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Reply Letter

| warmly thank the Editor, Dr. Stacey Archfield, for her kind encouragement and support and the two
Referees for having so carefully read the paper, providing very useful and constructive insights, that
prompted me to integrate and improve the work.

In the replies that follow, | explain how and where the required information were added and the suggested
modifications implemented, for each comment.

For each remark, the original comment of the referee is copied in bold, the reply follows afterwards and the
change made in the revised version are in red.

Please note that the insertion of the new figures and the new table added following the suggestions of the
Referees have modified the overall numbering of the existing ones, and in particular:

Figure 2 of the original manuscript is Figure 4 in the revised version

Table 1 of the original manuscript is Table 2 in the revised version

Following the replies, the new manuscript is attached, where all the changes to the original version are
highlighted in yellow.

| do hope the revisions adequately address the Referees’ comments and | am at your disposal for any
clarification that may be needed.

My best regards,

Elena Toth



Author’s Reply to Referee #1’s Comments

General Comments
Comment 1) ® What are the advantages of using a biased estimate of Qr-,,? [...]

| do thank the Referee for having pointed out the importance to better underline in the paper the
limitations and advantages of the proposed approach, and in particular with respect to a probabilistic one.

It is certainly true that a probabilistic approach (it is possible to find examples also for neural network
models, see for example Khosravi et al., 2011) may be able to add very valuable insights for a more
complete evaluation of the prediction model, supplementing the information provided by point-value
predictions, and in the future | intend to attempt to investigate the uncertainty of the issued predictions,
(as I have added in the concluding session in the revised version) but | do not believe it would be possible
performing such complex analysis here. It should in fact be considered that uncertainty assessment
methods should take into account all error sources (see for example Montanari, 2007) and not only those
related to the choice of their parameters (the majority of the uncertainty methods deal only with a single
source of uncertainty, for instance, Monte Carlo-based methods analyze the propagation of uncertainty of
parameters only) - and are subject, as well as the prediction model itself, to errors in their underlying
assumptions and structure as well as in the determination of their parameters (Xiong et al., 2009) so that it
is needed, even if it is far from easy, to correctly evaluate also their quality (in many methodologies it is
hypothesised and not verified if the distribution of the forecasts is the real one). As a consequence,
implementing a correct, fully comprehensive procedure for a consistent and reliable estimation of the
global uncertainty is certainly not straightforward (nor it would be possible to describe it briefly) and this is
why it may be subject of a separate, future work.

On the other hand, | do not believe it is necessary to add the implementation of a probabilistic framework
here, since the presented methodology is a deterministic one, where an optimal point forecast is obtained
by minimizing the conditional expectation of the future loss.

Such framework has not the pros of a probabilistic one in terms of quantification of the uncertainty, but its
advantage is the operational value of the forecast in terms of an optimal decision that minimizes the cost;
in fact asymmetric loss functions are more appropriate in many types of decision settings, as shown by
recent forecasting literature analysing the statistical properties of optimal predictions under asymmetric
loss (e.g. Christoffersen and Diebold, 1997, Granger and Pesaran, 2000, Patton and Timmermann, 2004;
and in particular Zellner, 1986, 2004, showed that once the symmetric loss function is abandoned, optimal
forecasts need not be unbiased) and showing that in many “ practical applications, asymmetric loss
functions can be critical to effective forecasting” (Elliott et al., 2006).

Minimising the asymmetric error function has the purpose of minimizing the cost, thus optimizing the
threshold from an operational point of view. A probabilistic forecasting approach applied to the symmetric
error function (provided that the methodology is able to include all sources of uncertainty and its quality
may be objectively assessed/verified) would certainly provide awareness on the uncertainties associated
with the point forecasts, but identifying the upper (e.g. 95%) uncertainty bound would not allow the
decision-maker to choose the optimal value for the threshold in terms of costs/operational utility, since
such value (upper bound) would be (if reliable) the one that identifies an assigned risk of underestimation

(and, even if this is not the point here, it would, | expect, result in a very high value for a small assigned risk,



given the large uncertainty of the approach, mainly due to the intrinsic limitations and shortcomings of the
data set for such an heterogeneous area...) but it would not take into account in any way the
overestimation costs resulting from high negative errors, nor it would consider the balance between the
costs of positive and negative errors, as it may be done, instead, within an asymmetric loss approach.

In the revised version | have better specified the purpose of the proposed approach, along with
considerations on the advantages/disadvantages in respect to a probabilistic framework, adding two new

paragraphs in Section 2 and in the Conclusions.

Comment 2) ¢ Regional Flood Frequency analysis is not regression. In a couple of locations in
the text, page 6014 line 14-29 and page 6030 lines 10-18, there seems that there is the
direct association between Regional Flood Frequency analysis to Regression with catchment
attributes (regression or related techniques like ANN’s). [...]

In the revised version | will certainly rephrase Il. 24-27 p. 6014 and Il. 13-14 p. 6030, since | definitely did
not mean to reduce Regional Flood Frequency Analysis to the application of regression techniques, but only
to refer to that thematic area, because the runoff threshold literature generally does not include these
issues. | fully agree (as highlighted, as the Referee underlines, also in the chapter on floods prediction that |
co-authored of the 2013 book) that regression methodologies are only one of the possible methods
(statistical and process-based) to predict floods in ungauged basins and in particular | should better specify
in the text that their use is especially frequent only as far as the estimation of the index flood values is
concerned.

In the revised version | have rephrased both paragraphs (in Section 1 and in the Conclusions)

Comment 3) ¢ Relative error could be also very valuable. For assessing the performance of

several variants of the proposed method, the measures MAE and RMSE are proposed, both
functions of the error. Given the large range of discharges considered in the study, it could

be also very valuable to report additionally boxplots of the relative errors. [...]

| definitely agree that a more comprehensive description of the errors would be very helpful to interpret
the results, especially given the large discharge range, as underlined by the Referee; | am not sure the
relative errors would be the fairest way to analyse the results in the presented decision setting framework
(see reply to first Comment), given that the costs are weighted in respect to the ‘not-relative’ errors in the
loss functions, so | would prefer, if the Referees agrees, adding in the revised paper the scatterplots of
observations/predictions, that | believe allow the most complete visualization of the results over the entire
discharge range, showing every single prediction in respect to the corresponding observation. In addition,
also OverH and UnderH are already defined in relative terms, since they represent the number of errors
greater than 30%.

In the revised version | have added a new figure (Figure 3) showing the scatterplots of the results issued by
the 5 models over the independent test set, showing every prediction in the respect to the corresponding
observation.

Admittedly the scatterplot highlight that the errors are far from negligible for both the traditional and the
asymmetric networks (as already underlined in the original paper); but the test is indeed an exacting one: a
single regression model applied over a fully independent test set that includes extremely diverse
catchments (from Alpine to Mediterranean) and based on a dataset (the only one currently available at
national scale) that unfortunately does not include important influencing factors, the most important one
being information on the rainfall extremes.



On the other hand, the objective of the work is to propose a new methodological approach, that may be
applied to much better databases and the Italian case study is proposed for a comparative analysis, where
all the applied models have the same limitations due to the dataset.

Detailed Comments

Page 6013, Line 27: is “real-world” here “real-time”?
Actually, | mean both: ‘real-time’ warning systems actually implemented by ‘real-world’ organization
(that is not only in literature simulation studies): | will rephrase to make it clearer.

In the revised version | have replaced “real-world” with “operational real-time”. (Introduction section)

Page 6017, Lines 17-19: The author defines here the error as the observed minus the
predicted value. To my knowledge, in runoff prediction in ungauged basins, it is almost a
consensus to define error as predicted minus observed. If the author wants to define it here
inversely, a stronger warning to the reader should be given, in order to avoid confusions.

| used the notation by Elliot et al (2005), for consistency with their definition of the loss function in Eq
1.

In the revised version | have modified the definition of error as suggested by both Referees, since it indeed
has generated confusion (both in the readers and in the author...). Accordingly, | have modified Fig 1,
Equations 1 and 3, all the references to positive/negative errors throughout the paper and also the box-plot
(ex-Figure 2).

Pages 6021-6023: Maybe adding an schematic figure with the structure of the selected ANN
could help the reader.
| fully agree with your suggestion: | will add a figure showing the ANN architecture:

PC1
PC2 0.,

PC3

In the revised version | have added the above figure of the network architecture (Fig. 1c, section 4.2).

Page 6027, line 4: is here “scour” the Q2?
Page 6029, line 7: ... the errors are not negligible...
In the revised version | have amended the mistakes.

Page 6027, line 9: | think “prudence” is not the right word here. Maybe “tendency to
over/underestimate”?
Page 6031, line 13: Again, “prudentially” is not the right word here.

In the revised version | have rephrased both sentences as suggested.
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Author’s Reply to Referee #2’s Comments
Detailed comments

Comment: It is indicated that the annual maximum flow records for some stations are
available for as few as only 5 years. How was the quantile of interest in this work estimated and
how meaningful is the estimate done using such a short data set?

The only quantile that is estimated in this work is the 2-years one and it was estimated as the median of
the available historical records of flood maxima. Even if of course it would be preferable having longer
time-series, five years should be sufficient for such a short return period, for example according to the
classical guideline by Cunnane (1987), that suggests not to extrapolate statistical inference beyond a
return period of 2 times the sample length (and for the shortest records in the present application, it is
inferred a quantile with a return period that is less than half the sample length). In addition, the stations
with less than 8 years of data are only 9, so that I believe the dataset, in terms of the length of the
records, may be considered, overall, sufficiently meaningful for the purpose of estimating the 2-years
return period flows.

In the revised version | have added such observation in Section 3.1.

Comment: Why were only three classes of catchment descriptors used to sample representative
catchments from for the three groups of catchments? Are they not too few to enable a fair
distribution of different ranges of the catchment characteristics evenly across all the three
groups?

I fully agree that such choice is subjective and that a different number of classes could have been
chosen; given the small number of features characterizing the catchments (the 3 first principal
components), I believe that 3 classes should be sufficient for identifying training, cross-validation and
test sets that are sufficiently similar. I report below the graphs showing the mean value (red dash) and
the 90% and 10% percentiles of the resulting sets, for each of the three input variable (PC1, PC2 and
PC3). The graphs seems to highlight a good degree of similarity in the distribution of the values over
the three sets. Such graphs might be added in the revised manuscript at the end of Section 3.2.

PC1 PC2 PC3
4 4 4
3 —— 3 3
2 — 2 2
1 — 1 — 1 —
0 ¥ = - |]o T — 0
1 — -1 — 1 —
2 — -2 2
3 -3 3
4 -4 4
Training set  Cross-Val set Test set Training set  Cross-Val set Test set Training set  Cross-Val set Test set

Figure: Mean value (red dash) and the bars comprised between the 90% and 10% percentiles of the
resulting training, cross-validation and testing sets, for each of the three input variable (PC1, PC2 and
PC3).

In the revised version | have added the above graphs in a new figure (Fig. 2) at the end of section 3.2.

Comment: How were the output values standardized in the range between -1 and 1 (page 6023,
line 12). Here I assume the output variables to be the 2-year flood values.

Related to my previous comment, are the error terms in Equations 3-5 estimated from the
normalized 2-years flood values or from the actual values? If they are estimated from the actual
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values, as it looks is the case by looking at the values of MEA and RMSE in Table 1 and the
errors in Figure 2, how was the scale inconsistency at the different stations handled? It is
mentioned somewhere that these values range between 10 and 1000m3/s.

Data standardization is generally used in neural network in order to ensure that the data receive equal
attention during the training process (Maier and Dandy, 2000) and it is also important for the efficiency
of training algorithms (Dawson and Wilby, 2001).

In the present case, the output data are rescaled as a function of the minimum and maximum values to
the [-1 1] range (actually to the [-0.95 +0.95] range, to avoid the problem of saturation — I had not
explained this issue in order not to further complicate the explanation of the neural networks working).
Such rescaled values are those that are simulated by the ANN model: those corresponding to the
training and cross-validation sets are used, as ‘target’, for training the neural networks; when the model
is successively used for predicting the standardized Q,, over the independent test set, the ANN output
values are then transferred back reversing the function, restoring the values - in a proportional manner
- to the original ranges.

Finally, the error statistics presented in section 5 (and in Table 1 and Figure 2) are calculated on the
errors between the actual observed values and the re-transformations of the values issued by the neural
network.

It is certainly necessary to better explain the procedure in the revised manuscript, both in Section 4.2
and 5.1 (and in the latter it is indeed important to clarify that the prediction Q, is not directly the value
issued by the model but its ‘de-standardised’ value, since the present wording is, as highlighted by the
Referee, confusing).

In the revised version | have better explained the standardization method in Section 4.2 and in Section 5.1 |
have explained that the model results are compared after having de-standardized the network outputs.

Comment: I find the whole text on page 6028 messy. Most of the discussion on results is
presented on this page, but it is very confusing. The author mentions that negative errors mean
overestimation and a couple of lines later a contradictory statement is made (statements on
line 6 and 10). Similarly, it is mentioned somewhere that the overestimation error reduces with
increasing alpha value and the opposite is mentioned elsewhere. There is even little
consistency between what is discussed here and the referred Table 1 and Figure 2.

Thank you indeed for having identified two mistakes in the same sentence (I really have to apologise: I
had in my last version reworded the sentence changing the focus from under to overestimation errors
and I have inadvertently maintained a part of the original sentence...): lines 10-12 should read:

“At the same time, and more importantly, the number of negative (asdes-overestimation) errors larger
than 30% substantially decreases with a, with OverH% reaching a value that is much lower than that of
the ANN-Symm model when a arrives at 84 0.1 (18% vs 34%)”

I do hope that amending the wrong sentence , the text will become more clear and it should be
consistent with the results shown in Table 1 and Figure 2.

In the revised version, also due to the change in the definition of the errors (as suggested by the Referee in
the comment below), | have amended the mistaken sentence and also rephrased the following part of page
6028 that was indeed not clear.

Comment: Why did the author choose to define the error term as the observed minus the
simulated values? Defining it in a more conventional way would have helped to avoid such
inconsistency.

In the manuscript I used the notation by Elliot et al (2005), for consistency with their definition of the
loss function in Eq 1.
7



In the revised version | have modified the definition of error as suggested by both Referees, since it indeed
has generated confusion (both in the readers and in the author...). Accordingly, | have modified Fig 1,
Equations 1 and 3, all the references to positive/negative errors throughout the paper and also the box-plot
(ex-Figure 2).

Other comments

Comment: Define the variable M in Equation 3.

Thank you for pointing this out:

In the revised version | have added that M is the number of records in the set (either the early-stopping
validation set or the test one).

Comment: I suggest that the catchment descriptors be listed in a table. I am a bit astonished
to read that data on soils and land cover are missing when there are open data sources on both

that are often used in modeling.

I will list, as suggested, the descriptors in a new Table (new Table 1):

Long - UTM longitude of catchment centroid
Lat - UTM latitude of catchment centroid

A - Catchment drainage area

P - Catchment perimeter

Zmax - Maximum altitude of the catchment area
Zmin - Elevation of the catchment outlet

Zmean - Mean altitude of the catchment area

L - Length of the Maximum Drainage Path

S, - Average slope along the Maximum Drainage Path
10 | S, - Catchment average slope

11 | @ - Catchment orientation

12 | MAP - Mean Annual Precipitation

V(N |O|OT DWW IN| -

©

And I definitely take the Referee’s point that it would be extremely helpful to extend the database
content, and working on a consistent, comprehensive database of Italian catchments with validated and
reliable information on other important features of the catchments’ areas.

However, such compilation of an extended database for the Italian country was not the object of the
present analysis, that presents a comparison of methodologies applied utilizing the same dataset, and I
based the analysis on the data made available by the CUBIST project (the most recent National project
of characterization of the Italian basins) and already used in Di Prinzio et al. (2011).

I do hope, in the (hopefully near) future, that the colleagues who prepared the CUBIST database (and
who have already developed the analyses for the delineation of the catchment boundaries) will find the
time (and I may certainly offer my help, too) to include additional descriptor to the national database.

On the other hand, the objective of the work is to propose a new methodological approach, that may
be applied to much better databases and the Italian case study is proposed for a comparative analysis,
where all the applied models have the same limitations due to the dataset.

In the revised version | have listed the descriptor in a new table (new table 1) and | have added in section
3.1 that “the CUBIST set is currently the only database available in the Italian hydrologists community at
national scale”.
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Abstract

In many real-world flood forecasting systems, the runoff thresholds for activating warnings or
mitigation measures correspond to the flow peaks with a given return period (often the 2-year one,
that may be associated with the bankfull discharge). At locations where the historical streamflow
records are absent or very limited, the threshold can be estimated with regionally-derived empirical
relationships between catchment descriptors and the desired flood quantile. Whatever is the
function form, such models are generally parameterised by minimising the mean square error, that
assigns equal importance to overprediction or underprediction errors.

Considering that the consequences of an overestimated warning threshold (leading to the risk of
missing alarms) generally have a much lower level of acceptance than those of an underestimated
threshold (leading to the issuance of false alarms), the present work proposes to parameterise the
regression model through an asymmetric error function, that penalises more the overpredictions.

The estimates by models (feedforward neural networks) with increasing degree of asymmetry are
compared with those of a traditional, symmetrically-trained network, in a rigorous cross-validation
experiment referred to a database of catchments covering the Italian country. The analysis shows
that the use of the asymmetric error function can substantially reduce the number and extent of
overestimation errors, if compared to the use of the traditional square errors. Of course such
reduction is at the expense of increasing underestimation errors, but the overall accurateness is still
acceptable and the results illustrate the potential value of choosing an asymmetric error function
when the consequences of missed alarms are more severe than those of false alarms.

1 Introduction

In the operation of flood forecasting systemes, it is necessary to determine the values of threshold
runoff that trigger the issuance of flood watches and warnings. Such critical values might be used for
threshold-based flood alert based on real-time data measurements along the rivers (WMO, 2011) or
for identifying in advance, through a rainfall-runoff modelling chain, the rainfall quantities that will
lead to surpass such streamflow levels, as in the Flash Flood Guidance Systems framework (Carpenter
et al., 1999; Ntelekos et al., 2006; Reed et al., 2007; Norbiato et al., 2009).

A runoff threshold should correspond to a ‘flooding flow’, that is to a value that may produce flood
damages, and it is very difficult to determine on a regional or national scale: it may be defined as a
flow that just exceeds bankfull conditions, but in practice, both in gauged and in ungauged river
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sections, such conditions are arduous to quantify due to the lack of local information (Reed et al.,
2007; Hapuarachchi et al., 2011).

In absence of more sophisticated physically-based approaches, based on detailed information of
each specific cross-section that are rarely available due to limited field surveys, the literature
suggests to estimate the bankfull flow as the flood having a 1.5 to 2 years return period (Carpenter et
al., 1999; Reed et al., 2007; Harman et al., 2008; Wilkerson, 2008; Hapuarachchi et al. 2011; Cunha et
al., 2012; Ward et al., 2013) and a flow that is slightly higher than bankfull may be identified with the
2-year return period flood (Carpenter et al., 1999; Reed et al., 2007).

Many operational systems all around the world adopt a statistically-based definition of the flooding
flow and the flows associated with given return periods are used as threshold stages for activating
flood warning procedures.

The 2-year recurrence is used by many River Forecast Services in the United States, as suggested by
Carpenter et al. (1999), also due to the fact that “the good national coverage of the 2-yr return period
flows that the U.S. Geological Survey (USGS) maintains nationwide supports its use” (Ntelekos et al.,
2006), as well as in British Columbia (Canada).

However, the floods with different annual exceedance probabilities, associated with different levels
of risk, are also frequently adopted in operational real-time flood warning systems: for example in
the Czech Republic, flood watch usually corresponds to a 1- to 5-year flow return period (Danhelka
and Vlasak, 2013). In Italy, where a national directive issued in 2004 introduces a system articulated
on at least two levels of flow thresholds, many Regions have identified the alert levels as flood
quantiles with return periods of 2, 5 or 10 years (e.g. the Abruzzo, Lombardia, Puglia Regions). In the
South of France, the AIGA flood warning system compares real-time peak discharge estimated along
the river network (on the basis of rainfall field estimates and forecasts) to flood frequency estimates
of given return periods (with three categories: yellow for values ranging from the 2-year to the 10-
year flood, orange for between the 10 and the 50-year flood, and red for peaks exceeding the 50-
year flood) in order to provide warnings to the national and regional flood forecasting offices (Javelle
et al., 2014).

For river sections where the streamflow gauges are newly installed or where historical rating curves
are not available, the observations of the annual maxima are absent or very limited and it is not
possible obtaining a reliable estimate of flood quantiles on the basis of statistical analyses of series of
observed flood peak discharges.

For these ungauged or poorly gaged basins, the peak flow of given frequency to be associated with
the watch/warning threshold can be estimated transferring information from data-rich sites to data-
poor ones, as it is done in the corpus of methodologies applied in RFFA (Regional Flood Frequency
Analysis) at ungauged sites, that have always received considerable attention in the hydrologic
literature (Bloeschl et al., 2013). Among the possible approaches (statistical and process-based) to
predict floods in ungauged basins, many researchers have traditionally applied regression-like
regionalisation methods for i) the estimation of the index flood (Darlymple, 1960), usually defined as
either the mean or the median (that is the 2-year return period quantile) of the annual maximum
flood series, or for ii) the direct estimate of other quantiles of annual maxima in ungauged basins
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(Stedinger and Lu, 1995; Salinas et al., 2013). Such methods are based on the assumption that there
is a relationship between catchment properties and the flood frequency statistics and are
implemented through a regression-type model that relates the flood quantile or the index flood to a
number of relevant morpho-climatic indexes. Linear or power (often linearized through a log-
transformation) forms, with either a multiplicative or additive error term, are the most commonly
used functions (see e.g. Stedinger and Tasker, 1985; GREHYS, 1996; Pandey and Nguyen, 1999; Brath
et al., 2001; Kjeldsen et al., 2001, 2014; Bocchiola et al., 2003; Merz and Bloeschl, 2005; Griffis and
Stedinger, 2007; Archfield et al., 2013; Smith et al., 2015).

In order to allow more flexibility to the model structure (whose ‘true’ form is of course not known),
the international literature has recently proposed methods based on the use of artificial neural
networks (ANN), providing a non-linear relationship between the input and output variables without
having to define its functional form a priori. Successful applications of ANN for the estimation of
index floods or flood quantiles at ungauged sites are reported in Muttiah et al., 1997; Hall et al.,
2002; Dawson et al., 2006; Shu and Burn, 2004; Shu and Ouarda, 2008; Singh et al., 2010; Simor at
al., 2012; Aziz et al., 2013.

Both the traditional power form or linear regression methods and the neural networks models are
generally parameterized by minimizing the mean or root mean of the squared errors, that is a
symmetric function assigning the same importance to overestimation and underestimation errors.

Nevertheless, the consequences of under or overestimating the runoff threshold when used for early
warning are extremely different.

Adopting a watch threshold that is higher than the runoff/stage that actually produces flooding
damages would in fact lead to missing such events, failing to issue an alarm. Underestimating the
runoff threshold may instead determine the issue of false alarms.

False alarms may certainly lead to money losses and also “undermine the credibility of the warning
organisation but are generally much less costly than an unwarned event.” (UCAR, 2010): in fact the
costs of failing to issue an alarm grow rapidly in a real emergency, since a totally missed event has
strongly adverse effects on preparedness. Not only the costs of false warnings are commonly much
smaller than the avoidable losses of a flood, but they cannot match up to indirect and/or intangible
flood damages such as loss of lives or serious injuries (Pappenberger et al., 2008; Verkade and
Werner, 2011).

Furthermore, regarding the effects of false alarms, “in opposition to ‘cry wolf’ effect, for some they
may provide an opportunity to check procedures and raise awareness, much like a fire practice drill.”
(Sene, 2013)

Overall, false alarms have usually a higher level of acceptance than misses and this entails that the
estimate of flood warning thresholds should be cautionary, so as to reduce, conservatively, the
number of missed alarms.

For the development of watches and warnings it is therefore important to obtain estimates as
accurate as possible, minimising both positive and negative errors, but, considering that an error will
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always be present, it is better underpredicting rather than overpredicting the threshold estimate, for
safety reasons.

To obtain a conservative estimate of the thresholds, penalising more the predictions that exceed the
“observed” values (in the present case represented by the quantile estimate based on the statistical
analysis of observed flow peaks) than those that underestimate them, in the present work it is
proposed, for the first time to the Author’s knowledge, a parameterisation algorithm that weights
asymmetrically the positive or negative errors, in order to decrease the consistency of
overestimation and therefore the risk of missing a flooding occurrence.

It is important to underline that the proposed asymmetric error function is here applied for
optimising a neural network model for predicting the 2-year return period flood (due to its
association with the bankfull conditions) but it might be used to improve any other kind of
methodology for the estimate of flood warning thresholds associated to any return period.

Section 2 presents the asymmetric error functions; the next one describes the information available
in a database covering the entire Italian country and the identification of the subsets to be used for a
rigorous cross-validation approach. Section 4 presents the implementation of the models for
estimating the 2-year return period flood in ungauged catchments, consisting in artificial neural
networks calibrated using respectively the symmetric square error and the asymmetric error
functions. The results are presented and then discussed in section 5 and section 6 concludes.

2 The asymmetric error function

The scientific literature on forecasting applications, in any scientific area, adopts almost exclusively
an objective function based on the sum or mean of the squared discrepancies, that is a symmetric
guadratic function, due to the well-established good statistical properties of the minimum mean
square error estimator.

On the other hand, in economics as well as in engineering and other many fields, there are cases
where the forecasting problem is inherently non-symmetric and, in the financial forecasting
literature, the use of mean squared error, even if still widely applied, is nowadays not always
accepted.

Error (or loss) functions devised to keep into account an asymmetric behaviour have been proposed,
such as the linear-exponential, the double linear and the double quadratic (Christoffersen and
Diebold 1996; Diebold and Lopez 1996; Granger 1999; Granger and Pesaran 2000; Elliot et al. 2005;
Patton and Timmerman, 2006). In particular, Elliot et al. (2005) recently presented a family of
parsimoniously parameterized error functions that nests mean squared error loss as a special case
(Patton and Timmerman, 2006).

Such function, adapted from Elliot et al. (2005) and defining the error ¢ as the prediction minus the
observed value (that is, a negative error corresponds to underestimation, a positive one to
overestimation), reads:

L(p,@) =2 [+ (L—2a) - Ue > 0}]-|¢]°, (1)
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where 1(-) is a unit indicator, equal to one when £> 0 and zero otherwise; p is a positive integer that
amplifies the larger errors (corresponding to a quadratic error when equal to 2) and a€(0,1) is a
parameter representing the degree of asymmetry.

For a < 0.5 the function penalises more the overestimation errors (€>0), while for o > 0.5 more
weight is given to negative forecast errors (under-predictions); for a = 0.5 the loss weights
symmetrically positive and negative errors.

When p =2 and a # 0.5, the error becomes the asymmetric double quadratic (Quad-Quad) loss
function (see Christoffersen and Diebold 1996), that is used in the present work for a fair comparison
with the traditional mean square error estimator. When p =2 and a = 0.5, Eq. (1) corresponds in fact
to the ‘traditional’, symmetric, square error:

L(2,0.5) =¢&? (2)

Figure 1 shows the asymmetric Quad-Quad loss function (with a varying from 0.1 to 0.9) compared
with the squared error (SE).

In the water engineering field, the asymmetric Elliot error function with quadratic amplification (p =
2) has been recently applied to parameterise a model for estimating the expected maximum scour at
bridge piers, in order to obtain safer design predictions through the reduction of underestimation
errors by Toth (2015).

It should be noted that the proposed methodology is a deterministic one, where an optimal point
forecast is obtained by minimizing the conditional expectation of the future loss; such framework has
not the pros of a probabilistic one in terms of quantification of the uncertainties of the prediction,
but it aims at identifying the optimal value for the threshold in terms of operational utility.

In Section 4, the asymmetric quadratic error function is proposed for optimizing the parameters of an
input-output model, based on artificial neural networks, between the input variables summarising a
set of catchment descriptors (obtainable also for ungauged river sections) and the 2-year return
period flood, thus warranting that overestimation errors, that would increase the risk of missing
flood warnings, are weighted more than underestimation ones.

3 Available information: the national data set of Italian catchments

The case study refers to a database of almost 300 catchments scattered all over the Italian peninsula,
compiled within the national research project “CUBIST — Characterisation of Ungauged Basins by
Integrated uSe of hydrological Techniques” (Claps et al., 2008).

3.1 Input and output variables

The 12 geomorphological and climatic descriptors are listed in Table 2. The dataset unfortunately
lacks information on other hydrological properties (e.g. on soils, land-cover, vegetation) and the
climatic characterisation is very limited (for example information on extreme rainfall would be
extremely important), but the CUBIST set is currently the only database available in the Italian
hydrologists community at national scale.
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The dataset is described in Di Prinzio et al. (2011), where, following a catchment classification
procedure based on multivariate techniques, the descriptors were used to infer regional predictions
of mean annual runoff, mean maximum annual flood and flood quantiles through a linear
multiregression model.

As described in such work, in order to reduce the high-dimensionality of the geomorphological and
climatic descriptors set, a Principal Components (PC) analysis was applied, obtaining a set of derived
uncorrelated variables. The PC variables are as many as the original variables, but they are ordered in
such a way that the first component has the greatest variability, the second accounts for the second
largest amount of variance in the data and is uncorrelated with the first and so forth. In the present
data set, the first three principal components explain more than three quarters of the total variance
(see Di Prinzio et al., 2011) and such three first PCs are here chosen as input variables to the models
described in the following, assuming that they may adequately represent, in a parsimonious manner,
the main features of the study catchments.

The data base, in addition to the morpho-pluviometric information, includes the annual maxima flow
records for periods ranging from 5 to 63 years, whose median values, corresponding to the 2-year
return period, represent the output variable to be simulated by the models. Even the shortest
records (and actually only 9 of the locations have less than 8 years of data) should be sufficient for
such a short return period, for example according to the classical guideline by Cunnane (1987), that
suggests not to extrapolate statistical inference beyond a return period of 2 times the sample length.

The data set covers a great diverseness of hydrological, physiographic and climatic properties and in
order to partially reduce such heterogeneity, it was decided to limit the analysis to catchments
having a 2-year flood included in the range 10-1000 m?/s, that is 267 over the original 296 basins.

3.2 Identification of balanced cross-validation subsets with SOM clustering of

input data

As will be detailed in Section 4, the database is to be divided in three disjoint subsets (called training,
cross-validation and test sets) in order to allow a rigorous independent validation and also to
increase the generalization abilities of the model when encountering records different from those
used in the calibration (or ‘training’) phase, following an ‘early stopping’ parameterisation procedure.

The way in which the data are divided may have a strong influence on the performance of the model
and it is important that each one of the three sets contains all representative patterns that are
included in the dataset. As proposed in the recent literature (Kocjancic and Zupan, 2001; Bowden et
al., 2002; Shahin et al., 2004) a self-organising map (SOM) may be applied to this aim. The SOM is a
data-driven classification method based on unsupervised artificial neural networks that may be
applied for several clustering purposes (for hydrological applications see, for example, Minns and
Hall, 2005; Kalteh et al, 2008).

In the recent years, SOMs were also successfully applied for catchments classification either based on
geo-morpho-climatic descriptors (Hall and Minns, 1999; Hall et al., 2002; Srinivas et al., 2008; Di
Prinzio et al., 2011) or based on hydrological signatures (Chang et al., 2008; Ley et al., 2011; Toth,
2013); however, it is important to underline that the clustering is not carried out here in order to

6
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identify a pooling group of similar catchments for developing a region-specific model, but for the
optimal division of the available data for the parameterization and independent testing of a single
model to be applied over the entire study area.

The SOM is in fact used to cluster similar data records together: an equal number of data records is
then sampled from each cluster, ensuring that records from each class (that is catchments with
different features) are represented in the training, validation and test sets, that, as a result, have
similar statistical properties (Bowden et al., 2002; Shahin et al., 2004).

A SOM (Kohonen, 1997) organizes input data through non-linear techniques depending on their
similarity. It is formed by two layers: the input layer contains one node (neuron) for each variable in
the data set. The output-layer nodes are connected to every input through adjustable weights,
whose values are identified with an iterative training procedure. The relation is of the competitive
type, matching each input vector with only one neuron in the output layer, through the comparison
of the presented input pattern with each of the SOM neuron weight vectors, on the basis of a
distance measure (here the Euclidean one). In the trained (calibrated) SOM, all input vectors that
activate the same output node belong to the same class.

In the present application, the dimension of the input layer is equal to three (that is, the first three
principal components of the catchments descriptors); as far as the output layer is concerned, there is
not a predefined number of classes and, given the small dimension of the input variables, it was here
chosen a parsimonious output layer formed by three nodes in a row, each one corresponding to a
class.

The three resulting clusters are formed respectively by 121, 70 and 76 catchments; each cluster is
then divided into three parts, and one third is assigned to the training, validation and test sets
respectively. Overall, the training, validation and test sets are therefore equally numerous (91, 88
and 88 records respectively) and formed by the same proportion of catchments belonging to each of
the clusters, having eventually a similar information content, as shown by the similar statistics of the
three variables in the three sets represented in Figure 2.

4 Development of symmetric and asymmetric artificial neural networks

models for estimating the 2-year return period flows at ungauged sites

4.1 Feedforward Artificial Neural Networks

Artificial neural networks are massively parallel and distributed information processing systems,
composed by nodes, arranged in layers, that are able to infer a non-linear input-output relationship.
ANN, and in particular feedforward networks have been widely used in many hydrological
applications (see for example the recent review papers by Maier et al., 2010 and by Abrahart et al.,
2012) and the readers may refer to the abundant literature for details on their characteristics and
implementation.
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Three different layer types can be distinguished: input layer, connecting the input information, one
or more hidden layers, for intermediate computations, and an output layer, producing the final
output; adjacent layers are connected through multiplicative weights and, in each node, the sum of
weighted inputs and a threshold (called bias) is passed through a non-linear function known as an
activation.

The models here applied are networks formed by one hidden layer, with tan-sigmoid activation
functions, and a single output node (corresponding to the estimated flood with 2-year return period),
with a linear activation function.

The identification of the network’s weights and biases (called training procedure) is carried out with
a non-linear optimization, searching the minimum of an error (or learning) function measuring the
discrepancy between predicted and observed values, and feedforward networks are generally
trained with a learning algorithm known as BackPropagation (Rumelhart et al. 1994) based on
steepest descent or on more efficient quasi-newton methods.

In order to avoid overfitting, that degrades the generalisation ability of the model, the Early Stopping
or Optimal Stopping procedure was applied (see, for example, Coulibaly et al., 2000). For applying
Early Stopping, the available data have been divided into three disjoint subsets with a similar
information content, as described in Section 3.2: a training set, an early-stopping validation set and a
test set. While the network is parameterised minimising the error function on the training set, the
error function on the early-stopping validation set is also monitored; if the error function on such
second set increases continuously for a specific number of iterations, this is a sign of overfitting of
the training set: the training is then stopped and network parameters at the lowest validation error
are returned. The third set (test set) is not used in any way during the parameterization phase, but it
is used for out-of-sample, independent evaluation of the resulting models.

4.2 Implementation of the symmetric model

Neural networks, including those applied in the recent hydrological literature for the estimation of
index floods or flood quantiles at ungauged sites, are traditionally trained minimizing the square
error function, which is symmetrical about the y-axes and negative or positive discrepancies of the
same magnitude result in the same function value.

In the present work, the results obtained by a network trained with a ‘conventional’ square error
function are compared with those obtained when parameterising the network through the
minimisation of an asymmetric loss function, that takes into account both over and underestimation
discrepancies but penalizes more the overprediction errors, since the consequences of missing
alarms are more severe than those of false alarms.

For both type of models, the output values (2-year flood values) are rescaled as a function of the
overall minimum and maximum values to the [-0.95,+0.95] range, to facilitate the optimization
algorithms and also avoid saturation problems by accommodating possible extreme values occurring
outside the range of available data (Dawson and Wilby, 2001). Each implemented architecture is
randomly initialized for ten times to help avoiding local optima: the parameter set that results in the



1 minimum error function on the early stopping validation data (second set) is chosen as the trained
2 network.

3 The firstimplemented model is obtained through the minimization of the traditional, symmetric

4 mean squared error, applying the quasi-Newton Levenberg-Marquardt BackPropagation algorithm
5 (Hagan and Menhaj 1994), widely applied and regarded as one of the most efficient neural network
6  training algorithms.

7  Theinput variables are the first three principal components of the catchment descriptors, so the

8 input layer is formed by three nodes; the output node corresponds to the estimated flood with 2-

9 year return period; as far as the dimension of the hidden layer is concerned, there is, unfortunately,
10  no definitive established methodology for its determination, because the optimal network
11  architecture is highly problem-dependent: different architectures with a number of hidden nodes
12 varying from 2 to 6 were set up and the mean squared error of the estimates issued for the third,
13 independent set resulted the lowest with the hidden layer formed by 3 nodes.

14  The architecture with three input nodes, three hidden nodes and 1 output node, represented in
15 Figure 3, is therefore the network finally chosen; the network parameterized minimising the

16  symmetric mean square error function will be denoted as ANN-Symm, and its results will be in
17  Section 5 compared with those of the asymmetric models having the same architecture but a
18  different error function.

19 4.3 Implementation of asymmetric models with varying degree of asymmetry

20  The Quad-Quad loss function described in Section 2 is here applied for calibrating the network

21 parameters of the asymmetric models. The learning function to be minimized is therefore the

22 average value of the double quadratic errors (Mean Quad-Quad Error, MQQE), obtainable averaging
23 the M (number of records in the set) errors given by Eq. (1) when p=2:

24 MQQE:&i[a—(l—Za)-ﬂg>O}]-‘5j‘2 (3)

=L

25  The value of a, corresponding to the degree of asymmetry of the loss function, cannot be fixed a

26  priori, since such choice should be based on a location-specific cost-benefit analysis, keeping into

27  account the avoidable losses (that is the direct and indirect losses, provided they may be

28 quantifiable, that may be prevented by mitigation actions following an alarm issue) and the cost of
29  the mitigation measures themselves. Such analysis is acknowledged to be extremely difficult,

30 especially since it involves also intangible costs such as life losses, but also warning credibility issues;
31  furthermore, the costs may change over time and are also dependent on the warning lead-time (see
32 e.g. Martina et al., 2006; Verkade and Werner, 2011, Montesarchio et al., 2011/2014).

33 For this reason, in the present application, different asymmetric networks, with a varying from 0.4 to
34 0.1, are implemented, in order to compare the results obtainable with a different asymmetry degree,
35 thatis a different extent of importance given to over/underestimation errors. Such asymmetrically
36  trained network are in the following denoted as “Asymm- 0.4”, “Asymm- 0.3”, “Asymm-

37 0.2”,“Asymm-0.1".
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The training of the four asymmetric networks, based on the minimisation of the Mean Quad-Quad
Error, is carried out through the generalization of the backpropagation algorithm proposed by Crone
(2002) and applied by Silva et al. (2010), that may be used for parameterising artificial neural
networks with any differentiable (analytically or numerically) error function.

5 Results and discussion

5.1 Goodness-of-fit measures and plots

As described in section 4.2, the neural networks are trained over the standardized (rescaled) output
values of the training and cross-validation sets and they are successively used for predicting the
output over the independent test set: such ANN output values are then scaled back, obtaining the
predictions Q.

The performances of the models are evaluated through a set of indexes that describe the prediction
error, & that is the difference between the de-standardised predictions, Q,, issued by the models (as
a function of morpho-climatic attributes only) and the ‘observed’ 2-year flood values (the median of
historical annual maxima), Q,,, on the third set (test set), formed by N=91 catchments distributed all
over the country, whose data have not been used in any capacity in the models’ development.

The following error statistics have been computed:

MAE (mean absolute error)

N

PIEO] (4)

MAE='
N

RMSE (root mean square error)

(5)

MAE and RMSE both represent a symmetric accuracy, corresponding to the distance of the
predictions from the observations independently of the error sign (and the RMSE, being quadratic,
emphasizes more the larger errors).

In order to keep into account the differences in sign of the errors, representing the extent of
overpredictions as compared to underpredictions, the overall percentage of positive errors (Over%),
is computed:

Over% (percentage of overestimates)

10
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{i:l,...,NIQz,:l(i)>Q2,o(i)} (6)

Over %=

Such metric shows the general tendency of the model to overestimate (or to underestimate, since
100- Over% represents, conversely, the proportion of underpreditions), but these indexes do not
distinguish among errors of different magnitude, since they count also predictions that may be only
barely above (or below) the targets, that is very good predictions, with minimum errors.

It is therefore computed also the number of the ‘high’ overestimation errors, keeping into account
only the more relevant, and therefore potentially more dangerous, overpredictions. It was here
considered as ‘high overprediction’” an estimate that is more than 30% higher than the corresponding
target value:

OverH% (percentage of high overprediction errors)

fi=1....NIQy  (1)>1.3Qy 0 (i)}
N

OverH %= (7)

The more conservative is the threshold estimate, the lower is the value of OverH%.

On the other hand, even if - as discussed — generally less crucial in terms of consequences, also the
number of high underestimation errors should be monitored, since excessively low values imply the
tendency of the model to establish thresholds leading to the issuance of too many false alarms.

UnderH% (percentage of high underprediction errors):

i=1,..NIQy.  (1)<0.7:Q, (i) } ®)
N

UnderH%=

In addition to the goodness-of-fit measures (reported in Table 2), the boxplot of the errors (predicted
minus observed quantiles) is shown in Figure 4: the bottoms and tops of the rectangular boxes are
respectively the lower and the upper quartiles, the horizontal segment inside the box is the median
and the whiskers represent the 5th and 95th percentiles.

The results may be evaluated also through the scatterplots of predicted (y-axis) vs observed (x-axis)
quantiles, presented in Figure 5 that show every prediction Q,, in respect to the corresponding
‘observation’ Q.

5.2 Discussion of the results

The boxplot (Fig. 4) allows to visually assess both the accuracy and the tendency to
over/underestimate of the models: the boxes should be compact and close to the dotted line

11
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representing zero error but at the same time it is better if the data lie below such line, thus indicating
that the method do not tend to overpredict the thresholds and the warning system is therefore less
subject to miss a potentially dangerous flood.

It may be seen that for the network that was trained minimising the traditional Square Error (ANN-
Symm) the box and whiskers are centred on the zero-error line and the quantiles (top/bottom of the
box, top/bottom whiskers) are at a similar distance from such line, showing that the errors are
equally distributed among overestimation and underestimations. The box is compact, demonstrating
the good accurateness of the method for a substantial part of the test set, but, due to the symmetric
disposition of the errors, many overestimation errors, also remarkably high, are issued, as shown by
the position of the upper whisker.

Analysing Table 2, the relatively good accuracy of the ANN-Symm model is demonstrated by the
values of the MAE and RMSE, that are the lowest among the implemented models. The symmetric
distribution of the overall errors is shown by an Over% close to 50% and the similar values of the
OverH% (34%) and UnderH% (32%) confirm that also the high relative errors are equally split among
over and underestimates.

Such results were expected since the training is based on a symmetric loss function, but the
consequence is that the ANN-Symm model issues a remarkable number of significant overprediction
errors, in fact for about one third of the test catchments the estimates are more than 30% higher
than the observations.

The analysis of Table 2 shows that the asymmetrically trained networks tend, for decreasing a values,
to reduce the number of overestimations (positive errors). For the overall errors this is shown by the
different proportion of over/underestimations, that moves from a value that corresponds,
approximately, to a balance, to a much more skewed distribution of negative vs positive errors, with
Over% decreasing up to 31%.

At the same time, and more importantly, the number of positive (overestimation) errors larger than
30% substantially decreases with a, with OverH% reaching a value that is much lower than that of
the ANN-Symm model when a arrives at 0.1 (18% vs 34%).

Conversely, as expected, the more asymmetric is the network, the higher are the underprediction
errors, as shown by the values of UnderH%: the number of significant negative errors gradually
increases from one third up to 47% of the total.

Also the accuracy (given by the total amount of the discrepancies independently of their sign)
deteriorates when the asymmetry is more pronounced, but the drop is moderate and the RMSE and
MAE values are not so far from those of the ANN-Symm network.

Looking at the parallel boxplots (Fig. 4), it may be seen that with increasing asymmetry the boxes
become less compact and, as expected, their position shifts downwards. The length of the upper
whiskers substantially decrease with a but the length of the lower whiskers does not increase at the
same rate, thus compensating for the fact that the boxes are taller for the more asymmetric models.
It follows that the global distances from the 5% to the 95% percentiles (given by the distance
between the ends of the top and bottom whiskers) are very close for the symmetric (ANN-Symm)

12
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and for the two most asymmetric, thus showing that the variability of the errors for the vast majority
(middle 90%) of the data is similar. On the other hand, overall, the errors are moving towards the
underestimation side for increasing asymmetry (as confirmed also by the corresponding median
values) and for Asymm-01, the upper part of the box indicates that only about one quarter of the
errors are overestimations.

It may be noted, in particular from the scatterplots (Fig. 5), that, for both symmetric and asymmetric
models, the errors are not negligible: this is due to the shortcomings of the available data set but
mainly to the intrinsic limitations of a regional approach applied to the extreme variability of the
study area. As already underlined in Section 3.1, the national data set lacks important information
that may help to characterise the hydrological behaviour and the phenomena governing formation of
extreme flows. In addition to the unavoidable risk of erroneous data, the absence in the database of
additional influences certainly further hampers the possibility to obtain a reliable relationship with
the flood quantiles. Most importantly, the data set covers the entire Italian peninsula, characterised
by extremely different hydro-climatic settings (from Alpine to Mediterranean ones) and this high
heterogeneity is certainly an additional reason that limits the performance.

Notwithstanding the limitations of the dataset, that affect equally all the proposed models, the
results demonstrate that the use of the double quadratic error function, even if at the expense of
more substantial underestimation errors, can substantially decrease the number and extent of
overestimation errors, if compared to the use of the traditional square errors.

In the application to a specific cross section, the degree of asymmetry might be identified as
proportional to the “risk averseness” of the situation: the more the impact of false alarms is,
comparatively, small, the more the decision-makers are reluctant to the consequences (economic
and social) of a flood and, rather than risking a missed alarm, can accept many cases of false alarm
with the associated costs.

6 Conclusions

A crucial issue in the operation of flood forecasting/warning systems at ungauged locations is how to
assess the possible impacts of the forecasted flows, that is the identification of streamflow values
that may actually cause flooding, to be associated to thresholds that trigger the issuance of flood
watches and warnings. The values that may produce damaging conditions (or “flooding flows”), when
in absence of detailed local information on each cross-section, are in many parts of the world
estimated as the peak floods having a certain return period, often the 2-year one, that is generally
associated with the bankfull discharge.

For locations where the gauges are new or where historical rating curves are not available, the series
of past annual flow maxima are absent or very limited, and the peak flow of given frequency to be
associated with the watch/warning threshold can be estimated with regionally-derived empirical
relationships, such as those that may be applied for the estimation of the index flood at ungauged
sites. Such regression-like methods consist in a relation between a set of catchment descriptors that
may be obtained also for ungauged sites and the desired flood quantile; linear or power forms are
the most commonly used functions, but recent studies have successfully applied artificial neural
network models, due to their flexibility, to flood quantile and index flood estimation.
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Whatever is the function form, such models are generally parameterised by minimising the mean
square error, that assigns equal weight to overprediction or underprediction errors, whereas,
instead, the consequences of such errors are extremely different when the estimates are to be used
as warning threshold. In fact, false alarms (due to an underprediction of the warning threshold)
generally have a much higher level of acceptance than misses (that would derive from an
overestimated threshold).

For this reason, in the present work, the regression model (a feed-forward neural network) is
parameterised minimising an asymmetric error function (of the double quadratic type), that
penalizes more the overestimation than the underestimation discrepancies. The predictions of
models with increasing degree of asymmetry are compared with those of a traditional (trained on
the symmetric mean of square errors) neural network, in a rigorous cross-validation experiment
referred to a database of catchments covering all the Italian country.

The results confirm, as expected, that the more asymmetric is the network, the more numerous and
higher are the underprediction errors, and the less numerous and less severe are the overestimation
errors. As also expectable, the symmetric accuracy decreases when the asymmetry is more
pronounced, but the drop is moderate and the RMSE and MAE values are not so far from those of
the traditionally trained network.

Undoubtedly, the nature of the regional approach, as well as the shortcomings of the dataset and the
extreme heterogeneity of the study area, generate errors much greater than those obtainable with
detailed local studies. On the other hand, where no alternatives exist, the proposed methodology
may provide a preliminary estimate of the threshold runoff that do not, prudentially, overestimate
the actual flooding flow.

Notwithstanding the acknowledged limitations of the dataset, that affect equally all the proposed
models, the analysis shows that the use of the asymmetric error function substantially reduces the
number and extent of overestimation errors, if compared to the use of the traditional square errors.
Of course such reduction is at the expense of increasing underestimation errors, but the overall
precision is still acceptable and the study highlights the potential benefit of choosing an asymmetric
error function when the consequences of missed alarms are more severe than those of false alarms.

Minimising the asymmetric error function has the purpose of optimizing the threshold from an
operational point of view, in a deterministic framework: future analyses may be devoted to
investigate the uncertainty of the issued predictions, since a probabilistic approach (provided that
the methodology is able to include all sources of uncertainty and its quality may be objectively
assessed) may provide very valuable insights for a more complete evaluation of the model,
supplementing the information provided by point-value predictions.

It is important to highlight that the asymmetric error function is used, in this study, to parameterise a
neural network, but of course it might be used to optimize any other model or equation, when
aiming at obtaining conservative estimates, for safety reasons.

The appropriate degree of asymmetry might be identified depending on the risk-averseness of the

specific flood-prone context. The quantification of risk aversion is extremely difficult and case-

specific: it should keep into account that the perception of society may be very different from a
14
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technical appraisal of the involved costs and it should include also indirect, intangible and long-term
impacts. More research on the societal perception in different contexts would greatly improve the
process of risk-based decision-making (Merz et al., 2009), including the choices concerning flood-
warning thresholds. Hopefully, in the next years, a more direct collaboration between the hydrologic
and socio-economic research communities, as auspicated in the new Panta Rhei science initiative
(Montanari et al., 2013; Javelle et al., 2014), will provide a progress in this direction.
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Tables

Table 1. Geomorphological and climatic descriptors of the CUBIST database of Italian catchments
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Long - UTM longitude of catchment centroid

Lat - UTM latitude of catchment centroid

A - Catchment drainage area

P - Catchment perimeter

zmax - Maximum elevation of the catchment area
zmin - Elevation of the catchment outlet

zmean - Mean elevation of the catchment area

L - Length of the Maximum Drainage Path

SL - Average slope along the Maximum Drainage Path
SA - Catchment average slope

® - Catchment orientation

MAP - Mean Annual Precipitation

Table 2.

Goodness-of-fit criteria of the 2-year floods estimates obtained by the symmetric and

asymmetric networks on the independent test set of catchments.

Model\Index MAE (m’/s) RMSE(m’/s) Over% OverH% UnderH%
Symm 98 133 46% 34% 32%
Asymm-04 104 147 42% 32% 35%
Asymm-03 105 152 41% 30% 37%
Asymm-02 108 162 36% 27% 41%
Asymm-01 115 178 31% 18% 47%
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Figure Captions

Figure 1. Asymmetric Quad-Quad loss function (with a varying from 0.1 to 0.9) compared with
the Squared Error (SE).

Figure 2: Mean value (red dash) and the bars comprised between the 90% and 10% percentiles of
the resulting training, cross-validation and testing sets, for each of the three input variable (PC1,
PC2 and PC3).

Figure 3. Architecture of the chosen network, with three input nodes, three hidden nodes and 1
output node.

Figure 4. Parallel box-plots of the errors (e=Q2,0- Q2,p) of the 2-year floods estimates obtained
by symmetric and asymmetric networks on the independent test set of catchments.

Figure 5. Scatterplots of the predicted (y-axis) vs observed (x-axis) 2-year floods estimates on the
independent test set of catchments, for the symmetric and asymmetric models.
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Figure 1. Asymmetric Quad-Quad loss function (with a varying from 0.1 to 0.9) compared with the
Squared Error (SE).
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Figure 2: Mean value (red dash) and the bars comprised between the 90% and 10% percentiles of the
resulting training, cross-validation and testing sets, for each of the three input variable (PC1, PC2 and
PC3).
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Figure 3. Architecture of the chosen network, with three input nodes, three hidden nodes and 1 output
node.
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Figure 4. Parallel box-plots of the errors (e=Q2,0- Q2,p) of the 2-year floods estimates obtained by
symmetric and asymmetric networks on the independent test set of catchments.
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Figure 5. Scatterplots of the predicted (y-axis) vs observed (x-axis) 2-year floods estimates on the

independent test set of catchments, for the symmetric and asymmetric models.
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