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Abstract. Analysis of stable oxygen isotope (
18

O) characteristics is a useful tool to 1 

investigate water provenance in glacier river systems. In order to attain knowledge on the 2 

diversity of 
18

O variations in Greenlandic rivers, we examined two contrasting glacierized 3 

catchments disconnected to the Greenland Ice Sheet (GrIS). At Mittivakkat Gletscher River, a 4 

small river draining a local temperate glacier in Southeast Greenland, diurnal oscillations in 5 


18

O occurred with a three-hour time lag to the diurnal oscillations in runoff. The mean 6 

annual δ
18

O was -14.68 ± 0.18 ‰ during the peak flow period. A hydrograph separation 7 

analysis revealed that the ice melt component constituted 82 ± 5 % of the total runoff and 8 

dominated the observed variations during peak flow in August 2004. The snowmelt 9 

component peaked between 10:00 and 13:00 hours, reflecting the long travel time and an 10 

inefficient distributed subglacial drainage network in the upper part of the glacier. At 11 

Kuannersuit Glacier River on the island Qeqertarsuaq in West Greenland, the 
18

O 12 

characteristics were examined after the major 1995-1998 glacier surge event. The mean 13 

annual 
18

O was -19.47 ± 0.55 ‰. Despite large spatial variations in the 
18

O values of 14 

glacier ice on the newly formed glacier tongue, there were no diurnal oscillations in the bulk 15 

meltwater emanating from the glacier in the post-surge years. This is likely a consequence of 16 

a tortuous subglacial drainage system consisting of linked-cavities, which formed during the 17 

surge event. Overall, a comparison of the 
18

O compositions from glacial river water in 18 

Greenland shows distinct differences between water draining local glaciers and ice caps 19 

(between -23.0 ‰ and -13.7 ‰) and the GrIS (between -29.9 ‰ and -23.2 ‰). This study 20 

demonstrates that water isotope analyses can be used to obtain important information on water 21 

sources and the subglacial drainage system structure that are highly desired for understanding 22 

glacier hydrology. 23 

 24 

1 Introduction 25 

There is an urgent need for improving our understanding of the controls on water sources and 26 

flow paths in Greenland. As in other parts of the Arctic, glacierized catchments in Greenland 27 

are highly sensitive to climate change (Milner et al., 2009; Blaen et al., 2014). In recent 28 

decades freshwater runoff from the Greenland Ice Sheet (GrIS) to adjacent seas has increased 29 

significantly (Hanna et al., 2005, 2008; Bamber et al., 2012; Mernild and Liston, 2012), and 30 

the total ice mass loss from the GrIS contributes with 0.33 mm sea level equivalent yr
-1

 to 31 

global sea level rise (1993-2010; Vaughan et al. 2013). In addition, ice mass loss from local 32 

glaciers (i.e. glaciers and ice caps peripheral to the GrIS; Weidick and Morris, 1998) has 33 

resulted in a global sea level rise of 0.09 mm sea level equivalent yr
-1

 (1993-2010; Vaughan et 34 

al. 2013). The changes in runoff are coupled to recent warming in Greenland (Hanna et al., 35 

2012, 2013; Mernild et al., 2014), an increasing trend in precipitation and changes in 36 

precipitation patterns (Bales et al., 2009; Mernild et al., 2015a), and a decline in albedo 37 

(Bøggild et al., 2010; Tedesco et al., 2011; Box et al., 2012; Yallop et al., 2012; Mernild et 38 

al., 2015b). Also, extreme surface melt events have occurred in recent years (Tedesco et al., 39 

2008, 2011; van As et al., 2012) and in July 2012 more than 97% of the GrIS experienced 40 

surface melting (Nghiem et al., 2012; Keegan et al., 2014). In this climate change context, 41 
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detailed catchment-scale studies on water source and water flow dynamics are urgently 1 

needed to advance our knowledge of the potential consequences of future hydrological 2 

changes in Greenlandic river catchments. 3 

Analysis of stable oxygen isotopes is a very useful technique to investigate water 4 

provenance in glacial river systems. Stable oxygen isotopes are natural conservative tracers in 5 

low-temperature hydrological systems (e.g. Moser and Stichler, 1980; Gat and Gonfiantini, 6 

1981; Haldorsen et al., 1997; Kendall et al., 2013). Consequently, oxygen isotopes can be 7 

applied to determine the timing and origin of changes in water sources and flow paths because 8 

different water sources often have isotopically different compositions due to their exposure to 9 

different isotopic fractionation processes. Since the 1970s, this technique has been widely 10 

used for hydrograph separation (Dinçer et al., 1970). Most often a conceptual two-component 11 

mixing model is applied, where an old water component (e.g. groundwater) is mixed with a 12 

new water component (e.g. rain or snowmelt), assuming that both components have spatial 13 

and temporal homogeneous compositions. The general mixing model is given by the equation 14 

     QCQ1C1 + Q2C2 + … ,    (1) 15 

where the discharge Q and the isotopic value C are equal to the sum of their components. This 16 

simplified model has limitations when a specific precipitation event is analysed because the 17 

water isotope composition in precipitation (new water) may vary considerably during a single 18 

event (e.g. McDonnell et al., 1990) and changes in contributions from secondary old water 19 

reservoirs may occur (e.g. Hooper and Shoemaker, 1986). Nevertheless, water isotope mixing 20 

models still provide valuable information on spatial differences in hydrological processes on 21 

diurnal to annual timescales (Kendall et al., 2013). 22 

 In glacier-fed river systems, the principal water sources to bulk runoff derive from ice 23 

melt, snowmelt, rainfall and groundwater components. Depending on the objectives of the 24 

study and on the environmental setting, hydrograph separation of glacial rivers has been based 25 

on assumed end-member isotope-mixing between two or three prevailing components 26 

(Behrens et al., 1971, 1978; Fairchild et al., 1999; Mark and Seltzer, 2003; Theakstone, 2003; 27 

Yde and Knudsen, 2004; Mark and McKenzie, 2007; Yde et al., 2008; Bhatia et al., 2011; 28 

Kong and Pang, 2012; Ohlanders et al., 2013; Blaen et al., 2014; Dahlke et al., 2014; 29 

Hindshaw et al., 2014; Meng et al., 2014; Penna et al., 2014; Rodriguez et al., 2014; Zhou et 30 

al., 2014). As glacierized catchments vary in size, altitudinal range, hypsometry, degree of 31 

glaciation, and thermal and morphological glacier types, isotope hydrograph separation often 32 

requires that the primary local controls on runoff generation are identified in order to analyse 33 

the variability in isotope time-series. In detailed studies it may even be necessary to divide a 34 

main component, such as ice melt, into several ice facies sub-components (Yde and Knudsen, 35 

2004). However, in highly glacierized catchments the variability in oxygen isotope 36 

composition is generally controlled by seasonal snowmelt and ice melt with episodic inputs of 37 

rainwater, whereas contributions from shallow groundwater flow may become important in 38 

catchments, where glaciers comprise a small proportion of the total area (e.g. Blaen et al., 39 

2014). 40 
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In this study, we examine the stable oxygen isotope composition in two Greenlandic 1 

glacier river systems, namely Mittivakkat Gletscher River (13.6 km
2
) which drains a local 2 

non-surging glacier in Southeast Greenland, and Kuannersuit Glacier River (258 km
2
) which 3 

drains a local glacier on the island Qeqertarsuaq, West Greenland. The latter experienced a 4 

major glacier surge event in 1995-1998. Our aim is to gain insights into the variability and 5 

controls of the oxygen isotope composition in contrasting glacierized river catchments located 6 

peripheral to the GrIS (i.e. the river systems do not drain meltwater from the GrIS). Besides a 7 

study by Andreasen (1984) at the glacier Killersuaq in West Greenland, this is the first study 8 

of oxygen isotope dynamics in rivers draining glacierized catchments peripheral to the GrIS. 9 

 10 

2 Study sites 11 

2.1 Mittivakkat Gletscher River, Ammassalik Island, Southeast Greenland 12 

Mittivakkat Gletscher (65°41' N, 37°50' W) is the largest glacier complex on Ammassalik 13 

Island, Southeast Greenland (Figure 1). The entire glacier covers an area of 26.2 km
2
 in 2011 14 

(Mernild et al., 2012) and has an altitudinal range between 160 and 880 m a.s.l. (Mernild et 15 

al., 2013a). Bulk meltwater from the glacier drains primarily westwards to the proglacial 16 

Mittivakkat Valley and flows into the Sermilik Fjord. The sampling site is located at a 17 

hydrometric station 1.3 km down-valley from the main subglacial meltwater portal. The 18 

hydrological catchment has an area of 13.6 km
2
, of which 9.0 km

2
 are glacierized (66%). The 19 

maritime climate is Low Arctic with annual precipitation ranging from 1400 to 1800 mm 20 

water equivalent (w.e.) yr
-1

 (1998-2006) and a mean annual air temperature (MAAT) at 515 m 21 

a.s.l. of -2.2 °C (1993-2011) (updated from Mernild et al., 2008a). There are no observations 22 

of contemporary permafrost in the area, and the proglacial vegetation cover is sparse. 23 

The glacier has undergone continuous recession since the end of the Little Ice Age 24 

(Knudsen et al., 2008; Mernild et al., 2011). In recent decades the recession has accelerated 25 

and the glacier has lost approximately 29% of its volume between 1994 and 2012 (Yde et al., 26 

2014), and surface mass balance measurements indicate a mean thinning rate of 1.01 m w.e. 27 

yr
-1

 between 1995/1996 and 2011/2012 (Mernild et al., 2013a). Similar to other local glaciers 28 

in the Ammassalik region, Mittivakkat Gletscher is severely out of contemporary climatic 29 

equilibrium (Mernild et al., 2012, 2013b) and serves as a representative location for studying 30 

the impact of climate change on glacierized river catchments in Southeast Greenland (e.g. 31 

Mernild et al., 2008b, 2015b; Bárcena et al., 2010, 2011; Kristiansen et al., 2013; Lutz et al., 32 

2014). 33 

 34 

2.2 Kuannersuit Glacier River, Qeqertarsuaq, West Greenland 35 

Kuannersuit Glacier (6946' N, 5315'W) is located in central Qeqertarsuaq (formerly Disko 36 

Island), West Greenland (Figure 1). It is an outlet glacier descending from the Sermersuaq ice 37 

cap and belongs to the Qeqertarsuaq-Nuussuaq surge cluster (Yde and Knudsen, 2007). In 38 

1995, the glacier started to surge down the Kuannersuit Valley with a frontal velocity up to 70 39 
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m per day (Larsen et al., 2010). By the end of 1998 or beginning of 1999, the surging phase 1 

terminated and the glacier went into its quiescent phase, which is presumed to last more than 2 

hundred years (Yde and Knudsen, 2005a). The 1995-1998 surge of Kuannersuit Glacier is one 3 

of the largest land-terminating surge events ever recorded; the glacier advanced 10.5 km 4 

down-valley and approximately 3 km
3
 of ice were moved to form a new glacier tongue 5 

(Larsen et al., 2010). 6 

Kuannersuit Glacier River originates from a portal at the western side of the glacier 7 

terminus and the sampling site is located 200 m down-stream (Yde et al., 2005a). The 8 

catchment area has an altitude range of 100-1650 m a.s.l. and covers 258 km
2
 of which 9 

Kuannersuit Glacier constitutes 103 km
2
 of the total glacierized area of 168 km

2
 (Yde and 10 

Knudsen, 2005a). The valley floor consists of unvegetated outwash sediment, dead-ice 11 

deposits and ice-cored, vegetated terraces. The proglacial area of the catchment is situated in 12 

the continuous permafrost zone (Yde and Knudsen, 2005b), and the climate is polar 13 

continental (Humlum, 1999). There are no meteorological observations from the area, but at 14 

the coastal town of Qeqertarsuaq (formerly Godhavn) located 50 km to the southwest the 15 

MAAT were -2.7 C and -1.7 C in 2011 and 2012, respectively (Cappelen, 2013). 16 

 17 

3 Methods 18 

3.1 Sampling protocol and isotope analyses 19 

In total, 287 oxygen isotope samples were collected from Mittivakkat Gletscher River during 20 

the years 2003-2009 (Table 1). Most of the sampling campaigns were conducted in August at 21 

the end of the peak flow period (i.e. the summer period with relatively high runoff). The most 22 

intensively sampled period was from 8 August to 22 August 2004, where sampling was 23 

conducted with a 4-hour frequency supplemented by short periods of higher frequency 24 

sampling. In the years 2005 and 2008, meltwater was also collected during the early melt 25 

season (i.e. the period before the subglacial drainage system is well-established) to evaluate 26 

the seasonal variability in the δ
18

O signal. An additional 40 river samples were collected for 27 

multi-sampling tests. 28 

During five field seasons in July 2000, 2001, 2002, 2003 and 2005, a total of 180 29 

oxygen isotope samples were collected from Kuannersuit Glacier River (Table 2) and another 30 

44 river samples were collected for multi-sampling tests. In addition, 13 ice samples were 31 

obtained along a longitudinal transect at the centreline of the newly formed glacier tongue 32 

with 500 m sampling increments in July 2001, and 23 ice samples were collected along a 33 

transverse transect with 50 m sampling increments in July 2003. The transverse transect 34 

crossed the longitudinal transect at a distance of 3250 m from the glacier front. Seven samples 35 

of rainwater were collected in a Hellmann rain gauge located in the vicinity of the glacier 36 

terminus in July 2002.  37 

All water samples were collected manually in 20 ml vials. Ice samples were collected 38 

in 250 ml polypropylene bottles or plastic bags before being slowly melted and decanted to 20 39 
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ml vials. The vials were stored in cold (~5 °C) and dark conditions to avoid fractionation 1 

related to biological activity. 2 

The relative deviations (δ) of water isotope compositions (
18

O/
16

O) were expressed in 3 

per mil (‰) relative to Vienna Standard Mean Ocean Water (0 ‰) (Coplen, 1996). The stable 4 

oxygen isotope analyses were performed at the Niels Bohr Institute, University of 5 

Copenhagen, Denmark, using mass spectrometry with an instrumental precision of ± 0.1 ‰ in 6 

the oxygen isotope ratio (δ
18

O) value.  7 

The oxygen isotope data from this study is available in the supplement (Tables S1-S6).  8 

 9 

3.2 Multi-sample tests 10 

In Mittivakkat Gletscher River, we conducted three multi-sample tests at 14:00 hours on 9, 15 11 

and 21 August 2004 to determine the combined uncertainty related to sampling and analytical 12 

error. During the multi-sample tests samples were collected simultaneously (within three 13 

minutes). The tests show standard deviations of 0.08 ‰ (n = 25), 0.06 ‰ (n = 5) and 0.04 ‰ 14 

(n = 10), respectively, which are lower than the instrumental precision (± 0.1 ‰). 15 

In Kuannersuit Glacier River, multi-sample tests were conducted in 2001, 2002 and 16 

2003, showing a standard deviation of ± 0.16 ‰ (n = 5), ± 0.13 ‰ (n = 17) and ± 0.44 ‰ (n = 17 

22), respectively. The multi-sample test in 2003 showed a standard deviation significantly 18 

larger than the instrumental precision (± 0.1 ‰). This deviation cannot be explained by the 19 

presence of a few high δ
18

O values. The most plausible explanation is that the glacier runoff 20 

was not well-mixed in 2003, possibly because different parts of the drainage system merged 21 

close to the glacier portal. 22 

 23 

3.3 Runoff measurements 24 

Stage-discharge relationships were used to determine runoff at each study site. The accuracy 25 

of individual runoff measurements is within ± 7 % (e.g. Herschy, 1999). For details on runoff 26 

measurements we refer to Hasholt and Mernild (2006) for Mittivakkat Gletscher River and 27 

Yde et al. (2005a) for Kuannersuit Glacier River. In short, at Mittivakkat Gletscher River the 28 

runoff measurements were conducted at a hydrometric monitoring station located after the 29 

braided river system had changed into a single river channel about 500 m from the river 30 

outlet. The station was installed in August 2004 and recorded water stage every 10 minutes 31 

during the peak flow period. At Kuannersuit Glacier River the runoff measurements were 32 

obtained at a hydrometric monitoring station installed in July 2001 at a location where the 33 

river merges to a single channel. Water stage was recorded every hour during the peak flow 34 

period. The station was destroyed during the spring river break-up in 2002. 35 

 36 

4 Results 37 
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4.1 δ
18

O characteristics 1 

At Mittivakkat Gletscher River, the early melt season is characterised by an increasing trend 2 

in δ
18

O. In 2005 the δ
18

O values in the early melt season were coincident with the δ
18

O values 3 

during the peak flow period (Figure 2a; Table 1). This indicates that the onset of ice melt 4 

commenced before the early melt season sampling campaign. In contrast, the 2008 onset of 5 

ice melt was delayed and snowmelt totally dominated the bulk composition of the river water, 6 

except on 30 May 2008 when a rainfall event (19 mm in the nearby town of Tasiilaq located 7 

10 km to the southeast of the Mittivakkat Gletscher River catchment; Cappelen, 2013) caused 8 

a positive peak in δ
18

O of ~1 ‰ (Figure 2b). This difference between the early ablation 9 

seasons in 2005 and 2008 is consistent with the meteorological record from Tasiilaq, which 10 

shows that the region received a large amount of precipitation in May 2008 (140 mm) 11 

compared to a dry May 2005 (17 mm; Cappelen, 2013). Episodic effects on δ
18

O by 12 

precipitation seem common throughout the ablation season. For instance, another short-term 13 

change occurred on 14 – 15 August 2005 (Figure 2a), where a negative peak in δ
18

O of ~2 ‰ 14 

coincided with a snowfall event (14 mm in Tasiilaq; Cappelen, 2013) and subsequent elevated 15 

contribution from snowmelt.  16 

During the peak flow periods, the mean annual δ
18

O was -14.68 ± 0.18 ‰ (Table 1). 17 

We use the 2004 time-series to assess oxygen isotope dynamics in the Mittivakkat Gletscher 18 

River during the peak flow period when the subglacial drainage system is assumed to be well-19 

established, transporting the majority of meltwater in a channelized network (Mernild, 2006). 20 

In Figure 3, the 2004 δ
18

O time-series is shown together with runoff (at the hydrometric 21 

station), air temperature (at a nunatak at 515 m a.s.l.) and electrical conductivity (at the 22 

hydrometric station; corrected to 25 °C). There was no precipitation during the entire 23 

sampling period, except for some drizzle on 8 August prior to the collection of the first 24 

sample. The time-series shows characteristic diurnal variations in δ
18

O composition, e.g. on 9-25 

10 and 16-18 August 2004. However, the diurnal pattern was severely disturbed at around 26 

03:00 hours on 11 August 2004. The hydrograph shows that during the falling limb the 27 

diurnal trend in runoff was interrupted, coinciding with an air temperature increase and a 28 

change in δ
18

O from decreasing to slightly increasing values. The runoff stayed almost 29 

constant until a rapid 39 % increase in runoff occurred at 13:00 hours on 12 August 2004, 30 

accompanied by an increase in δ
18

O and decrease in electrical conductivity. Thereafter, runoff 31 

remained at an elevated level for more than two days before returning to a diurnal oscillation 32 

of runoff. Hydrograph separation of water sources is a helpful tool to elucidate the details of 33 

this event (see section 4.3). 34 

In the Kuannersuit Glacier River, the sample-weighted mean annual 
18

O was -19.47 ± 35 

0.55 ‰ during the peak flow period (a sample-weighted value is applied because the number 36 

of samples per year deviated between 2 and 109). In Figure 4, the variations in δ
18

O are 37 

presented together with runoff for the period 14 – 31 July 2001. The 2001 runoff 38 

measurements showed diurnal oscillations with minimums around 10:00 – 12:00 hours and 39 

maximums at 19:00 – 20:00 hours, correlating with reversed oscillations in solutes (Yde et al., 40 

2005a) and poorly with suspended sediment concentrations (Knudsen et al., 2007). However, 41 

the variability of δ
18

O did not correlate with runoff or any of these variables. While some of 42 
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the episodic damming and meltwater release events appear as peaks on the runoff time-series, 1 

the peaks in the δ
18

O time-series coincided with rainfall events (e.g. on the nights of 21 July 2 

and 29 July 2001). Besides these episodic peaks, a lack of diurnal fluctuations in δ
18

O 3 

characterised the δ
18

O time-series. 4 

Figure 5 shows the diurnal δ
18

O variations during four July days without rainfall in the 5 

years 2000-2003. There were no diurnal oscillations in 2000, 2001 and 2002. In 2003, the 6 

fluctuations were much larger than in the preceding years, but the highest δ
18

O (-19.03 ‰) 7 

was measured at 21:00 hours and low δ
18

O prevailed during the night (~-21.0 ‰). This 8 

diurnal variability was also reflected in the standard deviations of the measurements taken 9 

over the 24-hour periods, which increased from ± 0.07 ‰ in 2000 to ± 0.11 ‰, ± 0.23 ‰ and 10 

± 0.70 ‰ in 2001, 2002 and 2003, respectively. The corresponding diurnal amplitudes for 11 

2000-2003 were 0.28 ‰, 0.42 ‰, 0.64 ‰ and 2.85 ‰, respectively. Although these 12 

measurements from a single day each year are insufficient to represent the conditions for the 13 

entire peak flow period, they may indicate post-surge changes in the structure of subglacial 14 

hydrological system which are worth addressing in detail in future studies of the hydrological 15 

system of surging glaciers.  16 

 17 

4.2 δ
18

O end-member components 18 

On Mittivakkat Gletscher, three snow pits (0.1 m sampling increments) were excavated at 19 

different altitudes in May 1999, showing a mean δ
18

O composition of -16.5 ± 0.6 ‰ 20 

(hereafter the uncertainty of δ
18

O is given by the standard deviation) in winter snow (Dissing, 21 

2000). The range of individual samples in each snow pit varied between -14.5 ‰ and -19.5 ‰ 22 

(269 m a.s.l.; mean δ
18

O = -16.24 ± 1.35; n = 36), -13.8 ‰ and -21.2 ‰ (502 m a.s.l.; mean 23 

δ
18

O = -17.11 ± 2.13; n = 21) and -11.9 ‰ and -21.6 ‰ (675 m a.s.l.; mean δ
18

O = -16.18 ± 24 

2.70; n = 26) (Dissing, 2000). Also, two ice-surface δ
18

O records of 2.84 km and 1.05 km in 25 

length (10 m sampling increments) were obtained from the glacier terminus towards the 26 

equilibrium line (Boye, 1999). The glacier ice δ
18

O ranged between -15.0 ‰ and -13.3 ‰ 27 

with a mean δ
18

O of -14.1 ‰ (Boye, 1999), and the theoretical altitudinal effect (Dansgaard, 28 

1964) of higher δ
18

O towards the equilibrium line altitude (ELA) was not observed. The 29 

reasons for an absence of a δ
18

O lapse rate are most likely due to the limited size and 30 

altitudinal range (160-880 m a.s.l.) of Mittivakkat Gletscher, but ice dynamics, ice age and 31 

meteorological conditions, such as frequent inversion (Mernild and Liston, 2010), may also 32 

have an impact. The δ
18

O of summer rain has not been determined in this region, but at the 33 

coastal village of Ittoqqortoormiit, located ~840 km to the north of Mittivakkat Gletscher, 34 

observations show monthly mean δ
18

O in rainwater of -12.8 ‰, -9.1 ‰ and -8.8 ‰ in June, 35 

July and August, respectively (data available from the International Atomic Energy Agency 36 

database WISER). Based on these observations it is evident that end-member snowmelt has a 37 

relatively low δ
18

O compared to end-member ice melt and that these two water source 38 

components can be separated. Contributions from rainwater will likely result in episodic 39 

increase in the δ
18

O of bulk meltwater. 40 
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 In the Kuannersuit Glacier River system, the glaciological setting differed from the 1 

Mittivakkat Gletscher River system. During the surge event of Kuannersuit Glacier, the 2 

glacier front advanced from ~500 m a.s.l. down to 100 m a.s.l., while a significant part of the 3 

glacier surface in the accumulation area was lowered by more than 100 m to altitudes below 4 

the ELA (~1100-1300 m a.s.l.). A helicopter survey in July 2002 revealed that the post-surge 5 

accumulation area ratio was less than 20 % (Yde et al., 2005a). Hence, we assume that the 6 

primary post-surge water source during the peak flow period is ice melt, particularly from 7 

ablation of the new glacier tongue. The mean δ
18

O value of glacier ice collected along the 8 

longitudinal and transverse transects was -20.5 ± 1.0 ‰ (n = 36). This is consistent with δ
18

O 9 

values of glacier ice located near the glacier front, showing mean δ
18

O of -19.4 ± 0.9 ‰ (n = 10 

20) in a section with debris layers formed by thrusting and -19.8 ± 1.1 ‰ (n = 37) in a section 11 

without debris layers (Larsen et al., 2010). In contrast to the setting at Mittivakkat Gletscher 12 

River, it was likely that other ice melt component in bulk runoff from Kuannersuit Glacier 13 

comprised water from several ice facies sub-component sources with various δ
18

O values and 14 

spatial variability. During the surge event, a thick debris-rich basal ice sequence was formed 15 

beneath the glacier and exposed along the glacier margins and at the glacier terminus (Yde et 16 

al., 2005b; Roberts et al., 2009; Larsen et al., 2010). The basal ice consisted of various genetic 17 

ice facies, where different isotopic fractionation processes during the basal ice formation 18 

resulted in variations in the δ
18

O composition. The δ
18

O in massive stratified ice was -16.6 ± 19 

1.9 ‰ (n = 10); in laminated stratified ice it was -19.6 ± 0.7 ‰ (n = 9) and in dispersed ice it 20 

was -18.8 ± 0.6 ‰ (n = 41) (Larsen et al., 2010). Also, during the termination of the surge 21 

event in the winter 1998/1999 proglacial naled was stacked into ~3 m thick sections of thrust-22 

block naled at the glacier front, as the glacier advanced into the naled (Yde and Knudsen, 23 

2005b; Yde et al., 2005b; Roberts et al., 2009). Naled is an extrusive ice assemblage formed 24 

in front of the glacier by rapid freezing of winter runoff and/or proglacial upwelling water 25 

mixed with snow. A profile in a thrust-block naled section showed a δ
18

O of -20.1 ± 0.5 ‰ (n 26 

= 60; excluding an outlier polluted by rainwater; Yde and Knudsen, 2005b). With regards to 27 

the end-member compositions of snowmelt and rainwater at Kuannersuit Glacier River, it was 28 

not possible to access snow on the upper part of the glacier, so no δ
18

O values on snowmelt 29 

were measured. Rainwater was collected during rainfall events in July 2002, showing a wide 30 

range in δ
18

O between -18.78 ‰ and -6.57 ‰ and a median δ
18

O of -10.32 ± 4.49 ‰ (n = 7; 31 

Table S6). 32 

 33 

4.3 Hydrograph separation 34 

The conditions for conducting hydrograph separation during the peak flow period were 35 

different for the two study catchments. At Mittivakkat Gletscher River it was possible to 36 

distinguish between the δ
18

O values of end-member ice melt and snowmelt components, and 37 

there were diurnal oscillations in δ
18

O. In contrast, the available data from Kuannersuit 38 

Glacier River did not allow hydrograph separation in the years following the surge event. 39 

Here, there were no diurnal oscillations in δ
18

O, and the composition and importance of the 40 

snowmelt component were unknown. Hence, we will continue by using the 2004 time-series 41 
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to construct a two-component hydrograph separation (equation 1) during a period without 1 

precipitation for Mittivakkat Gletscher River. 2 

First, we apply time-series cubic spline interpolation to estimate δ
18

O at one-hour 3 

time-step increments, matching the temporal resolution of the runoff observations. This 4 

approach allows a better assessment of the diurnal δ
18

O signal. For instance, a best-fit analysis 5 

shows that overall the δ
18

O signal lags three hours behind runoff (r
2
 = 0.66; linear correlation 6 

without lag shows r
2
 = 0.58), indicating the combined effect of the two primary components, 7 

snowmelt and ice melt, on the δ
18

O variations. The diurnal amplitude in δ
18

O ranged between 8 

0.11 ‰ (11 August 2004) and 0.49 ‰ (16 August 2004). However, there was no statistical 9 

relation between diurnal δ
18

O amplitude and daily air temperature amplitude (r
2
 = 0.28), 10 

indicating that other forcings than variability in surface melting may have a more dominant 11 

effect on the responding variability in δ
18

O. 12 

Based on the assumption that snowmelt and ice melt reflect their end-member δ
18

O 13 

compositions (-16.5 ‰ and -14.1 ‰, respectively), a hydrograph showing contributions from 14 

snowmelt and ice melt is constructed for the 2004 sampling period (Figure 6). The ice melt 15 

component constituted 82 ± 5 % (where ± indicates the standard deviation of the hourly 16 

estimates) of the total runoff and dominated the observed variations in total runoff (r
2
 = 0.99). 17 

This is expected late in the peak flow period, where the subglacial drainage mainly occurs in a 18 

channelized network in the lower part of the glacier (Mernild, 2006). The slightly decreasing 19 

trend in the daily snowmelt component was likely a consequence of the diminishing snow 20 

cover on the upper part of the glacier. The snowmelt component peaked around 10:00-13:00 21 

hours each day, reflecting the long distance from the melting snowpack to the proglacial 22 

sampling site and the possible existence of an inefficient distributed subglacial drainage 23 

network in the upper part of the glacier. 24 

The most likely reason for an abrupt change in glacial runoff, such as the one observed 25 

during the early morning of 11 August 2004 followed by the sudden release of water 34 hours 26 

later, is a roof collapse causing ice-block damming of a major subglacial channel. The 27 

hydrograph separation (Figure 6) shows that the proportion between ice melt and snowmelt 28 

remained almost constant after the event commenced, indicating that the bulk water derived 29 

from a well-mixed part of the drainage system, which was unaffected by the large diurnal 30 

variation in ice melt generation. This suggests that the functioning drainage network 31 

transported meltwater from the upper part of the glacier with limited connection to the 32 

drainage network on the lower part. Meanwhile, ice melt was stored in a dammed section of 33 

the subglacial network located in the lower part of the glacier, and suddenly released when the 34 

dam broke at 13:00 hours on 12 August (Figure 6). In the following hours ice melt comprised 35 

up to 94 % of the total runoff. On 13 August the snowmelt component peaked at noon but 36 

then dropped markedly and in the evening it only constituted 4 % of the total runoff. On 14 37 

August there were still some minor disturbances in the lower drainage network, but from 15 38 

August the drainage system had stabilized and the characteristic diurnal glacionival 39 

oscillations had taken over (Figures 3 and 6). 40 

 41 
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4.4 Uncertainties in δ
18

O hydrograph separation models 1 

The accuracy of end-member hydrograph separation models is limited by the uncertainties of 2 

the estimated values of each end-member component, the uncertainty of the cubic spline 3 

interpolation at each data point and the uncertainty of δ
18

O in the river. While the uncertainty 4 

of δ
18

O in the river is likely to be relatively small, the uncertainties of each end-member 5 

component must be kept in mind (e.g., Cable et al., 2011; Arendt et al., 2015). The 6 

assumption of discrete values of each end-member component is unlikely to reflect the spatial 7 

and temporal changes in bulk δ
18

O of snowmelt, ice melt and rainwater. For instance, Raben 8 

and Theakstone (1998) found a seasonal increase in mean δ
18

O in snow pits on Austre 9 

Okstindbreen, Norway, and episodic events such as passages of storms (e.g., McDonnell et 10 

al., 1990; Theakstone, 2008) or melting of fresh snow in the late ablation season may cause 11 

temporal changes in one component. Also, snowpacks have a non-uniform layered structure 12 

with heterogeneous δ
18

O composition and isotopic fractionation is likely to occur as melting 13 

progresses and the snowpack is mixed with rainwater (e.g., Raben and Theakstone, 1998; Lee 14 

et al., 2010). It is also difficult to assess how representative snow pits and ice transects are for 15 

the bulk δ
18

O value of each component. Spatial differences in δ
18

O may exist within and 16 

between snow pits but the overall effect on the isotopic composition of the water leaving the 17 

melting snowpack at a given time is unknown. 18 

 19 

4.5 Longitudinal and transverse 
18

O transects 20 

Glacier ice samples were collected on the surface of Kuannersuit Glacier to gain insights into 21 

the spatial variability of 
18

O on the newly formed glacier tongue. Both the longitudinal and 22 

transverse transects showed large spatial fluctuations in 
18

O (Figure 7). The longitudinal 23 

transect was sampled along the centreline but showed unsystematic fluctuations on a 500 m 24 

sampling increment scale. In contrast, the transverse transect, which was sampled 3250 m up-25 

glacier with 50 m increments, showed a more systematic trend where relatively high 
18

O 26 

values were observed along both lateral margins. From the centre towards the western margin 27 

an increasing trend of 0.46 ‰ per 100 m prevailed, whereas the eastern central part showed 28 

large fluctuations in 
18

O between -22.69 ‰ and -20.08 ‰. The total range of measured 
18

O 29 

in glacier ice along the transverse transect was 4.14 ‰. A possible explanation of this marked 30 

spatial variability may be that the ice forming the new tongue derived from different pre-surge 31 

reservoirs on the upper part of the glacier. If so, it is very likely that the marginal glacier ice 32 

was formed at relatively low elevations (high 
18

O signal), whereas the glacier ice in the 33 

western central part mainly derived from high elevation areas of Sermersuaq ice cap (low 34 


18

O signal). At present, there are only few comparable studies on transverse variations in 35 


18

O across glacier tongues. Epstein and Sharp (1959) found a decrease in 
18

O towards the 36 

margins of Saskatchewan Glacier, Canada. Hambrey (1974) measured a similar decrease in 37 


18

O towards the margins of Charles Rabots Bre, Norway, in an upper transect, whereas a 38 

lower transect showed wide unsystematic variations in 
18

O. Hambrey (1974) concluded that 39 

in the upper transect the marginal ice derived from higher altitudes than ice in the centre, 40 

whereas in the lower transect the wide variations were related to structural complexity of the 41 
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glacier. However, both of these studies are based on few samples. Hence, it therefore remains 1 

unknown whether a high spatial variability in 
18

O is a common phenomenon or related to 2 

specific circumstances such as surge activity or presence of tributary glaciers. 3 

 4 

5 Discussion 5 

5.1 Differences in δ
18

O between Mittivakkat Gletscher River and Kuannersuit Glacier 6 

River 7 

A significant difference between the δ
18

O dynamics in Mittivakkat Gletscher River and 8 

Kuannersuit Glacier River is the marked diurnal oscillations in the former and the lack of a 9 

diurnal signal in the latter during the peak flow period. At Mittivakkat Gletscher River, the 10 

2004 hydrograph separation analysis showed a three-hour lag of δ
18

O to runoff caused by the 11 

difference in travel time for ice melt and snowmelt. Meltwater in the early melt season was 12 

dominated by snowmelt with relatively high δ
18

O and weak diurnal oscillations; whereas 13 

diurnal oscillations with amplitudes between 0.11 ‰ and 0.49 ‰ existed during the peak flow 14 

period due to mixing of a dominant ice melt component and a secondary snowmelt 15 

component. Diurnal oscillations in δ
18

O are common in meltwater from small, glacierized 16 

catchments; for instance, at Austre Okstindbreen, Norway, the average diurnal amplitude is 17 

approximately 0.2 ‰ (Theakstone, 1988; Theakstone and Knudsen, 1989; 1996a,b; 18 

Theakstone, 2003). The largest diurnal amplitudes in δ
18

O (up to 4.3 ‰) have been observed 19 

in small-scale GrIS catchments, such as at Imersuaq and “N Glacier”, where large differences 20 

in δ
18

O exist between various ice facies and snowmelt (Yde and Knudsen, 2004; Bhatia et al., 21 

2011). 22 

The lack of strong diurnal oscillations as observed in the post-surge years at 23 

Kuannersuit Glacier River indicates either a mono-source system, a well-mixed drainage 24 

network, or a multi-source system, where the primary components have similar δ
18

O 25 

compositions. The expected primary component, glacier ice melt, has lower δ
18

O than bulk 26 

runoff and there must be additional contributions from basal ice melt (similar δ
18

O 27 

composition as runoff), snowmelt (unknown δ
18

O composition) or rainwater (higher δ
18

O 28 

composition than runoff). We therefore hypothesize that the presence of a well-mixed 29 

drainage network is the most likely reason for the observed δ
18

O signal in the bulk runoff 30 

from Kuannersuit Glacier. During the surge event the glacier surface became heavily 31 

crevassed and the pre-existing drainage system collapsed (Yde and Knudsen, 2005a). It is a 32 

generally accepted theory that the drainage system of surging glaciers transforms into a 33 

distributed network where meltwater is routed via a system of linked cavities (Kamb et al., 34 

1985; Kamb, 1987), but little is known about how subglacial drainage systems evolve into 35 

discrete flow systems in the years following a surge event. In the initial quiescent phase at 36 

Kuannersuit Glacier, frequent loud noises interpreted as drainage system roof collapses were 37 

observed, in addition to episodic export of ice blocks from the portal, suggesting ongoing 38 

changes to the englacial and subglacial drainage system. A consequence of these processes is 39 

also visible on the glacier surface, where circular collapse chasms formed above marginal 40 

parts of the subglacial drainage system (Yde and Knudsen, 2005a). 41 
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Lack of diurnal oscillations in δ
18

O has previously been related to other causes at non-1 

surging glaciers. At Glacier de Tsanfleuron, Switzerland, sampling in the late melt season 2 

(23-27 August 1994) showed no diurnal variations in δ
18

O, which was interpreted by Fairchild 3 

et al. (1999) as a consequence of limited altitudinal range (less than 500 m) of the glacier. An 4 

alternative explanation may be that snowmelt only constituted so small a proportion of the 5 

total runoff in the late melt season that discrimination between snowmelt and ice melt was 6 

impossible. At the glacier Killersuaq, an outlet glacier from the ice cap Amitsulooq in West 7 

Greenland, Andreasen (1984) found that diurnal oscillations in δ
18

O were prominent during 8 

the relatively warm summer of 1982, whereas no diurnal δ
18

O oscillations were observed in 9 

1983 because the glacier was entirely snow-covered throughout the ablation season, due to 10 

low summer surface mass balance caused by the 1982 El Chichón eruption (Ahlstrøm et al., 11 

2007). 12 

 13 

5.2 δ
18

O compositions in glacier rivers 14 

It is clear from the studies at Mittivakkat Gletscher and Kuannersuit Glacier that glacier rivers 15 

have different δ
18

O compositions. The bulk meltwater from Mittivakkat Gletscher has a δ
18

O 16 

composition similar to the water draining the nearby local glacier Hobbs Gletscher and to 17 

waters from studied valley and outlet glaciers in Scandinavia, Svalbard, European Alps, 18 

Andes and Asia (Table 3). The δ
18

O composition of Kuannersuit Glacier is lower and similar 19 

to the δ
18

O composition of the glacier Killersuaq (Table 3). Currently, the lowest δ
18

O 20 

compositions are found in bulk meltwater draining the GrIS in West Greenland (Table 3), but 21 

there is a lack of δ
18

O data from Antarctic rivers. Estimations of δ
18

O based on δD 22 

measurements suggest δ
18

O values of -32.1 ‰, -34.4 ‰ and -41.9 ‰ in waters draining 23 

Wilson Piedmont Glacier, Rhone Glacier and Taylor Glacier, respectively (Henry et al., 24 

1977).  25 

The differences in δ
18

O in glacial rivers are due to a combination of geographical 26 

effects related to altitude, continentality and latitude (Dansgaard et al., 1973) and temporal 27 

effects that work on various time-scales and in specific environments. These temporal effects 28 

include a seasonal effect (Dansgaard, 1964), a monsoonal effect (Tian et al., 2001; Kang et 29 

al., 2002), a precipitation amount effect (Holdsworth et al., 1991) and a palaeoclimatic effect 30 

(Reeh et al., 2002). For instance, the altitude and continentality effects cause low δ
18

O in 31 

rivers draining the GrIS compared to rivers draining valley glaciers at similar latitudes (Table 32 

3). More data on the δ
18

O composition and dynamics in glacial rivers is needed to improve the 33 

understanding of how the relative influence of geographical and temporal effects varies on 34 

local and regional scales. 35 

 36 

6 Conclusions 37 

In this study, we have examined the oxygen isotope hydrology in two of the most studied 38 

glacierized river catchments in Greenland to improve our understanding of the prevailing 39 
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differences between contrasting glacial environments. This study has provided insights into 1 

the variability and composition of δ
18

O in river water draining glaciers and ice caps adjacent 2 

to the GrIS. 3 

The following results were found: 4 

 The Mittivakkat Gletscher River on Ammassalik Island, Southeast Greenland, has a 5 

mean annual δ
18

O of -14.68 ± 0.18 ‰ during the peak flow period, which is similar to 6 

the δ
18

O composition in glacier rivers in Scandinavia, Svalbard, European Alps, Andes 7 

and Asia. The Kuannersuit Glacier River on Disko Island, West Greenland, has a 8 

lower mean annual 
18

O of -19.47 ± 0.55 ‰, which is similar to the δ
18

O composition 9 

in bulk meltwater draining an outlet glacier from the ice cap Amitsulooq but higher 10 

than the δ
18

O composition in bulk meltwater draining the GrIS. 11 

 In Mittivakkat Gletscher River the diurnal oscillations in δ
18

O were conspicuous. This 12 

was due to the presence of an efficient subglacial drainage system and diurnal 13 

variations in the ablation rates of snow and ice that had distinguishable oxygen isotope 14 

compositions. The diurnal oscillations in δ
18

O lagged the diurnal oscillations in runoff 15 

by approximately three hours. A hydrograph separation analysis revealed that the ice 16 

melt component constituted 82 ± 5 % of the total runoff and dominated the observed 17 

variations in total runoff during the peak flow period in 2004. The snowmelt 18 

component peaked between 10:00 and 13:00 hours, reflecting the long travel time and 19 

a possible inefficient distributed subglacial drainage network in the upper part of the 20 

glacier. 21 

 In contrast to Mittivakkat Gletscher River, Kuannersuit Glacier River showed no 22 

diurnal oscillations in δ
18

O. This is likely a consequence of glacier surging. In the 23 

years following a major surge event, where Kuannersuit Glacier advanced 10.5 km, 24 

meltwater was routed through a tortuous subglacial conduit network of linked cavities, 25 

mixing the contributions from glacier ice, basal ice, snow and rainwater. 26 

 27 

This study has showed that environmental and physical contrasts in glacier river catchments 28 

influence the spatio-temporal variability of the δ
18

O compositions. In Greenlandic glacier 29 

rivers, the variability in δ
18

O composition is much higher than previously known ranging from 30 

relatively high δ
18

O values in small-scale coastal glacierized catchments to relatively low 31 

δ
18

O values in GrIS catchments. This study demonstrates that water isotope analyses can be 32 

used to obtain important information on water sources and subglacial drainage system 33 

structure that are highly desired for understanding glacier hydrology. 34 

 35 
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Table 1. Summary of δ18O mean and range in bulk water samples at Mittivakkat Gletscher 
River. 

Year Campaign period n δ18Omean δ18Omax δ18Omin 
2003 11 – 13 Aug 4 -14.42 -14.30 -14.65 
2004 8 – 22 Aug 103 -14.55 -14.19 -14.91 
2005 30 May – 12 Jun 29 -14.71 -14.35 -15.16 
 23 – 26 Jul 19 -14.10 -13.74 -14.41 
 11 – 19 Aug 44 -14.73 -14.13 -16.43 
2006 11 – 16 Aug 11 -14.85 -14.26 -15.42 
2007 2 – 10 Aug 17 -14.69 -14.07 -15.11 
2008 29 May – 11 Jun* 28 -16.92 -15.92 -17.35 
 10 – 16 Aug 15 -14.84 -14.47 -15.20 
2009 8 – 16 Aug 17 -14.88 -14.56 -15.13 
* collected at a sampling site c. 500 m closer to the glacier front 

 

	



Table 2. Summary of δ18O mean and range in bulk water samples at Kuannersuit Glacier 
River. 

Year Campaign period n δ18Omean δ18Omax δ18Omin 
2000 24 – 27 Jul 21 -19.80 -19.47 -19.97 
2001 14 – 31 Jul 109 -19.25 -17.82 -19.55 
2002 14 – 15 Jul 21 -19.01 -18.75 -19.39 
2003 18 – 26 Jul 27 -20.43 -19.03 -21.88 
2005 19 – 24 Jul 2 -19.42 -19.32 -19.51 
 

	



Table 3. Maximum and minimum δ
18

O in glacier rivers. 

 

 

 

 

 

 

 

 

a Single sample 
 
  

Site Sampling period Latitude Longitude Maximum (‰) Minimum (‰) Reference 

Greenland       

Mittivakkat Gletscher (local glacier) 2003-09 65º41'N 37º50'W -13.7 -17.4 This paper 

Kuannersuit Glacier (ice cap outlet) 2000-05 69º46'N 53º15'W -17.8 -21.9 This paper 

Hobbs Gletscher (local glacier) 2004 65º46'N 38º11'W -14.7 -15.1 Yde, unpublished data 

Imersuaq (GrIS outlet) 2000 66º07'N 49º54'W -24.3 -29.9 Yde and Knudsen (2004) 

Killersuaq (ice cap outlet) 1982-83 66º07'N 50º10'W -19.5 -23.0 Andreasen (1984) 

Leverett Glacier (GrIS outlet) 2009 67º04'N 50º10'W -23.2 -24.2 Hindshaw et al. (2014) 

Isunnguata Sermia (GrIS outlet) 2008 67º11'N 50º20'W -26.2 a  Yde, unpublished data 

’N’ Glacier (GrIS outlet) 2008 68º03'N 50º16'W ~ -23.3 ~ -28.3 Bhatia et al. (2011) 

       

Scandinavia and Svalbard       

Austre Okstindbreen, Norway 1980-95 66º00'N 14º10'E -11.8 -14.4 Theakstone (2003) 

Storglaciären, Sweden 2004 & 2011 67º54'N 18º38'E -10.9 -15.9 Dahlke et al. (2014) 

Austre Grønfjordbreen, Svalbard 2009 77º56'N 14º19'E -11.2 a  Yde et al. (2012) 

Dryadbreen, Svalbard 2012 78º09'N 15º27'E -13.0 -15.5 Hindshaw et al. (2016) 

Longyearbreen, Svalbard 2004 78º11'N 15º30'E -12.3 -16.7 Yde et al. (2008) 

       

European Alps       

Glacier de Tsanfleuron, Switzerland 1994 46º20'N 07º15'E ~ -7.8 -12.2 Fairchild et al. (1999) 

Dammagletscher, Switzerland 2008 46º38'N 08º27'E -13.3 -17.3 Hindshaw et al. (2011) 

Hintereisferner, Austria 1969-70 46º49'N 10º48'E ~ -13.8 ~ -19.4 Behrens et al. (1971) 

Kesselwandferner, Austria 1969-70 46º50'N 10º48'E ~ -14.8 ~ -18.1 Behrens et al. (1971) 

       

Andes       

Cordillera Blanca catchments, Peru 2004-06 9º-10ºS 77º-78ºW -13.3 -15.3 Mark and McKenzie (2007) 

Juncal River, Chile 2011-12 32º52'S 70º10'W ~ -16.4 ~ -18.0 Ohlanders et al. (2013) 

       

Asia       

Hailuogou Glacier River, China 2008-09 29º34'N 101º59'E -13.7 -17.6 Meng et al. (2014) 

Kumalak Glacier No. 72, China 2009 41º49'N 79º51'E -9.8 a  Kong and Pang (2012) 

Urumqi Glacier No. 1, China 2009 43º07'N 86º48'E -8.7 a  Kong and Pang (2012) 



Figure captions 

 

Figure 1. Location map (A) of the study areas at (B) Mittivakkat Gletscher River, Southeast 

Greenland (image from Landsat 8 OLI on 3 September 2013); and at (C) Kuannersuit Glacier 

River, West Greenland (image from Landsat 8 OLI on 8 July 2014). 

 

Figure 2. δ
18

O time-series of meltwater draining Mittivakkat Gletscher in (a) 2005 and (b) 2008. 

 

Figure 3. Time-series of δ
18

O, discharge, air temperature and electric conductivity in meltwater 

draining Mittivakkat Gletscher in 8-21 August 2004. 

 

Figure 4. Time-series of δ
18

O (red curve) and discharge (black curve) in Kuannersuit Glacier River 

during the period 14-31 July 2001. 

 

Figure 5. Diurnal δ
18

O variations in Kuannersuit Glacier River on studied days in July in the post-

surge years 2000-2003. Multi-sample tests conducted in 2001, 2002 and 2003 showed standard 

deviations of ± 0.16 ‰, ± 0.13 ‰ and ± 0.44 ‰, respectively. 

 

Figure 6. Hydrograph showing the separation of the discharge in Mittivakkat Gletscher River 

(black curve) into an ice melt component (red curve) and a snowmelt component (blue curve) 

during the period 8-21 August 2004. The error of the ice melt and snowmelt components depends 

on the constant end-member estimates and the cubic spline interpolation. The arrow indicates the 

onset of the abrupt change in discharge. 

 

Figure 7. Variations in δ
18

O of glacier ice along a longitudinal transect and a transverse transect on 

Kuannersuit Glacier. The transverse transect crosses the longitudinal transect at a distance of 3,250 

m from the glacier terminus. 
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