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Abstract 9 

Rainfall and soil moisture are two key elements in modeling the interactions between the 10 

land surface and the atmosphere. Accurate and high-resolution real-time precipitation is 11 

crucial for monitoring and predicting the on-set of floods, and allows for alert and 12 

warning before the impact becomes a disaster. Assimilation of remote sensing data into a 13 

flood-forecasting model has the potential to improve monitoring accuracy. Space-borne 14 

microwave observations are especially interesting because of their sensitivity to surface 15 

soil moisture and its change. In this study, we assimilate satellite soil moisture retrievals 16 

using the Variable Infiltration Capacity (VIC) land surface model, and a dynamic 17 

assimilation technique, a particle filter, to adjust the Tropical Rainfall Measuring Mission 18 

Multi-satellite Precipitation Analysis (TMPA) real-time precipitation estimates. We 19 

compare updated precipitation with real-time precipitation before and after adjustment 20 

and with NLDAS gauge-radar observations. Results show that satellite soil moisture 21 

retrievals provide additional information by correcting errors in rainfall bias. The 22 

assimilation is most effective in the correction of medium rainfall under dry to normal 23 

surface condition; while limited/negative improvement is seen over wet/saturated 24 

surfaces. On the other hand, high frequency noises in satellite soil moisture impact the 25 

assimilation by increasing rainfall frequency. The noise causes larger uncertainty in the 26 
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false-alarmed rainfall over wet regions. A threshold of 2 mm/day soil moisture change is 27 

identified and applied to the assimilation, which masked out most of the noise.  28 

 29 

 30 

1 Introduction 31 

Precipitation is perhaps the most important variable in controlling energy and mass fluxes 32 

that dominate climate and particularly the terrestrial hydrological and ecological systems. 33 

Precipitation estimates, together with hydrologic models, provide the foundation for 34 

understanding the global energy and water cycles (Sorooshian, 2004; Ebert et al., 2007). 35 

However, obtaining accurate measurements of precipitation at regional to global scales 36 

has always been challenging due to its small-scale, space-time variability, and the sparse 37 

networks in many regions. Such limitations impede precise modeling of the hydrologic 38 

responses to precipitation. There is a clear need for improved, spatially distributed 39 

precipitation estimates to support hydrological modeling applications. 40 

In recent years, remotely sensed satellite precipitation has become a critical data source 41 

for a variety of hydrological applications, especially in poorly monitored regions such as 42 

sub-Saharan Africa due to its large spatial coverage. To date, a number of fine-scale, 43 

satellite-based precipitation estimates are now in operational production. One of the most 44 

frequently used is the Tropical Rainfall Measuring Mission Multi-satellite Precipitation 45 

Analysis (TMPA) product (Huffman et al., 2007). Over the 17 years lifetime since the 46 

launch of the Tropical Rainfall Measuring Mission (TRMM) in 1997, a series of high 47 

resolution (0.25-degree and 3-hourly), quasi-global (50°S - 50°N), near-realtime, 48 

TRMM-based precipitation estimates have been developed and made available to the 49 

research and applications communities (Huffman et al., 2007; 2010). Flood forecasting 50 

and monitoring is one major application for real time satellite rainfall products (Wu et al, 51 

2014). However, the applicability of satellite precipitation products for near real-time 52 

hydrological applications that include drought and flood monitoring has been hampered 53 

by their need for gauge-based adjustment. 54 
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While it is possible to create such estimates solely from one type of sensor, researchers 55 

have increasingly moved to using combinations of sensors in an attempt to improve 56 

accuracy, coverage and resolution. A promising avenue for rainfall correction is through 57 

the assimilation of satellite-based surface soil moisture into a water balance model (Pan 58 

and Wood, 2006). Over land, the physical relationship between variations in soil water 59 

storage and rainfall accumulation contain complementary information that can be 60 

exploited for the mutual benefit of both types of products (Massari et al., 2014; Crow et 61 

al., 2009). Unlike instantaneous rain rate, satellite surface soil moisture retrievals utilize 62 

low frequency microwave signals and possess some memory reflecting antecedent 63 

rainfall amounts.  64 

Studies have demonstrated that in situ (Brocca et al., 2009, 2013; Matgen et al., 2012) 65 

and satellite (Francois et al., 2003; Pellarin et al., 2008, 2013; Brocca et al., 2014) 66 

estimates of surface soil moisture could contribute to precipitation estimates by providing 67 

useful information concerning the sign and magnitude of antecedent rainfall 68 

accumulation errors. In particular, Brocca et al. (2014) estimated daily rainfall on a global 69 

scale based on satellite SM products by inverting the soil water balance equation. Crow et 70 

al. (2003, 2009, 2011) corrected space-borne rainfall retrievals by assimilating remotely 71 

sensed surface soil moisture retrievals into an Antecedent Precipitation Index (API) based 72 

soil water balance model using a Kalman filter (Kalman, 1960). However, these studies 73 

focused on multi-day aggregation periods and a space aggregated correction at 1⁰ 74 

resolution for the corrected precipitation totals. This limits their applicability in 75 

applications such as near real-time flood forecasting. Wanders et al. (2015) tried to 76 

overcome this limitation by the correction of 3 hourly satellite precipitation totals with a 77 

set of satellite soil moisture and land surface temperature observations. One important 78 

conclusion by Wanders et al. (2015) is that their results showed the limited potential for 79 

satellite soil moisture observations for correcting precipitation if “all-weather” – i.e. 80 

microwave based – land surface temperatures are available coincidently and at high 81 

spatial resolution as was the case with AMSR-E.   82 

But this isn’t always the case, and it is also noted that current low-frequency microwave 83 

soil moisture missions (specifically SMAP and SMOS) don’t have radiometers at 84 
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frequencies useful for estimating land surface temperatures, even though a 37 GHz sensor 85 

is part of the AMSR2 system. In fact SMAP and ECMWF/SMOS use LST from weather 86 

models analysis fields in their algorithms. Unfortunately the lowest microwave frequency 87 

of AMSR2 and SMOS precludes retrieving soil moisture from many areas with heavy 88 

vegetation, and AMSR2 has a significant dry bias with less availability than AMSR-E, 89 

but is no longer operable. So improvements to satellite precipitation from the Global 90 

Precipitation Mission products must reply solely on satellite soil moisture products from 91 

SMAP, which is promises better soil moisture retrievals due to increased penetration 92 

depth, and the improvements to the assimilation algorithms is the goal of this study.  93 

Thus, we focus exclusively on the usefulness of assimilating soil moisture products to 94 

improve satellite rainfall. We propose as part of the work how to improve the generation 95 

of rain particles and the bias-correction of the satellite soil moisture observations, as well 96 

as to enhance the assimilation algorithm to maximize the information that can be gained 97 

from using soil moisture alone to adjust precipitation. Due to the very strong and 98 

complicated spatial structure of precipitation, that is non-Gaussian and non-stationary in 99 

both time and space (Wanders et al., 2015), a more advanced method is applied to 100 

generate possible precipitation fields than were used in earlier studies or in Wanders et al, 101 

2015) (see section 2.2.2). Furthermore, a more advanced bias correction method is also 102 

applied to account for the reported problems in the second order statistics of the soil 103 

moisture retrievals. We used a soil moisture remote sensing product to improve real-time 104 

remote sensing precipitation product, TMPA 3B42RT, through a Particle Filter (PF) and 105 

therefore offer an improved basis for quantitatively monitoring and predicting flood 106 

events, especially in those parts of the world where in-situ networks are too sparse to 107 

support more traditional methods of hydrologic monitoring and prediction. The 108 

precipitation enhancement experiments are carried out over the continental U.S. 109 

(CONUS) and the precipitation skill is validated against the NLDAS gauge-radar 110 

precipitation product.  Section 5 presents a comparison of the results from this study to 111 

the earlier studies related to improving satellite precipitation. 112 
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2 Methods 113 

2.1 Overview 114 

Random replicates of satellite precipitation are generated based on real-time TMPA 115 

(3B42RT) retrievals and its uncertainty (Pan et al., 2010), which are then used to force 116 

the VIC land surface model (LSM) where one output of interest is surface soil moisture. 117 

Satellite soil moisture data products are compared and merged with the 3B42RT product 118 

to improve the accuracy of the satellite precipitation estimates. A schematic for the study 119 

approach is provided in Figure 1. Based on real-time 3B42RT retrievals, a set of possible 120 

precipitation estimates (a.k.a. replicates or particles) p! !!!,!,…,!  is generated with 121 

assigned initial prior probability weights w!
!!!,!,…,!. These rainfall rates are then used 122 

to force the VIC land surface model to produce soil moisture predictions θ! !!!,!,…,!. 123 

Retrievals of AMSR-E satellite surface soil moisture using the Land Surface Microwave 124 

Model (LSMEM) (Pan et al., 2014) are then merged with the LSM-based soil moisture 125 

within the Particle Filter (PF) that compares AMSR-E/LSMEM changes in soil moisture, 126 

∆SM, to the LSM predicted soil moisture changes. From these, posterior weights 127 

w!!
!!!,!,…,!  are calculated for each precipitation member (particle) that takes into 128 

account the uncertainties of AMSR-E/LSMEM ∆SM retrievals. From these updated 129 

weights, an updated precipitation probability distribution is constructed, where the 130 

precipitation particle with highest probability is taken as the “best” adjusted precipitation 131 

estimate (3B42RTADJ). The procedure is carried out over the continental US (CONUS) 132 

region on a grid-by-grid basis (0.25-degree) and a daily time step. Allowing for 6 months 133 

model spin-up period, the adjustment is done from January 2003 to July 2007.  134 

2.2 Modeling, Statistical Tools and Data Sources 135 

2.2.1 The Particle Filter 136 

Data assimilation methods are capable of dynamically merging predictions from a state 137 

equation (i.e. the land surface model) with measurements (i.e. AMSR-E retrievals) to 138 

minimize uncertainties from both the predictions and measurements. It is assumed that 139 
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the source of uncertainty in the land surface model predictions come solely from the real-140 

time satellite precipitation, so that the particle filter (PF) provides an algorithm to update 141 

the precipitation based on the AMSR-E retrievals. The state evolution of a particle filter 142 

from discrete time t-1 to t can be represented as: 143 

θ! = f! θ!!!,p!, κ!,α!         (1) 144 

where θ! is the 1st layer soil moisture at time t, whose value is predicted by the state 145 

equation Eq.(1) as f!(•), and in the study is the hydrological model VIC, which takes in 146 

forcing data, including precipitation (p!) and other forcings (κ!); and simulates land 147 

surface states (soil moisture and soil temperatures at various levels, snow, etc.) and fluxes 148 

(evapotranspiration, runoff) at time t. Herein we are basically interested only in the 1st 149 

layer (top 10cm) soil moisture state and precipitation forcing, so other states and fluxes 150 

are not explicitly shown. α! is the random error in the prediction of θ!, whose statistics 151 

are known but not its value at any specific time. 152 

At time t, the satellite surface soil moisture retrieval, θ!∗, can be related to the VIC 153 

modeled 1st layer soil moisture θ! as: 154 

θ!∗ = h! θ!, β!          (2) 155 

where h!  is taken as a regression that transforms the VIC simulated  1st layer soil 156 

moisture to satellite surface soil moisture. β! is the noise in this regression relationship. 157 

The two noises α! and β! are assumed to be independent of each other at all times t. 158 

At time t, given a 3B42RT precipitation estimate, p!!"#, a set of N precipitation replicates 159 

p!! !!!,!,…,!  and their associated initial prior probability weight w!! !!!,!,…,!  are 160 

generated. 161 

g p!!"# ~ p!! ,w!! !!!,!,…,!        (3) 162 

w!!
!
!!! = 1          (4) 163 

g  is a probability density function. For N precipitation replicates, p!! !!!,!,…,!, the 164 

propagation of the states from time step (t-1) to t is by the VIC land surface model 165 
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represented in Eq.(1). The VIC land surface model simulates the 10cm 1st layer soil 166 

moisture, θ!! !!!,!,…,! for each precipitation replicate. 167 

θ!! = f! θ!!!,p!! , κ!,α! !!!,!,…,!       (5) 168 

with the associated weights assigned to the precipitation member: 169 

θ!! ,w!! !!!,!,…,! = f! θ!!!,p!! , κ!,α! ,w!! !!!,!,…,!     (6) 170 

If the satellite soil moisture retrieval at time t is θ!∗, the update of precipitation forcing is 171 

accomplished by updating the importance weight of each replicate given the 172 

“measurement” θ!∗:  173 

w!
!!~ g θ!! θ!∗ !!!,!,…,!        (7) 174 

w!
!!!

!!! = 1          (8) 175 

The likelihood function g θ!! θ!∗  can be derived from h!and g β! . The schematic of the 176 

utilized strategy is shown in Figure 2. The primary disadvantage of the particle filter is 177 

the large number of replicates required to accurately represent the conditional probability 178 

densities of p! and θ!. When the measurements exceed a few hundred, the particle filter is 179 

not computationally practical for land surface problems. Considering computation 180 

efficiency, we set the number of independent particles, N, from the prior distribution to 181 

be 200.  182 

2.2.2 Precipitation Replicates Generation 183 

We generate precipitation replicates,! p!! !!!,!,…,!, based on statistics comparing NLDAS 184 

and 3B42RT precipitation, as shown in Figure 3. Given a 3B42RT precipitation 185 

measurement (binned by magnitude), with bin minimum and maximum indicated in 186 

Figure 3, precipitation replicates are generated based on the corresponding 15th, 30th, 70th, 187 

85th percentiles and the maximum NLDAS precipitation of the particular quantile bin as 188 

follows: 15% of the replicates are generated with values uniformly distributed from 0 and 189 

15th percentile; 15% of replicates with values from 15th to 30th percentile; 20% of 190 

replicates with values from 30th percentile to the median; 20% of the replicates generated 191 

from the median to 70th ; 15% with values from 70th to 85th percentile; and 15% from the 192 
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85th percentile to the maximum precipitation value. Note that although the generation of 193 

particles is based on statistics calculated from NLDAS, results show little difference 194 

generating precipitation ensembles uniformly distributed between 0 and 200 mm/day. 195 

2.2.3 AMSR-E/LSMEM Soil Moisture Retrievals 196 

The soil moisture product is derived from multiple microwave channels of the Advanced 197 

Microwave Scanning Radiometer for EOS (AMSR-E) instrument. The retrieval algorithm 198 

by Pan et al. (2014) is an enhanced version of the Land Surface Microwave Emission 199 

Model (LSMEM). The near surface soil moisture and vegetation optical depth (VOD) are 200 

estimated simultaneously from a dual polarization approach that utilizes both horizontal 201 

(H) and vertical (V) polarizations measurement by the space-borne sensor. The input 202 

AMSR-E brightness temperature comes from the NSIDC AMSR-E/Aqua Daily Global 203 

Quarter-Degree Gridded Brightness Temperatures product (overlapping swaths in the 204 

same day are truncated so that only the latest one is present). Consequently, the soil 205 

moisture retrievals are also gridded at 0.25-degree with one ascending map and one 206 

descending map at the daily time step. A maximum threshold value of 0.6 m3/m3 has been 207 

applied manually to reduce error from open water bodies. According to Pan et al. (2014), 208 

the soil moisture dataset based on observations from AMSR-E are shown to be consistent 209 

at large scales in terms of reproducing the spatial pattern of soil moisture from VIC land 210 

surface model simulation. Ascending soil moisture retrievals (equatorial crossing time 211 

1:30PM local time) is assimilated in this study. 212 

Similarly, while the spatial patterns of the basic statistics of AMSR-E/LSMEM SM 213 

retrievals compare well to VIC simulations (Pan et al., 2014), VIC has its top layer (10 214 

cm), which is deeper than the detection depth of AMSR-E, so that the mean and temporal 215 

variability of the retrievals are higher than the VIC simulated soil moisture (Figure 4 in 216 

Pan et al., 2014). Considering this difference between detection depths, we pre-process 217 

soil moisture retrievals as follows: 218 

1) Rescale soil moisture retrievals (AMSR-E/LSMEM SM) to have the same minimum 219 

and maximum range as VIC simulated 1st layer soil moisture. 220 
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2) Calculate a daily soil moisture change. As satellite retrievals are manually truncated to 221 

be no more than 0.6 m3/m3 (equivalent to 60mm of water in the top soil layer in VIC), 222 

retrievals larger than 0.6 m3/m3 are excluded. 223 

3) Fit a 2nd order polynomial regression model with ΔSM (all units in mm of water in the 224 

top layer) from satellite and VIC simulation on a monthly basis and 3×3 grid scale 225 

(window). 226 

After pre-processing, the distribution of soil moisture change matches fairly well with 227 

ΔSMVIC (Figure 4). The mean absolute difference reduces from a spatial average of 5.25 228 

mm/day to 0.71 mm/day, with relatively larger value over eastern CONUS. According to 229 

Pan et al. (2014), the no-skill or negative-skill areas occur mostly over eastern dense 230 

forests due to vegetation blockage of the soil moisture signal (Pan et al., 2014). The 231 

accuracy of soil moisture retrievals is also limited by mountainous topography and the 232 

occurrence of snow and frozen ground during winter whose identification from satellite 233 

observations is often difficult. For the purpose of this study, we assign zero weight to the 234 

3B42RTADJ and rely exclusively on the initial 3B42RT precipitation for time steps when 235 

the VIC model predicts snow cover or frozen surfaces.  236 

2.2.4 VIC Land Surface Model 237 

The Variable Infiltration Capacity (VIC) model (Liang et al., 1994; Gao et al., 2010) is 238 

used to dynamically simulate the hydrological responses of soil moisture to precipitation, 239 

surface radiation and surface meteorology. The VIC model solves the full energy and 240 

water balance over each 0.25-degree-grid-cell independently, thus ensuring its 241 

computational efficiency. The assumption of independency poses limitation on the 242 

application of LSM at very high spatial resolution (e.g. 1km×1km) over large areas. 243 

Three-layer-soil-moisture is simulated through a soil-vegetation-atmosphere transfer 244 

(SVAT) scheme, which also accounts for sub-grid scale heterogeneity of vegetation, soil 245 

and topography. A detailed soil moisture algorithm description can be found in Liang et 246 

al. (1996). The VIC model has been validated extensively over CONUS by evaluating 247 

soil moisture and simulations to observations (Robock et al., 2003; Schaake et al., 2004).  248 
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3 Idealized Experiment 249 

Before applying the Particle Filter assimilation algorithm on 3B42RT precipitation 250 

estimates, we conducted an idealized experiment where we treat the NLDAS 251 

precipitation as the “truth” and the NLDAS precipitation forced VIC simulations as 252 

“satellite observed” soil moisture. As an idealized experiment, we adjust TMPA real-time 253 

precipitation estimates based on these “satellite observations”. Phase 2 of the North 254 

American Land Data Assimilation System (NLDAS-2) rainfall forcing combines hourly 255 

WSR-88D radar analyses from the National Weather Service (NWS) and daily gauge 256 

reports (∼13,000/day) from the Climate Prediction Center (CPC) (Ek et al., 2011). The 257 

dataset, with a spatial resolution of 0.125 degree and hourly observations, was pre-258 

processed into 0.25-degree daily precipitation to be consistent with that of 3B42RT and 259 

AMSR-E/LSMEM SM datasets. Hourly NLDAS and 3-hourly 3B42RT precipitation is 260 

aggregated into daily precipitation defined by a period shifted ~7.5 hours into the future 261 

(9:00PM-9:00PM), allowing for a necessary delay for soil moisture to respond to 262 

incoming rainfall. The idealized experiment is designed to test whether the algorithm is 263 

able to retrieve rainfall forcing with soil moisture change, assuming that the soil moisture 264 

observations are 100% accurate. 265 

Results show that, with the knowledge of 1st layer soil moisture change (via the “satellite 266 

observations”), the adjustment is able to recover intensity and spatial pattern of forcing 267 

precipitation (Figure 5g). Average mean absolute error (MAE) of daily rainfall amount is 268 

reduced by 52.9% (2.91 mm/day to 1.37 mm/day) over the region. Figure 5a to Figure 5e 269 

shows an example of the recovered rainfall field from the idealized experiment for 27th 270 

Oct. 2003. The spatial pattern matches the original NLDAS precipitation well.  271 

3.1 Effect of surface soil saturation 272 

While successfully recovering the general pattern of NLDAS precipitation based on first 273 

layer soil moisture, the idealized experiment is not always able to recover the 274 

precipitation volume due to the fact that the top layer soil moisture alone does not contain 275 

the complete memory of the previous day’s rainfall. Deeper soil moisture, 276 

evapotranspiration and runoff also carry part of this information. As the surface gets 277 
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wetter, the VIC 1st layer soil moisture has smaller variation. If the incoming precipitation 278 

brings the surface to saturation, the VIC model redistributes the soil moisture vertically 279 

though vertical moisture flow and generates runoff. Hence soil moisture increments, 280 

ΔSM, near saturation are less correlated with incoming precipitation as they change 281 

minimally to additional incoming rainfall. An example demonstrating this saturation 282 

effect is shown in Figure 5f to Figure 5j. When incoming precipitation brings the surface 283 

SM to (near) saturation, there is very limited improvement after the adjustment. Because 284 

of the low sensitivity of the soil surface to precipitation, there is little change in ∆SM in 285 

response to precipitation variations among the replicates. It is almost always the case that 286 

the algorithm is not able to find a “matching” ∆SM. 287 

We separately evaluate the skill improvement in the recovered NLDAS precipitation with 288 

and without surface saturation. Figure 6 confirms the effect of surface saturation on 289 

adjusted precipitation, which is well described in previous studies (e.g. Brocca et al., 290 

2013, 2014). The recovered precipitation, when the surface soil is saturated, only 291 

contributes more noise rather than an improvement to the rainfall estimates. The VIC 292 

model computes the moisture flow between soil layers using an hourly time step. If the 1st 293 

layer soil moisture exceeds its maximum capacity, it is considered to be a surface 294 

saturation case. As seen in Figure 5, there is very limited or negative skill in the 295 

recovered precipitation under saturated surface soil moisture conditions. Such 296 

circumstances are identified and the AMSR-E/LSMEM ∆SM observation disregarded by 297 

assigning zero weight to the 3B42RTADJ values. Thus for wetter areas with heavy 298 

precipitation that potentially would bring the surface soil moisture to saturation, the 299 

3B42RT product is less likely to be adjusted according to satellite ∆SM and the best 300 

precipitation estimate is 3B42RT. 301 

3.2 Effect of SM uncertainty 302 

In the idealized experiment, NLDAS-VIC soil moisture is taken as truth with zero 303 

uncertainty associated with (θ!∗). However, this assumption is not valid for real satellite 304 

SM retrievals, mean absolute error of which is approximately 3% vol./vol. (McCabe et 305 

al., 2005). To consider this, we added error to the “truth” SM (normally distributed with 306 

zero mean and standard deviations of 1mm, 2mm, 3mm, 4mm and 5mm), and simulated 307 
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the effect of SM uncertainty to evaluate the associated adjustment errors. Figure 7 shows 308 

that larger soil moisture observation errors lead to larger error variation after adjustment. 309 

This also suggests that soil moisture responds to precipitation non-linearly based on 310 

different initial conditions. An estimated wetter surface has lower sensitivity to an 311 

incoming rainfall amount, resulting in larger error in the recovered NLDAS precipitation. 312 

As shown in Figure 7, the error standard deviation of the recovered NLDAS precipitation 313 

increases with surface water content (statistics shown in Table 2). As we add noise larger 314 

than N(0,1mm) into “true” SM observation, there is a wet bias of approximately 1 315 

mm/day regardless of 1st layer soil moisture level. This suggests that when the difference 316 

between 1st layer SM and saturation is less than 8 mm, the median of the errors in the 317 

recovered NLDAS precipitation grows from 0.16 mm/day to 1.89 mm/day when we add 318 

N(0,5mm) noise, while inter-quantile range (IQR) increases from 1.71 mm/day to 7.04 319 

mm/day. Acknowledging such a wet bias, to avoid introducing any more unintentional 320 

bias in the 3B42RTADJ estimates, we take as zero the uncertainty of AMSR-E/LSMEM 321 

SM retrievals, i.e. we take h! θ!,  as our single observation θ!∗ and adjust the 3B42RT 322 

estimates accordingly. 323 

It is noteworthy that the soil moisture change is calculated based on previous days’ soil 324 

water contents. Therefore errors tend to accumulate over time until they are “re-set” when 325 

a significant precipitation event takes place. This type of uncertainty accounts for a small 326 

portion of the total error in the adjusted precipitation (black being the no error case in 327 

Figure 7 with the “true” change in soil moisture from every time step). As complete 328 

global coverage is not provided with each orbit of the AMSR-E sensor, on average 44.01% 329 

of the time steps (<0.6 m3/m3) during the study period have observations, with more 330 

frequent overpasses at higher latitudes (Figure 4e in Pan et al., 2014). This observation 331 

gap unavoidably introduces extra uncertainty in the retrieval of the precipitation signal. 332 

To further avoid possible additional errors, we update the forcing rainfall when a ∆SM 333 

temporal match (±0.4mm) is available, and keep the original precipitation if a match isn’t 334 

available. 335 
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4 Improvement on real-time precipitation estimates and their validation 336 

The adjustment of real TMPA 3B42RT retrievals based on AMSR-E/LSMEM ∆SM is 337 

carried out using the methods described in Section 2.2.3, and results from the idealized 338 

experiment (Sect. 3) with regard to the circumstances where an adjustment is applied. 339 

An example of TMPA 3B42RT adjustment is provide in Figure 8, where a snapshot of 340 

the rainfall field is shown (Figure 8b) and compared with NLDAS on May 26th 2006 and 341 

the adjusted rainfall pattern based on AMSR-E/LSMEM ∆SM. The 3B42RTADJ rainfall 342 

field (Figure 8c) is similar in terms of its spatial distribution compared to NLDAS 343 

precipitation estimates (Figure 8d). 344 

On average TMPA 3B42RT and AMSR-E/LSMEM ∆SM have a spatial Pearson 345 

Correlation Coefficient of 0.37 (Shown in Figure 9, left), compared to 0.52 for the 346 

correlation between NLDAS and ∆SM. After the adjustment procedure, the Pearson 347 

correlation coefficient between 3B42RTADJ and AMSR-E/LSMEM ∆SM increases to 348 

0.53 (shown in Figure 9), indicating that the correction method is successful. A below 349 

average increase in correlation is found over the western mountainous region, the Great 350 

Lakes region and eastern high vegetated and populated region. Additionally, the satellite 351 

soil moisture suffers from snow/ice/standing water contamination, which affects the 352 

potential for improved results after correction. The 3B42RTADJ has significant 353 

improvement over 3B42RT in terms of long-term precipitation bias. The bias in 3B42RT 354 

annual mean precipitation is reduced by 20.6%, from -9.32mm/month spatial average in 355 

3B42RT to -7.40mm/month in 3B42RTADJ (shown in Figure 9, right). Frequency of rain 356 

days generally increases significantly everywhere (Figure 10). The NLDAS data (Figure 357 

10, right) suggests an almost constant drizzling rainfall over parts of the western 358 

mountainous area (Montana, Idaho, Wyoming and Colorado), while assimilating AMSR-359 

E/LSMEM ∆SM datasets does not have a signal of higher rainfall frequency (Figure 10, 360 

middle). This is possibly due to lower soil moisture variability in satellite retrievals over 361 

the dry, mountainous areas and frequent presence of snow and ice (3B42RT is not 362 

updated under such circumstances).  363 

Figure 11 shows the assimilation results for the grids and days with soil moisture 364 

observations, using the NLDAS precipitation as a reference. Overall, the method is 365 
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successful in correcting daily rainfall amount when 3B42RT overestimates precipitation 366 

(3B42RT - NLDAS > 0). Mean standard deviation (STD) of 3B42RTADJ–NLDAS is 367 

between 1 and 3 mm/day (statistics provided in Table 3). When 3B42RT underestimates 368 

rainfall (3B42RT - NLDAS < 0), the assimilation has limited improvement on 3B42RT. 369 

This is due to the effect of surface saturation. In terms of adding rainfall, there are two 370 

scenarios when the effectiveness of the assimilation is limited.  371 

1) The presence of wet conditions or (near) saturation. There is higher probability 372 

bringing the surface to saturation (wetter condition) when the assimilation adds 373 

rainfall into 3B42RT. However soil moisture increments are less sensitive to 374 

incoming precipitation on wetter soil. Therefore, an error in ∆SM often translates into 375 

3B42RTADJ in a magnified manner.  376 

2) The presence of very heavy precipitation, which typically brings the surface to 377 

saturation, hence not results in an update of 3B42RT, is not updated. If, by a small 378 

probability, the surface is wet (nearly saturated) but not completely saturated after a 379 

heavy rainfall, the updated 3B42RT also suffers from large uncertainty (explained in 380 

1) above). 381 

The effect of the assimilation conditioned on 3B42RT rainfall amount is further evaluated 382 

by skill scores. Figure 12 presents probability of detection (POD) and false alarm rate 383 

(FAR) in 3B42RT and 3B42RTADJ, using NLDAS as the reference dataset. The rain event 384 

threshold is set to be 0.1 mm/day and 2 mm/day. This is possibly due to lower soil 385 

moisture variability in satellite retrievals over the dry, mountainous areas and frequent 386 

presence of snow and ice (3B42RT is not updated under such circumstances). For a 0.1 387 

mm/day threshold, both FAR and POD increases in 3B42RTADJ except for the 388 

mountainous region. Whereas for a 2 mm/day threshold, there is only slight increase in 389 

FAR in most of eastern U.S. region. The overestimation of rain days is also absent when 390 

2 mm/day event threshold is applied which suggests that most of the excessive rainy days 391 

have less than 2 mm/day rain amount. Consistent with other studies, spatially, larger 392 

improvements are found in the central U.S. The area coincides where higher AMSR-393 

E/LSMEM ∆SM accuracy is found (non-mountainous regions with little urbanization and 394 

light vegetation). Despite of the regional variability, these excessive rainy days are a 395 
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result of the high-frequency noise in AMSR-E/LSMEM soil moisture retrievals identified 396 

by Pan et al (2004) and Wanders et al. (2015). 397 

The applied method is ineffective for light rainfall < 2 mm, where the adjustment tends to 398 

over-correct precipitation by adding excessive rainfall – mostly the result of the high 399 

frequency AMSR-E noise. MAE of light rainfall (< 2 mm/day) increased from 0.65 400 

mm/day in 3B42RT to 0.99 mm/day in 3B42RTADJ. On the other hand, satellite soil 401 

moisture assimilation is very effective in correcting satellite precipitation larger than 2 402 

mm/day: MAE of medium to large rainfall (≥ 2 mm/day) decreased from 7.07 mm/day in 403 

3B42RT to 6.55 mm/day in 3B42RTADJ. The effect of the assimilation is different over 404 

the western mountainous region, the north-to-south central U.S. band and the eastern U.S. 405 

The western mountainous region has a dry climatology with more frequent rainfall in 406 

small amounts. The white noise in ΔSM, negatively impacting 3B42RTADJ, is comparable 407 

to the positive improvement brought by actual light rainfall signals in ΔSM. Therefore, 408 

the assimilation of ΔSM has no significant impact in these regions.  409 

The north-to-south band over central U.S. experiences more medium to large (≥ 2 410 

mm/day) rainfall. In addition, the region is lightly vegetated (annual mean LAI <1) with 411 

low elevation (< 1500 m), where soil moisture retrievals are of higher accuracy. Soil 412 

moisture climatology is wetter in the west, causing larger variations in 3B42RTADJ error 413 

from the white noise ΔSM (as discussed in Section 3.2). Despite of that, satellite soil 414 

moisture is most effective correcting medium to large rainfall under normal surface 415 

conditions.  416 

The decreased skill in 3B42RTADJ over eastern U.S. is primarily attributed to both 417 

precipitation and soil moisture climatology, a wet climate with more medium to large 418 

rainfall, neither of which is suitable for soil moisture assimilation.  419 

In summary, the high-frequency noise in soil moisture product causes a major limitation. 420 

The noise impacts adjusted precipitation by introducing false alarm rain days. It is 421 

difficult to distinguish the noise and retrieve the true rainfall signals. A remedy to prevent 422 

the excessive rain days is applying a cutoff ΔSM threshold when rain days are added, at 423 

the expense of neglecting a part of the true rainfall signals. Figure 13 shows the 424 

probability of added rainy days being consistent with NLDAS (NLDAS > 0 mm/day) 425 
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with respect to ΔSM. When a new rainy day is added (3B42RT = 0 mm/day, 3B42RTADJ 426 

> 0 mm/day) based on AMSR-E/LSMEM ΔSM of 2 mm/day, there’s approximately 78% 427 

chance that the added rain day is a true event (NLDAS > 0 mm/day); That is, approx. 428 

22% chance that it is a false alarm (NLDAS = 0 mm/day). When AMSR-E/LSMEM 429 

ΔSM is larger than 2 mm/day, the probability of added rainy days being true event is 430 

even higher, up to 90% chance. Here we applied a threshold of 2 mm/day on AMSR-431 

E/LSMEM ΔSM. That is, when new rainy days are introduced (3B42RT > 0, 432 

3B42RTADJ > 0), we discard the update and keep the no-rain day if AMSR-E/LSMEM 433 

soil moisture increment is below 2 mm. Note that, the probability of the false alarms 434 

depends on soil moisture climatology: the wetter soil moisture climatology, the larger 435 

uncertainty in the signal. Therefore, this threshold should vary in accordance with local 436 

soil moisture climatology, i.e. a larger threshold over the wetter east U.S. and smaller 437 

threshold over the drier western U.S. Nevertheless, after the 2 mm/day ΔSM threshold is 438 

applied, expectedly, the statistics are largely improved: FAR is decreased significantly 439 

from 0.519 (wo. ΔSM threshold) to 0.066 (w. ΔSM threshold). MAE of light rainfall (< 2 440 

mm/day) in 3B42RTADJ decreased from 0.99 mm/day to 0.64 mm/day, compared to 0.65 441 

mm/day in 3B42RT. For medium to large 3B42RT rainfall (≥ 2 mm/day), it effectively 442 

increased POD (0.362 in 3B42RT vs 0.386 in 3B42RTADJ w. ΔSM threshold) and 443 

decreased FAR (0.037 in 3B42RT vs 0.030 in 3B42RTADJ w. ΔSM threshold). Further 444 

work is needed to characterize, distinguish and decrease the high-frequency noise in SM 445 

retrievals. Figure 13 gives an example of evaluating the impact of SM uncertainties in 446 

assimilation as curves derived over different topography can be quantitatively compared. 447 

5 Comparison to other studies 448 

Many other studies have utilized satellite microwave brightness temperatures or soil 449 

moisture retrievals to constrain satellite precipitation estimates (Pellarin et al., 2008), 450 

estimate precipitation (e.g. Brocca et al., 2013) or improve precipitation estimates 451 

through assimilation (Crow et al., 2009, 2011). Here, we review their approaches and 452 

findings in light of the results of this study, and compare our results with some of these 453 

studies to gain insight into their robustness and consistency.  454 
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Pellarin et al. (2008) used the temporal variations of the AMSR-E 6.7 GHz brightness 455 

temperature (TB) normalized polarization difference, PR=(TBV-TBH)/(TBV+TBH), to 456 

screen out anomalous precipitation events from a 4-day cumulative satellite-estimated 457 

precipitation (EPSAT-SG: Chopin et al., 2005) from 22 to 26 of June 2004 over a 100 x 458 

125 km box centered over Niger in west Africa. This was extended in Pellarin et al. 459 

(2013) where an API-based water balance model was used to correct three different 460 

satellite precipitation products (CMORPH, TRMM-3B42 and PERSIANN) over a 4-year 461 

period in west Africa at three 0.25° grids in Niger, Benin and Mali). The new algorithm 462 

was evaluated by comparing the corrected precipitation to estimates over the 0.25° grids 463 

from ground-based precipitation measurements. A sequential assimilation approach was 464 

applied where AMSR-E C-band TB measurements were used to estimate a simple 465 

multiplicative factor to the precipitation estimates in order to minimize the difference 466 

between observed (AMSR-E) and simulated TBs in term of root mean square error 467 

(RMSE). The results show improvements over those found in Pellarin et al. (2009).  468 

Specifically, the Pellarin et al. (2013) study shows that the proposed methodology 469 

produces an improvement of the RMSE at daily, decadal and monthly time scales and at 470 

the three locations. For instance, the RMS mean error decreases from 7.7 to 3.5 mm/day 471 

at the daily time scale in Niger and from 18.3 to 7.7 mm/day at the decadal time scale in 472 

Mali. 473 

Crow et al. (2003, 2009, 2011) demonstrated the effectiveness of the assimilation of 474 

remotely sensed microwave brightness temperatures or retrieved soil moisture in 475 

estimating precipitation based on airborne measurements over the Southern Great Plains 476 

(USA) region (Crow et al., 2003); 2 to 10 day accumulated precipitation within a simple 477 

API water budget model and assimilation scheme over CONUS (Crow et al., 2009); and 478 

3 day, 1° precipitation accumulation over three African Monsoon Multidisciplinary 479 

Analysis (AMMA) sites in west Africa with an enhanced assimilation scheme and an 480 

API-moisture model (Crow et al., 2011). Crow et al. (2009) recommends against 481 

estimating precipitation at a larger scale than three days based on assimilating AMSR-482 

E/LSMEM soil moisture. 483 

Brocca et al. (2013) estimated precipitation by inverting the water budget equation such 484 

that precipitation could be estimated from changes in soil moisture. The inverted equation 485 
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was calibrated using in-situ, 4-day averaged observations at two sites in Spain and Italy. 486 

In Brocca et al. (2014), the same approach was used globally for 5-day precipitation 487 

totals and at 1° spatially. Soil moisture observations from three satellite derived soil 488 

moisture datasets (AMSR-E LPRM, ASCAT and SMOS) were used. The soil moisture 489 

and rainfall were aggregated to a 1° spatial resolution, the soil moisture changes over a 5-490 

day period to estimate a 5-day total precipitation. No formal data assimilation was carried 491 

out. The newly created precipitation data set was compared to two satellite precipitation 492 

products (TRMM-3B42RT, GPCC) and two gauge based precipitation products (GPCP, 493 

ERA-Interim). But they do note that their approach has “poor scores in reproducing daily 494 

rainfall data”. Nonetheless, these studies show promising results. 495 

In the study reported here, three advances have been made over these earlier studies: (i) 496 

we adopted a state-of-the-art dynamic land surface model that has demonstrated high skill 497 

in simulating soil moisture when driven by high quality precipitation data (Schaake et al., 498 

2004); (ii) we applied a state-of-the-art data assimilation procedure based on particle 499 

filtering so as to extract (and hopefully maximize) the information content from the 500 

satellite most effectively; (iii) we increased the resolution of the precipitation estimation 501 

window down to 1 day, exceeding the conclusions in these earlier studies that the finest 502 

temporal resolution is 3 to 5 days. Additionally we increased (or matched) the spatial 503 

resolution to 0.25°, limited primarily by the satellite soil moisture product resolution; and 504 

(iv) previous studies are based on the assumption that the SM retrievals are 100% 505 

accurate and contain no errors. We evaluated this assumption by analyzing the impact of 506 

uncertainties associated with the soil moisture retrievals. These advances offer important 507 

benefits when satellite precipitation products are used for applications such as flood 508 

forecasting. Admittedly by aggregating in space and time, the improvement is more 509 

robust since some errors are averaged out. However improving satellite precipitation by 510 

AMSR-E/LSMEM SM is not entirely without skill. In fact, it could effectively correct 511 

rainfall with proper cautions given to local climatology where the assimilation is carried 512 

out. 513 

Wanders et al. (2015) performed a comprehensive inter-comparison study using multiple 514 

satellite soil moisture and land surface temperature (LST) data at fine temporal scale (3-515 

hourly). Compared to their study, ours focuses on using soil moisture exclusively from 516 
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one satellite and retrieval algorithm, and in improvements to the assimilation algorithm. 517 

Specifically in (i) the longer temporal period (2010-2011 in Wanders, et al. versus 2002-518 

2007 in this study), (ii) the temporal resolution (3-hourly versus daily); (iii) the particle 519 

generation and bias correction method. We present in the paper improvements in the 520 

generation of rain particles and the bias-correction of the satellite soil moisture 521 

observations, as well as enhancements to the assimilation algorithm to maximize the 522 

information that can be gained from using soil moisture alone in adjusting precipitation. 523 

Due to the very strong and complicated spatial structure of precipitation, that is non-524 

Gaussian and non-stationary in both time and space, a more advanced method is applied 525 

to generate possible precipitation fields than used or presented in earlier studies or in 526 

Wanders et al, (2015). Furthermore, a more advanced bias correction method is also 527 

applied to account for the reported problems (Wanders et al., 2015) in the second order 528 

statistics of the soil moisture retrievals; and (iv) SM retrieval products (and overpasses) 529 

used in assimilation. Our improved results are based on soil moisture retrievals from 530 

ascending overpasses only (versus both descending and ascending overpasses from 531 

multiple datasets, i.e. AMSR-E/LSMEM, ASCAT and SMOS). Our exclusive focus on 532 

the usefulness of soil moisture product promises more applicability especially for 533 

improving satellite precipitation from the Global Precipitation Mission products. The 534 

descending overpasses have generally better performance than the ascending, suggesting 535 

the potentials of further improvements.  536 

A quantitative comparison of Wanders et al. (2015) and our results is provided below. 537 

Despite of the different time periods between Wanders et al. (2015, 2010-2011) and in 538 

our study (2002-2007), Wanders et al. (2015) shows decreasing POD (-15.0% to -46.4% 539 

depending on different products used) and FAR (-47.2% to -89.1% depending on 540 

different products used) for all rainfall after assimilation using either (single or multiple) 541 

SM products alone or SM + LST data combined (see Table 4 of Wanders et al., 2015). 542 

While in our study, after applying ∆SM threshold, medium to large 3B42RTADJ rainfall 543 

(≥ 2 mm/day) has an increase in POD (+6.6%) and decrease in FAR (-18.9%). 544 

Furthermore, the significant dry bias in adjusted precipitation (see Fig.6 of Wanders et 545 

al., 2015) is not present in our results (Figure 9). This is due to improvements in our 546 

precipitation ensemble generation and bias correction scheme. Wanders et al. (2015) 547 
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applied an additional step generating precipitation particles sampling from a 3×3 window 548 

that over-eliminates most of the excessive rainfall along with some real signal. We 549 

suggest loosening this constraint to a larger window size or to sample from adjusted 550 

precipitation instead of original 3B42RT precipitation. However sampling from adjusted 551 

precipitation at each time step would significantly increase the computational demand, 552 

limiting the potential for a global application at high temporal/spatial resolution. 553 

Furthermore, the outcome is quite different for the distribution of soil moisture retrievals 554 

after pre-processing (Fig.9 of Wanders et al. 2015 vs Figure 4 in our study) due to 555 

different methods used. After pre-processing, distributions of soil moisture retrievals is 556 

more similar to that of NLDAS precipitation forced, VIC modeled 1st layer soil moisture. 557 

CDF-matching used by Wanders et al., (2015) is based on the assumption that satellite 558 

soil moisture and modeled soil moisture respond to heavy rainfall in the same way – 559 

essentially having a rank correlation of 1. However that is not observed because of 560 

shallower detection depth of the satellite soil moisture. On the other hand, using the pre-561 

processing method presented in this study, the signal of near-saturation in AMSR-562 

E/LSMEM ∆SM tends to be overestimated after pre-processing, which indicates a heavy 563 

rain event that is often accompanied with surface saturation and thus does not provide 564 

effective information for the assimilation. The other benefit of the 2nd order polynomial 565 

regression lies in its non-linearity. An error in the soil moisture product impacts the 566 

precipitation adjustment in a predictable way, allowing for a more systematic post-567 

processing treatment. Based on the known error characteristics, we demonstrate a 568 

potential remedy to deal with the error by applying a 2 mm/day cutoff ∆SM threshold. 569 

Meanwhile, it is also highlighted that the cutoff threshold should be variable and 570 

positively correlated with local soil moisture climatology. We acknowledge that the soil 571 

moisture product used in Wanders et al. (2015), is a blended product of multiple satellite 572 

soil moisture datasets. It is not clear how its error characteristics impact the adjusted 573 

precipitation. 574 

6 Conclusion and Discussion 575 

Based on the retrieved soil moisture from AMSR-E using the LSMEM retrieval 576 

algorithm, we propose an assimilation procedure to integrate soil moisture information 577 
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into the VIC land surface model so as to improve real-time, satellite precipitation 578 

estimates. The ability to estimate rainfall amount is now enhanced with the above 579 

improvements, especially for correcting medium rainfall amounts. However, constrained 580 

by the noise in AMSR-E TBs and thus soil moisture retrievals, the assimilation is not 581 

effective in detecting missed rainfall events. The improved precipitation estimates, 582 

referred to as 3B42RTADJ estimates, are overall consistent in reproducing the spatial 583 

pattern and time series of daily rainfall from NLDAS precipitation. The results illustrate 584 

the potential benefits of using data assimilation to merge satellite retrievals of surface soil 585 

moisture into a land surface model forced with real-time precipitation. Potentially the 586 

method can be applied globally for areas meeting vegetation cover and surface condition 587 

constraints that allows for soil moisture retrievals. Under these conditions, the approach 588 

can provide a supplementary source of information for enhancing the quality of satellite 589 

rainfall estimation, especially over poorly gauged areas like Africa.  590 

Nonetheless, some caution is required. The results of this study show that the adjusted 591 

real-time precipitation tends to add additional rain (frequency) resulting in more time 592 

steps with rain but lower regional average in the western U.S. and slightly higher regional 593 

average in the eastern U.S. It is also noticed that the precipitation adjustments are 594 

insensitive under saturated soil moisture conditions. A wetter surface magnifies any error 595 

associated with satellite observation by incorrectly adjusting precipitation. These errors, 596 

mixed with the “real” signal, generally add approximately ~2mm of precipitation (or 597 

higher) depending on the soil moisture climatology. It is important to consider these 598 

circumstances when observations are used so as to avoid introducing additional error. 599 

With these identified limitations, continued research is needed to assess the biases in the 600 

real-time precipitation retrievals on a local to regional basis so the assimilation system 601 

can be modified accordingly.  602 

The assimilation scheme used here assumed that the errors were attributed to the real-603 

time precipitation retrievals, but the precipitation estimates after adjustment includes 604 

errors from additional sources. The two primary sources are errors in soil moisture 605 

retrievals and errors in the land surface model that include model parameterizations 606 

(poorly or insufficiently represented processes as well as scale issues) and parameter 607 

errors (insufficient calibration). There are also errors in other model forcing fields besides 608 
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precipitation. Further studies are needed to assess the attribution of these error sources to 609 

the total error. Such research will further improve the use of real-time satellite-based 610 

precipitation for global flood monitoring. 611 

Besides the clear, heavy dependency of the assimilation effectiveness on the accuracy of 612 

satellite soil moisture product, it is also important to acquire adequate knowledge on the 613 

error characteristics of satellite soil moisture retrievals. Knowledge of the soil moisture 614 

errors could be important and the assimilation methods (including precipitation ensemble 615 

generation and pre-/post-processing method) should be chosen accordingly. On the other 616 

hand, the presence of data gaps between overpasses could be a large source of uncertainty 617 

with data assimilation. Further effort towards reliable spatial-temporal continuous (gap 618 

filled) satellite soil moisture datasets is needed. 619 

While it has been illustrated in this study that the enhancement of real time satellite 620 

precipitation estimates can be realized through an assimilation approach using satellite 621 

soil moisture data products and a particle filter, additional satellite-based observations 622 

(e.g. multi-sensor soil moisture products) or variables (e.g. land surface temperatures as 623 

shown in Wanders et al. 2015, inundated areas), could be added/replaced in the 624 

assimilation process with different levels of complexity; e.g. by applying constraints on 625 

the particle generation. This opens up a great number of opportunities in using space-626 

borne observations for supplementing direct retrievals of precipitation. 627 

Acknowledgements 628 

This research was supported through NASA grant NNX13AG97G (Multi-sensor 629 

enhancement of real-time satellite precipitation retrievals for improved drought 630 

monitoring) under the Precipitation Measurement Mission. Part of this research was 631 

financially supported by NWO Rubicon 825.15.003. This support is gratefully 632 

acknowledged.  633 

 634 



 

 23 

References 635 

Brocca, L., Melone, F., Moramarco, T. and Morbidelli, R.: Antecedent wetness 636 

conditions based on ERS scatterometer data, J. Hydrol., 364(1-2), 73–87, 637 

doi:10.1016/j.jhydrol.2008.10.007, 2009.  638 

Brocca, L., Moramarco, T., Melone, F. and Wagner, W.: A new method for rainfall 639 

estimation through soil moisture observations, Geophys. Res. Lett., 40(5), 853–858, 640 

doi:10.1002/grl.50173, 2013. 641 

Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., Kidd, R., 642 

Dorigo, W., Wagner, W. and Levizzani, V.: Soil as a natural rain gauge: Estimating 643 

global rainfall from satellite soil moisture data, J. Geophys. Res. Atmos., 119(9), 5128–644 

5141, doi:10.1002/2014JD021489, 2014. 645 

Chopin, F., Berges, J., Desbois, M., Jobard, I. and Lebel, T.: Satellite Rainfall Probability 646 

and Estimation. Application to the West Africa During the 2004 Rainy Season, AGU 647 

Spring Meet. Abstr., A12, 2005. 648 

Crow, W. T.: Correcting land surface model predictions for the impact of temporally 649 

sparse rainfall rate measurements using an ensemble Kalman filter and surface brightness 650 

temperature observations, J. Hydrometeorol., 4(5), 960–973, 2003. 651 

Crow, W. T., Huffman, G. J., Bindlish, R. and Jackson, T. J.: Improving Satellite-Based 652 

Rainfall Accumulation Estimates Using Spaceborne Surface Soil Moisture Retrievals, J. 653 

Hydrometeorol., 10(1), 199–212, doi:10.1175/2008JHM986.1, 2009. 654 

Crow, W. T., Van Den Berg, M. J., Huffman, G. J. and Pellarin, T.: Correcting rainfall 655 

using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall 656 

Tool (SMART), Water Resour. Res., 47(8), 1–15, doi:10.1029/2011WR010576, 2011. 657 

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, 658 

U., Balmaseda, M. A., Balsamo, G., Bauer, P. and others: The ERA-Interim reanalysis: 659 

Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 660 

137(656), 553–597, 2011. 661 



 

 24 

Ebert, E. E., Janowiak, J. E. and Kidd, C.: Comparison of near-real-time precipitation 662 

estimates from satellite observations and numerical models, Bull. Am. Meteorol. Soc., 663 

88(1), 47–64, doi:10.1175/BAMS-88-1-47, 2007.  664 

Ek, M. B., Xia, Y., Wood, E., Sheffield, J., Luo, L., Lettenmaier, D., Livneh, B., Mocko, 665 

D., Cosgrove, B., Meng, J., Wei, H., Koren, V., Schaake, J., Mo, K., Fan, Y. and Duan, 666 

Q.: North American Land Data Assimilation System Phase 2 (NLDAS-2): Development 667 

and Applications, GEWEX Newsl., 21(2), 5–7, 2011. 668 

Francois, C., Quesney, A. and Ottlé, C.: SAR Data into a Coupled Land Surface–669 

Hydrological Model Using an Extended Kalman Filter, J. Hydrometeorol., 4(2), 473–487, 670 

doi:10.1175/1525-7541(2003)4<473:SAOESD>2.0.CO;2, 2003. 671 

Gao, H., Tang, Q., Shi, X., Zhu, C., Bohn, T. J., Su, F., She eld, J., Pan, M., and Wood, 672 

E. F.: Water budget record from Variable Infiltration Capacity (VIC) model, in: 673 

Algorithm Theoretical Basis Document for Terrestrial Water Cycle Data Records (in 674 

review), 2010. 675 

Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., 676 

Bowman, K. P. and Stocker, E. F.: The TRMM Multisatellite Precipitation Analysis 677 

(TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine 678 

Scales, J. Hydrometeorol., 8(1), 38–55, doi:10.1175/JHM560.1, 2007. 679 

Huffman, G. J., Adler, R. F., Bolvin, D. T., and Nelkin, E. J.: The TRMM Multi-satellite 680 

Precipitation Analysis (TMPA), in: Satellite Rainfall Applications for Surface 681 

Hydrology, Springer Netherlands, 3–22, 2010. 682 

Kalman, R. E.: A New Approach to Linear Filtering and Prediction Problems, J. Basic 683 

Eng., 82(1), 35, doi:10.1115/1.3662552, 1960. 684 

Kerr, Y. H., Waldteufel, P., Richaume, P., Wigneron, J.-P., Ferrazzoli, P., Mahmoodi, A., 685 

Al Bitar, A., Cabot, F., Gruhier, C., Juglea, S. E., Leroux, D., Mialon, A. and Delwart, S.: 686 

The SMOS Soil Moisture Retrieval Algorithm, Geosci. Remote Sensing, IEEE Trans., 687 

50(5), 1384–1403, doi:10.1109/TGRS.2012.2184548, 2012. 688 



 

 25 

Liang, X., Lettenmaier, D. P., Wood, E. F. and Burges, S. J.: A simple hydrologically 689 

based model of land surface water and energy fluxes for general circulation models, J. 690 

Geophys. Res., 99, 14415–14428, doi:10.1029/94JD00483, 1994.  691 

Liang, X., Wood, E. F. and Lettenmaier, D. P.: Surface soil moisture parameterization of 692 

the VIC-2L model: Evaluation and modification, Glob. Planet. Change, 13(1-4), 195–693 

206, doi:10.1016/0921-8181(95)00046-1, 1996. 694 

Massari, C., Brocca, L., Moramarco, T., Tramblay, Y. and Didon Lescot, J.-F.: Potential 695 

of soil moisture observations in flood modelling: estimating initial conditions and 696 

correcting rainfall, Adv. Water Resour., 74, 44–53, doi:10.1016/j.advwatres.2014.08.004, 697 

2014.  698 

Matgen, P., Fenicia, F., Heitz, S., Plaza, D., de Keyser, R., Pauwels, V. R. N., Wagner, 699 

W. and Savenije, H.: Can ASCAT-derived soil wetness indices reduce predictive 700 

uncertainty in well-gauged areas? A comparison with in situ observed soil moisture in an 701 

assimilation application, Adv. Water Resour., 44, 49–65, 702 

doi:10.1016/j.advwatres.2012.03.022, 2012. 703 

McCabe, M. F., Wood, E. F. and Gao, H.: Initial soil moisture retrievals from AMSR-E: 704 

Multiscale comparison using in situ data and rainfall patterns overs Iowa, Geophys. Res. 705 

Lett., 32(6), 1–4, doi:10.1029/2004GL021222, 2005. 706 

Pan, M. and Wood, E. F.: Data Assimilation for Estimating the Terrestrial Water Budget 707 

Using a Constrained Ensemble Kalman Filter, J. Hydrometeorol., 7(3), 534–547, 708 

doi:10.1175/JHM495.1, 2006. 709 

Pan, M., Li, H. and Wood, E.: Assessing the skill of satellite-based precipitation 710 

estimates in hydrologic applications, Water Resour. Res., 46(9), W09535, 711 

doi:10.1029/2009WR008290, 2010. 712 

Pan, M., Sahoo, A. K. and Wood, E. F.: Improving soil moisture retrievals from a 713 

physically-based radiative transfer model, Remote Sens. Environ., 140, 130–140, 714 

doi:10.1016/j.rse.2013.08.020, 2014. 715 



 

 26 

Pellarin, T., Ali, A., Chopin, F., Jobard, I. and Bergès, J. C.: Using spaceborne surface 716 

soil moisture to constrain satellite precipitation estimates over West Africa, Geophys. 717 

Res. Lett., 35(2), 3–7, doi:10.1029/2007GL032243, 2008.  718 

Pellarin, T., Louvet, S., Gruhier, C., Quantin, G. and Legout, C.: A simple and effective 719 

method for correcting soil moisture and precipitation estimates using AMSR-E 720 

measurements, Remote Sens. Environ., 136, 28–36, doi:10.1016/j.rse.2013.04.011, 2013. 721 

Robock, A., Luo, L., Wood, E. F., Wen, F., Mitchell, K., Houser, P., Schaake, J., 722 

Lohmann, D., Cosgrove, B., Sheffield, J., Duan, Q., Higgins, W., Pinker, R., Tarpley, D., 723 

Basara, J. and Crawford, K.: Evaluation of the North American Land Data Assimilation 724 

System over the southern Great Plains during the warm season, J. Geophys. Res., 725 

108(D22), 8846, doi:10.1029/2002JD003245, 2003.  726 

Schaake, J. C., Duan, Q., Koren, V., Mitchell, K. E., Houser, P. R., Wood, E. F., Robock, 727 

A., Lettenmaier, D. P., Lohmann, D., Cosgrove, B., Sheffield, J., Luo, L., Higgins, R. W., 728 

Pinker, R. T. and Tarpley, J. D.: An intercomparison of soil moisture fields in the North 729 

American Land Data Assimilation System (NLDAS), J. Geophys. Res. Atmos., 109(D1), 730 

doi:10.1029/2002JD003309, 2004. 731 

Schamm, K., M. Ziese, A. Becker, P. Finger, A. Meyer-Christoffer, U. Schneider, M. 732 

Schröder, and P. Stender (2014), Global gridded precipitation over land: A description of 733 

the new GPCC First Guess Daily product, Earth Syst. Sci. Data,6,49–60 734 

Sorooshian, S.: Commentary-GEWEX (Global Energy and Water Cycle Experiment) at 735 

the 2004 Joint Scientific Committee Meeting, GEWEX Newsl., 14(2), 2, 2004. 736 

Wanders, N., Pan, M. and Wood, E. F.: Correction of real-time satellite precipitation with 737 

multi-sensor satellite observations of land surface variables, Remote Sens. Environ., 160, 738 

206–221, doi:10.1016/j.rse.2015.01.016, 2015.  739 

Wu, H., Adler, R. F., Tian, Y., Huffman, G. J., Li, H. and Wang, J.: Real‐time global 740 

flood estimation using satellite‐based precipitation and a coupled land surface and routing 741 

model. Water Resour. Res., 50(3), 2693-2717, doi:10.1002/2013WR014710, 2014. 742 



 

 27 

List of Tables 743 

Tables 744 

Table 1 Error statistics of recovered precipitation and effect of surface saturation in the idealized experiment (mm/day). 745 

Table 2 Error statistics of recovered NLDAS based on ΔSM (with added errors) conditioned on 1st layer soil wetness for the idealized 746 

experiment (mm/day). 747 

Table 3 Error statistics of 3B42RT and 3B42RTADJ compared to NLDAS precipitation (mm/day) 748 



 

 28 

List of Figures 749 

Figure 1 Schematic for the dynamic assimilation of AMSR-E/LSMEM ΔSM into TMPA 750 

(3B42RT) with the particle filter (PF). 751 

Figure 2 Schematic for the strategy for processing prior and posterior probability 752 

densities in the particle filter. 753 

Figure 3 Statistics of NLDAS precipitation given 3B42RT precipitation measurement. 754 

Boxplot shows the minimum, 15% quantile, 30% quantile, median, 70% quantile, 85% 755 

quantile and maximum value of NLDAS precipitation given 3B42RT precipitation in a 756 

certain bin. 757 

Figure 4 Empirical cumulative distribution function of changes in soil moisture from top 758 

layer soil moisture from NLDAS precipitation forced VIC simulation (black), and 759 

AMSR-E/LSMEM soil moisture retrieval before (red) and after (blue) pre-processing. 760 

Figure 5 Two cases with recovered spatial rainfall pattern in the idealized experiment 761 

after merging satellite soil moisture retrieval on: (a-e) 27th Oct. 2003 and (f-j) 22th Mar. 762 

2006. 763 

Figure 6 Accuracy of recovered precipitation in idealized experiment: (a) overall 764 

performance and separately comparing the improvement performance of recovered 765 

NLDAS precipitation (b) with and (c) without surface saturation condition. Statistics 766 

provided in Table 1. 767 

Figure 7 Error in recovered NLDAS precipitation given surface moisture condition. 768 

Recovered NLDAS is based on using “truth” soil moisture and soil moisture with normal 769 

error: N(0,1mm), N(0,2mm), N(0,3mm), N(0,4mm) and N(0,5mm). Statistics provided in 770 

Table 2. 771 
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Figure 8 May 26th 2006 Rainfall pattern in 3B42RT (b) against NLDAS (d) as detected 772 

by AMSR-E/LSMEM ΔSM (a), and recovered rainfall field (3B42RTADJ) by assimilating 773 

AMSR-E/LSMEM ΔSM (c). Gray shading shows area without soil moisture retrievals. 774 

Figure 9 Pearson correlation coefficient between AMSR-E/LSMEM ΔSM and 775 

precipitation: a) NLDAS, b) 3B42RT and c) 3B42RTADJ; annual mean precipitation in d) 776 

NLDAS, e) 3B42RT and f) 3B42RTADJ of time steps with AMSR-E/LSMEM ΔSM 777 

retrievals. 778 

Figure 10 Frequency of rainy days in 3B42RT, 3B42RTADJ and NLDAS with a) 0.1 779 

mm/day and b) 2 mm/day rainfall threshold to define a rain day. 780 

Figure 11 Distribution of 3B42RT and 3B42RTADJ precipitation error compared to 781 

NLDAS. Statistics are provided in Table 3. 782 

Figure 12 FAR and POD of 3B42RT and 3B42RTADJ with a) 0.1 mm/day and b) 2 783 

mm/day rainfall threshold to define a rain event. 784 

Figure 13 Probability that the added rainy days (3B42RT = 0 mm/day, 3B42RTADJ > 0 785 

mm/day) are true rain events (NLDAS > 0 mm/day) given corresponding AMSR-786 

E/LSMEM ΔSM. 787 

 788 
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Tables 789 

Table 1 Error statistics of recovered precipitation and effect of surface saturation in the idealized experiment (mm/day). 790 

 0 0~0.2 0.2~0.5 0.5~1.0 1.0~1.5 1.5~2 2~2.5 2.5~5.0 5.0~7.5 7.5~10 10~15 15~20 20~25 >25 

All surface 

conditions 

Bias 0.24 0.20 0.37 0.51 0.71 0.87 1.09 0.67 1.16 1.30 2.51 3.32 3.75 3.95 

MAE 0.40 0.42 0.66 0.86 1.14 1.41 1.70 1.48 2.24 2.63 4.21 5.56 6.70 9.76 

Unsaturated 

surface 

Bias 0.23 0.19 0.29 0.40 0.52 0.68 0.82 0.65 1.10 1.27 2.19 2.88 3.14 3.14 

MAE 0.39 0.41 0.59 0.75 0.95 1.21 1.43 1.45 2.17 2.58 3.88 5.11 6.07 8.94 

Saturated 

surface 

Bias 2.31 5.06 47.65 42.58 50.67 44.09 59.64 6.83 16.09 9.19 46.47 57.98 65.33 64.09 

MAE 3.35 5.54 48.71 43.73 52.43 46.96 61.85 9.64 21.42 15.01 49.07 60.78 69.53 70.73 

[3B42RT]-
[NLDAS] [Recovered 

NLDAS]-[NLDAS] 
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Table 2 Error statistics of recovered NLDAS based on ΔSM (with added errors) conditioned on 1st layer soil wetness for the idealized experiment 791 

(mm/day). 792 

 
 

<-30 -30~-25 -25~-20 -20~-15 -15~-12 -12~-10 -10~-9 -9~-8 >-8 

No error Median 0.04 0.03 0.02 0.02 0.02 0.03 0.03 0.04 0.16 
IQR 0.14 0.08 0.07 0.07 0.08 0.12 0.21 0.29 1.71 

1.0 Median 0.86 1.07 1.08 1.03 0.99 0.97 0.97 0.94 0.66 
IQR 1.52 1.72 1.77 1.83 1.96 2.08 2.14 2.19 2.59 

2.0 Median 0.68 1.07 1.40 1.56 1.52 1.44 1.51 1.64 1.54 
IQR 1.76 2.09 2.88 3.45 3.63 3.73 3.73 3.73 3.91 

3.0 Median 0.15 0.80 1.20 1.41 1.47 1.51 1.65 1.84 1.88 
IQR 1.36 2.16 3.04 3.73 3.74 3.79 4.34 5.24 5.47 

4.0 Median 0.22 0.56 0.83 1.15 1.30 1.40 1.63 1.88 1.97 
IQR 0.99 2.36 2.48 3.99 4.05 4.70 5.53 5.52 5.63 

5.0 Median 0.00 0.15 0.52 0.90 1.10 1.27 1.54 1.81 1.89 
IQR 1.62 2.54 2.91 4.43 4.51 5.95 5.90 5.79 7.04 

*1st layer soil depth is 100mm with a SM capacity of ~45mm depending on porosity.793 

[VIC 1st layer SM] 
- [maximum]* 

[mm] [Recovered 
NLDAS]–[NLDAS] 
[mm/day] 
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Table 3 Error statistics of 3B42RT and 3B42RTADJ compared to NLDAS precipitation (mm/day) 794 

[3B42RT] - [NLDAS] 
[mm/day] 

<-25 -25~-
20 

-20~-
15 

-15~-
10 

-10~-
5 

-5~-2 -2~-
0.5 

-
0.5~0

.5 

0.5~2 2~5 5~10 10~1
5 

15~2
0 

20~2
5 

>25 

[3B42RT] - 
[NLDAS] 

Mean -32.32 -22.19 -17.13 -12.09 -6.98 -3.22 -1.09 -0.02 1.11 3.20 6.87 11.96 16.97 21.95 27.35 
STD 8.52 1.42 1.42 1.42 1.39 0.85 0.43 0.12 0.43 0.84 1.37 1.39 1.37 1.38 2.08 

[3B42RTADJ]-
[NLDAS] 

Mean -31.24 -20.31 -14.79 -9.69 -4.81 -1.60 0.16 1.08 0.44 0.21 0.02 -0.06 0.00 -0.03 -0.12 
STD 11.03 6.40 6.12 5.34 4.08 2.73 1.88 1.18 1.86 2.29 2.60 2.91 3.01 2.74 2.41 

 795 
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Figures 796 

 797 

Figure 1 Schematic for the dynamic assimilation of AMSR-E/LSMEM ΔSM into TMPA (3B42RT) with the particle filter (PF). 798 
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 799 

Figure 2 Schematic for the strategy for processing prior and posterior probability densities in the particle filter. 800 
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 801 

Figure 3 Statistics of NLDAS precipitation given 3B42RT precipitation measurement. Boxplot shows the minimum, 15% quantile, 802 

30% quantile, median, 70% quantile, 85% quantile and maximum value of NLDAS precipitation given 3B42RT precipitation in a 803 

certain bin. 804 
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 805 

Figure 4 Empirical cumulative distribution function of changes in soil moisture from top layer soil moisture from NLDAS 806 

precipitation forced VIC simulation (black), and AMSR-E/LSMEM soil moisture retrieval before (red) and after (blue) pre-807 

processing. 808 

VIC$1st$layer$ΔSM$

AMSR2E/LSMEM$ΔSM$

AMSR2E/LSMEM$ΔSM*$
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 809 

Figure 5 Two cases with recovered spatial rainfall pattern in the idealized experiment after merging satellite 810 

soil moisture retrieval on: (a-e) 27th Oct. 2003 and (f-j) 22th Mar. 2006. 811 
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Figure 6 Accuracy of recovered precipitation in 

idealized experiment: (a) overall performance 

and separately comparing the improvement 

performance of recovered NLDAS precipitation 

(b) with and (c) without surface saturation 

condition. Statistics provided in Table 1. 
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 813 

Figure 7 Error in recovered NLDAS precipitation given surface moisture condition. Recovered NLDAS is based on using “truth” soil 814 

moisture and soil moisture with normal error: N(0,1mm), N(0,2mm), N(0,3mm), N(0,4mm) and N(0,5mm). Statistics provided in 815 

Table 2. 816 
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 817 

Figure 8 May 26th 2006 Rainfall pattern in 3B42RT (b) against NLDAS (d) as detected by AMSR-E/LSMEM ΔSM (a), and recovered 818 

rainfall field (3B42RTADJ) by assimilating AMSR-E/LSMEM ΔSM (c). Gray shading shows area without soil moisture retrievals. 819 
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 820 

Figure 9 Pearson correlation coefficient between AMSR-E/LSMEM ΔSM and precipitation: a) NLDAS, b) 3B42RT and c) 821 

3B42RTADJ; annual mean precipitation in d) NLDAS, e) 3B42RT and f) 3B42RTADJ of time steps with AMSR-E/LSMEM ΔSM 822 

retrievals. 823 
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 824 

Figure 10 Frequency of rainy days in 3B42RT, 3B42RTADJ and NLDAS with a) 0.1 mm/day and b) 2 mm/day rainfall threshold to 825 

define a rain day. 826 
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 827 

Figure 11 Distribution of 3B42RT and 3B42RTADJ precipitation error compared to NLDAS. Statistics are provided in Table 3. 828 
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 829 

Figure 12 FAR and POD of 3B42RT and 3B42RTADJ with a) 0.1 mm/day and b) 2 mm/day rainfall 830 

threshold to define a rain event. 831 
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 832 

Figure 13 Probability that the added rainy days (3B42RT = 0 mm/day, 3B42RTADJ > 0 mm/day) are 833 

true rain events (NLDAS > 0 mm/day) given corresponding AMSR-E/LSMEM ΔSM. 834 
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