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Abstract 1 

Hydropower is a major energy source in Sweden and proper reservoir management prior to 2 

the spring-flood onset is crucial for optimal production. This requires accurate forecasts of the 3 

accumulated discharge in the spring-flood period (i.e. the spring-flood volume, SFV). 4 

Today’s SFV forecasts are generated using a model-based climatological ensemble approach, 5 

where time series of precipitation and temperature from historical years are used to force a 6 

calibrated and initialised set-up of the HBV model. In this study, a number of new approaches 7 

to spring-flood forecasting, that reflect the latest developments with respect to analysis and 8 

modelling on seasonal time scales, are presented and evaluated. Three main approaches, 9 

represented by specific methods, are evaluated in SFV hindcasts for the Swedish river 10 

Vindelälven over a 10-year period with lead times between 0 and 4 months. In the first 11 

approach, historically analogue years with respect to the climate in the period preceding the 12 

spring flood are identified and used to compose a reduced ensemble. In the second, seasonal 13 

meteorological ensemble forecasts are used to drive the HBV model over the spring-flood 14 

period. In the third approach, statistical relationships between SFV and the large-sale 15 

atmospheric circulation are used to build forecast models. None of the new approaches 16 

consistently outperform the climatological ensemble approach, but for early forecasts  17 

improvements of up to 25% are found. This potential is reasonably well realised in a multi-18 

method system, which over all forecast dates reduced the error in SFV by ~4%. This 19 

improvement is limited but potentially significant for e.g. energy trading.  20 

 21 

1 Introduction 22 

In Sweden, seasonal (or long-term) hydrological forecasts are used primarily by the 23 

hydropower industry for dam regulation and production planning (e.g. Arheimer et al., 2011). 24 

The forecasts may be used to optimise the balance between a sufficiently large water volume 25 

for optimal power production and a sufficient remaining capacity to safely handle sudden 26 

inflows. In northern Sweden, the spring-flood forecast is the most important seasonal 27 

hydrological forecast and it generally covers the main snowmelt period in May, June and July. 28 

Traditionally, discharge and spring-flood forecasting at seasonal time scales have been based 29 

on two approaches. The first utilises statistical relationships between accumulated discharge 30 

during the forecasting period and predictors such as snow water equivalent and accumulated 31 
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precipitation that represent the hydrological state at the forecast date (e.g. Garen, 1992; 1 

Pagano et al., 2009). The other approach is based on a hydrological model, which is initialised 2 

with observed data up to the forecast issue date and then forced with historical meteorological 3 

inputs over the forecasting period (e.g. Day, 1985; Franz et al., 2003). In addition, hybrid 4 

approaches, applying model-derived information in the statistical regression, have been 5 

proposed (e.g. Nilsson et al., 2006; Rosenberg et al., 2011). 6 

Recently, substantial progress has been made in the field of seasonal climate forecasting. It 7 

may be distinguished between dynamical and statistical approaches. In the dynamical 8 

approach, numerical atmospheric models (global circulation models - GCMs) have been 9 

developed to predict seasonal climate, i.e. the average climate for three consecutive months, 10 

several months ahead (Goddard et al., 2001). The scientific basis of such predictions is that 11 

the sea surface temperature (SST), that characteristically evolves slowly, drives the 12 

predictable part of the climate. Consequently, providing to a GCM model the information 13 

about the variations in SST makes possible the forecast of seasonal climate. The SST 14 

information may be provided to the GCM by using the SST field as a boundary condition or 15 

by coupling the GCM to an ocean model that will then provide the necessary SST 16 

information. GCM seasonal forecasts may be downscaled dynamically (e.g. Graham et al. 17 

2007; Bastola et al. 2013; Bastola and Misra, 2014) or statistically (e.g. Uvo and Graham, 18 

1998; Landman et al 2001; Nilsson et al. 2008), to better represent regional interests. 19 

An early attempt to use climate model output for hydrological forecasting in a coastal 20 

Californian basin during winter 1997/1998 was made by Kim et al. (2000). They found an 21 

overall decent agreement between simulated and observed discharge. Low (high) flows were 22 

however systematically overestimated (underestimated), which was attributed primarily to 23 

climate model precipitation bias. To tackle this problem of climate model biases, Wood et al. 24 

(2002) proposed bias-correction by a percentile-based mapping of the climate model output to 25 

the climatological distributions of the input variables. Recently, several investigations have 26 

focused on the relative role of uncertainties in the initial state and in the climate forecast, 27 

respectively, for the hydrological forecast skill (e.g. Li et al., 2009; Shukla and Lettenmaier, 28 

2011). 29 

In a climate-based statistical approach, connections between climate phenomena that affects 30 

the large-scale atmospheric circulation and the subsequent hydro-meteorological development 31 

in specific locations are identified and utilised (e.g. Jónsdótir and Uvo, 2009). Such 32 
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connections are known as teleconnections as they link phenomena occurring in widely 1 

separated regions of the world. The impacts of the El Niño-Southern Oscillation on the 2 

tropical climate are the most commonly use of such teleconnections in seasonal forecast 3 

(Troccoli, 2010). Teleconnections can be also the basis for seasonal forecast in high latitudes 4 

such as the impacts of the North Atlantic Oscillation in the winter climate in Scandinavia (e.g. 5 

Uvo, 2003) and the more recently identified impacts of the Scandinavian Pattern on summer 6 

climate in southern Sweden (Engström, 2011; Foster and Uvo, 2012; Foster et al. 2015). 7 

Teleconnection indices have also been used as predictors in regression-based approaches to 8 

seasonal hydrological forecasting (e.g. Robertson and Wang, 2012). 9 

In light of the above described progress of the field, it is time to explore ways of updating 10 

operational practices by incorporating the new knowledge acquired and methods developed. 11 

The objective of this study has been to develop, test and evaluate new approaches to spring-12 

flood forecasting in Sweden. The current spring-flood forecasting practice at the Swedish 13 

Meteorological and Hydrological Institute (SMHI) is an example of the traditional model-14 

based approach. It is a climatological ensemble approach based on the HBV hydrological 15 

model (e.g. Bergström, 1976; Lindström et al., 1997). The main scientific hypothesis 16 

examined is that the application of large-scale climate data (historical and forecasted) can 17 

improve forecast skill, as compared with today’s procedure. A secondary hypothesis is that a 18 

combination of approaches provides an added value, as compared with each individual 19 

approach. Three different approaches have been tested and evaluated: (1) identifying analogue 20 

historical years that resemble the weather in the current year, (2) using meteorological 21 

seasonal forecasts as input to the HBV model and (3) applying statistical relationships 22 

between large-scale circulation variables and spring-flood volume. The new approaches were 23 

evaluated for the spring-flood forecasts 2000-2010 issued in January, March and May for the 24 

river Vindelälven in Sweden.  25 

 26 

2 Material 27 

2.1 Study area, local data and models 28 

The catchment of the river Vindelälven has been used for testing spring-flood forecast. 29 

Vindelälven is unregulated and two stations were selected for evaluation of the forecast 30 

methods; Sorsele located in the upstream part of the basin and Vindeln at basin outlet (Fig. 31 
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1a). The catchment’s elevation range is ~260-840 m.a.s.l. and ~5% of the area consists of 1 

lakes. The annual mean temperature is -0.7°C and precipitation ~780 mm. Fig. 2a shows the 2 

mean hydrograph for station Vindeln (1981-2010) in the period January-July, which is the 3 

period of interest in this study. In January-February the temperature is generally below -10°C 4 

and very little runoff is generated. Melting generally starts in late April and the subsequent 5 

spring flood extends throughout July, followed by elevated discharge levels also in August-6 

October. 7 

In this study we focus on forecasts of the accumulated discharge in the spring-flood period 8 

(May-July), which is the key variable delivered to the hydropower industry. This quantity will 9 

in the following be referred to as SFV (spring-flood volume). The mean SFV in  station 10 

Vindeln (Table 1), corresponds to an average discharge in the spring-flood period of ~ 380 11 

m³/s. SFV has a pronounced inter-annual variability, which is illustrated by its range (Table 1) 12 

and frequency distribution (Fig. 2b).  13 

The HBV model (Bergström, 1976; Lindström et al., 1997) was set up and calibrated for 14 

Vindelälven, divided into 18 sub-catchments with a mean size of 740 km². HBV is a rainfall-15 

runoff model which includes conceptual numerical descriptions of hydrological processes at 16 

basin scale. The general water balance in the HBV model can be expressed as 17 

[ ]VLLZUZSMSP
dt

d
QEP ++++=−−        (1) 18 

where P denotes precipitation, E evapotranspiration, Q runoff, SP snow pack, SM soil 19 

moisture, UZ and LZ upper and lower groundwater, respectively, and VL the volume of lakes. 20 

Input data are normally daily observations of P, air temperature T and monthly estimates of 21 

potential evapotranspiration; output is daily Q. Temperature data are used for calculations of 22 

snow accumulation and melt and possibly potential evaporation. The model consists of 23 

subroutines for meteorological interpolation, snow accumulation and melt, evapotranspiration 24 

estimation, a soil moisture accounting procedure, routines for runoff generation and finally, a 25 

simple routing procedure between sub-basins and lakes. Applying the model necessitates 26 

calibration of a number of free parameters, generally about 10. 27 

For historical simulation and calibration, daily P and T inputs for the Vindelälven basin were 28 

created from gridded fields (4×4 km²), created by optimal interpolation with altitude and wind 29 

taken into account (e.g. Johansson, 2002). These data, as well as Q observations, are available 30 

since 1961. The HBV set-up used in this experiment is the continuously updated and re-31 
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calibrated version used operationally, conceivably representing the optimal performance 1 

currently attainable. The calibration is mainly based on the historical period prior to the 2 

evaluation period (1961-1999), but some re-calibration has been done also later. 3 

The overall accuracy of the HBV calibration expressed in terms of the Nash-Sutcliffe 4 

efficiency (NSE) and the relative volume error (RVE) in period Oct 1999 - Sep 2010 are 5 

given in Table 1. Values of NSE ~0.9 and only a few percent volume error imply an 6 

accurately calibrated model with limited scope for improvement. 7 

2.2 Large-scale atmospheric data 8 

For the definition of circulation patterns (Sect. 3.1), the ERA40 data set (Uppala et al., 2005) , 9 

with resolution of 1°×1°, was used during 1961-2002 while ERAINTERIM (Dee et al., 2011), 10 

with a 0.75°×0.75° resolution, was used during 2003-2010. The domain is shown in Fig. 1a. 11 

For the teleconnection-based method studies (Sect. 3.1), monthly indices of the North Atlantic 12 

Oscillation, Scandinavian Pattern and East Atlantic Pattern were collected from the Climate 13 

Prediction Center (Climate Prediction Center, 2015). 14 

The atmospheric seasonal forecast data used in this work were obtained from the European 15 

Centre for Medium-Range Weather Forecasts (ECMWF). Two model combinations were 16 

available: the ECMWF IFS (Integrated Forecast System, version 3) coupled with a 1° version 17 

of the HOPE ocean model, and the ARPEGE atmospheric model coupled with the variable-18 

resolution (0.33-2°) ORCA ocean model. Atmospheric seasonal forecasts were used in two 19 

different forms; seasonal averages from both IFS and Arpege were used in the statistical 20 

downscaling Sect. 3.1) and daily time series from IFS were used in the dynamical modelling 21 

(Sect. 3.1). 22 

- Seasonal averages. These data are the ensemble means of the different predicted fields 23 

covering the domain 75°W to 75°E and 80°N to 20°N with a 2°×2° resolution. The predicted 24 

fields considered were: 2m T, 10m meridional wind velocity, meridional wind stress, 10m 25 

zonal wind velocity, zonal wind stress, surface sensible heat flux, surface latent heat flux, 26 

total precipitation, 850mb T, 850mb specific humidity, 850mb meridional wind velocity, 27 

850mb zonal wind velocity, and 850mb geopotential height. The number of ensemble 28 

members per field is 11 for the period 1982-2006 (IFS) or 1982-2007 (Arpege) and 41 for the 29 

remaining years until 2010. The domain is shown in Fig. 1a. 30 
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- Daily time series. These data are the forecasted daily values of 2 m T and the accumulated 1 

total P from the forecast issue date to the forecasting period. These data spanned a period 2 

from 2000-2010 and had a domain covering 11°E to 23°E and 55°N to 70°N with a 1°×1° 3 

resolution. Fig. 1a shows this 1°×1° grid in relation to Sweden. 4 

 5 

3 Experimental set-up 6 

Three new approaches to seasonal hydrological forecasting are presented and compared to the 7 

current climatological ensemble procedure currently applied at SMHI: analogue ensemble, 8 

dynamical modelling and statistical downscaling. All methods are described in detail in the 9 

Supplement; below only brief outlines are given. 10 

Figure 3 shows a schematic of the “temporal set-up” of the experiments. A key issue in 11 

seasonal forecasting is the lead time (green area in Fig. 3), i.e. the period between the forecast 12 

issue date and the start of the forecasting period (blue area). It may be expected that the 13 

relative skill of the different approaches depend on the lead time. Generally, the main gain of 14 

statistical approaches is expected for long lead times. When approaching the forecasting 15 

period, the representation of the hydro-meteorological state in the HBV model becomes 16 

gradually more important and the relative skill of the current procedure is likely to increase. 17 

To assess the relative skill for different lead times, we evaluate historical forecasts (re-18 

forecasts) issued on 1 January (1/1), 1 March (1/3) and 1 May (1/5) in the period 2000-2010. 19 

3.1 Methods 20 

Climatological ensemble (CE): In this procedure, HBV is initialised by driving it with 21 

observed meteorological inputs (P and T) for a spin-up period up to the forecast issue date. 22 

Then, all available historical daily P and T series in the period from the forecast issue date to 23 

the end of the forecasting period are used as input to HBV, generating an ensemble of spring-24 

flood forecasts. See further Supplement, Sect. 1. 25 

Analogue ensemble (AE): The hypothesis is that it is possible to identify a reduced set of 26 

historical years (an analogue ensemble) that describes the weather in the coming forecasting 27 

period better than the full historical ensemble used in CE. Two methods for identifying 28 

analogue years are used, both based on analyses of large-scale atmospheric conditions 1-6 29 

months prior to the forecast issue date (Fig. 3). (1) Teleconnection indices (TCI): evolution of 30 
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indices representing different climate phenomena. (2) Circulation patterns (CP): frequencies 1 

of weather types that describe the large-scale atmospheric state. The analogue ensemble is 2 

then used in the same way as the full ensemble in the CE method. See further Supplement, 3 

Sect. 2. 4 

Dynamical modelling (DM): HBV is initialised as in the CE method. Then T and P from 5 

meteorological seasonal forecasts (Sect. 2.2) are converted to HBV input and used to drive the 6 

model in the forecasting period. See further Supplement, Sect. 3. 7 

Statistical downscaling (SD): Statistical relationships between forecasted large-scale 8 

circulation variables (predictors) and SFV (predictand) are identified. The predictors are 9 

defined in the 3-month period following the forecast issue date (Fig. 3). See further 10 

Supplement, Sect. 4. 11 

3.2 Evaluation 12 

As described in the Supplement, all methods generate ensemble forecasts (although the AE 13 

approach may become deterministic if only one analogue year is found). The ensemble size, 14 

however, varies between methods as well as between years for the same method (Supplement, 15 

Table S1). Although probabilistic forecasts are generally more useful than deterministic ones, 16 

for this initial assessment, with only an 11-year evaluation period,  we consider it sufficient 17 

with a deterministic evaluation. Thus, from all ensemble forecasts the median forecast is 18 

calculated and used in the subsequent analysis, neglecting any impact of ensemble size on the 19 

skill of the median (e.g. Buizza and Palmer, 1998). 20 

Forecast performance is assessed by MAREF, the mean absolute value of the relative error of 21 

a certain forecast (or simulation) F, defined as 22 

∑
=

=
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200011
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To quantify the gain of the new forecast approaches (Sects. 3.2-3.4), their MARE-values are 1 

compared with the MARE obtained using the current CE procedure (MARECE) by calculating 2 

the relative improvement RI (%) according to 3 
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where a positive RI indicates that the error of the new approach is smaller than the error in the 5 

CE procedure, and vice versa, and RI=100% implies a perfect forecast. 6 

As an additional performance measure, we use the frequency of years FY+ (%) in which the 7 

new approach performs better (i.e. has a lower ARE) than the CE procedure. This may be 8 

expressed as 9 
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where H is the Heaviside function defined by 11 





>
<

=
y
F

y
CE

y
F

y
CEy

AEAE

AEAE
H

,1

,0
         (6) 12 

As expected considering the short 11-year evaluation period, MARE is sensitive to single 13 

years with a high ARE-value. As shown in the results below (Sect. 4), in several cases this 14 

makes RI negative even if the new approach outperforms CE in most years (i.e. FY+>50). 15 

Thus, in this study we consider FY+ to be the most relevant measure of forecast performance, 16 

although in practice this should be determined together with end-users of the forecasts, based 17 

on e.g. the impacts of very inaccurate forecasts. 18 

3.3 Baseline simulations with climatological ensemble (CE) 19 

Before testing the new forecasting approaches, the performance of HBV model and the 20 

climatological ensemble procedure (CE) was assessed (Table 1). In simulation mode, i.e. 21 

using the actually observed values of P and T in each year, the MARE of SFV is 7-8%. This 22 

quantifies the HBV model error and corresponds to having a perfect meteorological forecast. 23 

In CE forecast mode, i.e. using P and T from all historical years as input and calculate the 24 

median SFV,  the average MARE decreases gradually from ~ 20% in the 1/1-forecasts to ~9% 25 

in the 1/5-forecasts, which thus quantifies the improvement when approaching the spring-26 

flood period.  27 
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The differences in Table 1 between MARE for simulations and CE forecasts, respectively, 1 

represent the part of the total error that is related to the meteorological input. In Vindelälven, 2 

this part decreases from 12.1 percentage points in the 1/1-forecasts (which corresponds to 3 

~60% of the total error) to 1.8 points in the 1/5-forecasts (~20%). The relative impact of the 4 

HBV model error thus increases with decreasing lead time, which implies that the scope for 5 

improving the baseline forecasts decreases with decreasing lead time. It should be emphasised 6 

that two out of the three new forecast approaches tested here (AE and DM) aim at improving 7 

the meteorological input. They can thus only improve the forecasts in that respect; the HBV 8 

model error remains. The third method (SD), however, aims at improving total performance.  9 

 10 

4 Results from single methods 11 

An overview of the results of each approach is given in Table 2. The numbers after 12 

approaches TCI and CP correspond to the best performing version of each approach. 13 

Concerning the AE approach, both the TCI and the CP approach are based on analyses of the 14 

large-scale climatic conditions 1 to 6 months before the forecast date (see Supplement). The 15 

aim was to identify the number of months of prior climatic information, N, that generates the 16 

best performance when averaged over all forecast dates. Using TCI to identify analogue years 17 

proved to be difficult and the reduced ensemble generated did generally not outperform CE 18 

for the SFV forecasts. Even the best performing TCI version, using 6 months’ prior climate 19 

information (N=6; TCI6), consistently had a higher MARE than CE although it outperformed 20 

CE for most of the 11 years in station Sorsele (Table 2). For the 1/1-forecasts, N=6 was 21 

clearly superior but for the later forecasts N=1 and N=2 produced a similar performance. 22 

The CP method turned out more successful and the resulting SFV forecasts on 1/1 and 1/3 for 23 

the best performing version (N=3; CP3) clearly outperformed CE in both stations (Table 2). 24 

SFV was more accurately forecasted than with CE in 3/4 of all years. For the 1/5-forecasts, 25 

however, CP was less accurate than CE. For the 1/1- and 1/3-forecasts, N=3 was clearly 26 

superior but for the 1/5-forecasts N=2 and N=4 performed slightly better. 27 

Overall, the DM approach of using ECMWF seasonal forecasts of T and P as inputs to the 28 

HBV model did not improve performance as compared with the CE procedure (Table 2). In 29 

total, a similar performance to CE was found in station Sorsele but the accuracy in station 30 
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Vindeln was consistently lower. In the 1/5-forecasts, however, DM is the overall best 1 

performing new approach.  2 

The SD method outperformed CE in the 1/1-forecasts with an RI of almost 20% in both 3 

stations (Table 2). For the 1/3- and 1/5-forecasts the SD method has FY+-values > 50 in 4 

station Sorsele but RI-values of ~ -65%. This implies that the SD-forecast is generally better 5 

than CE but that it may also be very wrong. 6 

The performance of the SD method is heavily affected by whether the climatic features in the 7 

forecasting data were encountered in the training period dataset. If the forecasted conditions 8 

are outside the range encountered in the training period, the SD method has the tendency to 9 

produce forecasts that differ drastically from the observations. This can be dealt with by either 10 

increasing the length of the training dataset or by analysing the year in question and 11 

determining if there were similar years in the training period which would give an indication 12 

as to how the method might perform. 13 

With very few exceptions, the new approaches performed better in the upper part of the 14 

catchment (Sorsele) than in the outlet (Vindeln). This has not been analysed in any depth, but 15 

it is likely related to the more clear-cut spring flood in the upper part with very little prior 16 

runoff. In the outlet, melting episodes before the spring-flood onset lead to temporary 17 

increased runoff and a reduction of the snow pack. These episodes, and their impacts, are 18 

likely very difficult to capture in seasonal forecasts. 19 

 20 

5 Composing a multi-method system 21 

A multi-method forecast approach consists in combining forecasts resulting from different 22 

methods to reach a more reliable estimate of the forecast probability distribution. This 23 

technique has been used since early 1990s for developing seasonal climate forecast (Tracton 24 

and Kalnay, 1993) and has proved to provide more skilful results than a simple model forecast 25 

(Hagedorn et al., 2005; among many others).  26 

There are many possible ways of combining or merging multi-method forecasts, ranging from 27 

simple rank-based methods to more sophisticated statistical concepts. In light of the limited 28 

material available in this study, we restricted ourselves to testing two conceptually straight-29 

forward ways of combining the forecasts: a median approach (Sect. 5.1) and a weighted 30 

approach (Sect. 5.2). Further, the value of using transparent and easily communicated 31 
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approaches should not be underestimated when the target is operational forecasting and its 1 

associated end-user interaction. 2 

In each approach, two method ensembles are tested. The first ensemble, denoted NEW, 3 

represents the new approaches to spring-flood forecasting considered in the study and thus 4 

includes approaches AE, DM and SD. As only one approach to analogue ensemble generation 5 

should be included, the best performing one for each forecast date was used, i.e. CP for 1/1 6 

and 1/3 and TCI for 1/5 (Table 2). The CP method is, however, not directly applicable in 7 

operational forecasting as it is based on ERA reanalyses that are only available with a time lag 8 

of several months. Further, the TCI approach does not outperform CE in the 1/5-forecasts. 9 

Therefore we also consider a second ensemble that represents what is attainable operationally. 10 

In this ensemble, denoted OPE, AE is replaced by CE and thus no attempt to identify 11 

analogue years is made here.      12 

5.1 Median multi-method 13 

As three forecast are available, the median approach amounts to using the second member in 14 

the ranked forecast ensemble. For the NEW ensemble, RI is indicates a clear improvement in 15 

the 1/1-forecasts as compared with CE, but no improvement in terms of FY+. The 1/3-16 

forecasts are better than CE 60% of the time and MARE is slightly reduced on average. The 17 

1/5-forecasts are slightly better than CE in Sorsele but slightly worse in Vindeln. On average, 18 

a slight improvement over CE is found. In the OPE ensemble, the 1/1-forecasts perform 19 

slightly better than the NEW ensemble but the 1/3-forecasts clearly worse, as expected from 20 

the good performance of CP in these forecasts (Table 2). Overall the performance of the OPE 21 

ensemble is very similar to the NEW ensemble.  22 

In total, a reduction of MARE by up to 25% appears attainable for the 1/1-forecasts by the 23 

median approach. At the later forecast issue dates, a limited improvement in terms of both RI 24 

and FY+ was attained for Sorsele but not for Vindeln. Over all forecast dates and stations, a 25 

slight improvement over CE is indicated. In some cases, the median multi-method performs 26 

slightly better than each of the single methods included, generally because very inaccurate 27 

single forecasts become eliminated.  28 
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5.2 Weighted multi-method 1 

This approach consists of applying weights w between 0 and 1 to the different forecasts and 2 

then adding them together. The spring-flood volume forecasted by the weighted multi-3 

method, SFVFW, is thus defined as 4 

∑
=

⋅=
3

1f
ffFW SFVwSFV  with ∑

=

=
3

1

1
f

fw  and 0≥fw      (7) 5 

where the index f refers to the three different forecast methods available in each of the 6 

ensembles NEW and OPE. 7 

One set of weights are chosen for each forecast date. The selection of weights was made 8 

based on the evaluations performed in Table 2. With three forecast methods available (in each 9 

ensemble), the best performing method  (defined by considering both RI and FY+) was 10 

assigned the highest weight 0.5 (3/6), the second best performing method the intermediate 11 

weight 0.33 (2/6) and the worst performing method the lowest weight 0.17 (=1/6).  12 

The weighted NEW set outperforms CE in the 1/1- and 1/3-forecasts for both stations; only 13 

the 1/5-forecasts for station Vindeln become notably better by CE. In the OPE set, similarly to 14 

the median forecast, the 1/3-forecast is notably worse than the NEW set but still with FY+>50; 15 

the 1/5-forecasts are very similar. In total, weighting is not able to improve the result as 16 

compared with median approach in terms of RI. However, over all combinations of forecast 17 

dates and stations except the 1/5-forecast in station Vindeln, the weighted forecasts perform 18 

better than CE in most years. The 1/1-forecasts are better than CE in almost 2/3 of all years 19 

with a consistent MARE-reduction of 15-20% in both stations. 20 

It should be emphasised that the same data were thus used both to estimate the weights and to 21 

assess the performance of the weighted model, as the 10-year period is too short for proper 22 

split-sample calibration and validation. Limited testing however indicated good performance 23 

of the fixed-weight approach also for independent validation data. Besides using fixed 24 

weights it was also tested to estimate optimal weights based on historical performance. This 25 

however turned out unfeasible in this study due to the limited historical data available and the 26 

associated tendency of overfitting to the calibration data. 27 

 28 
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6 Concluding remarks 1 

None of the new approaches consistently outperformed the CE method, although 2 

improvement was indicated. The largest improvement was found for the 1/1- and 1/3-3 

forecasts using an analogue ensemble based on circulation patterns and for the  1/1-forecasts 4 

using statistical downscaling. In these cases  the new approach may outperform the CE 5 

method up 75% of the time with an error reduction of ~20%. In the 1/5-forecasts, none of the 6 

new methods clearly outperformed the CE method. By combining the different methods in a 7 

multi-method, an overall slight improvement over CE was attained, with a performance for 8 

single forecast dates and stations rather close to the best performing individual method. The 9 

overall error reduction attainable by the multi-method, ~4%, may sound limited but it must be 10 

emphasised that every percent of forecast improvement potentially corresponds to large 11 

financial revenues in energy trading activities. For spring-flood forecasts early in the season, 12 

particularly in January, the multi-method clearly outperformed the CE method. 13 

It must be emphasised that these results were obtained in a preliminary feasibility study with 14 

limited data and overall basic versions of the used methods. Future studies need to include 15 

longer test periods and more stations as well as refined and better tailored versions of the 16 

forecast methods. One limitation concerns inhomogeneities of data and forecasts in the study 17 

period, e.g. the shift from ERA40 to ERA Interim in 2003 and the shift from 11 to 41 18 

ensemble members in the seasonal forecasts in 2006/2007. A new ECMWF IFS version (4) is 19 

now available, but preliminary tests indicate a rather similar performance of SFV forecasts by 20 

the approaches concerned, as compared with using the version 3 data as done here. Using bias 21 

correction of the P and T input in the DM procedure would likely improve performance, as 22 

demonstrated by e.g. Wood et al. (2002), although such pre-processing has limitations in an 23 

operational context when new model versions are released. Incorporating hydrological model 24 

data, in particular snow information, in the SD method has shown promising results in 25 

preliminary tests, especially for improving the forecasts close to the spring-flood period. 26 

Development and testing along these lines are ongoing. 27 
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Table 1. Basin and station characteristics including overall performance of the HBV model. 1 

MARE (%) of SFV estimated by simulation (SIM) and by climatological ensemble (CE) 2 

forecasts ( F) with different issue dates (1/1, 1/3, 1/5). All values represent 2000-2010. 3 

Station  Area  

(km²) 

HBV SFV (m3*109) 

Min / Mean / Max 

MARESIM MARECE 

NSE RVE F 1/1 F 1/3 F 1/5 

Sorsele 6 054 0.89 3.2 1.61 / 2.30 / 2.77 6.8 19.2 11.6 9.5 

Vindeln* 11 846 0.91 1.5 2.26 / 3.18 / 4.11 8.2 20.0 13.2 9.0 

*Basin outlet 4 

5 



 21

 Table 2. Relative improvement RI (%) and frequency of years with a better performance FY+ 1 

(%) of the new forecasting approaches TCI6, CP3, DM and SD, as compared with the 2 

climatological ensemble CE (boldface indicates better performance than CE). 3 

 TCI6 CP3 DM SD 

RI FY+ RI FY+ RI FY+ RI FY+ 

1/1 Sorsele 

Vindeln 

-6.6 

-9.0 

55 

45 

1.4 

13.0 

75 

75 

7.6 

-13.5 

45 

45 

18.4 

17.3 

55 

55 

1/3 Sorsele 

Vindeln 

-1.2 

-10.4 

64 

45 

19.2 

36.2 

70 

80 

-17.3 

-18.5 

45 

45 

-63.3 

-29.4 

55 

45 

1/5 Sorsele 

Vindeln 

-6.6 

-21.9 

55 

45 

-9.9 

-31.3 

33 

33 

1.3 

-12.0 

55 

36 

-66.8 

-90.3 

64 

27 

Average -9.3 52 4.8 61 -8.7 45 -35.7 50 

          

 4 

5 



 22

Table 3. Relative improvement RI (%) and frequency of years with a better performance FY+ 1 

(%) for the median and weighted multi-method approaches, as compared with the 2 

climatological ensemble CE (boldface indicates better performance than CE). 3 

  

Median Weighted 

NEW OPE NEW OPE 

RI FY+ RI FY+ RI FY+ RI FY+ 

1/1 Sorsele 

Vindeln 

20.9 

5.8 

50 

50 

25.3 

12.5 

56 

56 

20.1 

15.7 

55 

64 

18.2 

12.9 

64 

64 

1/3 Sorsele 

Vindeln 

5.9 

-0.1 

60 

60 

-4.2 

-10.7 

56 

43 

13.3 

3.8 

64 

55 

-7.2 

-10 

55 

55 

1/5 Sorsele 

Vindeln 

3.7 

-15.6 

55 

36 

7.9 

-5.2 

67 

33 

-5.0 

-23.3 

55 

36 

-0.6 

-13.5 

55 

45 

Average 3.4 52 4.3 52 4.1 55 0.0 56 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 
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Figure captions 1 

Figure 1. Domain used in the CP method, ECMWF IFS grid (blue dots), Vindelälven 2 

catchment (yellow), stations Sorsele (S) and Vindeln (V) (a). Domain used in the SD method 3 

(b). 4 

Figure 2. Mean annual Q cycle (a) and SFV frequency distribution (b) for station Vindeln in 5 

the period 1961-1999. 6 

Figure 3. Temporal set-up of the experiments. Vertical black lines; forecast dates. Blue area: 7 

spring-flood period. Green area: lead time. Red area: full historical period used in the 8 

selection of analogue years (CP, TCI). Black arrows: time periods (1-6 months back in time) 9 

tested in the selection of analogue years (CP, TCI). Yellow arrows: time period (3 months 10 

ahead) used to calculate the predictors in the SD method. White arrows: forecasting periods in 11 

which the HBV model was run using full historical ensemble (CE), reduced analogue 12 

ensemble (CP, TCI) and ECMWF forecasts (DM).     13 
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Figure 1. Domain used in the CP method, ECMWF IFS grid (blue dots), Vindelälven 1 

catchment (yellow), stations Sorsele (S) and Vindeln (V) (a). Domain used in the SD method 2 
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Figure 2. Mean annual Q cycle (a) and SFV frequency distribution (b) for station Vindeln in 1 

the period 1961-1999.2 
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Figure 3. Temporal set-up of the experiments. Vertical black lines; forecast dates. Blue area: 2 

spring-flood period. Green area: lead time. Red area: full historical period used in the 3 

selection of analogue years (CP, TCI). Black arrows: time periods (1-6 months back in time) 4 

tested in the selection of analogue years (CP, TCI). Yellow arrows: time period (3 months 5 

ahead) used to calculate the predictors in the SD method. White arrows: forecasting periods in 6 

which the HBV model was run using full historical ensemble (CE), reduced analogue 7 

ensemble (CP, TCI) and ECMWF forecasts (DM).     8 
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