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Abstract

The Earth’s land surface is characterized by tremendous natural heterogeneity and hu-
man engineered modifications, both of which are challenging to represent in land sur-
face models. Satellite remote sensing is often the most practical and effective method
to observe the land surface over large geographical areas. Agricultural irrigation is5

an important human induced modifications to natural land surface processes, as it is
pervasive across the world and because of its significant influence on the regional
and global water budgets. In this article, irrigation is used as an example of a human
engineered, unmodeled land surface process, and the utility of satellite soil moisture
retrievals over irrigated areas in the continental US is examined. Such retrievals are10

based on passive or active microwave observations from the Advanced Microwave
Scanning Radiometer for the Earth Observing System (AMSR-E), the Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2), the Soil Moisture Ocean Salinity (SMOS)
mission, WindSat and the Advanced Scatterometer (ASCAT). The analysis suggests
that the skill of these retrievals for representing irrigation artifacts is mixed, with ASCAT15

based products somewhat more skillful than SMOS and AMSR2 products. The article
then examines the suitability of typical bias correction strategies in current land data as-
similation systems when unmodeled processes dominate the bias between the model
and the observations. Using a suite of synthetic experiments that includes bias correc-
tion strategies such as quantile mapping and trained forward modeling, it is demon-20

strated that the bias correction practices lead to the exclusion of the signals from un-
modeled processes, if these processes are the major source of the biases. It is further
shown that new methods are needed to preserve the observational information about
unmodeled processes during data assimilation.
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1 Introduction

Examples of human induced land surface changes include urbanization, deforestation,
and agriculture, all of which have significant impacts on local and regional water and
energy budgets and hydrologic and biogeochemical processes. The expansion of in-
frastructure and agriculture, necessitated by increasing societal demands has led to5

significant transformation of the natural features of the land surface, affecting more
than 50 % of the land area (Hooke et al., 2012). Most current land surface models are
not only severely deficient in representing the impacts of such engineered artifacts, but
are also limited in representing features of many natural systems such as seasonal
flood plains and wetlands. Remote sensing measurements offer a potential alternative10

for capturing the effects of such unmodeled processes. Moreover, data assimilation,
which is a common approach to merge the information from observations with model
estimates, may provide a possible mechanism for incorporating the effects of such un-
modeled processes into model estimates.

Irrigation is an important land management practice that has had a significant impact15

on the global and regional water budgets. As noted in Gordon et al. (2005), the global
increase in water vapor flows from irrigation is comparable to the decrease caused by
deforestation. It has been estimated that as much as 87 % of the global fresh water
withdrawals by humans have been used for agriculture (Douglas et al., 2009), which
leads to significant alteration of the global and regional hydrological cycle. Therefore,20

in this article we focus on irrigation as an analog of a human engineered process that
is typically not represented in land surface models.

There is a long legacy of retrieving estimates of surface soil moisture from satellite
microwave radiometry from a number of sensors (Jackson, 1993; Njoku and Entekhabi,
1995). In the past decade, near surface soil moisture retrievals have become avail-25

able from a number of passive microwave and scatterometer-based platforms. They in-
clude Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E)
aboard the Aqua satellite, WindSat multifrequency polarimetric microwave radiometer
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aboard the Coriolis satellite, the Advanced Scatterometer (ASCAT), a C-band active mi-
crowave remote sensing instrument aboard the Meteorological Operational (METOP)
satellites, the Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the
Global Change Observation Mission-Water (GCOM-W) satellite, and the Soil Moisture
Ocean Salinity (SMOS) mission. Except for AMSR-E, which stopped functioning in5

October 2011, all these instruments are currently providing measurements of surface
soil moisture. In addition, the recently launched NASA Soil Moisture Active Passive
(SMAP) mission will also be providing global estimates of soil moisture. In this article,
we first examine if the satellite soil moisture retrievals are effective in capturing the ef-
fects of irrigation. The comparison is performed through a quantitative comparison of10

the probability density functions (PDFs) of remote sensing datasets against those of
land surface model simulations that do not include formulations of irrigation.

The second focus of the article is to examine if the current data assimilation practices
are adequate if unmodeled processes such as irrigation are present in observations.
When irrigation practices are employed, they lead to wetter soil moistures relative to15

non-irrigated time periods. Assuming that the physical model used in data assimilation
does not have irrigation formulations in it, the assimilated observations would have a
systematic bias (relative to the model) during irrigation periods. In real data assimila-
tion systems, biases between model forecasts and observations are unavoidable, and
they typically result from a combination of model deficiencies, instrument and retrieval20

errors. Proper treatment of these biases is important, as the assimilation methods are
primarily designed to work with errors that are strictly random (Dee and da Silva, 1998).
Here we evaluate the impact of using common bias correction practices when unmod-
eled processes are the primary source of the biases between model and observations.

Primarily, there are two approaches to handling biases in data assimilation systems25

(Dee, 2005): (1) “bias-aware” systems which are built to diagnose and correct the bi-
ases in the observations and/or the model forecasts during data assimilation integration
and (2) “bias-blind” systems which assume the observations and model forecasts to
be unbiased. Ideally, biases must be estimated by comparing the observations and/or
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model states to the true mean states, derived for example from in-situ measurements.
However, as noted in Draper et al. (2014), developing spatially distributed bias esti-
mates is much harder for the land surface, compared to the atmosphere or ocean,
since point scale in situ observations are generally not representative of the spatial
scale of remotely sensed or modeled states, due to the heterogeneity of land. The5

common practice, therefore, is to remove the bias between the observations and the
model, and use a bias-blind assimilation approach to correct only short-lived model
errors. This is typically achieved by rescaling the observations prior to assimilation, to
have the same statistics as the model, using quantile mapping approaches so that the
observational climatology matches that of the land model. This approach is easy to10

implement as a preprocessing step to the data assimilation system and has been used
extensively in several land data assimilation studies (Reichle and Koster, 2004; Drusch
et al., 2005; Crow et al., 2005; Reichle et al., 2007; Kumar et al., 2009; Liu et al., 2011;
Draper et al., 2011, 2012; Hain et al., 2012; Kumar et al., 2012, 2014). A known disad-
vantage of the approach is that it assumes stationarity in model-observational biases15

and cannot easily adjust to dynamic changes in bias characteristics. Common quantile
mapping approaches used for scaling observations into the model’s climatology include
the standard normal deviate based scaling (Crow et al., 2005) and the CDF-matching
method (Reichle and Koster, 2004; hereafter referred to as RK04). The standard nor-
mal deviate based scaling matches the first and second moments of the observation20

and model distributions, whereas the CDF matching approach corrects all quantile de-
pendent biases between the model and observations, regardless of the shape of the
distributions.

When observations are rescaled prior to assimilation, standard normal deviates or
percentiles (rather than the raw observations) are assimilated. This ensures that the25

model climatology is preserved in data assimilation and that assimilation only affects
temporal patterns of the anomalies. In such cases, the influence of assimilation is likely
to be greater at the shorter time scales (Kumar et al., 2014).
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In this article, we argue that the approach of rescaling the observations could be
problematic, particularly when the underlying distributions of the model estimates and
the observations are different. Such differences in the distributions are possible when
features from human induced activities such as irrigation are present in observations
and are missing in modeled estimates. Through a suite of synthetic experiments, we5

demonstrate the limitations of the rescaling approaches when the reference climatol-
ogy is fundamentally limited in representing unmodeled processes whose effects nev-
ertheless impact the observations. In such cases, stationarity assumptions about the
climatologies also could lead to spurious, statistical features in the assimilation results.
As a result, the use of rescaling would become problematic for demonstrating short-10

term assimilation impacts.
The rescaling approach through CDF-matching for land data assimilation proposed

by RK04 was motivated by the fact that the true climatology of soil moisture at the global
scale remains unknown. The CDF-matching method is based on similar applications of
the method for establishing rainfall-reflectivity relationships for the calibration of radar15

or satellite observations of precipitation (Calheiros and Zawadzki, 1987; Atlas et al.,
1990; Anagnostou et al., 1999). The quantile mapping methods are also widely used for
correcting biases of regional climate model simulations relative to observational data
(Salathe Jr. et al., 2007; Li et al., 2010). These studies assume that the probability den-
sity functions of radar reflectivity and in-situ rainfall are equivalent and therefore quan-20

tile mapping can be used to translate one into the other. RK04 extended this approach
to soil moisture data assimilation by transforming the satellite soil moisture retrievals
into the model’s climatology for removing the relative biases between the model and
observations. The important difference between the precipitation/climate downscaling
studies and RK04 is that in the former, the remotely sensed retrievals/climate model25

data were rescaled to observed data, whereas in RK04, the satellite retrievals were
rescaled to a modeled climatology. In this article, we demonstrate that rescaling to a
model climatology that is not representative of the observations may distort the scale
of the actual observational features and may lead to loss of valuable signals.
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There are a number of alternative strategies for bias correction in bias-blind data as-
similation systems. Instead of employing a single CDF (at each grid cell) that encapsu-
lates the soil moisture dynamics across all seasons (called lumped CDFs), temporally
stratified (monthly or seasonally) CDFs can be used. The finer temporal stratification
would help to reduce the impact of statistical artifacts of using lumped CDFs, but would5

also require sufficient sample sizes to accurately derive CDFs for each temporal win-
dow. As demonstrated in Kumar et al. (2012), the land surface model could be cali-
brated against the retrieval products and the calibrated, unbiased model could then be
used in assimilation. Though this strategy eliminates the biases in the variables being
assimilated, the climatologies of other outputs from the model could be affected, unless10

additional constraints are included in calibration. De Lannoy et al. (2013) employed a
similar strategy for assimilating SMOS L-band brightness temperatures, by calibrat-
ing the forward radiative transfer model parameters and by keeping the land surface
model parameters unchanged. This strategy preserves the land surface model clima-
tology, but only works when radiance measurements are being assimilated through a15

forward model. Forman et al. (2014) suggested a similar strategy for assimilating pas-
sive microwave brightness temperatures for snow data assimilation through the use
of an artificial neural network (ANN). The ANN uses the inputs from the land surface
model and is trained to the observed brightness temperatures to be assimilated. The
results of Forman et al. (2014) indicated that the ANN could serve as a computationally20

efficient observation operator instead of more complex radiative transfer models. In the
current study, we evaluate the effectiveness of a number of these strategies for land
data assimilation when the observations include the effects of processes that are not
included in the land surface model.

The article is organized as follows: First, we examine the effectiveness of satel-25

lite soil moisture retrieval products in their ability to capture the effects of irrigation
(Sect. 2). The evaluation is conducted by quantitatively comparing the probability dis-
tribution functions from various remote sensing soil moisture datasets and land surface
model simulations. The article then focuses on the impact of various a priori bias cor-

5974

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/5967/2015/hessd-12-5967-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/5967/2015/hessd-12-5967-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 5967–6009, 2015

Utility of soil
moisture retrievals

for irrigation
detection

Kumar et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

rection approaches in data assimilation when the distributions of the model and the
observations are significantly different due to unmodeled irrigation processes (Sect. 3).
Section 3 presents a synthetic data assimilation experiment that explores the limita-
tions of a suite of a priori bias correction strategies in such scenarios. Finally, Sect. 4
presents a summary and discussion of major conclusions of the study.5

2 Evaluation of satellite remote sensing data over irrigated areas

In this section, we examine the utility of modern soil moisture remote sensing datasets
towards the detection of irrigation features. The irrigation practices over the world differ
in the method of irrigation, the trigger used and the amount of water used in irrigation.
A typical irrigation practice in the US is to apply irrigation throughout the growing sea-10

son at a level where the plants are not under transpiration stress. The introduction of
irrigation at the beginning of the growing season would lead to increased surface soil
moisture and a significant dry down would only occur at the end of the growing season
when irrigation controls are removed. Figure 1 shows the MODIS-based irrigation grid-
cell fraction map (%) derived by Ozdogan and Gutman (2008) and validated against15

USGS irrigation data. Some of the known hotspots of irrigation over the Continental US
are highlighted in this map, which includes the plains of Nebraska, lower Mississippi
basin and central California valley.

To demonstrate the impact of irrigation, land surface model simulations are con-
ducted at a single grid point located in the plains of Nebraska (as shown in Fig. 1).20

Figure 2 presents the time series of surface soil moisture (using a 10 cm thick surface
layer) for a representative year from two simulations of the Noah (version 3.3; Ek et al.,
2003) land surface model. The simulations demonstrate the impact of irrigation at this
location: (1) model forced with a given meteorological forcing data (SIM1) and (2) a
seasonal irrigation scheme simulated on top of the SIM1 configuration (SIM2). The25

simulations use the modified 20 category MODIS landcover data (Friedl et al., 2002)
and are forced with meteorological boundary conditions from the North American Land
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Data Assimilation System Phase 2 (NLDAS-2; Xia et al., 2012) data. The initial con-
ditions for the model simulations are generated by spinning up the LSM from 1979
to 2000. The irrigation scheme employed here simulates a demand driven, sprinkler
irrigation technique, based on Ozdogan et al. (2010). Irrigation is triggered when the
root zone soil moisture falls below the transpiration stress threshold for a particular5

grid cell. The scheme computes the irrigation requirement as an equivalent height of
water, which is then applied as an addition to the precipitation input to the model. The
irrigation scheme is only applied to irrigated land types such as crops and grasslands
and is only enabled during growing seasons (when 40 % of the annual range of green
vegetation fraction at a grid cell is exceeded). In addition, the irrigation requirement10

is enabled daily between 06:00 and 10:00 local time, similar to the approach used in
Ozdogan et al. (2010).

As the seasonal irrigation picks up in April, surface soil moisture in SIM2 gets much
wetter compared to the SIM1 integration. Towards the end of the summer, the imposed
irrigation is removed, which then causes the soil moisture to dry down and approach15

the SIM1 based estimates. For the purpose of developing climatologies, the model inte-
grations were conducted for several years (2000–2012). Similar features are repeated
in other years, leading to a seasonal wet bias in SIM2 compared to SIM1, mainly in the
summer months.

A comparison of the soil moisture distributions from the two integrations are shown20

in Fig. 3, which shows a plot of the quantiles of SIM1 data against the quantiles of
SIM2 data. For comparison, the figure also shows a 45-degree reference line. If the
two datasets come from similar distributions, the points in the q-q plot should fall ap-
proximately along this reference line and the departure from the reference line indicates
differences in the distributions of the two datasets. Figure 3 indicates that there are sig-25

nificant differences in the SIM1 and SIM2 distributions with shifts in location, scale and
symmetry. The data points are systematically above the 45-degree line indicating that
the mean of the distributions are significantly different, with distribution for SIM2 higher
valued than that of SIM1. The quantile-quantile plot also shows a bimodal nature due
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to the seasonal effect of irrigation. Finally, the slope of the points on the q-q plot is
higher than 1, indicating that there are differences in the spread or variances of the two
distributions as well.

A two sample Kolmogorov-Smirnov (K-S) test (Chakravarti et al., 1967) can be used
to quantitatively compare the probability distributions of two datasets. The K-S statistic5

quantifies a distance between empirical distribution functions of two samples (F (x) and
G(x) where x is the sampled variable), and is computed as follows:

Dm,n = max
x
|F (x)−G(x)|, (1)

where m and n are the sample sizes of F and G.
The null distribution of the K-S statistic is calculated under the null hypothesis that10

samples are drawn from the same distribution. The null hypothesis is rejected at level
α if

Dm,n > c(α)

√
m+n
mn

, (2)

where c(α) is the inverse of the Kolmogorov distribution at α.
To examine the impact of irrigation on soil moisture distributions over a larger spa-15

tial domain, the SIM1 and the SIM2 experiments are extended to a larger domain,
encapsulating the Continental US at 0.125◦ spatial resolution. The model integrations
are conducted during the time period of 2000 to 2013. The K-S test is then applied to
the probability distributions of the surface soil moisture estimates from the two integra-
tions. The resulting values for the K-S statistic (D) are shown in Fig. 4. Only locations20

at which the null hypothesis of the K-S static is not rejected are shown in Fig. 4. Values
of D closer to zero indicate that the soil moisture distributions from the SIM1 and SIM2
integrations are similar. Conversely, larger D values indicate locations where the soil
moisture distributions from the two integrations differ. As the difference between the
two integrations in this example is only due to the simulation of seasonal irrigation, the25

locations with positive K-S metric values in Fig. 4 indicate areas where the irrigation
5977

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/5967/2015/hessd-12-5967-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/5967/2015/hessd-12-5967-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 5967–6009, 2015

Utility of soil
moisture retrievals

for irrigation
detection

Kumar et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

artifacts are applied and are consistent with the input irrigation intensity data used in
the simulations. The K-S metrics, therefore, can be used to detect instances where
the distributions of soil moisture retrievals and the model estimates differ significantly,
including differences due to the treatment of irrigation.

Figure 5 shows a quantitative comparison of the differences in soil moisture dis-5

tributions using the K-S metrics from six remote sensing soil moisture retrievals and
a land surface model simulation (SIM1 configuration), for the continental US The re-
mote sensing based products are: (1) the blended multi-sensor soil moisture prod-
uct from the European Space Agency (ESA) known as the Essential Climate Variable
(ECV) product (Liu et al., 2012b), (2) soil moisture retrievals from AMSR-E using the10

Land Parameter Retrieval Model (LPRM) algorithm (Owe et al., 2008), (3) soil mois-
ture retrievals from WindSat, (4) soil moisture retrievals from the backscatter mea-
surements acquired by ASCAT, (5) soil moisture retrievals from AMSR2 and (6) soil
moisture retrievals from the SMOS mission. The WindSat and ASCAT retrievals are
obtained through the Soil Moisture Operational Products System (SMOPS; Liu et al.,15

2012a) of NOAA/NESDIS. The level 3 AMSR2 data from the Japan Aerospace Ex-
ploration Agency (JAXA; EORC, 2013) and the level 2 swath based SMOS products
from ESA (Kerr et al., 2006) are used in these comparisons. The temporal extent
of these datasets varies. The ECV data are available from January 1979–December
2013, AMSR-E from June 2002–October 2011, WindSat from January 2007–present,20

ASCAT from January 2007–present, AMSR2 from July 2012–present and SMOS from
April 2012 to present. The CDFs for each dataset are computed using all available
data. The available quality control information in each remote sensing dataset is used
to exclude data over regions with dense vegetation, RFI interference, precipitation and
frozen ground. The model CDFs are computed using the simulated surface soil mois-25

ture estimates from 2000 to 2013. Differences in the dynamic range between observed
and modeled soil moisture are normally removed prior to assimilation and here we re-
move the differences in the mean and variance prior to calculating the K-S metrics. The
data values are normalized first with a standard score approach ((xti −µi )/σi where xti
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is the data value at time t and µi and σi are the mean and standard deviation of the
data at grid point i ) before computing the K-S metrics. Figure 5 shows the D estimates
from the K-S test for each comparison at grid points where the the null hypothesis of
the K-S static is not rejected. Not surprisingly, the ECV data comparison shows the
lowest D values, possibly due to the fact that the ECV product was generated by CDF5

matching soil moisture estimates from different sensors to a simulation of Noah land
surface model from the Global Land Data Assimilation System (GLDAS; Rodell et al.,
2004). Comparatively, larger differences are seen in all other comparisons, which are
likely caused by a mix of biases resulting from instrument error, retrieval algorithms
errors, and unmodeled processes, and other representativeness differences.10

The spatial patterns of these metrics shown in Fig. 5 can also be potentially used as
a first measure of whether a sensor captures observational features such as irrigation.
Specifically, a relatively small K-S metric at a location known to have irrigation suggests
that the remotely sensed observations did not detect that irrigation. However, the con-
verse is not necessarily true, in that a large K-S metric does not necessarily indicate15

successful detection of irrigation (since it could be caused by other model-remotely
sensed discrepancies). For example, a strong signal of vegetation density in the east-
ern US can be noticed in the K-S metric map for AMSR2. Similarly, in the ASCAT K-S
metric map, large differences can be observed around several major cities such as Dal-
las, Houston and Atlanta. We focus on three key hotspots of irrigation in the US shown20

in Fig. 1: the plains of Nebraska, lower Mississippi basin and central California valley.
Of the regions, only the lower Mississippi has relatively higher K-S metric values, and
only for AMSR-E, AMSR2 and SMOS.

To examine if these spatial patterns of differences in K-S metrics from various remote
sensing datasets are in fact representative of observational artifacts such as irrigation,25

we examine the time series of soil moisture over these regions. For an equivalent com-
parison given the possible differences in the respective dynamic ranges, each dataset
is normalized first (using the standard score approach) before comparing them on the
same graph. Figure 6 shows the normalized time series of soil moisture from the ob-
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servations (from SMOS, AMSR2 and ASCAT), the Noah LSM driven with the NLDAS-2
forcing, with and without irrigation for the year 2013. A 5-day moving average is applied
to the SMOS, AMSR2 and ASCAT retrievals to reduce the noise in the satellite retrieval
time series. As the gridcell averages for the satellite retrievals reflect averages of the
irrigated and non-irrigated pixels, a similar weighted estimate was produced for the5

LSM-based irrigated soil moisture values. The LSM time series representing irrigation
in Fig. 6 is generated by weighting the model soil moisture estimate with and without
irrigation for each gridcell by the irrigation fraction and (1 – irrigation fraction) of that
gridcell, respectively. Finally, in each region, only gridcells with at least 30 % irrigation
fraction indicated by the MODIS map are employed in computing the spatial averages.10

Figure 6 indicates that the SMOS and AMSR2 retrievals agree more closely with
the LSM estimate without irrigation, in all three regions. In particular, there are few
indicators of systematic differences between the observations and the model without
irrigation in the summer months, suggesting the limited skill of the SMOS and AMSR2
retrievals for detecting features of seasonal irrigation. In contrast, ASCAT retrievals15

show better agreement with the LSM estimate with irrigation in the summer and fall
months, over the plains of Nebraska and lower Mississippi basin. In these regions, the
ASCAT moisture signal shows a wetter trend in the late fall months, which are in agree-
ment with the LSM estimate with irrigation. In the central California valley, however, no
such distinct contrast due to irrigation is observed in all three satellite retrievals. Similar20

trends are seen in other years (not shown). From these results, it appears that neither
SMOS nor AMSR2 retrievals capture the effects of irrigation, whereas the ASCAT re-
trievals are somewhat effective in detecting irrigation features in the plains of Nebraska
and the lower Mississippi basin.

It is important to note here that the apparent inability of SMOS and AMSR2 to capture25

the irrigation signal should not be assumed attributable to sensor deficiency; it may
instead reflect their larger spatial footprints. The raw resolutions of SMOS and AMSR2
products used here are at least 40 km, much coarser than the 0.125 degree resolution
employed in the LSM simulations. Thus, because Fig. 6 focuses on 0.125 grid cells with
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at least 30 % irrigation, the SMOS and AMSR2 data (interpolated to that resolution) will
necessarily include some soil moisture information from areas outside those defined
by the 30 % threshold – areas that are, almost by definition, drier. ASCAT, with a raw
resolution of ∼25 km does not seem as affected by this, perhaps in part due to its
finer base resolution; more analysis is needed, however, to understand the different5

behaviors of the sensors.
Note that in the model formulations, irrigation is simulated consistently from the late

spring months to early fall months, though these assumptions about the timing and
duration of irrigation in these regions may be imperfect relative to the actual practices in
the field. In the plains of Nebraska, the agreement between the ASCAT and model with10

irrigation are consistent throughout the summer and early fall months (from late June to
early October). In lower Mississippi, on the other hand, the ASCAT time series indicates
that the application of irrigation occurs in the later months (from late August onwards).
The agreement between the model with irrigation and the ASCAT time series is lower
in the early summer months. Though it is hard to ascertain the ability of ASCAT data for15

characterizing the timing of irrigation, it can be concluded that ASCAT retrievals perform
better than the SMOS and AMSR2 retrievals in terms of capturing the anomalous wet
soil moisture signals from irrigation over these areas known to be irrigated.

3 Evaluation of bias correction strategies in the presence of unmodeled
processes20

This section presents an examination of the effectiveness of a number of a priori bias
correction strategies in data assimilation when unmodeled processes (such as irriga-
tion) are a major source of biases between the model and the observations. A synthetic
experiment setup based on the SIM1 and SIM2 configurations presented in Section 2
is used to explore these issues.25

If SIM2 represents the observations to be used in assimilation, the typical procedure
in data assimilation systems is to rescale SIM2 estimates to the model climatology
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(SIM1 in this example). Figure 7 illustrates the impact of rescaling SIM2 to SIM1 clima-
tology with CDF matching (using both lumped and monthly CDFs), for the year 2000.
When lumped CDFs are used, rescaling leads to a wetter soil moisture time series
(compared to SIM1) during the summer months (but significantly lower than SIM2),
whereas during the non-irrigation months, rescaling leads to a much drier soil moisture5

time series, relative to SIM1. Lumped CDF-matching attempts to keep the climatology
of the rescaled time series to be close to the overall SIM1 climatology. As a result,
higher soil moisture values during irrigation are compensated by lower soil moisture
values during non-irrigated months to keep the overall climatology the same as that of
SIM1. In this example, the lumped CDF-based rescaling approach introduces spurious10

statistical artifacts during non-irrigated periods. The statistical artifacts of rescaling dur-
ing the non-irrigated months are greatly reduced if the CDF-matching is performed in a
more temporally stratified manner. As indicated by Fig. 7, when rescaling uses monthly
CDFs, the resulting time series remain close to SIM1 both during the irrigated and non-
irrigated periods. Note that most data assimilation studies (Reichle et al., 2007; Kumar15

et al., 2009; Liu et al., 2011; Draper et al., 2012; Kumar et al., 2012, 2014) use the
lumped CDF-scaling approach due to sampling density limitations of using temporally
finer resolved CDFs.

3.1 Structure of synthetic data assimilation experiments

The suite of data assimilation experiments employs an identical twin experiment setup.20

The model simulations are conducted at the single grid point shown in Fig. 1. The
Noah LSM simulation forced with the NLDAS-2 data is termed as the open loop (OL)
integration. A scheme designed to mimic seasonal crop irrigation employed on top of
the OL configuration is used as the “Control/Truth” simulation. All model integrations
use the same forcing and parameter datasets as that of the experiment presented in25

Section 2. The time period from 2000 to 2012 is used here for various evaluations.
From the truth simulation, observations are generated after incorporating realistic

errors and limitations of passive microwave remote sensing retrievals. To account for
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difficulties in retrieving soil moisture products from microwave sensors, the observa-
tions are masked out when the green vegetation fraction values exceed 0.7 and when
snow or precipitation are present. Random gaussian noise with an error standard devi-
ation of 0.02 m3 m−3 is added to the truth soil moisture values to mimic measurement
uncertainties. Finally, a data assimilation (DA) integration that assimilates the simu-5

lated observations in the OL configuration is conducted. The DA and OL integrations
are compared against the known truth to evaluate the impact of observations.

Most synthetic experiment studies (Reichle et al., 2002b; Crow et al., 2005; Crow
and Reichle, 2008; Kumar et al., 2009, 2012) use different inputs and models in the
control and OL configurations to simulate the systematic biases that are often present10

(between observations and the model) in real data assimilation scenarios. Here we
intentionally use a setup where the only difference between the control run and OL is a
process (irrigation) that is not modeled in the OL simulation, but included in the control
run. One could envision similar issues in real data assimilation systems, where features
from engineered systems will be present in observations, but not simulated in physical15

models. In this idealized scenario, biases between the model and the observations are
purely from observational features that are not modeled.

Four different data assimilation integrations are conducted using the synthetic obser-
vations: (1) DA-NOBC, assimilating observations directly without any bias correction,
(2) DA-CDFL, assimilating a priori scaled observations using CDF matching (using20

lumped CDFs representing all years and seasons), (3) DA-CDFM, assimilating a priori
scaled observations using monthly CDF matching (the model and observation CDFs
are generated separately for each calendar month) and (4) DA-ANN, assimilating the
simulated observations directly and using a trained ANN as the observation operator
in the data assimilation system (see Sect. 3.3 for details). In experiments DA-NOBC,25

DA-CDFL and DA-CDFM, the observation operator is the land surface model itself,
whereas the observation operator is represented by the trained ANN in the DA-ANN
experiment.
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In the DA-CDFL experiment, the observation and model CDF are first computed
independently for each grid cell using the 13 year (2000–2012) period. During data
assimilation, the observations are rescaled (separately for each grid cell) using these
lumped CDFs. As noted by Drusch et al. (2005), the climatologies between the model
and observations may change with season, which is clearly the case in our synthetic5

experiment setup due to the influence of seasonal irrigation. In the DA-CDFM experi-
ment, the observation and model CDFs are generated separately for each month and
for each grid point. The 13 year record of data ensures that there is enough sampling
density to accurately derive CDFs when the CDF calculation is stratified by calendar
months.10

3.2 Data assimilation method

The data assimilation integrations are conducted using a one-dimensional Ensemble
Kalman Filter (EnKF; Reichle et al., 2002a) algorithm. An ensemble size of 12 is used
in the simulations with perturbations applied to both meteorological fields and model
prognostic fields to simulate uncertainty in the model estimates. The EnKF alternates15

between an ensemble forecast step and a data assimilation step. An ensemble of
model states is propagated forward in time using the land surface model during the
forecast step. In the update step at time k, the model forecast is adjusted toward the
observation based on the relative uncertainties, with appropriate weights expressed in
the “Kalman gain” Kk :20

xi+k = x
i−
k +Kk [yik −Hkx

i−
k ], (3)

where xk and yk represent the model state and observation vectors, respectively. The
observation operator Hk relates the model states to the observed variable. The super-
scripts i− and i+ refer to the state estimates of the i -th ensemble member (−) before
and (+) after the update, respectively. Equation (3) indicates that the analysis incre-25

ments (xi+k −x
i−
k ) are computed by multiplying the Kalman gain Kk with the innovations
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(yik −Hkx
i−
k ). In “bias-blind” data assimilation systems, observations (yk) and model

forecasts (Hkx
i−
k ) are expected to be unbiased relative to each other, which presents

two choices for bias correction: (1) rescale observations into the model climatology, so
that the innovations are computed in the climatology of Hkx

i−
k or (2) compute the inno-

vations in the observation space by having an operator (Hk) that translates the model5

states into the observation space. The quantile mapping approaches fall in the first cat-
egory, whereas the use of trained forward models as observation operator represents
the second category. We examine the impact of using both set of approaches when
unmodeled processes dominate the sources of biases.

3.3 Use of a trained ANN as a forward observation operator10

Artificial neural networks (ANNs) are data processing systems used for pattern match-
ing applications and consist of a highly interconnected array of processing elements
(called neurons), designed as a mathematical generalization of human cognition and
learning. The basic architecture of an ANN consists of three layers: input, hidden and
output layers. The inputs processed through the input layer are communicated to the15

hidden layers and the results are output through the output layer. The topology of the
layers (defined by “activation functions”) and the weights of the interconnections are
used to develop accurate outputs. During the training phase, the ANN is presented
with a set of inputs and corresponding outputs. The trained ANN can then be used for
generating new predictions when presented with a new set of inputs.20

Figure 8 shows the structure of the ANN used in this study. The input layer consists of
six inputs, which are a combination of the meteorological inputs (rainfall and snowfall),
land surface model parameters (green vegetation fraction) and land surface model
estimates (surface soil temperature, snow water equivalent and surface soil moisture).
Note that the surface soil moisture in the input layer is from the LSM integration without25

irrigation. Five neurons were employed in the hidden layer based on a similar approach
used in Cao et al. (2008) and Forman et al. (2014). For this study, a single output
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node that estimates surface soil moisture values is used. The ANN is trained to the
simulated surface soil moisture observations at this grid point (generated from the truth
integration) during the time period of 2000–2012. Since the entire observation record
is used for estimating CDFs, we use the whole record for training the ANN as well, so
that the experiments are comparable. Figure 9 shows a comparison of the simulated5

observations and the estimates from the trained ANN for the year 2000. It can be seen
that the trained ANN model helps to capture the wetting of the soil due to seasonal
irrigation during the spring and summer months. Similar patterns are observed in other
years (not shown). The skill in turning on or off irrigation in the ANN is likely due to
the incorporation of the information in the training inputs of soil temperature and green10

vegetation fraction. The trained ANN is then used in the DA experiments.

3.4 DA experiment results

The evaluation of the four DA experiments is presented in Figures 10 to 12. Figure 10
shows daily averaged soil moisture estimates from various model integrations for the
year 2000 as a representative time series. The DA-NOBC integration assimilates the15

raw observations (shown in the figure) and as a result provides soil moisture estimates
closer to the Control simulation. DA-CDFL and DA-CDFM integrations ingest rescaled
observations (not shown), which do not show a systematic increase in the soil moisture
values during the spring and summer months. Similar behavior is seen for the DA-ANN
integration, which assimilates the raw observations, but does not represent the anoma-20

lously wet soil moistures of the Control simulation. The DA-CDFL, DA-CDFM and DA-
ANN integrations do not deviate much from the open loop integrations as the the size
of the analysis increments (Kk [yik −Hkx

i−
k ]) in these integrations is small. In DA-CDFL

and DA-CDFM, the rescaling causes the innovations to be computed in the climatology
of the model states whereas in the DA-ANN experiment, the innovations are computed25

in the climatology of the observations. In either case, when these small increments
generated by the assimilation system are applied back to the soil moisture forecast
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values (in the open loop climatology), the anomalous wet signals in the observations
are removed as bias artifacts and are never included in the analysis.

Figure 11 shows the average seasonal cycle of RMSE (stratified monthly across the
entire simulation period of 2000–2012) of surface soil moisture from various model
integrations. Similar to the trends in Fig. 10, the DA-NOBC integration shows signifi-5

cant improvements from data assimilation except for August. The peak of vegetation
(determined based on the green vegetation fraction) occurs in August leading to ob-
servations being excluded from the data assimilation system. As a result, the improve-
ments through assimilation are small during this time period. The seasonal nature of
the RMSE estimates from DA-CDFL, DA-CDFM, and DA-ANN is similar, and is close10

to the open loop RMSE estimates. The use of the scaled observations (in DA-CDFL
and DA-CDFM) and the use of the trained forward model (in DA-ANN) causes the
dampening and exclusion of the wet biases from irrigation in these DA integrations.

An important philosophical point, however, is warranted here. Implicit in the above
discussion of Fig. 11 is the assumption that a higher RMSE reflects a poorer perfor-15

mance. Depending on application, this may not be true at all. The whole point of the
scaling exercise is to convert a satellite-based soil moisture value, prior to its assimi-
lation, to a value consistent with that of the LSM used. This allows the further use of
the assimilated soil moisture value in that LSM, e.g., to initialize a forecast. If, once
the data assimilation process is finished, a soil moisture value is needed that reflects20

a more “correct” climatology (e.g. with an irrigation-influenced seasonal cycle, as in
the Control simulation), the data assimilation product can easily be scaled back to that
climatology using the reverse of the original scaling approach. Viewed in this light, the
data assimilation approach, with scaling, is essentially designed to capture the year-
to-year or short-term variations in soil moisture anomalies rather than the structure of25

the seasonal cycle. Also note that though the seasonal cycle of RMSE is lowest in the
DA-NOBC integration, this configuration is not really viable in real data assimilation
systems where biases are unavoidable. The DA-NOBC integration is included in the
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suite of experiments, as we have the knowledge of the exact sources and magnitudes
that contribute to the biases in this synthetic configuration.

The EnKF algorithm assumes linear system dynamics. It further assumes model and
observation errors that are Gaussian and mutually and serially uncorrelated. If these
assumptions hold, then the distribution of filter innovations (observation minus model5

forecast residuals) normalized by their expected covariance will follow a standard nor-
mal distribution N[0,1] (Gelb, 1974). The deviations from the N[0,1] of the normalized
innovation distribution is typically used as a measure of the degree of suboptimality of
the data assimilation system (Reichle et al., 2002a; Crow and Van Loon, 2006; Reichle
et al., 2007; Kumar et al., 2008). Figure 12 compares the distribution of the normal-10

ized innovations from DA-NOBC, DA-CDFL, DA-CDFM and DA-ANN to the N[0,1].
The mean and standard deviation of each distribution are also reported in the figure.
Unsurprisingly, the DA-NOBC indicates the largest deviation in the mean among the
experiments, indicating the presence of a bias. The mean values of the distributions
from DA-CDFL, DA-CDFM and DA-ANN are closer to zero, due to various a priori bias15

correction strategies employed.
These internal diagnostics are also often used for the estimation of input error param-

eters of the data assimilation system. For example, in adaptive filter implementations
(Reichle et al., 2008), the model and observation error specifications are continually
adjusted to yield near optimal behavior of the internal diagnostics (i.e., close to N[0,1]20

response of normalized innovation distribution). The analysis presented above indi-
cates that if unmodeled processes are present, these biases are reflected in the inno-
vation diagnostics as deviations from expected optimal measures. In such cases, the
reliance on these assimilation diagnostics may be misleading if the end goal of the as-
similation process is to correct the modeled seasonal cycle of soil moisture toward that25

of the observations. As noted above, though, the goal may instead be to capture, for
various applications, year-to-year anomalies in soil moisture, and for this purpose, the
innovation diagnostics reveal that the scaling approaches do provide superior behav-
ior. Again, though, it should be pointed out that the synthetic experiment was designed
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to isolate the impacts of unmodeled irrigation. In practice, the effects of unmodeled
irrigation will be conflated with bias issues that result from differences in land surface
parameters and differences in the very meaning (such as layer-depth) of the modeled
and retrieved soil moisture values.

4 Summary5

Due to the heterogeneity of the land surface and the large impact of human activities,
quantifying the variability of water and energy budgets on the land surface presents
unique challenges compared to the atmosphere and ocean components of the Earth
system. Irrigation is one of the pervasive human induced land management practices
that has a direct impact on the local and regional water budgets. In this article, we10

examine the utility of satellite soil moisture retrievals over irrigated areas. In addition,
the article also examines the limitations of current data assimilation practices when the
observations are dominated by processes that are not included in the land model.

Application of seasonal irrigation is likely to introduce systematic differences in the
soil moisture distributions. Therefore, if the remote sensing datasets are skillful in de-15

tecting irrigation features, the resulting soil moisture distributions would be significantly
different compared to a model simulation that does not simulate irrigation. We use this
hypothesis to examine the effectiveness of modern remote sensing soil moisture prod-
ucts from ASCAT, AMSR2 and SMOS in their ability to detect irrigation. A two sample
Kolmogorov-Smirnov test is used to to quantify the systematic differences between dis-20

tributions of model and remote sensing datasets, over a continental US domain. The
analysis reveals systematic differences in spatial patterns of the distributions of model
and remote sensing data. Additional analysis, however, suggests that these differences
are not always related to the detection of irrigation artifacts. Generally ASCAT retrievals
were found to be somewhat more skillful than the SMOS and AMSR2 retrievals in their25

ability to capture features of irrigation on the land surface.
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Overall the analysis presented in the paper assumes a demand-driven irrigation
scheme maintained throughout a growing season at a level where the plants are not
under transpiration stress. In reality, however, the type and level of irrigation may not
be seasonally persistent and therefore the nature of the expected biases in the soil
moisture signal due to irrigation may not be systematic throughout a season. Further5

comparisons with in-situ soil moisture data at irrigated locations will be required to con-
firm and isolate the limitations of the remote sensing data over these areas. A major
source of the biases between the satellite retrievals and the LSM estimates is the differ-
ences in the land surface parameters used in the respective models. The biases from
these parameter differences are likely to dominate the more subtle effects of irrigation.10

In addition, the scale mismatches between the model and the observations are also
likely to have an influence in the comparisons presented here. The spatial resolution
of the model (0.125◦) and the observations (∼25–40 km) can be considered relatively
coarse for detecting uniformly and simultaneously irrigated areas.

The second focus of the article is on the limitations of various a priori bias correc-15

tion strategies in land data assimilation towards representing unmodeled processes.
This issue is explored through a suite of synthetic data assimilation experiments. A
simulation of seasonal irrigation is used as analog for an engineered process that is
typically not included in large-scale land surface model simulations. The data assimi-
lation integrations merge the observations generated from the irrigation simulation into20

a model in which irrigation is absent that features a free running land surface model.
The data assimilation integrations include simulations that employ no bias correction,
a lumped CDF-matching correction, a seasonally varying CDF-matching correction or
ANN as a forward observation operator. The a priori bias correction approaches treat
all systematic differences between the model and observations as biases, including the25

differences introduced by unmodeled processes. As a result, all a priori bias correction
strategies considered above cause the signal from seasonal irrigation to be excluded in
the DA results, though the analysis of the DA internal diagnostics indicate near optimal
performance for such configurations.
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The challenge in data assimilation systems is to separate the biases that are due to
instrument error and retrieval algorithm errors from the biases induced by unmodeled
processes so that the true observational features are not excluded during data assim-
ilation. Detecting spatial patterns of such differences could be useful in the utilization
of soil moisture datasets in data assimilation systems. For example, even if a particular5

retrieval dataset is not skillful in detecting irrigation in a given region, it could still per-
form adequately over other regions. If knowledge of such limitations are known a priori,
at the very least the assimilation system could simply exclude the use of the retrievals
over known irrigated areas. Ancillary information from other remote sensing platforms
could be useful in such scenarios. For example, estimates of land surface temperature10

and evapotranspiration measurements can be obtained from thermal remote sensing
platforms, which can also be used as an analog for detecting the effects of irrigation.
Similar to the wetting effect irrigation has on surface soil moisture, it also has a cooling
effect on the surface temperature. Increased water availability from irrigation also leads
to increased evaporation. Finally, irrigated time periods also correlate with an increase15

in vegetation indices such as Leaf Area Index (LAI) and Normalized Vegetation Dif-
ference Index (NDVI). Expected trends of anomalies in these datasets from irrigation
could be used as added constraints in data assimilation to mask the known limitations
of passive microwave soil moisture retrievals.

It is obviously difficult to attribute bias to unmodeled processes or other factors. Cal-20

ibrating the land surface model parameters can be an effective a priori correction ap-
proach in this scenario. Land surface model calibration would incorporate the observa-
tional signals by altering the default model behavior. When the calibrated model is sub-
sequently used in data assimilation, the observational signal is preserved. In contrast,
calibrating a forward radiative transfer model (or using a trained ANN) has a different25

impact in terms of representing unmodeled processes. Calibration of forward obser-
vation operators would attribute the bias to its parameters, but since the default land
model behavior is unchanged, the unmodeled process is ultimately not represented.
The land surface model parameter estimation in this context also has a number of dis-
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advantages. The physical realism of the estimated parameters may be violated given
that the calibration would attribute the error from all unmodeled processes to model
parameters. If data from multiple sensors are being concurrently assimilated into such
a “calibrated” model, the calibration approach would not be viable because a new set
of calibrated model parameters would be needed for each sensor, leading to differing5

model climatologies and behaviors.
Another possible alternative may be to examine the characteristics of the differences

between the model and observations over a larger domain and infer a general estimate
of the relative biases. For example, instead of computing CDFs at each grid point, they
can be computed by grouping and stratifying model and observation estimates based10

on the vegetation type across a larger domain. The grid points where the soil moisture
PDFs differ significantly (based on the K-S metrics, for example) can be excluded in the
computation of the CDFs. The model and observation CDFs computed for each vege-
tation type can then be used in the data assimilation system. The goal behind such an
approach would be to develop an overall estimate of the true biases between the model15

and observations (i.e., an estimate that excludes biases due to unmodeled processes).
The downside of such approaches is that they obviously disregard the importance of
geographic specificity in bias correction strategies. The synthetic experiment that we
have used above is not an ideal setup to examine this approach. Since the only differ-
ence between the observations and the open loop in this setup is the effect of irrigation,20

the use of the above mentioned approach would produce identical CDFs for the model
and observations and therefore the assimilation approach would be equivalent to that
of DA-NOBC. We therefore leave the evaluation of such alternate approaches to future
work.
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Figure 1. MODIS-based irrigated gridcell fraction (%) map of Ozdogan and Gutman (2008)
over the continental US The boxes (outlined in red color) highlight three known areas with large
scale seasonal irrigation. The yellow triangle in the inset indicates the location of the grid cell
used in point scale land surface model simulations.
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Figure 2. Surface soil moisture time series for the year 2000 from two simulations of a land
surface model: (1) a free running model simulation with the NLDAS-2 forcing (SIM1) and (2) a
seasonal irrigation scheme simulated on top of SIM1 (SIM2).

5999

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/5967/2015/hessd-12-5967-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/5967/2015/hessd-12-5967-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 5967–6009, 2015

Utility of soil
moisture retrievals

for irrigation
detection

Kumar et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.12  0.14  0.16  0.18  0.2  0.22  0.24

SI
M

2 
so

il 
m

oi
st

ur
e 

(m
3/

m
3)

SIM1 soil moisture (m3/m3)

Figure 3. A comparison of the cumulative distribution functions (CDFs) from SIM1 and SIM2
integrations.
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Figure 4. Kolmogorov-Smirnov distance (D) from comparison of soil moisture distributions from
SIM1 and SIM2 integrations.
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Figure 5. K-S distance (D) from the comparison of soil moisture distributions from land sur-
face model and various satellite remote sensing datasets. Grid points with white color indicate
locations that are omitted from the K-S comparisons due to insufficient, reliable data.
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Figure 6. Comparison of normalized soil moisture values from Noah OL simulation, SMOS,
AMSR2 and ASCAT retrievals, for three subregions shown in Fig. 1.
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Figure 7. Same as Fig. 2 and including the surface soil moisture time series from rescaling
SIM2 to the SIM1 climatology. The red and blue lines represent the SIM2 integration rescaled
to the SIM1 climatology using lumped and monthly CDF-matching, respectively.
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Figure 8. Structure of the artificial neural network employed in the synthetic DA integrations.
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Figure 9. Time series of the Control simulation (black line), open loop (dashed line), simulated
observations (filled circles) and estimates from the trained ANN (triangles) for the year 2000.
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Figure 10. Time series of simulated observations, Control, open loop and various DA integra-
tions for the year 2000. DA-NOBC assimilates observations directly without any bias correction,
DA-CDFL assimilates a priori scaled observations using CDF matching (using lumped CDFs),
DA-CDFM assimilates a priori scaled observations using monthly CDF matching and DA-ANN
assimilates the simulated observations directly and using a trained ANN as the observation
operator in the data assimilation system.
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Figure 11. Average seasonal cycle of RMSE for surface soil moisture from the open loop, and
various DA integrations relative to the Control simulation.
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Figure 12. Distribution of normalized innovations from various DA integrations compared
against the standard normal distribution.
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