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Abstract

In many real-world flood forecasting systems, the runoff thresholds for activating warnings or
mitigation measures correspond to the flow peaks with a given return period (often the 2-year
one, that may be associated with the bankfull discharge). At locations where the historical
streamflow records are absent or very limited, the threshold can be estimated with regionally-
derived empirical relationships between catchment descriptors and the desired flood quantile.
Whatever is the function form, such models are generally parameterised by minimising the

mean square error, that assigns equal importance to overprediction or underprediction errors.

Considering that the consequences of an overestimated warning threshold (leading to the risk
of missing alarms) generally have a much lower level of acceptance than those of an
underestimated threshold (leading to the issuance of false alarms), the present work proposes
to parameterise the regression model through an asymmetric error function, that penalises

more the overpredictions.

The estimates by models (feedforward neural networks) with increasing degree of asymmetry
are compared with those of a traditional, symmetrically-trained network, in a rigorous cross-
validation experiment referred to a database of catchments covering the Italian country. The
analysis shows that the use of the asymmetric error function can substantially reduce the
number and extent of overestimation errors, if compared to the use of the traditional square
errors. Of course such reduction is at the expense of increasing underestimation errors, but the
overall accurateness is still acceptable and the results illustrate the potential value of choosing
an asymmetric error function when the consequences of missed alarms are more severe than

those of false alarms.
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1 Introduction

In the operation of flood forecasting systems, it is necessary to determine the values of
threshold runoff that trigger the issuance of flood watches and warnings. Such critical values
might be used for threshold-based flood alert based on real-time data measurements along the
rivers (WMO, 2011) or for identifying in advance, through a rainfall-runoff modelling chain,
the rainfall quantities that will lead to surpass such streamflow levels, as in the Flash Flood
Guidance Systems framework (Carpenter et al., 1999; Ntelekos et al., 2006; Reed et al., 2007,
Norbiato et al., 2009).

A runoff threshold should correspond to a ‘flooding flow’, that is to a value that may produce
flood damages, and it is very difficult to determine on a regional or national scale: it may be
defined as a flow that just exceeds bankfull conditions, but in practice, both in gauged and in
ungauged river sections, such conditions are arduous to quantify due to the lack of local
information (Reed et al., 2007; Hapuarachchi et al., 2011).

In absence of more sophisticated physically-based approaches, based on detailed information
of each specific cross-section that are rarely available due to limited field surveys, the
literature suggests to estimate the bankfull flow as the flood having a 1.5 to 2 years return
period (Carpenter et al., 1999; Reed et al., 2007; Harman et al., 2008; Wilkerson, 2008;
Hapuarachchi et al. 2011; Cunha et al., 2012; Ward et al., 2013) and a flow that is slightly
higher than bankfull may be identified with the 2-year return period flood (Carpenter et al.,
1999; Reed et al., 2007).

Many operational systems all around the world adopt a statistically-based definition of the
flooding flow and the flows associated with given return periods are used as threshold stages
for activating flood warning procedures.

The 2-year recurrence is used by many River Forecast Services in the United States, as
suggested by Carpenter et al. (1999), also due to the fact that “the good national coverage of
the 2-yr return period flows that the U.S. Geological Survey (USGS) maintains nationwide
supports its use” (Ntelekos et al., 2006), as well as in British Columbia (Canada).

However, the floods with different annual exceedance probabilities, associated with different
levels of risk, are also frequently adopted in operational real-time flood warning systems: for
example in the Czech Republic, flood watch usually corresponds to a 1- to 5-year flow return
period (Danhelka and Vlasak, 2013). In Italy, where a national directive issued in 2004
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introduces a system articulated on at least two levels of flow thresholds, many Regions have
identified the alert levels as flood quantiles with return periods of 2, 5 or 10 years (e.g. the
Abruzzo, Lombardia, Puglia Regions). In the South of France, the AIGA flood warning
system compares real-time peak discharge estimated along the river network (on the basis of
rainfall field estimates and forecasts) to flood frequency estimates of given return periods
(with three categories: yellow for values ranging from the 2-year to the 10-year flood, orange
for between the 10 and the 50-year flood, and red for peaks exceeding the 50-year flood) in
order to provide warnings to the national and regional flood forecasting offices (Javelle et al.,
2014).

For river sections where the streamflow gauges are newly installed or where historical rating
curves are not available, the observations of the annual maxima are absent or very limited and
it is not possible obtaining a reliable estimate of flood quantiles on the basis of statistical

analyses of series of observed flood peak discharges.

For these ungauged or poorly gaged basins, the peak flow of given frequency to be associated
with the watch/warning threshold can be estimated transferring information from data-rich
sites to data-poor ones, as it is done in the corpus of methodologies applied in RFFA
(Regional Flood Frequency Analysis) at ungauged sites, that have always received
considerable attention in the hydrologic literature (Bloeschl et al., 2013). Among the possible
approaches (statistical and process-based) to predict floods in ungauged basins, many
researchers have traditionally applied regression-like regionalisation methods for i) the
estimation of the index flood (Darlymple, 1960), usually defined as either the mean or the
median (that is the 2-year return period quantile) of the annual maximum flood series, or for
i) the direct estimate of other quantiles of annual maxima in ungauged basins (Stedinger and
Lu, 1995; Salinas et al., 2013). Such methods are based on the assumption that there is a
relationship between catchment properties and the flood frequency statistics and are
implemented through a regression-type model that relates the flood quantile or the index flood
to a number of relevant morpho-climatic indexes. Linear or power (often linearized through a
log-transformation) forms, with either a multiplicative or additive error term, are the most
commonly used functions (see e.g. Stedinger and Tasker, 1985; GREHYS, 1996; Pandey and
Nguyen, 1999; Brath et al., 2001; Kjeldsen et al., 2001, 2014; Bocchiola et al., 2003; Merz
and Bloeschl, 2005; Griffis and Stedinger, 2007; Archfield et al., 2013; Smith et al., 2015).
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In order to allow more flexibility to the model structure (whose ‘true’ form is of course not
known), the international literature has recently proposed methods based on the use of
artificial neural networks (ANN), providing a non-linear relationship between the input and
output variables without having to define its functional form a priori. Successful applications
of ANN for the estimation of index floods or flood quantiles at ungauged sites are reported in
Muttiah et al., 1997; Hall et al., 2002; Dawson et al., 2006; Shu and Burn, 2004; Shu and
Ouarda, 2008; Singh et al., 2010; Simor at al., 2012; Aziz et al., 2013.

Both the traditional power form or linear regression methods and the neural networks models
are generally parameterized by minimizing the mean or root mean of the squared errors, that
Is a symmetric function assigning the same importance to overestimation and underestimation

errors.

Nevertheless, the consequences of under or overestimating the runoff threshold when used for

early warning are extremely different.

Adopting a watch threshold that is higher than the runoff/stage that actually produces flooding
damages would in fact lead to missing such events, failing to issue an alarm. Underestimating

the runoff threshold may instead determine the issue of false alarms.

False alarms may certainly lead to money losses and also “undermine the credibility of the
warning organisation but are generally much less costly than an unwarned event.” (UCAR,
2010): in fact the costs of failing to issue an alarm grow rapidly in a real emergency, since a
totally missed event has strongly adverse effects on preparedness. Not only the costs of false
warnings are commonly much smaller than the avoidable losses of a flood, but they cannot
match up to indirect and/or intangible flood damages such as loss of lives or serious injuries
(Pappenberger et al., 2008; Verkade and Werner, 2011).

Furthermore, regarding the effects of false alarms, “in opposition to ‘cry wolf’ effect, for
some they may provide an opportunity to check procedures and raise awareness, much like a
fire practice drill.” (Sene, 2013)

Overall, false alarms have usually a higher level of acceptance than misses and this entails
that the estimate of flood warning thresholds should be cautionary, so as to reduce,

conservatively, the number of missed alarms.

For the development of watches and warnings it is therefore important to obtain estimates as

accurate as possible, minimising both positive and negative errors, but, considering that an

4
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error will always be present, it is better underpredicting rather than overpredicting the

threshold estimate, for safety reasons.

To obtain a conservative estimate of the thresholds, penalising more the predictions that
exceed the “observed” values (in the present case represented by the quantile estimate based
on the statistical analysis of observed flow peaks) than those that underestimate them, in the
present work it is proposed, for the first time to the Author’s knowledge, a parameterisation
algorithm that weights asymmetrically the positive or negative errors, in order to decrease the

consistency of overestimation and therefore the risk of missing a flooding occurrence.

It is important to underline that the proposed asymmetric error function is here applied for
optimising a neural network model for predicting the 2-year return period flood (due to its
association with the bankfull conditions) but it might be used to improve any other kind of

methodology for the estimate of flood warning thresholds associated to any return period.

Section 2 presents the asymmetric error functions; the next one describes the information
available in a database covering the entire Italian country and the identification of the subsets
to be used for a rigorous cross-validation approach. Section 4 presents the implementation of
the models for estimating the 2-year return period flood in ungauged catchments, consisting in
artificial neural networks calibrated using respectively the symmetric square error and the
asymmetric error functions. The results are presented and then discussed in section 5 and
section 6 concludes.

2 The asymmetric error function

The scientific literature on forecasting applications, in any scientific area, adopts almost
exclusively an objective function based on the sum or mean of the squared discrepancies, that
is a symmetric quadratic function, due to the well-established good statistical properties of the

minimum mean square error estimator.

On the other hand, in economics as well as in engineering and other many fields, there are
cases where the forecasting problem is inherently non-symmetric and, in the financial
forecasting literature, the use of mean squared error, even if still widely applied, is nowadays

not always accepted.

Error (or loss) functions devised to keep into account an asymmetric behaviour have been
proposed, such as the linear-exponential, the double linear and the double quadratic
(Christoffersen and Diebold 1996; Diebold and Lopez 1996; Granger 1999; Granger and

5
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Pesaran 2000; Elliot et al. 2005; Patton and Timmerman, 2006). In particular, Elliot et al.
(2005) recently presented a family of parsimoniously parameterized error functions that nests
mean squared error loss as a special case (Patton and Timmerman, 2006).

Such function, adapted from Elliot et al. (2005) and defining the error ¢ as the prediction
minus the observed value (that is, a negative error corresponds to underestimation, a positive

one to overestimation), reads:
L(p,a)=2-[a+(1-2a) e >0}]-|°, (1)

where 1(-) is a unit indicator, equal to one when & > 0 and zero otherwise; p is a positive
integer that amplifies the larger errors (corresponding to a quadratic error when equal to 2)

and a<(0,1) is a parameter representing the degree of asymmetry.

For o < 0.5 the function penalises more the overestimation errors (¢>0), while for a > 0.5
more weight is given to negative forecast errors (under-predictions); for « = 0.5 the loss

weights symmetrically positive and negative errors.

When p = 2 and a # 0.5, the error becomes the asymmetric double quadratic (Quad-Quad)
loss function (see Christoffersen and Diebold 1996), that is used in the present work for a fair
comparison with the traditional mean square error estimator. When p =2 and o = 0.5, Eq. (1)

corresponds in fact to the ‘traditional’, symmetric, square error:
L(2,0.5) = &* (2)

Figure 1 shows the asymmetric Quad-Quad loss function (with a varying from 0.1 to 0.9)

compared with the squared error (SE).

In the water engineering field, the asymmetric Elliot error function with quadratic
amplification (p = 2) has been recently applied to parameterise a model for estimating the
expected maximum scour at bridge piers, in order to obtain safer design predictions through

the reduction of underestimation errors by Toth (2015).

It should be noted that the proposed methodology is a deterministic one, where an optimal
point forecast is obtained by minimizing the conditional expectation of the future loss; such
framework has not the pros of a probabilistic one in terms of quantification of the
uncertainties of the prediction, but it aims at identifying the optimal value for the threshold in

terms of operational utility.
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In Section 4, the asymmetric quadratic error function is proposed for optimizing the
parameters of an input-output model, based on artificial neural networks, between the input
variables summarising a set of catchment descriptors (obtainable also for ungauged river
sections) and the 2-year return period flood, thus warranting that overestimation errors, that
would increase the risk of missing flood warnings, are weighted more than underestimation

ones.
3 Available information: the national data set of Italian catchments

The case study refers to a database of almost 300 catchments scattered all over the Italian
peninsula, compiled within the national research project “CUBIST — Characterisation of

Ungauged Basins by Integrated uSe of hydrological Techniques” (Claps et al., 2008).

3.1 Input and output variables

The 12 geomorphological and climatic descriptors are listed in Table 2. The dataset
unfortunately lacks information on other hydrological properties (e.g. on soils, land-cover,
vegetation) and the climatic characterisation is very limited (for example information on
extreme rainfall would be extremely important), but the CUBIST set is currently the only

database available in the Italian hydrologists community at national scale.

The dataset is described in Di Prinzio et al. (2011), where, following a catchment
classification procedure based on multivariate techniques, the descriptors were used to infer
regional predictions of mean annual runoff, mean maximum annual flood and flood quantiles

through a linear multiregression model.

As described in such work, in order to reduce the high-dimensionality of the
geomorphological and climatic descriptors set, a Principal Components (PC) analysis was
applied, obtaining a set of derived uncorrelated variables. The PC variables are as many as the
original variables, but they are ordered in such a way that the first component has the greatest
variability, the second accounts for the second largest amount of variance in the data and is
uncorrelated with the first and so forth. In the present data set, the first three principal
components explain more than three quarters of the total variance (see Di Prinzio et al., 2011)
and such three first PCs are here chosen as input variables to the models described in the
following, assuming that they may adequately represent, in a parsimonious manner, the main

features of the study catchments.
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The data base, in addition to the morpho-pluviometric information, includes the annual
maxima flow records for periods ranging from 5 to 63 years, whose median values,
corresponding to the 2-year return period, represent the output variable to be simulated by the
models. Even the shortest records (and actually only 9 of the locations have less than 8 years
of data) should be sufficient for such a short return period, for example according to the
classical guideline by Cunnane (1987), that suggests not to extrapolate statistical inference
beyond a return period of 2 times the sample length.

The data set covers a great diverseness of hydrological, physiographic and climatic properties
and in order to partially reduce such heterogeneity, it was decided to limit the analysis to
catchments having a 2-year flood included in the range 10-1000 m?/s, that is 267 over the
original 296 basins.

3.2 Identification of balanced cross-validation subsets with SOM clustering of

input data

As will be detailed in Section 4, the database is to be divided in three disjoint subsets (called
training, cross-validation and test sets) in order to allow a rigorous independent validation and
also to increase the generalization abilities of the model when encountering records different
from those used in the calibration (or ‘training’) phase, following an ‘early stopping’

parameterisation procedure.

The way in which the data are divided may have a strong influence on the performance of the
model and it is important that each one of the three sets contains all representative patterns
that are included in the dataset. As proposed in the recent literature (Kocjancic and Zupan,
2001; Bowden et al., 2002; Shahin et al., 2004) a self-organising map (SOM) may be applied
to this aim. The SOM is a data-driven classification method based on unsupervised artificial
neural networks that may be applied for several clustering purposes (for hydrological

applications see, for example, Minns and Hall, 2005; Kalteh et al, 2008).

In the recent years, SOMs were also successfully applied for catchments classification either
based on geo-morpho-climatic descriptors (Hall and Minns, 1999; Hall et al., 2002; Srinivas
et al., 2008; Di Prinzio et al., 2011) or based on hydrological signatures (Chang et al., 2008;
Ley et al., 2011; Toth, 2013); however, it is important to underline that the clustering is not
carried out here in order to identify a pooling group of similar catchments for developing a
region-specific model, but for the optimal division of the available data for the

8
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parameterization and independent testing of a single model to be applied over the entire study

area.

The SOM is in fact used to cluster similar data records together: an equal number of data
records is then sampled from each cluster, ensuring that records from each class (that is
catchments with different features) are represented in the training, validation and test sets,

that, as a result, have similar statistical properties (Bowden et al., 2002; Shahin et al., 2004).

A SOM (Kohonen, 1997) organizes input data through non-linear techniques depending on
their similarity. It is formed by two layers: the input layer contains one node (neuron) for each
variable in the data set. The output-layer nodes are connected to every input through
adjustable weights, whose values are identified with an iterative training procedure. The
relation is of the competitive type, matching each input vector with only one neuron in the
output layer, through the comparison of the presented input pattern with each of the SOM
neuron weight vectors, on the basis of a distance measure (here the Euclidean one). In the
trained (calibrated) SOM, all input vectors that activate the same output node belong to the

same class.

In the present application, the dimension of the input layer is equal to three (that is, the first
three principal components of the catchments descriptors); as far as the output layer is
concerned, there is not a predefined number of classes and, given the small dimension of the
input variables, it was here chosen a parsimonious output layer formed by three nodes in a

row, each one corresponding to a class.

The three resulting clusters are formed respectively by 121, 70 and 76 catchments; each
cluster is then divided into three parts, and one third is assigned to the training, validation and
test sets respectively. Overall, the training, validation and test sets are therefore equally
numerous (91, 88 and 88 records respectively) and formed by the same proportion of
catchments belonging to each of the clusters, having eventually a similar information content,
as shown by the similar statistics of the three variables in the three sets represented in Figure
2.
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4 Development of symmetric and asymmetric artificial neural networks

models for estimating the 2-year return period flows at ungauged sites

4.1 Feedforward Artificial Neural Networks

Artificial neural networks are massively parallel and distributed information processing
systems, composed by nodes, arranged in layers, that are able to infer a non-linear input-
output relationship. ANN, and in particular feedforward networks have been widely used in
many hydrological applications (see for example the recent review papers by Maier et al.,
2010 and by Abrahart et al., 2012) and the readers may refer to the abundant literature for

details on their characteristics and implementation.

Three different layer types can be distinguished: input layer, connecting the input information,
one or more hidden layers, for intermediate computations, and an output layer, producing the
final output; adjacent layers are connected through multiplicative weights and, in each node,
the sum of weighted inputs and a threshold (called bias) is passed through a non-linear

function known as an activation.

The models here applied are networks formed by one hidden layer, with tan-sigmoid
activation functions, and a single output node (corresponding to the estimated flood with 2-

year return period), with a linear activation function.

The identification of the network’s weights and biases (called training procedure) is carried
out with a non-linear optimization, searching the minimum of an error (or learning) function
measuring the discrepancy between predicted and observed values, and feedforward networks
are generally trained with a learning algorithm known as BackPropagation (Rumelhart et al.

1994) based on steepest descent or on more efficient quasi-newton methods.

In order to avoid overfitting, that degrades the generalisation ability of the model, the Early
Stopping or Optimal Stopping procedure was applied (see, for example, Coulibaly et al.,
2000). For applying Early Stopping, the available data have been divided into three disjoint
subsets with a similar information content, as described in Section 3.2: a training set, an early-
stopping validation set and a test set. While the network is parameterised minimising the error
function on the training set, the error function on the early-stopping validation set is also
monitored; if the error function on such second set increases continuously for a specific
number of iterations, this is a sign of overfitting of the training set: the training is then stopped
and network parameters at the lowest validation error are returned. The third set (test set) is

10
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not used in any way during the parameterization phase, but it is used for out-of-sample,

independent evaluation of the resulting models.

4.2 Implementation of the symmetric model

Neural networks, including those applied in the recent hydrological literature for the
estimation of index floods or flood quantiles at ungauged sites, are traditionally trained
minimizing the square error function, which is symmetrical about the y-axes and negative or

positive discrepancies of the same magnitude result in the same function value.

In the present work, the results obtained by a network trained with a ‘conventional’ square
error function are compared with those obtained when parameterising the network through the
minimisation of an asymmetric loss function, that takes into account both over and
underestimation discrepancies but penalizes more the overprediction errors, since the

consequences of missing alarms are more severe than those of false alarms.

For both type of models, the output values (2-year flood values) are rescaled as a function of
the overall minimum and maximum values to the [-0.95,+0.95] range, to facilitate the
optimization algorithms and also avoid saturation problems by accommodating possible
extreme values occurring outside the range of available data (Dawson and Wilby, 2001). Each
implemented architecture is randomly initialized for ten times to help avoiding local optima:
the parameter set that results in the minimum error function on the early stopping validation

data (second set) is chosen as the trained network.

The first implemented model is obtained through the minimization of the traditional,
symmetric mean squared error, applying the quasi-Newton Levenberg-Marquardt
BackPropagation algorithm (Hagan and Menhaj 1994), widely applied and regarded as one of
the most efficient neural network training algorithms.

The input variables are the first three principal components of the catchment descriptors, so
the input layer is formed by three nodes; the output node corresponds to the estimated flood
with 2-year return period; as far as the dimension of the hidden layer is concerned, there is,
unfortunately, no definitive established methodology for its determination, because the
optimal network architecture is highly problem-dependent: different architectures with a
number of hidden nodes varying from 2 to 6 were set up and the mean squared error of the
estimates issued for the third, independent set resulted the lowest with the hidden layer

formed by 3 nodes.
11
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The architecture with three input nodes, three hidden nodes and 1 output node, represented in
Figure 3, is therefore the network finally chosen; the network parameterized minimising the
symmetric mean square error function will be denoted as ANN-Symm, and its results will be
in Section 5 compared with those of the asymmetric models having the same architecture but

a different error function.

4.3 Implementation of asymmetric models with varying degree of asymmetry

The Quad-Quad loss function described in Section 2 is here applied for calibrating the
network parameters of the asymmetric models. The learning function to be minimized is
therefore the average value of the double quadratic errors (Mean Quad-Quad Error, MQQE),

obtainable averaging the M (number of records in the set) errors given by Eqg. (1) when p=2:
2 3 2
MQQE:MZ[a—(l—Za)ﬁ{g>O}]-‘gj‘ (3)
j=1

The value of «, corresponding to the degree of asymmetry of the loss function, cannot be
fixed a priori, since such choice should be based on a location-specific cost-benefit analysis,
keeping into account the avoidable losses (that is the direct and indirect losses, provided they
may be quantifiable, that may be prevented by mitigation actions following an alarm issue)
and the cost of the mitigation measures themselves. Such analysis is acknowledged to be
extremely difficult, especially since it involves also intangible costs such as life losses, but
also warning credibility issues; furthermore, the costs may change over time and are also
dependent on the warning lead-time (see e.g. Martina et al., 2006; Verkade and Werner, 2011,
Montesarchio et al., 2011/2014).

For this reason, in the present application, different asymmetric networks, with « varying
from 0.4 to 0.1, are implemented, in order to compare the results obtainable with a different
asymmetry degree, that is a different extent of importance given to over/underestimation
errors. Such asymmetrically trained network are in the following denoted as “Asymm- 0.4,

“Asymm- 0.3”, “Asymm- 0.2”,“Asymm- 0.1”.

The training of the four asymmetric networks, based on the minimisation of the Mean Quad-
Quad Error, is carried out through the generalization of the backpropagation algorithm
proposed by Crone (2002) and applied by Silva et al. (2010), that may be used for
parameterising artificial neural networks with any differentiable (analytically or numerically)

error function.

12
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5 Results and discussion

5.1 Goodness-of-fit measures and plots

As described in section 4.2, the neural networks are trained over the standardized (rescaled)
output values of the training and cross-validation sets and they are successively used for
predicting the output over the independent test set: such ANN output values are then scaled

back, obtaining the predictions Qz,p.

The performances of the models are evaluated through a set of indexes that describe the
prediction error, ¢, that is the difference between the de-standardised predictions, Q- issued
by the models (as a function of morpho-climatic attributes only) and the ‘observed’ 2-year
flood values (the median of historical annual maxima), Q,,,, on the third set (test set), formed
by N=91 catchments distributed all over the country, whose data have not been used in any

capacity in the models’ development.
The following error statistics have been computed:

MAE (mean absolute error)

N
A0 ()

MAE=1
N

RMSE (root mean square error)

(5)

MAE and RMSE both represent a symmetric accuracy, corresponding to the distance of the
predictions from the observations independently of the error sign (and the RMSE, being

quadratic, emphasizes more the larger errors).

In order to keep into account the differences in sign of the errors, representing the extent of
overpredictions as compared to underpredictions, the overall percentage of positive errors

(Over%), is computed:

Over% (percentage of overestimates)

13
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{i:l,...,NIQz}Z(i)>Q2,o(i)} (6)

Over %=

Such metric shows the general tendency of the model to overestimate (or to underestimate,
since 100- Over% represents, conversely, the proportion of underpreditions), but these
indexes do not distinguish among errors of different magnitude, since they count also
predictions that may be only barely above (or below) the targets, that is very good predictions,

with minimum errors.

It is therefore computed also the number of the ‘high’ overestimation errors, keeping into
account only the more relevant, and therefore potentially more dangerous, overpredictions. It
was here considered as ‘high overprediction’ an estimate that is more than 30% higher than

the corresponding target value:

OverH% (percentage of high overprediction errors)

i1, NIQ, , (1)>1.3Q, 4 (i) }
N

OverH %= (7)

The more conservative is the threshold estimate, the lower is the value of OverH%.

On the other hand, even if - as discussed — generally less crucial in terms of consequences,
also the number of high underestimation errors should be monitored, since excessively low
values imply the tendency of the model to establish thresholds leading to the issuance of too

many false alarms.

UnderH% (percentage of high underprediction errors):

i=1,...NIQ, » (1)<0.7:Q, o (i)} (8)
N

UnderH%z{

In addition to the goodness-of-fit measures (reported in Table 2), the boxplot of the errors
(predicted minus observed quantiles) is shown in Figure 4: the bottoms and tops of the
rectangular boxes are respectively the lower and the upper quartiles, the horizontal segment
inside the box is the median and the whiskers represent the 5th and 95th percentiles.
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The results may be evaluated also through the scatterplots of predicted (y-axis) vs observed
(x-axis) quantiles, presented in Figure 5 that show every prediction Q,, in respect to the
corresponding ‘observation’ Q.

5.2 Discussion of the results

The boxplot (Fig. 4) allows to visually assess both the accuracy and the tendency to
over/underestimate of the models: the boxes should be compact and close to the dotted line
representing zero error but at the same time it is better if the data lie below such line, thus
indicating that the method do not tend to overpredict the thresholds and the warning system is

therefore less subject to miss a potentially dangerous flood.

It may be seen that for the network that was trained minimising the traditional Square Error
(ANN-Symm) the box and whiskers are centred on the zero-error line and the quantiles
(top/bottom of the box, top/bottom whiskers) are at a similar distance from such line, showing
that the errors are equally distributed among overestimation and underestimations. The box is
compact, demonstrating the good accurateness of the method for a substantial part of the test
set, but, due to the symmetric disposition of the errors, many overestimation errors, also

remarkably high, are issued, as shown by the position of the upper whisker.

Analysing Table 2, the relatively good accuracy of the ANN-Symm model is demonstrated by
the values of the MAE and RMSE, that are the lowest among the implemented models. The
symmetric distribution of the overall errors is shown by an Over% close to 50% and the
similar values of the OverH% (34%) and UnderH% (32%) confirm that also the high relative

errors are equally split among over and underestimates.

Such results were expected since the training is based on a symmetric loss function, but the
consequence is that the ANN-Symm model issues a remarkable number of significant
overprediction errors, in fact for about one third of the test catchments the estimates are more

than 30% higher than the observations.

The analysis of Table 2 shows that the asymmetrically trained networks tend, for decreasing a
values, to reduce the number of overestimations (positive errors). For the overall errors this is

shown by the different proportion of over/underestimations, that moves from a value that
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corresponds, approximately, to a balance, to a much more skewed distribution of negative vs

positive errors, with Over% decreasing up to 31%.

At the same time, and more importantly, the number of positive (overestimation) errors larger
than 30% substantially decreases with a, with OverH% reaching a value that is much lower
than that of the ANN-Symm model when « arrives at 0.1 (18% vs 34%).

Conversely, as expected, the more asymmetric is the network, the higher are the
underprediction errors, as shown by the values of UnderH%: the number of significant

negative errors gradually increases from one third up to 47% of the total.

Also the accuracy (given by the total amount of the discrepancies independently of their sign)
deteriorates when the asymmetry is more pronounced, but the drop is moderate and the
RMSE and MAE values are not so far from those of the ANN-Symm network.

Looking at the parallel boxplots (Fig. 4), it may be seen that with increasing asymmetry the
boxes become less compact and, as expected, their position shifts downwards. The length of
the upper whiskers substantially decrease with « but the length of the lower whiskers does not
increase at the same rate, thus compensating for the fact that the boxes are taller for the more
asymmetric models. It follows that the global distances from the 5% to the 95% percentiles
(given by the distance between the ends of the top and bottom whiskers) are very close for the
symmetric (ANN-Symm) and for the two most asymmetric, thus showing that the variability
of the errors for the vast majority (middle 90%) of the data is similar. On the other hand,
overall, the errors are moving towards the underestimation side for increasing asymmetry (as
confirmed also by the corresponding median values) and for Asymm-01, the upper part of the

box indicates that only about one quarter of the errors are overestimations.

It may be noted, in particular from the scatterplots (Fig. 5), that, for both symmetric and
asymmetric models, the errors are not negligible: this is due to the shortcomings of the
available data set but mainly to the intrinsic limitations of a regional approach applied to the
extreme variability of the study area. As already underlined in Section 3.1, the national data
set lacks important information that may help to characterise the hydrological behaviour and
the phenomena governing formation of extreme flows. In addition to the unavoidable risk of
erroneous data, the absence in the database of additional influences certainly further hampers
the possibility to obtain a reliable relationship with the flood quantiles. Most importantly, the
data set covers the entire Italian peninsula, characterised by extremely different hydro-
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climatic settings (from Alpine to Mediterranean ones) and this high heterogeneity is certainly

an additional reason that limits the performance.

Notwithstanding the limitations of the dataset, that affect equally all the proposed models, the
results demonstrate that the use of the double quadratic error function, even if at the expense
of more substantial underestimation errors, can substantially decrease the number and extent

of overestimation errors, if compared to the use of the traditional square errors.

In the application to a specific cross section, the degree of asymmetry might be identified as
proportional to the “risk averseness” of the situation: the more the impact of false alarms is,
comparatively, small, the more the decision-makers are reluctant to the consequences
(economic and social) of a flood and, rather than risking a missed alarm, can accept many
cases of false alarm with the associated costs.

6 Conclusions

A crucial issue in the operation of flood forecasting/warning systems at ungauged locations is
how to assess the possible impacts of the forecasted flows, that is the identification of
streamflow values that may actually cause flooding, to be associated to thresholds that trigger
the issuance of flood watches and warnings. The values that may produce damaging
conditions (or “flooding flows”), when in absence of detailed local information on each cross-
section, are in many parts of the world estimated as the peak floods having a certain return
period, often the 2-year one, that is generally associated with the bankfull discharge.

For locations where the gauges are new or where historical rating curves are not available, the
series of past annual flow maxima are absent or very limited, and the peak flow of given
frequency to be associated with the watch/warning threshold can be estimated with
regionally-derived empirical relationships, such as those that may be applied for the
estimation of the index flood at ungauged sites. Such regression-like methods consist in a
relation between a set of catchment descriptors that may be obtained also for ungauged sites
and the desired flood quantile; linear or power forms are the most commonly used functions,
but recent studies have successfully applied artificial neural network models, due to their

flexibility, to flood quantile and index flood estimation.

Whatever is the function form, such models are generally parameterised by minimising the
mean square error, that assigns equal weight to overprediction or underprediction errors,

whereas, instead, the consequences of such errors are extremely different when the estimates
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are to be used as warning threshold. In fact, false alarms (due to an underprediction of the
warning threshold) generally have a much higher level of acceptance than misses (that would
derive from an overestimated threshold).

For this reason, in the present work, the regression model (a feed-forward neural network) is
parameterised minimising an asymmetric error function (of the double quadratic type), that
penalizes more the overestimation than the underestimation discrepancies. The predictions of
models with increasing degree of asymmetry are compared with those of a traditional (trained
on the symmetric mean of square errors) neural network, in a rigorous cross-validation

experiment referred to a database of catchments covering all the Italian country.

The results confirm, as expected, that the more asymmetric is the network, the more
numerous and higher are the underprediction errors, and the less numerous and less severe are
the overestimation errors. As also expectable, the symmetric accuracy decreases when the
asymmetry is more pronounced, but the drop is moderate and the RMSE and MAE values are

not so far from those of the traditionally trained network.

Undoubtedly, the nature of the regional approach, as well as the shortcomings of the dataset
and the extreme heterogeneity of the study area, generate errors much greater than those
obtainable with detailed local studies. On the other hand, where no alternatives exist, the
proposed methodology may provide a preliminary estimate of the threshold runoff that do not
overestimate the actual flooding flow.

Notwithstanding the acknowledged limitations of the dataset, that affect equally all the
proposed models, the analysis shows that the use of the asymmetric error function
substantially reduces the number and extent of overestimation errors, if compared to the use
of the traditional square errors. Of course such reduction is at the expense of increasing
underestimation errors, but the overall precision is still acceptable and the study highlights the
potential benefit of choosing an asymmetric error function when the consequences of missed

alarms are more severe than those of false alarms.

Minimising the asymmetric error function has the purpose of optimizing the threshold from
an operational point of view, in a deterministic framework: future analyses may be devoted to
investigate the uncertainty of the issued predictions, since a probabilistic approach (provided
that the methodology is able to include all sources of uncertainty and its quality may be
objectively assessed) may provide very valuable insights for a more complete evaluation of
the model, supplementing the information provided by point-value predictions.
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It is important to highlight that the asymmetric error function is used, in this study, to
parameterise a neural network, but of course it might be used to optimize any other model or

equation, when aiming at obtaining conservative estimates, for safety reasons.

The appropriate degree of asymmetry might be identified depending on the risk-averseness of
the specific flood-prone context. The quantification of risk aversion is extremely difficult and
case-specific: it should keep into account that the perception of society may be very different
from a technical appraisal of the involved costs and it should include also indirect, intangible
and long-term impacts. More research on the societal perception in different contexts would
greatly improve the process of risk-based decision-making (Merz et al., 2009), including the
choices concerning flood-warning thresholds. Hopefully, in the next years, a more direct
collaboration between the hydrologic and socio-economic research communities, as
auspicated in the new Panta Rhei science initiative (Montanari et al., 2013; Javelle et al.,

2014), will provide a progress in this direction.
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Tables

Table 1. Geomorphological and climatic descriptors of the CUBIST database of Italian

catchments
1  Long- UTM longitude of catchment centroid
2  Lat- UTM latitude of catchment centroid
3 A - Catchment drainage area
4 P - Catchment perimeter
5  zmax - Maximum elevation of the catchment area
6  zmin - Elevation of the catchment outlet
7 zmean - Mean elevation of the catchment area
8 L - Length of the Maximum Drainage Path
9  SL - Average slope along the Maximum Drainage Path
10 SA - Catchment average slope
11 @ - Catchment orientation
12 MAP - Mean Annual Precipitation

Table 2. Goodness-of-fit criteria of the 2-year floods estimates obtained by the symmetric and

asymmetric networks on the independent test set of catchments.

Model\index ~ MAE (m%s)  RMSE(m?/s) Over% OverH% UnderH%
Symm 98 133 46% 34% 32%
Asymm-04 104 147 42% 32% 35%
Asymm-03 105 152 41% 30% 37%
Asymm-02 108 162 36% 27% 41%
Asymm-01 115 178 31% 18% 47%
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Figure Captions

Figure 1. Asymmetric Quad-Quad loss function (with « varying from 0.1 to 0.9) compared with
the Squared Error (SE).

Figure 2: Mean value (red dash) and the bars comprised between the 90% and 10% percentiles of
the resulting training, cross-validation and testing sets, for each of the three input variable (PC1,
PC2 and PC3).

Figure 3. Architecture of the chosen network, with three input nodes, three hidden nodes and 1
output node.

Figure 4. Parallel box-plots of the errors (e=Q2,0- Q2,p) of the 2-year floods estimates obtained
by symmetric and asymmetric networks on the independent test set of catchments.

Figure 5. Scatterplots of the predicted (y-axis) vs observed (x-axis) 2-year floods estimates on the
independent test set of catchments, for the symmetric and asymmetric models.
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Figure 1. Asymmetric Quad-Quad loss function (with « varying from 0.1 to 0.9) compared with the Squared Error
(SE).
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Figure 2: Mean value (red dash) and the bars comprised between the 90% and 10% percentiles of the resulting
training, cross-validation and testing sets, for each of the three input variable (PC1, PC2 and PC3).
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Figure 3. Architecture of the chosen network, with three input nodes, three hidden nodes and 1 output node.
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Figure 4. Parallel box-plots of the errors (e=Q2,0- Q2,p) of the 2-year floods estimates obtained by symmetric and
asymmetric networks on the independent test set of catchments.
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Figure 5. Scatterplots of the predicted (y-axis) vs observed (x-axis) 2-year floods estimates on the independent test

set of catchments, for the symmetric and asymmetric models.
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