced inter-annual variabiltyich is illustrated by its range (Table 1)

and frequency distribution (Fig. 2b).

The HBV model (Bergstréom, 1976; Lindstrom et aB9T) was set up and calibrated for
Vindelalven, divided into 18 sub-catchments witmaan size of 740 km2. HBV is a rainfall-
runoff model which includes conceptual numericadaigtions of hydrological processes at

basin scale. The general water balance in the HBWeincan be expressed as
P—E—Q:%[SP+SI\/I +UZ +LZ +VL] L)

where P denotes precipitation, E evapotranspirat@@nrunoff, SP snow pack, SM soil
moisture, UZ and LZ upper and lower groundwatespeetively, and VL the volume of lakes.
Input data are normally daily observations of P,t@amperature T and monthly estimates of
potential evapotranspiration; output is daily Qniperature data are used for calculations of
snow accumulation and melt and possibly potentieperation. The model consists of
subroutines for meteorological interpolation, srseumulation and melt, evapotranspiration
estimation, a soil moisture accounting proceduratines for runoff generation and finally, a
simple routing procedure between sub-basins aneslakpplying the model necessitates

calibration of a number of free parameters, geheadlout 10.

For historical simulation and calibration, dailyaRd T inputs for the Vindelalven basin were
created from gridded fields (4x4 km?), created piroal interpolation with altitude and wind
taken into account (e.g. Johansson, 2002). These aawell as Q observations, are available

since 1961. The HBV set-up used in this experimernthe continuously updated and re-

5
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calibrated version used operationally, conceivatdpresenting the optimal performance
currently attainable. The calibration is mainly é@dson the historical period prior to the
evaluation period (1961-1999), but some re-calibrahas been done also later.

The overall accuracy of the HBV calibration expesbsn terms of the Nash-Sutcliffe
efficiency (NSE) and the relative volume error (RME period Oct 1999 - Sep 2010 are
given in Table 1. Values of NSE ~0.9 and only a fparcent volume error imply an
accurately calibrated model with limited scopeifoprovement.

2.2 Large-scale atmospheric data

For the definition of circulation patterns (Sectl)3the ERA40 data set (Uppala et al., 2005) ,
with resolution of 1°x1°, was used during 1961-200#le ERAINTERIM (Dee et al., 2011),
with a 0.75°x0.75° resolution, was used during 20030. The domain is shown in Fig. la.
For the teleconnection-based method studies (S49t.monthly indices of the North Atlantic
Oscillation, Scandinavian Pattern and East AtlaR&ttern were collected from the Climate
Prediction Center (Climate Prediction Center, 2015)

The atmospheric seasonal forecast data used iwthis were obtained from the European
Centre for Medium-Range Weather Forecasts (ECMW®o model combinations were
available: the ECMWEF IFS (Integrated Forecast Systeersion 3) coupled with a 1° version
of the HOPE ocean model, and the ARPEGE atmosphwsstel coupled with the variable-
resolution (0.33-2°) ORCA ocean model. Atmosphegasonal forecasts were used in two
different forms; seasonal averages from both IF& Arpege were used in the statistical
downscaling Sect. 3.1) and daily time series fré18 Were used in the dynamical modelling
(Sect. 3.1).

- Seasonal averages. These data are the enseméles ok the different predicted fields
covering the domain 75°W to 75°E and 80°N to 20°thva 2°%x2° resolution. The predicted
fields considered were: 2m T, 10m meridional wireloeity, meridional wind stress, 10m
zonal wind velocity, zonal wind stress, surfacess@a heat flux, surface latent heat flux,
total precipitation, 850mb T, 850mb specific hurtydi850mb meridional wind velocity,
850mb zonal wind velocity, and 850mb geopotentiaight. The number of ensemble
members per field is 11 for the period 1982-20@¢§lor 1982-2007 (Arpege) and 41 for the
remaining years until 2010. The domain is showRi@ 1a.
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- Daily time series. These data are the forecasédg values of 2 m T and the accumulated
total P from the forecast issue date to the fotewagperiod. These data spanned a period
from 2000-2010 and had a domain covering 11°E tE2d 55°N to 70°N with a 1°x1°

resolution. Fig. 1a shows this 1°x1° grid in redatio Sweden.

3 Experimental set-up

Three new approaches to seasonal hydrologicaldetieg are presented and compared to the
current climatological ensemble procedure curreapplied at SMHI: analogue ensemble,
dynamical modelling and statistical downscalingl Wkthods are described in detail in the

Supplement; below only brief outlines are given.

Figure 3 shows a schematic of the “temporal set-wipthe experiments. A key issue in

seasonal forecasting is the lead time (green ar€agi 3), i.e. the period between the forecast
issue date and the start of the forecasting pdifibake area). It may be expected that the
relative skill of the different approaches dependfwe lead time. Generally, the main gain of
statistical approaches is expected for long leatedi When approaching the forecasting
period, the representation of the hydro-meteorckigstate in the HBV model becomes
gradually more important and the relative skilltioé current procedure is likely to increase.
To assess the relative skill for different lead ésnwe evaluate historical forecasts (re-
forecasts) issued on 1 January (1/1), 1 March @8)1 May (1/5) in the period 2000-2010.

3.1 Methods

Climatological ensemble (CE): In this procedure, \HE& initialised by driving it with

observed meteorological inputs (P and T) for a-sgirperiod up to the forecast issue date.
Then, all available historical daily P and T seiireshe period from the forecast issue date to
the end of the forecasting period are used as itpdBYV, generating an ensemble of spring-

flood forecasts. See further Supplement, Sect. 1.

Analogue ensemble (AE): The hypothesis is thas ipassible to identify a reduced set of
historical years (an analogue ensemble) that desscthe weather in the coming forecasting
period better than the full historical ensembleduse CE. Two methods for identifying

analogue years are used, both based on analydasgefscale atmospheric conditions 1-6

months prior to the forecast issue date (Fig.3)Teleconnection indices (TCI): evolution of
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indices representing different climate phenomeBa Qirculation patterns (CP): frequencies

of weather types that describe the large-scale stheric state. The analogue ensemble is
then used in the same way as the full ensemblbarCE method. See further Supplement,
Sect. 2.

Dynamical modelling (DM): HBV is initialised as ithe CE method. Then T and P from
meteorological seasonal forecasts (Sect. 2.2)areected to HBV input and used to drive the
model in the forecasting period. See further Suppl&, Sect. 3.

Statistical downscaling (SD): Statistical relatioips between forecasted large-scale
circulation variables (predictors) and SFV (preaict) are identified. The predictors are
defined in the 3-month period following the forecassue date (Fig. 3). See further
Supplement, Sect. 4.

3.2 Evaluation

As described in the Supplement, all methods gemerasemble forecasts (although the AE
approach may become deterministic if only one anadoyear is found). The ensemble size,
however, varies between methods as well as betyesms for the same method (Supplement,
Table S1). Although probabilistic forecasts areagatly more useful than deterministic ones,
for this initial assessment, with only an 11-yeaaleation period, we consider it sufficient

with a deterministic evaluation. Thus, from all emble forecasts the median forecast is
calculated and used in the subsequent analysikatieg any impact of ensemble size on the

skill of the median (e.g. Buizza and Palmer, 1998).

Forecast performance is assessed by MAREE mean absolute value of the relative error of

a certain forecast (or simulation) F, defined as
1 2010

MARE. =~ > ARE! (2)

y=2000

where y denotes year arkRE ! the absolute value of the relative error

ARE; = 3)

1OU(SF\/3 —SF\gssJ

SF\Gss

where OBS denotes observation.
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To quantify the gain of the new forecast approa¢Bests. 3.2-3.4), their MARE-values are
compared with the MARE obtained using the currelatpfocedure (MAREg) by calculating
the relative improvement RI (%) according to

(4)

Rl =100* [ MARE .. - MARE . J
F

MARE .

where a positive Rl indicates that the error ofriber approach is smaller than the error in the

CE procedure, and vice versa, and RI=100% impligsrect forecast.

As an additional performance measure, we use gwiéncy of years FY(%) in which the
new approach performs better (i.e. has a lower ARRE) the CE procedure. This may be
expressed as

FY,; =100+ = z'ioH v ()
] 11

y=2000

where H is the Heaviside function defined by

oy o {o, AEY. < AE/! (6)

|1 AEL > AEY

As expected considering the short 11-year evalngberiod, MARE is sensitive to single
years with a high ARE-value. As shown in the resbkelow (Sect. 4), in several cases this
makes RI negative even if the new approach outpegfcCE in most years (i.e. F¥50).
Thus, in this study we consider F¥b be the most relevant measure of forecast paeoce,
although in practice this should be determined ttogrewith end-users of the forecasts, based
on e.g. the impacts of very inaccurate forecasts.

3.3 Baseline simulations with climatological ensemble (CE)

Before testing the new forecasting approaches,ptértormance of HBV model and the
climatological ensemble procedure (CE) was assef€Baile 1). In simulation mode, i.e.
using the actually observed values of P and T ahg&ar, the MARE of SFV is 7-8%. This
quantifies the HBV model error and correspondsawirig a perfect meteorological forecast.
In CE forecast mode, i.e. using P and T from atdrical years as input and calculate the
median SFV, the average MARE decreases gradualtly + 20% in the 1/1-forecasts to ~9%
in the 1/5-forecasts, which thus quantifies the rompment when approaching the spring-
flood period.
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The differences in Table 1 between MARE for simolas and CE forecasts, respectively,
represent the part of the total error that is egldb the meteorological input. In Vindelélven,
this part decreases from 12.1 percentage pointkanl/1-forecasts (which corresponds to
~60% of the total error) to 1.8 points in the 1dBeicasts (~20%). The relative impact of the
HBV model error thus increases with decreasing t@ad, which implies that the scope for
improving the baseline forecasts decreases witredsmg lead time. It should be emphasised
that two out of the three new forecast approacésted here (AE and DM) aim at improving
the meteorological input. They can thus only imgréke forecasts in that respect; the HBV

model error remains. The third method (SD), howeaiens at improving total performance.

4 Results from single methods

An overview of the results of each approach is mive Table 2. The numbers after

approaches TCIl and CP correspond to the best parfigiversion of each approach.

Concerning the AE approach, both the TCI and the@ftoach are based on analyses of the
large-scale climatic conditions 1 to 6 months befthre forecast date (see Supplement). The
aim was to identify the number of months of pribmatic information, N, that generates the
best performance when averaged over all forecassddsing TCI to identify analogue years
proved to be difficult and the reduced ensemblesgrd did generally not outperform CE
for the SFV forecasts. Even the best performing ¥&kion, using 6 months’ prior climate
information (N=6; TCI6), consistently had a high¢ARE than CE although it outperformed
CE for most of the 11 years in station Sorsele i@&). For the 1/1-forecasts, N=6 was

clearly superior but for the later forecasts N=d &2 produced a similar performance.

The CP method turned out more successful and tudtireg SFV forecasts on 1/1 and 1/3 for
the best performing version (N=3; CP3) clearly edtprmed CE in both stations (Table 2).
SFV was more accurately forecasted than with CB/4nof all years. For the 1/5-forecasts,
however, CP was less accurate than CE. For theahd-1/3-forecasts, N=3 was clearly
superior but for the 1/5-forecasts N=2 and N=4qrenkd slightly better.

Overall, the DM approach of using ECMWF seasonedasts of T and P as inputs to the
HBV model did not improve performance as comparét whe CE procedure (Table 2). In

total, a similar performance to CE was found irtistaSorsele but the accuracy in station

10
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Vindeln was consistently lower. In the 1/5-foresashowever, DM is the overall best

performing new approach.

The SD method outperformed CE in the 1/1-forecasts an RI of almost 20% in both
stations (Table 2). For the 1/3- and 1/5-forecdisés SD method has F¥alues > 50 in
station Sorsele but RI-values of ~ -65%. This implihat the SD-forecast is generally better

than CE but that it may also be very wrong.

The performance of the SD method is heavily affette whether the climatic features in the
forecasting data were encountered in the traingrgpg dataset. If the forecasted conditions
are outside the range encountered in the trainengpg, the SD method has the tendency to
produce forecasts that differ drastically from theservations. This can be dealt with by either
increasing the length of the training dataset ordmalysing the year in question and
determining if there were similar years in thernag period which would give an indication

as to how the method might perform.

With very few exceptions, the new approaches peréor better in the upper part of the
catchment (Sorsele) than in the outlet (VindelisThas not been analysed in any depth, but
it is likely related to the more clear-cut sprifigoid in the upper part with very little prior
runoff. In the outlet, melting episodes before m@ming-flood onset lead to temporary
increased runoff and a reduction of the snow pdtiese episodes, and their impacts, are
likely very difficult to capture in seasonal forsts

5 Composing a multi-method system

A multi-method forecast approach consists in comnigirforecasts resulting from different
methods to reach a more reliable estimate of thec&st probability distribution. This
technique has been used since early 1990s for @f@ugl seasonal climate forecast (Tracton
and Kalnay, 1993) and has proved to provide maiteuskesults than a simple model forecast

(Hagedorn et al., 2005; among many others).

There are many possible ways of combining or mergmilti-method forecasts, ranging from
simple rank-based methods to more sophisticatastetal concepts. In light of the limited

material available in this study, we restrictedsalves to testing two conceptually straight-
forward ways of combining the forecasts: a medippr@ach (Sect. 5.1) and a weighted
approach (Sect. 5.2). Further, the value of usiamsparent and easily communicated

11
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approaches should not be underestimated when tget s operational forecasting and its

associated end-user interaction.

In each approach, two method ensembles are te$tes.first ensemble, denoted NEW,
represents the new approaches to spring-flood dstigxy considered in the study and thus
includes approaches AE, DM and SD. As only one @gugr to analogue ensemble generation
should be included, the best performing one fohdacecast date was used, i.e. CP for 1/1
and 1/3 and TCI for 1/5 (Table 2). The CP methqgch@wvever, not directly applicable in
operational forecasting as it is based on ERA Hgaas that are only available with a time lag
of several months. Further, the TCI approach dagsontperform CE in the 1/5-forecasts.
Therefore we also consider a second ensembledhadsents what is attainable operationally.
In this ensemble, denoted OPE, AE is replaced bya@# thus no attempt to identify

analogue years is made here.

51 Median multi-method

As three forecast are available, the median appraawunts to using the second member in
the ranked forecast ensemble. For the NEW ensemRbis,indicates a clear improvement in
the 1/1-forecasts as compared with CE, but no ingrent in terms of FY The 1/3-
forecasts are better than CE 60% of the time andREAs slightly reduced on average. The
1/5-forecasts are slightly better than CE in Serseit slightly worse in Vindeln. On average,
a slight improvement over CE is found. In the ORiSeenble, the 1/1-forecasts perform
slightly better than the NEW ensemble but the df&dasts clearly worse, as expected from
the good performance of CP in these forecasts €T2blOverall the performance of the OPE

ensemble is very similar to the NEW ensemble.

In total, a reduction of MARE by up to 25% appeattinable for the 1/1-forecasts by the
median approach. At the later forecast issue datksyited improvement in terms of both RI

and FY+ was attained for Sorsele but not for Vind€ver all forecast dates and stations, a
slight improvement over CE is indicated. In somsesa the median multi-method performs
slightly better than each of the single methoddusied, generally because very inaccurate

single forecasts become eliminated.

12
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5.2 Weighted multi-method

This approach consists of applying weightbetween 0 and 1 to the different forecasts and
then adding them together. The spring-flood volufoeecasted by the weighted multi-
method, SFWy, is thus defined as

3 3
SFViy =D W, [BFV, with D W, =1 andw, =0 (7)
f=1 f=1

where the index refers to the three different forecast methodslava in each of the
ensembles NEW and OPE.

One set of weights are chosen for each forecast ddte selection of weights was made
based on the evaluations performed in Table 2. Wiitke forecast methods available (in each
ensemble), the best performing method (definedcdmysidering both Rl and FY was
assigned the highest weight 0.5 (3/6), the secast performing method the intermediate
weight 0.33 (2/6) and the worst performing methuoal lbwest weight 0.17 (=1/6).

The weighted NEW set outperforms CE in the 1/1- &f8dforecasts for both stations; only
the 1/5-forecasts for station Vindeln become ngthletter by CE. In the OPE set, similarly to
the median forecast, the 1/3-forecast is notablgsathan the NEW set but still with £Y50;
the 1/5-forecasts are very similar. In total, weigdp is not able to improve the result as
compared with median approach in terms of Rl. H@wewver all combinations of forecast
dates and stations except the 1/5-forecast irostatindeln, the weighted forecasts perform
better than CE in most years. The 1/1-forecastdetter than CE in almost 2/3 of all years
with a consistent MARE-reduction of 15-20% in bethtions.

It should be emphasised that the same data weseuad both to estimate the weights and to
assess the performance of the weighted model,ea&Gtyear period is too short for proper
split-sample calibration and validation. Limitedgtiag however indicated good performance
of the fixed-weight approach also for independealidation data. Besides using fixed
weights it was also tested to estimate optimal ttsidpased on historical performance. This
however turned out unfeasible in this study duthélimited historical data available and the

associated tendency of overfitting to the caliloaulata.

13
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6 Concluding remarks

None of the new approaches consistently outperfdrniee CE method, although
improvement was indicated. The largest improvem&as found for the 1/1- and 1/3-
forecasts using an analogue ensemble based omativoupatterns and for the 1/1-forecasts
using statistical downscaling. In these cases nidw approach may outperform the CE
method up 75% of the time with an error reductibr20%. In the 1/5-forecasts, none of the
new methods clearly outperformed the CE methodc@®wbining the different methods in a
multi-method, an overall slight improvement over @&s attained, with a performance for
single forecast dates and stations rather closkeetdest performing individual method. The
overall error reduction attainable by the multi-hut, ~4%, may sound limited but it must be
emphasised that every percent of forecast impromemetentially corresponds to large
financial revenues in energy trading activitiest Bpring-flood forecasts early in the season,

particularly in January, the multi-method clearlyterformed the CE method.

It must be emphasised that these results werenglotain a preliminary feasibility study with
limited data and overall basic versions of the usedhods. Future studies need to include
longer test periods and more stations as well fiserk and better tailored versions of the
forecast methods. One limitation concerns inhomegs of data and forecasts in the study
period, e.g. the shift from ERA40 to ERA Interim 2003 and the shift from 11 to 41
ensemble members in the seasonal forecasts inZG/A new ECMWE IFS version (4) is
now available, but preliminary tests indicate deatsimilar performance of SFV forecasts by
the approaches concerned, as compared with usengetision 3 data as done here. Using bias
correction of the P and T input in the DM procedweauld likely improve performance, as
demonstrated by e.g. Wood et al. (2002), althougih re-processing has limitations in an
operational context when new model versions aeasad. Incorporating hydrological model
data, in particular snow information, in the SD huet has shown promising results in
preliminary tests, especially for improving the doasts close to the spring-flood period.
Development and testing along these lines are aggoi
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Table 1. Basin and station characteristics inclgdiverall performance of the HBV model.
MARE (%) of SFV estimated by simulation (SIM) and by@itological ensemble (CE)
forecasts ( F) with different issue dates (1/1, 1/8). All values represent 2000-2010.

Station Area HBV SFV (n7*10%) | MAREgm MAREce

(km?) 'NSE [ RvE | Min/Mean/ Max FUL| Fu3 F1Fe
Sorsele | 6054| 0.80 3.2 1.61/2.30/2[77 6.8 10.21.6 | 95
Vindeln* | 11846 | 0.91] 15| 2.26/3.18/4.11 8.2 200 132 0 9.

*Basin outlet
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1  Table 2. Relative improvement RI (%) and frequeaftyears with a better performance FY
(%) of the new forecasting approaches TCI6, CP3,d»d SD, as compared with the

3 climatological ensemble CE (boldface indicatesdvgierformance than CE).

TCIl6 CP3 DM SD

RI FY* RI FY* RI FY* RI FY*

1/1 | Sorsele -6.6 55 14 75 7.6 45 184 55
Vindeln -9.0 45 13.0 75 -135 45 17.3 55
1/3 | Sorsele -1.2 64 19.2 70 -17.3| 45 | -63.3| 55
Vindeln -10.4 | 45 36.2 80 -185| 45 | -294 | 45
1/5 | Sorsele -6.6 55 -9.9 33 13 55 | -66.8| 64
Vindeln -219| 45 | -31.3| 33 |-120| 36 | -90.3| 27
Average -93| 52 4.8 61 -8.7 45 -35.7 50
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Table 3. Relative improvement RI (%) and frequeoityears with a better performance FY
(%) for the median and weighted multi-method apphes, as compared with the
climatological ensemble CE (boldface indicatesdvgierformance than CE).

10

11

12

13

14

15

Median Weighted

NEW OPE NEW OPE

Rl | FY' | Rl | FY" | Rl | FY' | RI | FY*

1/1 |Sorsele| 209 | 50 | 253 | 56 | 201 | 55 | 182 | 64
Vindeln| 58 | 50 | 125 | 56 | 157 | 64 | 129 | 64
1/3 |Sorsele| 59 | 60 | -42 | 56 | 133 | 64 | -7.2 | 55
Vindeln| 01 | 60 |-10.7| 43 | 38 | 55 | -10 | 55
1/5 |Sorsele| 37 | 55 | 79 | 67 | -50 | 55 | -0.6 | 55
Vindeln | .156| 36 | -52 | 33 |-233| 36 |-135| 45
Average | 34 | 52 | 43 | 52 | 41 | 55 | 00 | 56

22



10
11
12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Figure captions

Figure 1. Domain used in the CP method, ECMWF IFE ¢blue dots), Vindelalven

catchment (yellow), stations Sorsele (S) and Vind®)) (a). Domain used in the SD method
(b).

Figure 2. Mean annual Q cycle (a) and SFV frequetslyibution (b) for station Vindeln in
the period 1961-1999.

Figure 3. Temporal set-up of the experiments. ¢altblack lines; forecast dates. Blue area:
spring-flood period. Green area: lead time. Reda:afall historical period used in the
selection of analogue years (CP, TCI). Black arcdwse periods (1-6 months back in time)
tested in the selection of analogue years (CP,.TH)low arrows: time period (3 months
ahead) used to calculate the predictors in the $fhod. White arrows: forecasting periods in
which the HBV model was run using full historicahsemble (CE), reduced analogue
ensemble (CP, TCIl) and ECMWEF forecasts (DM).
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Figure 1. Domain used in the CP method, ECMWF IFE ¢blue dots), Vindelalven

catchment (yellow), stations Sorsele (S) and Vind¥l) (a). Domain used in the SD method
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(b).
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Figure 2. Mean annual Q cycle (a) and SFV frequelstyibution (b) for station Vindeln in
the period 1961-1999.
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Figure 3. Temporal set-up of the experiments. ¢altblack lines; forecast dates. Blue area:
spring-flood period. Green area: lead time. Reda:afall historical period used in the
selection of analogue years (CP, TCI). Black arcdwse periods (1-6 months back in time)
tested in the selection of analogue years (CP,.TH)low arrows: time period (3 months
ahead) used to calculate the predictors in the $thod. White arrows: forecasting periods in
which the HBV model was run using full historicahsemble (CE), reduced analogue
ensemble (CP, TCIl) and ECMWEF forecasts (DM).
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