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Submission to HESSD 
“Estimation of flood warning runoff thresholds in ungauged basins with 

asymmetric error functions”, by Elena Toth 
 
 

Reply Letter 

 

 

I warmly thank the Editor, Dr. Stacey Archfield, for her kind encouragement and support and the two 

Referees for having so carefully read the paper, providing very useful and constructive insights, that 

prompted me to integrate and improve the work. 

 

In the replies that follow, I explain how and where the required information were added and the suggested 

modifications implemented, for each comment. 

For each remark, the original comment of the referee is copied in bold, the reply follows afterwards and the 

change made in the revised version are in red. 

 

Please note that the insertion of the new figures and the new table added following the suggestions of the 

Referees have modified the overall numbering of the existing ones, and in particular: 

Figure 2 of the original manuscript is Figure 4 in the revised version 

Table 1 of the original manuscript is Table 2 in the revised version 

 

Following the replies, the new manuscript is attached, where all the changes to the original version are 

highlighted in yellow. 

 

I do hope the revisions adequately address the Referees’ comments and I am at your disposal for any 

clarification that may be needed. 

 

My best regards, 

Elena Toth 
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Author’s Reply to Referee #1’s Comments 
 

General Comments 

Comment 1) • What are the advantages of using a biased estimate of QT=2yr? […] 

I do thank the Referee for having pointed out the importance to better underline in the paper the 

limitations and advantages of the proposed approach, and in particular with respect to a probabilistic one. 

It is certainly true that a probabilistic approach (it is possible to find examples also for neural network 

models, see for example Khosravi et al., 2011) may be able to add very valuable insights for a more 

complete evaluation of the prediction model, supplementing the information provided by point-value 

predictions, and in the future I intend to attempt to investigate the uncertainty of the issued predictions, 

(as I have added in the concluding session in the revised version) but I do not believe it would be possible 

performing such complex analysis here. It should in fact be considered that uncertainty assessment 

methods should take into account all error sources (see for example Montanari, 2007) and not only those 

related to the choice of their parameters (the majority of the uncertainty methods deal only with a single 

source of uncertainty, for instance, Monte Carlo-based methods analyze the propagation of uncertainty of 

parameters only) - and are subject, as well as the prediction model itself, to errors in their underlying 

assumptions and structure as well as in the determination of their parameters (Xiong et al., 2009) so that it 

is needed, even if it is far from easy, to correctly evaluate also their quality (in many methodologies it is 

hypothesised and not verified if the distribution of the forecasts is the real one). As a consequence, 

implementing a correct, fully comprehensive procedure for a consistent and reliable estimation of the 

global uncertainty is certainly not straightforward (nor it would be possible to describe it briefly) and this is 

why it may be subject of a separate, future work. 

On the other hand, I do not believe it is necessary to add the implementation of a probabilistic framework 

here, since the presented methodology is a deterministic one, where an optimal point forecast is obtained 

by minimizing the conditional expectation of the future loss.  

Such framework has not the pros of a probabilistic one in terms of quantification of the uncertainty, but its 

advantage is the operational value of the forecast in terms of an optimal decision that minimizes the cost; 

in fact asymmetric loss functions are more appropriate in many types of decision settings, as shown by 

recent forecasting literature analysing the statistical properties of optimal predictions under asymmetric 

loss (e.g. Christoffersen and Diebold, 1997, Granger and Pesaran, 2000, Patton and Timmermann, 2004; 

and in particular Zellner, 1986, 2004, showed that once the symmetric loss function is abandoned, optimal 

forecasts need not be unbiased) and showing that in many “ practical applications, asymmetric loss 

functions can be critical to effective forecasting” (Elliott et al., 2006). 

Minimising the asymmetric error function has the purpose of minimizing the cost, thus optimizing the 

threshold from an operational point of view. A probabilistic forecasting approach applied to the symmetric 

error function (provided that the methodology is able to include all sources of uncertainty and its quality 

may be objectively assessed/verified) would certainly provide awareness on the uncertainties associated 

with the point forecasts, but identifying the upper (e.g. 95%) uncertainty bound would not allow the 

decision-maker to choose the optimal value for the threshold in terms of costs/operational utility, since 

such value (upper bound) would be (if reliable) the one that identifies an assigned risk of underestimation 

(and, even if this is not the point here, it would, I expect, result in a very high value for a small assigned risk, 
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given the large uncertainty of the approach, mainly due to the intrinsic limitations  and shortcomings of the 

data set for such an heterogeneous area…) but it would not take into account in any way the 

overestimation costs resulting from high negative errors, nor it would consider the balance between the 

costs of positive and negative errors, as it may be done, instead, within an asymmetric loss approach. 

In the revised version I have better specified the purpose of the proposed approach, along with 

considerations on the advantages/disadvantages in respect to a probabilistic framework, adding two new 

paragraphs in Section 2 and in the Conclusions. 

Comment 2) • Regional Flood Frequency analysis is not regression. In a couple of locations in 
the text, page 6014 line 14–29 and page 6030 lines 10–18, there seems that there is the 
direct association between Regional Flood Frequency analysis to Regression with catchment 
attributes (regression or related techniques like ANN’s). […] 

In the revised version I will certainly rephrase ll. 24-27 p. 6014 and ll. 13-14 p. 6030, since I definitely did 

not mean to reduce Regional Flood Frequency Analysis to the application of regression techniques, but only 

to refer to that thematic area, because the runoff threshold literature generally does not include these 

issues. I fully agree (as highlighted, as the Referee underlines, also in the chapter on floods prediction that I 

co-authored of the 2013 book) that regression methodologies are only one of the possible methods 

(statistical and process-based) to predict floods in ungauged basins and in particular I should better specify 

in the text that their use is especially frequent only as far as the estimation of the index flood values is 

concerned. 

In the revised version I have rephrased both paragraphs (in Section 1 and in the Conclusions) 

Comment 3) • Relative error could be also very valuable. For assessing the performance of 
several variants of the proposed method, the measures MAE and RMSE are proposed, both 
functions of the error. Given the large range of discharges considered in the study, it could 
be also very valuable to report additionally boxplots of the relative errors. […] 

I definitely agree that a more comprehensive description of the errors would be very helpful to interpret 

the results, especially given the large discharge range, as underlined by the Referee; I am not sure the 

relative errors would be the fairest way to analyse the results in the presented decision setting framework 

(see reply to first Comment), given that the costs are weighted in respect to the ‘not-relative’ errors in the 

loss functions, so I would prefer, if the Referees agrees, adding in the revised paper the scatterplots of 

observations/predictions, that I believe allow the most complete visualization of the results over the entire 

discharge range, showing every single prediction in respect to the corresponding observation. In addition, 

also OverH and UnderH are already defined in relative terms, since they represent the number of errors 

greater than 30%. 

In the revised version I have added a new figure (Figure 3) showing the scatterplots of the results issued by 
the 5 models over the independent test set, showing every prediction in the respect to the corresponding 
observation.  
Admittedly  the scatterplot highlight that the errors are far from negligible for both the traditional and the 
asymmetric networks (as already underlined in the original paper); but the test is indeed an exacting one: a 
single regression model applied over a fully independent test set that includes extremely diverse 
catchments (from Alpine to Mediterranean) and based on a dataset (the only one currently available at 
national scale) that unfortunately does not include important influencing factors, the most important one 
being information on the rainfall extremes.  
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On the other hand, the objective of the work is to propose a new methodological approach, that may be 
applied to much better databases and the Italian case study is proposed for a comparative analysis, where 
all the applied models have the same limitations due to the dataset. 
 

Detailed Comments 

Page 6013, Line 27: is “real-world” here “real-time”? 
Actually, I mean both: ‘real-time’ warning systems actually implemented by ‘real-world’ organization 
(that is not only in literature simulation studies): I will rephrase to make it clearer. 

In the revised version I have replaced “real-world” with “operational real-time”. (Introduction section) 

Page 6017, Lines 17–19: The author defines here the error as the observed minus the 
predicted value. To my knowledge, in runoff prediction in ungauged basins, it is almost a 
consensus to define error as predicted minus observed. If the author wants to define it here 
inversely, a stronger warning to the reader should be given, in order to avoid confusions. 
I used the notation by Elliot et al (2005), for consistency with their definition of the loss function in Eq 
1.  

In the revised version I have modified the definition of error as suggested by both Referees, since it indeed 
has generated confusion (both in the readers and in the author…). Accordingly, I have modified Fig 1, 
Equations 1 and 3, all the references to positive/negative errors throughout the paper and also the box-plot 
(ex-Figure 2). 

Pages 6021–6023: Maybe adding an schematic figure with the structure of the selected ANN 
could help the reader. 
I fully agree with your suggestion: I will add a figure showing the ANN architecture: 

 

In the revised version I have added the above figure of the network architecture (Fig. 1c, section 4.2). 

Page 6027, line 4: is here “scour” the Q2? 
Page 6029, line 7: ... the errors are not negligible... 

In the revised version I have amended the mistakes. 

Page 6027, line 9: I think “prudence” is not the right word here. Maybe “tendency to 
over/underestimate”? 
Page 6031, line 13: Again, “prudentially” is not the right word here. 

In the revised version I have rephrased both sentences as suggested. 

 
REFERENCES 
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Author’s Reply to Referee #2’s Comments 
 
Detailed comments 
 
Comment: It is indicated that the annual maximum flow records for some stations are 
available for as few as only 5 years. How was the quantile of interest in this work estimated and 
how meaningful is the estimate done using such a short data set? 
 
The only quantile that is estimated in this work is the 2-years one and it was estimated as the median of 
the available historical records of flood maxima. Even if of course it would be preferable having longer 
time-series, five years should be sufficient for such a short return period, for example according to the 
classical guideline by Cunnane (1987), that suggests not to extrapolate statistical inference beyond a 
return period of 2 times the sample length (and for the shortest records in the present application, it is 
inferred a quantile with a return period that is less than half the sample length). In addition, the stations 
with less than 8 years of data are only 9, so that I believe the dataset, in terms of the length of the 
records, may be considered, overall, sufficiently meaningful for the purpose of estimating the 2-years 
return period flows. 
 
In the revised version I have added such observation in Section 3.1. 
 
Comment: Why were only three classes of catchment descriptors used to sample representative 
catchments from for the three groups of catchments? Are they not too few to enable a fair 
distribution of different ranges of the catchment characteristics evenly across all the three 
groups? 
 
I fully agree that such choice is subjective and that a different number of classes could have been 
chosen; given the small number of features characterizing the catchments (the 3 first principal 
components), I believe that 3 classes should be sufficient for identifying training, cross-validation and 
test sets that are sufficiently similar. I report below the graphs showing the mean value (red dash) and 
the 90% and 10% percentiles of the resulting sets, for each of the three input variable (PC1, PC2 and 
PC3). The graphs seems to highlight a good degree of similarity in the distribution of the values over 
the three sets. Such graphs might be added in the revised manuscript at the end of Section 3.2. 
 

 
Figure: Mean value (red dash) and the bars comprised between the 90% and 10% percentiles of the 
resulting training, cross-validation and testing sets, for each of the three input variable (PC1, PC2 and 
PC3). 
In the revised version I have added the above graphs in a new figure (Fig. 2) at the end of section 3.2. 
 
 
 
Comment: How were the output values standardized in the range between -1 and 1 (page 6023, 
line 12). Here I assume the output variables to be the 2-year flood values. 
Related to my previous comment, are the error terms in Equations 3-5 estimated from the 
normalized 2-years flood values or from the actual values? If they are estimated from the actual 
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values, as it looks is the case by looking at the values of MEA and RMSE in Table 1 and the 
errors in Figure 2, how was the scale inconsistency at the different stations handled? It is 
mentioned somewhere that these values range between 10 and 1000m3/s. 
 
Data standardization is generally used in neural network in order to ensure that the data receive equal 
attention during the training process (Maier and Dandy, 2000) and it is also important for the efficiency 
of training algorithms (Dawson and Wilby, 2001). 
In the present case, the output data are rescaled as a function of the minimum and maximum values to 
the [-1 1] range (actually to the [-0.95 +0.95] range, to avoid the problem of saturation – I had not 
explained this issue in order not to further complicate the explanation of the neural networks working). 
Such rescaled values are those that are simulated by the ANN model: those corresponding to the 
training and cross-validation sets are used, as ‘target’, for training the neural networks; when the model 
is successively used for predicting the standardized Q2,p over the independent test set, the ANN output 
values are then transferred back reversing the function, restoring the values - in a proportional manner 
- to the original ranges.  
Finally, the error statistics presented in section 5 (and in Table 1 and Figure 2) are calculated on the 
errors between the actual observed values and the re-transformations of the values issued by the neural 
network. 
It is certainly necessary to better explain the procedure in the revised manuscript, both in Section 4.2 
and 5.1 (and in the latter it is indeed important to clarify that the prediction Q2,p is not directly the value 
issued by the model but its ‘de-standardised’ value, since the present wording is, as highlighted by the 
Referee, confusing). 
 
In the revised version I have better explained the standardization method in Section 4.2 and in Section 5.1 I 
have explained that the model results are compared after having de-standardized the network outputs. 
 
Comment: I find the whole text on page 6028 messy. Most of the discussion on results is 
presented on this page, but it is very confusing. The author mentions that negative errors mean 
overestimation and a couple of lines later a contradictory statement is made (statements on 
line 6 and 10). Similarly, it is mentioned somewhere that the overestimation error reduces with 
increasing alpha value and the opposite is mentioned elsewhere. There is even little 
consistency between what is discussed here and the referred Table 1 and Figure 2.  
 
Thank you indeed for having identified two mistakes in the same sentence (I really have to apologise: I 
had in my last version reworded the sentence changing the focus from under to overestimation errors 
and I have inadvertently maintained a part of the original sentence…): lines 10-12 should read: 
 
“At the same time, and more importantly, the number of negative (under overestimation) errors larger 
than 30% substantially decreases with α, with OverH% reaching a value that is much lower than that of 
the ANN-Symm model when α arrives at 0.4 0.1 (18% vs 34%)” 
 
I do hope that amending the wrong sentence , the text will become more clear and it should be 
consistent with the results shown in Table 1 and Figure 2. 
 
In the revised version, also due to the change in the definition of the errors (as suggested by the Referee in 
the comment below), I have amended the mistaken sentence and also rephrased the following part of page 
6028 that was indeed not clear. 
 
Comment: Why did the author choose to define the error term as the observed minus the 
simulated values? Defining it in a more conventional way would have helped to avoid such 
inconsistency. 
 
In the manuscript I used the notation by Elliot et al (2005), for consistency with their definition of the 
loss function in Eq 1. 
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In the revised version I have modified the definition of error as suggested by both Referees , since it indeed 
has generated confusion (both in the readers and in the author…). Accordingly, I have modified Fig 1, 
Equations 1 and 3, all the references to positive/negative errors throughout the paper and also the box-plot 
(ex-Figure 2). 

 
Other comments 
 
Comment: Define the variable M in Equation 3. 
 
Thank you for pointing this out:  
In the revised version I have added that M is the number of records in the set (either the early-stopping 
validation set or the test one). 
 
Comment: I suggest that the catchment descriptors be listed in a table. I am a bit astonished 
to read that data on soils and land cover are missing when there are open data sources on both 
that are often used in modeling. 
 
I will list, as suggested, the descriptors in a new Table (new Table 1): 
 

  

1 Long - UTM longitude of catchment centroid  

2 Lat - UTM latitude of catchment centroid  

3 A - Catchment drainage area  

4 P - Catchment perimeter  

5 zmax - Maximum altitude of the catchment area 

6 zmin - Elevation of the catchment outlet  

7 zmean - Mean altitude of the catchment area  

8 L - Length of the Maximum Drainage Path 

9 SL - Average slope along the Maximum Drainage Path  

10 SA - Catchment average slope  

11 Φ - Catchment orientation  

12 MAP - Mean Annual Precipitation 

 
And I definitely take the Referee’s point that it would be extremely helpful to extend the database 
content, and working on a consistent, comprehensive database of Italian catchments with validated and 
reliable information on other important features of the catchments’ areas.  
However, such compilation of an extended database for the Italian country was not the object of the 
present analysis, that presents a comparison of methodologies applied utilizing the same dataset, and I 
based the analysis on the data made available by the CUBIST project (the most recent National project 
of characterization of the Italian basins) and already used in Di Prinzio et al. (2011).  
I do hope, in the (hopefully near) future, that the colleagues who prepared the CUBIST database (and 
who have already developed the analyses for the delineation of the catchment boundaries) will find the 
time (and I may certainly offer my help, too) to include additional descriptor to the national database. 
 
On the other hand, the objective of the work is to propose a new methodological approach, that may 
be applied to much better databases and the Italian case study is proposed for a comparative analysis, 
where all the applied models have the same limitations due to the dataset. 
 
In the revised version I have listed the descriptor in a new table (new table 1) and I have added in section 
3.1 that “the CUBIST set is currently the only database available in the Italian hydrologists community at 
national scale”. 
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 6 

Abstract 7 

In many real-world flood forecasting systems, the runoff thresholds for activating warnings or 8 

mitigation measures correspond to the flow peaks with a given return period (often the 2-year one, 9 

that may be associated with the bankfull discharge). At locations where the historical streamflow 10 

records are absent or very limited, the threshold can be estimated with regionally-derived empirical 11 

relationships between catchment descriptors and the desired flood quantile. Whatever is the 12 

function form, such models are generally parameterised by minimising the mean square error, that 13 

assigns equal importance to overprediction or underprediction errors.  14 

Considering that the consequences of an overestimated warning threshold (leading to the risk of 15 

missing alarms) generally have a much lower level of acceptance than those of an underestimated 16 

threshold (leading to the issuance of false alarms), the present work proposes to parameterise the 17 

regression model through an asymmetric error function, that penalises more the overpredictions.  18 

The estimates by models (feedforward neural networks) with increasing degree of asymmetry are 19 

compared with those of a traditional, symmetrically-trained network, in a rigorous cross-validation 20 

experiment referred to a database of catchments covering the Italian country. The analysis shows 21 

that the use of the asymmetric error function can substantially reduce the number and extent of 22 

overestimation errors, if compared to the use of the traditional square errors. Of course such 23 

reduction is at the expense of increasing underestimation errors, but the overall accurateness is still 24 

acceptable and the results illustrate the potential value of choosing an asymmetric error function 25 

when the consequences of missed alarms are more severe than those of false alarms. 26 

1 Introduction 27 

In the operation of flood forecasting systems, it is necessary to determine the values of threshold 28 

runoff that trigger the issuance of flood watches and warnings. Such critical values might be used for 29 

threshold-based flood alert based on real-time data measurements along the rivers (WMO, 2011) or 30 

for identifying in advance, through a rainfall-runoff modelling chain, the rainfall quantities that will 31 

lead to surpass such streamflow levels, as in the Flash Flood Guidance Systems framework (Carpenter 32 

et al., 1999; Ntelekos et al., 2006; Reed et al., 2007; Norbiato et al., 2009). 33 

A runoff threshold should correspond to a ‘flooding flow’, that is to a value that may produce flood 34 

damages, and it is very difficult to determine on a regional or national scale: it may be defined as a 35 

flow that just exceeds bankfull conditions, but in practice, both in gauged and in ungauged river 36 
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sections, such conditions are arduous to quantify due to the lack of local information (Reed et al., 1 

2007; Hapuarachchi et al., 2011). 2 

In absence of more sophisticated physically-based approaches, based on detailed information of 3 

each specific cross-section that are rarely available due to limited field surveys, the literature 4 

suggests to estimate the bankfull flow as the flood having a 1.5 to 2 years return period (Carpenter et 5 

al., 1999; Reed et al., 2007; Harman et al., 2008; Wilkerson, 2008; Hapuarachchi et al. 2011; Cunha et 6 

al., 2012; Ward et al., 2013) and a flow that is slightly higher than bankfull may be identified with the 7 

2-year return period flood (Carpenter et al., 1999; Reed et al., 2007). 8 

Many operational systems all around the world adopt a statistically-based definition of the flooding 9 

flow and the flows associated with given return periods are used as threshold stages for activating 10 

flood warning procedures. 11 

The 2-year recurrence is used by many River Forecast Services in the United States, as suggested by 12 

Carpenter et al. (1999), also due to the fact that “the good national coverage of the 2-yr return period 13 

flows that the U.S. Geological Survey (USGS) maintains nationwide supports its use” (Ntelekos et al., 14 

2006), as well as in British Columbia (Canada). 15 

However, the floods with different annual exceedance probabilities, associated with different levels 16 

of risk, are also frequently adopted in operational real-time flood warning systems: for example in 17 

the Czech Republic, flood watch usually corresponds to a 1- to 5-year flow return period (Daňhelka 18 

and Vlasák, 2013). In Italy, where a national directive issued in 2004 introduces a system articulated 19 

on at least two levels of flow thresholds, many Regions have identified the alert levels as flood 20 

quantiles with return periods of 2, 5 or 10 years (e.g. the Abruzzo, Lombardia, Puglia Regions). In the 21 

South of France, the AIGA flood warning system compares real-time peak discharge estimated along 22 

the river network (on the basis of rainfall field estimates and forecasts) to flood frequency estimates 23 

of given return periods (with three categories: yellow for values ranging from the 2-year to the 10-24 

year flood, orange for between the 10 and the 50-year flood, and red for peaks exceeding the 50-25 

year flood) in order to provide warnings to the national and regional flood forecasting offices (Javelle 26 

et al., 2014). 27 

For river sections where the streamflow gauges are newly installed or where historical rating curves 28 

are not available, the observations of the annual maxima are absent or very limited and it is not 29 

possible obtaining a reliable estimate of flood quantiles on the basis of statistical analyses of series of 30 

observed flood peak discharges. 31 

For these ungauged or poorly gaged basins, the peak flow of given frequency to be associated with 32 

the watch/warning threshold can be estimated transferring information from data-rich sites to data-33 

poor ones, as it is done in the corpus of methodologies applied in RFFA (Regional Flood Frequency 34 

Analysis) at ungauged sites, that have always received considerable attention in the hydrologic 35 

literature (Bloeschl et al., 2013). Among the possible approaches (statistical and process-based) to 36 

predict floods in ungauged basins, many researchers have traditionally applied regression-like 37 

regionalisation methods for i) the estimation of the index flood (Darlymple, 1960), usually defined as 38 

either the mean or the median (that is the 2-year return period quantile) of the annual maximum 39 

flood series, or for ii) the direct estimate of other quantiles of annual maxima in ungauged basins 40 
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(Stedinger and Lu, 1995; Salinas et al., 2013). Such methods are based on the assumption that there 1 

is a relationship between catchment properties and the flood frequency statistics and are 2 

implemented through a regression-type model that relates the flood quantile or the index flood to a 3 

number of relevant morpho-climatic indexes. Linear or power (often linearized through a log-4 

transformation) forms, with either a multiplicative or additive error term, are the most commonly 5 

used functions (see e.g. Stedinger and Tasker, 1985; GREHYS, 1996; Pandey and Nguyen, 1999; Brath 6 

et al., 2001; Kjeldsen et al., 2001, 2014; Bocchiola et al., 2003; Merz and Bloeschl, 2005; Griffis and 7 

Stedinger, 2007; Archfield et al., 2013; Smith et al., 2015). 8 

In order to allow more flexibility to the model structure (whose ‘true’ form is of course not known), 9 

the international literature has recently proposed methods based on the use of artificial neural 10 

networks (ANN), providing a non-linear relationship between the input and output variables without 11 

having to define its functional form a priori. Successful applications of ANN for the estimation of 12 

index floods or flood quantiles at ungauged sites are reported in Muttiah et al., 1997; Hall et al., 13 

2002; Dawson et al., 2006; Shu and Burn, 2004; Shu and Ouarda, 2008; Singh et al., 2010; Simor at 14 

al., 2012; Aziz et al., 2013. 15 

Both the traditional power form or linear regression methods and the neural networks models are 16 

generally parameterized by minimizing the mean or root mean of the squared errors, that is a 17 

symmetric function assigning the same importance to overestimation and underestimation errors.  18 

Nevertheless, the consequences of under or overestimating the runoff threshold when used for early 19 

warning are extremely different. 20 

Adopting a watch threshold that is higher than the runoff/stage that actually produces flooding 21 

damages would in fact lead to missing such events, failing to issue an alarm. Underestimating the 22 

runoff threshold may instead determine the issue of false alarms. 23 

False alarms may certainly lead to money losses and also “undermine the credibility of the warning 24 

organisation but are generally much less costly than an unwarned event.” (UCAR, 2010): in fact the 25 

costs of failing to issue an alarm grow rapidly in a real emergency, since a totally missed event has 26 

strongly adverse effects on preparedness. Not only the costs of false warnings are commonly much 27 

smaller than the avoidable losses of a flood, but they cannot match up to indirect and/or intangible 28 

flood damages such as loss of lives or serious injuries (Pappenberger et al., 2008; Verkade and 29 

Werner, 2011). 30 

Furthermore, regarding the effects of false alarms, “in opposition to ‘cry wolf’ effect, for some they 31 

may provide an opportunity to check procedures and raise awareness, much like a fire practice drill.” 32 

(Sene, 2013) 33 

Overall, false alarms have usually a higher level of acceptance than misses and this entails that the 34 

estimate of flood warning thresholds should be cautionary, so as to reduce, conservatively, the 35 

number of missed alarms. 36 

For the development of watches and warnings it is therefore important to obtain estimates as 37 

accurate as possible, minimising both positive and negative errors, but, considering that an error will 38 
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always be present, it is better underpredicting rather than overpredicting the threshold estimate, for 1 

safety reasons. 2 

To obtain a conservative estimate of the thresholds, penalising more the predictions that exceed the 3 

“observed” values (in the present case represented by the quantile estimate based on the statistical 4 

analysis of observed flow peaks) than those that underestimate them, in the present work it is 5 

proposed, for the first time to the Author’s knowledge, a parameterisation algorithm that weights 6 

asymmetrically the positive or negative errors, in order to decrease the consistency of 7 

overestimation and therefore the risk of missing a flooding occurrence. 8 

It is important to underline that the proposed asymmetric error function is here applied for 9 

optimising a neural network model for predicting the 2-year return period flood (due to its 10 

association with the bankfull conditions) but it might be used to improve any other kind of 11 

methodology for the estimate of flood warning thresholds associated to any return period. 12 

Section 2 presents the asymmetric error functions; the next one describes the information available 13 

in a database covering the entire Italian country and the identification of the subsets to be used for a 14 

rigorous cross-validation approach. Section 4 presents the implementation of the models for 15 

estimating the 2-year return period flood in ungauged catchments, consisting in artificial neural 16 

networks calibrated using respectively the symmetric square error and the asymmetric error 17 

functions. The results are presented and then discussed in section 5 and section 6 concludes.  18 

2 The asymmetric error function 19 

The scientific literature on forecasting applications, in any scientific area, adopts almost exclusively 20 

an objective function based on the sum or mean of the squared discrepancies, that is a symmetric 21 

quadratic function, due to the well-established good statistical properties of the minimum mean 22 

square error estimator. 23 

On the other hand, in economics as well as in engineering and other many fields, there are cases 24 

where the forecasting problem is inherently non-symmetric and, in the financial forecasting 25 

literature, the use of mean squared error, even if still widely applied, is nowadays not always 26 

accepted.  27 

Error (or loss) functions devised to keep into account an asymmetric behaviour have been proposed, 28 

such as the linear-exponential, the double linear and the double quadratic (Christoffersen and 29 

Diebold 1996; Diebold and Lopez 1996; Granger 1999; Granger and Pesaran 2000; Elliot et al. 2005; 30 

Patton and Timmerman, 2006). In particular, Elliot et al. (2005) recently presented a family of 31 

parsimoniously parameterized error functions that nests mean squared error loss as a special case 32 

(Patton and Timmerman, 2006). 33 

Such function, adapted from Elliot et al. (2005) and defining the error  as the prediction minus the 34 

observed value (that is, a negative error corresponds to underestimation, a positive one to 35 

overestimation), reads: 36 

   p
pL   0 )21(2),( 1 ,       (1) 37 
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where 1() is a unit indicator, equal to one when  > 0 and zero otherwise; p is a positive integer that 1 

amplifies the larger errors (corresponding to a quadratic error when equal to 2) and α(0,1) is a 2 

parameter representing the degree of asymmetry. 3 

For α < 0.5 the function penalises more the overestimation errors (>0), while for α > 0.5 more 4 

weight is given to negative forecast errors (under-predictions); for α = 0.5 the loss weights 5 

symmetrically positive and negative errors. 6 

When p = 2 and α ≠ 0.5, the error becomes the asymmetric double quadratic (Quad-Quad) loss 7 

function (see Christoffersen and Diebold 1996), that is used in the present work for a fair comparison 8 

with the traditional mean square error estimator. When p = 2 and α = 0.5, Eq. (1) corresponds in fact 9 

to the ‘traditional’, symmetric, square error: 10 

2)5.0,2( L            (2) 11 

Figure 1 shows the asymmetric Quad-Quad loss function (with α varying from 0.1 to 0.9) compared 12 

with the squared error (SE). 13 

In the water engineering field, the asymmetric Elliot error function with quadratic amplification (p = 14 

2) has been recently applied to parameterise a model for estimating the expected maximum scour at 15 

bridge piers, in order to obtain safer design predictions through the reduction of underestimation 16 

errors by Toth (2015). 17 

It should be noted that the proposed methodology is a deterministic one, where an optimal point 18 

forecast is obtained by minimizing the conditional expectation of the future loss; such framework has 19 

not the pros of a probabilistic one in terms of quantification of the uncertainties of the prediction, 20 

but it aims at identifying the optimal value for the threshold in terms of operational utility. 21 

In Section 4, the asymmetric quadratic error function is proposed for optimizing the parameters of an 22 

input-output model, based on artificial neural networks, between the input variables summarising a 23 

set of catchment descriptors (obtainable also for ungauged river sections) and the 2-year return 24 

period flood, thus warranting that overestimation errors, that would increase the risk of missing 25 

flood warnings, are weighted more than underestimation ones. 26 

3 Available information: the national data set of Italian catchments 27 

The case study refers to a database of almost 300 catchments scattered all over the Italian peninsula, 28 

compiled within the national research project “CUBIST – Characterisation of Ungauged Basins by 29 

Integrated uSe of hydrological Techniques” (Claps et al., 2008). 30 

3.1 Input and output variables 31 

The 12 geomorphological and climatic descriptors are listed in Table 2. The dataset unfortunately 32 

lacks information on other hydrological properties (e.g. on soils, land-cover, vegetation) and the 33 

climatic characterisation is very limited (for example information on extreme rainfall would be 34 

extremely important), but the CUBIST set is currently the only database available in the Italian 35 

hydrologists community at national scale.  36 
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The dataset is described in Di Prinzio et al. (2011), where, following a catchment classification 1 

procedure based on multivariate techniques, the descriptors were used to infer regional predictions 2 

of mean annual runoff, mean maximum annual flood and flood quantiles through a linear 3 

multiregression model. 4 

As described in such work, in order to reduce the high-dimensionality of the geomorphological and 5 

climatic descriptors set, a Principal Components (PC) analysis was applied, obtaining a set of derived 6 

uncorrelated variables. The PC variables are as many as the original variables, but they are ordered in 7 

such a way that the first component has the greatest variability, the second accounts for the second 8 

largest amount of variance in the data and is uncorrelated with the first and so forth. In the present 9 

data set, the first three principal components explain more than three quarters of the total variance 10 

(see Di Prinzio et al., 2011) and such three first PCs are here chosen as input variables to the models 11 

described in the following, assuming that they may adequately represent, in a parsimonious manner, 12 

the main features of the study catchments. 13 

The data base, in addition to the morpho-pluviometric information, includes the annual maxima flow 14 

records for periods ranging from 5 to 63 years, whose median values, corresponding to the 2-year 15 

return period, represent the output variable to be simulated by the models. Even the shortest 16 

records (and actually only 9 of the locations have less than 8 years of data) should be sufficient for 17 

such a short return period, for example according to the classical guideline by Cunnane (1987), that 18 

suggests not to extrapolate statistical inference beyond a return period of 2 times the sample length. 19 

The data set covers a great diverseness of hydrological, physiographic and climatic properties and in 20 

order to partially reduce such heterogeneity, it was decided to limit the analysis to catchments 21 

having a 2-year flood included in the range 10-1000 m3/s, that is 267 over the original 296 basins.  22 

3.2 Identification of balanced cross-validation subsets with SOM clustering of 23 

input data 24 

As will be detailed in Section 4, the database is to be divided in three disjoint subsets (called training, 25 

cross-validation and test sets) in order to allow a rigorous independent validation and also to 26 

increase the generalization abilities of the model when encountering records different from those 27 

used in the calibration (or ‘training’) phase, following an ‘early stopping’ parameterisation procedure. 28 

The way in which the data are divided may have a strong influence on the performance of the model 29 

and it is important that each one of the three sets contains all representative patterns that are 30 

included in the dataset. As proposed in the recent literature (Kocjancic and Zupan, 2001; Bowden et 31 

al., 2002; Shahin et al., 2004) a self-organising map (SOM) may be applied to this aim. The SOM is a 32 

data-driven classification method based on unsupervised artificial neural networks that may be 33 

applied for several clustering purposes (for hydrological applications see, for example, Minns and 34 

Hall, 2005; Kalteh et al, 2008).  35 

In the recent years, SOMs were also successfully applied for catchments classification either based on 36 

geo-morpho-climatic descriptors (Hall and Minns, 1999; Hall et al., 2002; Srinivas et al., 2008; Di 37 

Prinzio et al., 2011) or based on hydrological signatures (Chang et al., 2008; Ley et al., 2011; Toth, 38 

2013); however, it is important to underline that the clustering is not carried out here in order to 39 
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identify a pooling group of similar catchments for developing a region-specific model, but for the 1 

optimal division of the available data for the parameterization and independent testing of a single 2 

model to be applied over the entire study area. 3 

The SOM is in fact used to cluster similar data records together: an equal number of data records is 4 

then sampled from each cluster, ensuring that records from each class (that is catchments with 5 

different features) are represented in the training, validation and test sets, that, as a result, have 6 

similar statistical properties (Bowden et al., 2002; Shahin et al., 2004).  7 

A SOM (Kohonen, 1997) organizes input data through non-linear techniques depending on their 8 

similarity. It is formed by two layers: the input layer contains one node (neuron) for each variable in 9 

the data set. The output-layer nodes are connected to every input through adjustable weights, 10 

whose values are identified with an iterative training procedure. The relation is of the competitive 11 

type, matching each input vector with only one neuron in the output layer, through the comparison 12 

of the presented input pattern with each of the SOM neuron weight vectors, on the basis of a 13 

distance measure (here the Euclidean one). In the trained (calibrated) SOM, all input vectors that 14 

activate the same output node belong to the same class.  15 

In the present application, the dimension of the input layer is equal to three (that is, the first three 16 

principal components of the catchments descriptors); as far as the output layer is concerned, there is 17 

not a predefined number of classes and, given the small dimension of the input variables, it was here 18 

chosen a parsimonious output layer formed by three nodes in a row, each one corresponding to a 19 

class. 20 

The three resulting clusters are formed respectively by 121, 70 and 76 catchments; each cluster is 21 

then divided into three parts, and one third is assigned to the training, validation and test sets 22 

respectively. Overall, the training, validation and test sets are therefore equally numerous (91, 88 23 

and 88 records respectively) and formed by the same proportion of catchments belonging to each of 24 

the clusters, having eventually a similar information content, as shown by the similar statistics of the 25 

three variables in the three sets represented in Figure 2. 26 

 27 

4 Development of symmetric and asymmetric artificial neural networks 28 

models for estimating the 2-year return period flows at ungauged sites 29 

4.1 Feedforward Artificial Neural Networks 30 

Artificial neural networks are massively parallel and distributed information processing systems, 31 

composed by nodes, arranged in layers, that are able to infer a non-linear input-output relationship. 32 

ANN, and in particular feedforward networks have been widely used in many hydrological 33 

applications (see for example the recent review papers by Maier et al., 2010 and by Abrahart et al., 34 

2012) and the readers may refer to the abundant literature for details on their characteristics and 35 

implementation. 36 
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Three different layer types can be distinguished: input layer, connecting the input information, one 1 

or more hidden layers, for intermediate computations, and an output layer, producing the final 2 

output; adjacent layers are connected through multiplicative weights and, in each node, the sum of 3 

weighted inputs and a threshold (called bias) is passed through a non-linear function known as an 4 

activation. 5 

The models here applied are networks formed by one hidden layer, with tan-sigmoid activation 6 

functions, and a single output node (corresponding to the estimated flood with 2-year return period), 7 

with a linear activation function.  8 

The identification of the network’s weights and biases (called training procedure) is carried out with 9 

a non-linear optimization, searching the minimum of an error (or learning) function measuring the 10 

discrepancy between predicted and observed values, and feedforward networks are generally 11 

trained with a learning algorithm known as BackPropagation (Rumelhart et al. 1994) based on 12 

steepest descent or on more efficient quasi-newton methods. 13 

In order to avoid overfitting, that degrades the generalisation ability of the model, the Early Stopping 14 

or Optimal Stopping procedure was applied (see, for example, Coulibaly et al., 2000). For applying 15 

Early Stopping, the available data have been divided into three disjoint subsets with a similar 16 

information content, as described in Section 3.2: a training set, an early-stopping validation set and a 17 

test set. While the network is parameterised minimising the error function on the training set, the 18 

error function on the early-stopping validation set is also monitored; if the error function on such 19 

second set increases continuously for a specific number of iterations, this is a sign of overfitting of 20 

the training set: the training is then stopped and network parameters at the lowest validation error 21 

are returned. The third set (test set) is not used in any way during the parameterization phase, but it 22 

is used for out-of-sample, independent evaluation of the resulting models.  23 

4.2 Implementation of the symmetric model 24 

Neural networks, including those applied in the recent hydrological literature for the estimation of 25 

index floods or flood quantiles at ungauged sites, are traditionally trained minimizing the square 26 

error function, which is symmetrical about the y-axes and negative or positive discrepancies of the 27 

same magnitude result in the same function value. 28 

In the present work, the results obtained by a network trained with a ‘conventional’ square error 29 

function are compared with those obtained when parameterising the network through the 30 

minimisation of an asymmetric loss function, that takes into account both over and underestimation 31 

discrepancies but penalizes more the overprediction errors, since the consequences of missing 32 

alarms are more severe than those of false alarms. 33 

For both type of models, the output values (2-year flood values) are rescaled as a function of the 34 

overall minimum and maximum values to the [-0.95,+0.95] range, to facilitate the optimization 35 

algorithms and also avoid saturation problems by accommodating possible extreme values occurring 36 

outside the range of available data (Dawson and Wilby, 2001). Each implemented architecture is 37 

randomly initialized for ten times to help avoiding local optima: the parameter set that results in the 38 
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minimum error function on the early stopping validation data (second set) is chosen as the trained 1 

network. 2 

The first implemented model is obtained through the minimization of the traditional, symmetric 3 

mean squared error, applying the quasi-Newton Levenberg-Marquardt BackPropagation algorithm 4 

(Hagan and Menhaj 1994), widely applied and regarded as one of the most efficient neural network 5 

training algorithms. 6 

The input variables are the first three principal components of the catchment descriptors, so the 7 

input layer is formed by three nodes; the output node corresponds to the estimated flood with 2-8 

year return period; as far as the dimension of the hidden layer is concerned, there is, unfortunately, 9 

no definitive established methodology for its determination, because the optimal network 10 

architecture is highly problem-dependent: different architectures with a number of hidden nodes 11 

varying from 2 to 6 were set up and the mean squared error of the estimates issued for the third, 12 

independent set resulted the lowest with the hidden layer formed by 3 nodes.  13 

The architecture with three input nodes, three hidden nodes and 1 output node, represented in 14 

Figure 3, is therefore the network finally chosen; the network parameterized minimising the 15 

symmetric mean square error function will be denoted as ANN-Symm, and its results will be in 16 

Section 5 compared with those of the asymmetric models having the same architecture but a 17 

different error function.  18 

4.3 Implementation of asymmetric models with varying degree of asymmetry 19 

The Quad-Quad loss function described in Section 2 is here applied for calibrating the network 20 

parameters of the asymmetric models. The learning function to be minimized is therefore the 21 

average value of the double quadratic errors (Mean Quad-Quad Error, MQQE), obtainable averaging 22 

the M (number of records in the set) errors given by Eq. (1) when p=2: 23 

  
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 1       (3) 24 

The value of α, corresponding to the degree of asymmetry of the loss function, cannot be fixed a 25 

priori, since such choice should be based on a location-specific cost-benefit analysis, keeping into 26 

account the avoidable losses (that is the direct and indirect losses, provided they may be 27 

quantifiable, that may be prevented by mitigation actions following an alarm issue) and the cost of 28 

the mitigation measures themselves. Such analysis is acknowledged to be extremely difficult, 29 

especially since it involves also intangible costs such as life losses, but also warning credibility issues; 30 

furthermore, the costs may change over time and are also dependent on the warning lead-time (see 31 

e.g. Martina et al., 2006; Verkade and Werner, 2011, Montesarchio et al., 2011/2014). 32 

For this reason, in the present application, different asymmetric networks, with α varying from 0.4 to 33 

0.1, are implemented, in order to compare the results obtainable with a different asymmetry degree, 34 

that is a different extent of importance given to over/underestimation errors. Such asymmetrically 35 

trained network are in the following denoted as “Asymm- 0.4”, “Asymm- 0.3”, “Asymm- 36 

0.2”,“Asymm- 0.1”. 37 
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The training of the four asymmetric networks, based on the minimisation of the Mean Quad-Quad 1 

Error, is carried out through the generalization of the backpropagation algorithm proposed by Crone 2 

(2002) and applied by Silva et al. (2010), that may be used for parameterising artificial neural 3 

networks with any differentiable (analytically or numerically) error function. 4 

5 Results and discussion 5 

5.1 Goodness-of-fit measures and plots 6 

As described in section 4.2, the neural networks are trained over the standardized (rescaled) output 7 

values of the training and cross-validation sets and they are successively used for predicting the 8 

output over the independent test set: such ANN output values are then scaled back, obtaining the 9 

predictions Q2,p.  10 

The performances of the models are evaluated through a set of indexes that describe the prediction 11 

error, , that is the difference between the de-standardised predictions, Q2,p issued by the models (as 12 

a function of morpho-climatic attributes only) and the ‘observed’ 2-year flood values (the median of 13 

historical annual maxima), Q2,o, on the third set (test set), formed by N=91 catchments distributed all 14 

over the country, whose data have not been used in any capacity in the models’ development. 15 

The following error statistics have been computed: 16 

MAE (mean absolute error) 17 

N

i

MAE

N
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)(           (4) 18 

RMSE (root mean square error) 19 

 

N

i

RMSE

N

i


 1

2
)(          (5) 20 

MAE and RMSE both represent a symmetric accuracy, corresponding to the distance of the 21 

predictions from the observations independently of the error sign (and the RMSE, being quadratic, 22 

emphasizes more the larger errors). 23 

In order to keep into account the differences in sign of the errors, representing the extent of 24 

overpredictions as compared to underpredictions, the overall percentage of positive errors  (Over%), 25 

is computed: 26 

Over% (percentage of overestimates) 27 
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Such metric shows the general tendency of the model to overestimate (or to underestimate, since 2 

100- Over% represents, conversely, the proportion of underpreditions), but these indexes do not 3 

distinguish among errors of different magnitude, since they count also predictions that may be only 4 

barely above (or below) the targets, that is very good predictions, with minimum errors. 5 

It is therefore computed also the number of the ‘high’ overestimation errors, keeping into account 6 

only the more relevant, and therefore potentially more dangerous, overpredictions. It was here 7 

considered as ‘high overprediction’ an estimate that is more than 30% higher than the corresponding 8 

target value: 9 

OverH% (percentage of high overprediction errors) 10 
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The more conservative is the threshold estimate, the lower is the value of OverH%. 12 

On the other hand, even if - as discussed – generally less crucial in terms of consequences, also the 13 

number of high underestimation errors should be monitored, since excessively low values imply the 14 

tendency of the model to establish thresholds leading to the issuance of too many false alarms.  15 

UnderH% (percentage of high underprediction errors): 16 
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In addition to the goodness-of-fit measures (reported in Table 2), the boxplot of the errors (predicted 18 

minus observed quantiles) is shown in Figure 4: the bottoms and tops of the rectangular boxes are 19 

respectively the lower and the upper quartiles, the horizontal segment inside the box is the median 20 

and the whiskers represent the 5th and 95th percentiles.  21 

The results may be evaluated also through the scatterplots of predicted (y-axis) vs observed (x-axis) 22 

quantiles, presented in Figure 5 that show every prediction Q2,p in respect to the corresponding 23 

‘observation’ Q2,o.  24 

 25 

5.2 Discussion of the results 26 

The boxplot (Fig. 4) allows to visually assess both the accuracy and the tendency to 27 

over/underestimate of the models: the boxes should be compact and close to the dotted line 28 
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representing zero error but at the same time it is better if the data lie below such line, thus indicating 1 

that the method do not tend to overpredict the thresholds and the warning system is therefore less 2 

subject to miss a potentially dangerous flood.  3 

It may be seen that for the network that was trained minimising the traditional Square Error (ANN-4 

Symm) the box and whiskers are centred on the zero-error line and the quantiles (top/bottom of the 5 

box, top/bottom whiskers) are at a similar distance from such line, showing that the errors are 6 

equally distributed among overestimation and underestimations. The box is compact, demonstrating 7 

the good accurateness of the method for a substantial part of the test set, but, due to the symmetric 8 

disposition of the errors, many overestimation errors, also remarkably high, are issued, as shown by 9 

the position of the upper whisker. 10 

Analysing Table 2, the relatively good accuracy of the ANN-Symm model is demonstrated by the 11 

values of the MAE and RMSE, that are the lowest among the implemented models. The symmetric 12 

distribution of the overall errors is shown by an Over% close to 50% and the similar values of the 13 

OverH% (34%) and UnderH% (32%) confirm that also the high relative errors are equally split among 14 

over and underestimates.  15 

Such results were expected since the training is based on a symmetric loss function, but the 16 

consequence is that the ANN-Symm model issues a remarkable number of significant overprediction 17 

errors, in fact for about one third of the test catchments the estimates are more than 30% higher 18 

than the observations. 19 

The analysis of Table 2 shows that the asymmetrically trained networks tend, for decreasing α values, 20 

to reduce the number of overestimations (positive errors). For the overall errors this is shown by the 21 

different proportion of over/underestimations, that moves from a value that corresponds, 22 

approximately, to a balance, to a much more skewed distribution of negative vs positive errors, with 23 

Over% decreasing up to 31%.  24 

At the same time, and more importantly, the number of positive (overestimation) errors larger than 25 

30% substantially decreases with α, with OverH% reaching a value that is much lower than that of 26 

the ANN-Symm model when α arrives at 0.1 (18% vs 34%).  27 

Conversely, as expected, the more asymmetric is the network, the higher are the underprediction 28 

errors, as shown by the values of UnderH%: the number of significant negative errors gradually 29 

increases from one third up to 47% of the total. 30 

Also the accuracy (given by the total amount of the discrepancies independently of their sign) 31 

deteriorates when the asymmetry is more pronounced, but the drop is moderate and the RMSE and 32 

MAE values are not so far from those of the ANN-Symm network. 33 

Looking at the parallel boxplots (Fig. 4), it may be seen that with increasing asymmetry the boxes 34 

become less compact and, as expected, their position shifts downwards. The length of the upper 35 

whiskers substantially decrease with α but the length of the lower whiskers does not increase at the 36 

same rate, thus compensating for the fact that the boxes are taller for the more asymmetric models. 37 

It follows that the global distances from the 5% to the 95% percentiles (given by the distance 38 

between the ends of the top and bottom whiskers) are very close for the symmetric (ANN-Symm) 39 
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and for the two most asymmetric, thus showing that the variability of the errors for the vast majority 1 

(middle 90%) of the data is similar. On the other hand, overall, the errors are moving towards the 2 

underestimation side for increasing asymmetry (as confirmed also by the corresponding median 3 

values) and for Asymm-01, the upper part of the box indicates that only about one quarter of the 4 

errors are overestimations. 5 

It may be noted, in particular from the scatterplots (Fig. 5), that, for both symmetric and asymmetric 6 

models, the errors are not negligible: this is due to the shortcomings of the available data set but 7 

mainly to the intrinsic limitations of a regional approach applied to the extreme variability of the 8 

study area. As already underlined in Section 3.1, the national data set lacks important information 9 

that may help to characterise the hydrological behaviour and the phenomena governing formation of 10 

extreme flows. In addition to the unavoidable risk of erroneous data, the absence in the database of 11 

additional influences certainly further hampers the possibility to obtain a reliable relationship with 12 

the flood quantiles. Most importantly, the data set covers the entire Italian peninsula, characterised 13 

by extremely different hydro-climatic settings (from Alpine to Mediterranean ones) and this high 14 

heterogeneity is certainly an additional reason that limits the performance. 15 

Notwithstanding the limitations of the dataset, that affect equally all the proposed models, the 16 

results demonstrate that the use of the double quadratic error function, even if at the expense of 17 

more substantial underestimation errors, can substantially decrease the number and extent of 18 

overestimation errors, if compared to the use of the traditional square errors.  19 

In the application to a  specific cross section, the degree of asymmetry might be identified as 20 

proportional to the “risk averseness” of the situation: the more the impact of false alarms is, 21 

comparatively, small, the more the decision-makers are reluctant to the consequences (economic 22 

and social) of a flood and, rather than risking a missed alarm, can accept many cases of false alarm 23 

with the associated costs. 24 

6 Conclusions 25 

A crucial issue in the operation of flood forecasting/warning systems at ungauged locations is how to 26 

assess the possible impacts of the forecasted flows, that is the identification of streamflow values 27 

that may actually cause flooding, to be associated to thresholds that trigger the issuance of flood 28 

watches and warnings. The values that may produce damaging conditions (or “flooding flows”), when 29 

in absence of detailed local information on each cross-section, are in many parts of the world 30 

estimated as the peak floods having a certain return period, often the 2-year one, that is generally 31 

associated with the bankfull discharge. 32 

For locations where the gauges are new or where historical rating curves are not available, the series 33 

of past annual flow maxima are absent or very limited, and the peak flow of given frequency to be 34 

associated with the watch/warning threshold can be estimated with regionally-derived empirical 35 

relationships, such as those that may be applied for the estimation of the index flood at ungauged 36 

sites. Such regression-like methods consist in a relation between a set of catchment descriptors that 37 

may be obtained also for ungauged sites and the desired flood quantile; linear or power forms are 38 

the most commonly used functions, but recent studies have successfully applied artificial neural 39 

network models, due to their flexibility, to flood quantile and index flood estimation.  40 
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Whatever is the function form, such models are generally parameterised by minimising the mean 1 

square error, that assigns equal weight to overprediction or underprediction errors, whereas, 2 

instead, the consequences of such errors are extremely different when the estimates are to be used 3 

as warning threshold. In fact, false alarms (due to an underprediction of the warning threshold) 4 

generally have a much higher level of acceptance than misses (that would derive from an 5 

overestimated threshold).  6 

For this reason, in the present work, the regression model (a feed-forward neural network) is 7 

parameterised minimising an asymmetric error function (of the double quadratic type), that 8 

penalizes more the overestimation than the underestimation discrepancies. The predictions of 9 

models with increasing degree of asymmetry are compared with those of a traditional (trained on 10 

the symmetric mean of square errors) neural network, in a rigorous cross-validation experiment 11 

referred to a database of catchments covering all the Italian country. 12 

The results confirm, as expected, that the more asymmetric is the network, the more numerous and 13 

higher are the underprediction errors, and the less numerous and less severe are the overestimation 14 

errors. As also expectable, the symmetric accuracy decreases when the asymmetry is more 15 

pronounced, but the drop is moderate and the RMSE and MAE values are not so far from those of 16 

the traditionally trained network. 17 

Undoubtedly, the nature of the regional approach, as well as the shortcomings of the dataset and the 18 

extreme heterogeneity of the study area, generate errors much greater than those obtainable with 19 

detailed local studies. On the other hand, where no alternatives exist, the proposed methodology 20 

may provide a preliminary estimate of the threshold runoff that do not, prudentially, overestimate 21 

the actual flooding flow. 22 

Notwithstanding the acknowledged limitations of the dataset, that affect equally all the proposed 23 

models, the analysis shows that the use of the asymmetric error function substantially reduces the 24 

number and extent of overestimation errors, if compared to the use of the traditional square errors. 25 

Of course such reduction is at the expense of increasing underestimation errors, but the overall 26 

precision is still acceptable and the study highlights the potential benefit of choosing an asymmetric 27 

error function when the consequences of missed alarms are more severe than those of false alarms. 28 

Minimising the asymmetric error function has the purpose of optimizing the threshold from an 29 

operational point of view, in a deterministic framework: future analyses may be devoted to 30 

investigate the uncertainty of the issued predictions, since a probabilistic approach (provided that 31 

the methodology is able to include all sources of uncertainty and its quality may be objectively 32 

assessed) may provide very valuable insights for a more complete evaluation of the model, 33 

supplementing the information provided by point-value predictions. 34 

It is important to highlight that the asymmetric error function is used, in this study, to parameterise a 35 

neural network, but of course it might be used to optimize any other model or equation, when 36 

aiming at obtaining conservative estimates, for safety reasons.  37 

The appropriate degree of asymmetry might be identified depending on the risk-averseness of the 38 

specific flood-prone context. The quantification of risk aversion is extremely difficult and case-39 

specific: it should keep into account that the perception of society may be very different from a 40 
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technical appraisal of the involved costs and it should include also indirect, intangible and long-term 1 

impacts. More research on the societal perception in different contexts would greatly improve the 2 

process of risk-based decision-making (Merz et al., 2009), including the choices concerning flood-3 

warning thresholds. Hopefully, in the next years, a more direct collaboration between the hydrologic 4 

and socio-economic research communities, as auspicated in the new Panta Rhei science initiative 5 

(Montanari et al., 2013; Javelle et al., 2014), will provide a progress in this direction. 6 
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Tables 1 

 2 

Table 1. Geomorphological and climatic descriptors of the CUBIST database of Italian catchments 3 

1 Long - UTM longitude of catchment centroid  

2 Lat - UTM latitude of catchment centroid  

3 A - Catchment drainage area  

4 P - Catchment perimeter  

5 zmax - Maximum elevation of the catchment area 

6 zmin - Elevation of the catchment outlet  

7 zmean - Mean elevation of the catchment area  

8 L - Length of the Maximum Drainage Path 

9 SL - Average slope along the Maximum Drainage Path  

10 SA - Catchment average slope  

11 Φ - Catchment orientation  

12 MAP - Mean Annual Precipitation 

 4 

 5 

Table 2. Goodness-of-fit criteria of the 2-year floods estimates obtained by the symmetric and 6 

asymmetric networks on the independent test set of catchments. 7 

Model\Index MAE (m3/s) RMSE(m3/s) Over% OverH% UnderH% 

Symm 98 133 46% 34% 32% 

Asymm-04 104 147 42% 32% 35% 

Asymm-03 105 152 41% 30% 37% 

Asymm-02 108 162 36% 27% 41% 

Asymm-01 115 178 31% 18% 47% 

 8 

9 
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Figure Captions 1 

Figure 1. Asymmetric Quad-Quad loss function (with α varying from 0.1 to 0.9) compared with 2 
the Squared Error (SE). 3 

 4 

Figure 2: Mean value (red dash) and the bars comprised between the 90% and 10% percentiles of 5 
the resulting training, cross-validation and testing sets, for each of the three input variable (PC1, 6 
PC2 and PC3). 7 

 8 

Figure 3. Architecture of the chosen network, with three input nodes, three hidden nodes and 1 9 
output node. 10 

 11 

Figure 4. Parallel box-plots of the errors (=Q2,o- Q2,p) of the 2-year floods estimates obtained 12 
by symmetric and asymmetric networks on the independent test set of catchments. 13 

 14 

Figure 5. Scatterplots of the predicted (y-axis) vs observed (x-axis) 2-year floods estimates on the 15 
independent test set of catchments, for the symmetric and asymmetric models. 16 

 17 
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Figure 1. Asymmetric Quad-Quad loss function (with α varying from 0.1 to 0.9) compared with the 

Squared Error (SE). 

 

 

 

Figure 2: Mean value (red dash) and the bars comprised between the 90% and 10% percentiles of the 

resulting training, cross-validation and testing sets, for each of the three input variable (PC1, PC2 and 

PC3). 
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Figure 3. Architecture of the chosen network, with three input nodes, three hidden nodes and 1 output 

node. 

 

 

 

 

 

Figure 4. Parallel box-plots of the errors (=Q2,o- Q2,p) of the 2-year floods estimates obtained by 

symmetric and asymmetric networks on the independent test set of catchments. 
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Figure 5. Scatterplots of the predicted (y-axis) vs observed (x-axis) 2-year floods estimates on the 

independent test set of catchments, for the symmetric and asymmetric models. 

 

 


