Thank you very much for handling out manuscript. Thanks for the comments and thanks to the reviewers. We have considered all their comments and hope we managed to include all improvements they have hoped to see. Some of the questions have been answered in the comments during the discussion period of this manuscript. Here we refer in detail to the remaining questions and technical corrections that have been listed in separate, see below.

Thanks very much for considering our manuscript for HESS

For both authors

Erik Nixdorf

Editor questions and remarks

E1.) I agree with Reviewer 2 that the abstract could be sharpened, in particular make the clear the novel methodological approach adopted here and highlight the broader significance of the research (bearing in mind the general nature of HESS and broad readership). I think it is a bit confusing at the moment for some non-experts in this field.

We modified the abstract. Especially the first few sentences are used to introduce meromixis and stratification to direct the reader more towards the core considerations of the paper. We have also changed the title: "Quantitative analysis of biogeochemically controlled density stratification in an iron-meromictic lake". In addition we included two more fundamental references on iron meromixis (Kjensmo 1967, Hongve 1997) to connect the new investigation with the previous knowledge. Also the structure of the introduction has been changed: it starts with the topic of meromixis then moves to the special case of iron meromixis, in mine lakes and especially in Lake Waldsee. Now also clearly showing what is known about the chemical contributions to the density stratification and what is missing (the quantification of redissolution of iron).

E2.) I would also ask that in the revision you review the headings and sub-headings to ensure the logical progression is clear (for example methodology is used for Section 3 heading, but plenty of methodology is described also in Section 2).

We have done this; we clearly separated methods from measurements and results, and included subheadings in the methods section as well as in the discussion.

E3.) Similarly, the first sentence of the discussion is a results statement – it would be beneficial in my view to open the paragraphs with a clear statement on finding or opinion, that is then developed within the paragraph, in order to ensure readers clear follow the "story" of the research work.

We removed the first sentence. The "Discussion" 5.1 now starts appropriately, with a clear statement followed by the interpretation of the measurements.

E4.) I also like the discussion you had with reviewer 2 to link to the work to geochemical modelling prior results, and in particular in the latter part of the discussion it would be ideal if some lines are added to make clear the broader implications of this study (beyond Waldsee) – for example can this be a cost-saving method others could use in other lakes? also, are our current lake mixing models that focus on surface heating adequate, and/or does this approach open a new opportunity for exploring new numerical model approaches?

We condensed the discussion with reviewer #2 to a subsection "5.3 Consequences for Lake Stratification Modelling". In addition — as mentioned above — we have put our work more in the perspective of previous investigations. We hope that the extension of knowledge presented in this publication can be seen more clearly bedded into the wider limnological perspective.

E5.) A final suggestion – since the overall paper is not very long and given the discussion in particular is relatively short, it seems possible to potentially merge the discussion and "summary"(/conclusions), and then introduce 2 or 3 sub-headings to help guide the reader. This may help address the issues I raised above since the clear statements of your findings in the discussion can help put the technical discussion in context, helping the overall readability.

We included subheadings in the discussion section and we changed the final section from "Conclusions" to "Summary". We hope that the main conclusions are easily found by the reader.

Reply on specific remarks and technical corrections of reviewer 1 (Hydrol. Earth Syst. Sci. Discuss., 12, C2599–C2601, 2015)

R1_1.) From biological point of view, authors should add to Chapter 2.2. important parameter: visibility of Secchi disk. This parameter allow to estimate depth of light penetration and possibility of oxygen production by phytoplankton. It is important for iron oxidation

We provided Secchi-depth data to the reviewer. As outlined in our reply, a quantitative approach for oxygen production cannot be based on these data and would require considerable space and would distract from the main purpose of the study.

R1 2.) In the chapter 4.3, page 5613 line 5): Authors discussed correlation coefficient 0.71 whereas on fig 8 this value is has coefficient of determination R2. See comment to fig 8.

We corrected and used correlation coefficients in the text (p.14 line 17 and figure (figure 8), only.

R1 3.) In the Chapter 5 (page 5613line 15). Is: "this result confirmed that the permanent stratification of Lake Waldsee was preserved by the presence of conductivity gradients". Comment: shorthand, slang. Rather dissolved compounds.

We replaced the expression "conductivity gradients" by "dissolved compounds" (p.14 line 25)

R1_4.) Figure 1. Right map, Change colour of letters "Waldsee" suggestion: white.

Changed to white (figure 1)

R1 5.) Fig 2,Rearrange drawings and increase the size of letters and add identification by letters a,b, c, d, e

We rearranged the drawings, increased the size of the letters and numbered the subplots of figure 2

R1_6.) Figure 3.lack of citation in the text

Citation was added (p.8 line 9)

R1_7.) Figure 5. letters of legend and axis tags should be greater

Letters of legend and axis tags were enlarged

Reply on specific remarks and technical corrections by Reviewer 2 (Hydrol. Earth Syst. Sci. Discuss., 12, C2647–C2649, 2015

R2 1) The title of the paper seems to reflect the content not adequately. The research did not focus on the understanding of the (already known) biogeochemical processes but on the effects of these processes on electrical conductivity as an expression of water density in the different layers of meromictic lakes. The prominent part of the title should address this aspect. The same discrepancy is also felt when comparing the abstract with the main paper.

We changed the title, and the abstract. Further explanations see above (reply on comment E1)

R2 2) The introduction is not well structured. The contents of the first paragraph is repeated in the following paragraphs. It can be deleted without loss of information. The second paragraph starts to describe the formation of meromictic lakes followed by a paragraph referred to the distribution of meromictic lakes and returning to the background of their formation in the fourth and fifth paragraph.

The structure of the introduction has been changed: it starts with the topic of meromixis then moves to the special case of iron meromixis, in mine lakes and especially in Lake Waldsee. Now

also clearly showing what is known about the chemical contributions to the density stratification and what is missing (the quantification of redissolution of iron).

R2 3) Chapter 2 should be arranged in another way. Whereas subchapters 1 and 2 can form the description of the study site, subchapter 2.3 should become part of the following methodology chapter (chapter 3). Table 1 does not provide significant information. It may be not necessary. Some of the information can be added to the text. It does not become clear if the authors considered different species of iron.

Subchapter 2.3 was shifted to the methodology part (chapter 3.2) Table 1 was deleted and import information were included in the text (chapter 3.1). Information were added in chapter 3.1 that the authors considered ferrous and ferric iron for the chemical analysis of water compounds

R2_4.) In the result chapter (chapter 4), some data could be presented more precisely. Especially figure 4 seems to need a revision. The figure would be more clearly with a real time scale on the x-axis. The breaks in the measurements should become visible. Furthermore, it would be useful to compare the rates of the decrease in conductivity in certain periods of the experiment to evaluate if the formation of iron precipitates is a steady process or if different steps occur.

We revised fig.4 by using a real time scale on the x-axis. This makes it much easier to evaluate the changes in degradation rate with time in dependence of the experiment progress and the aeration depth.

R2 5.) In the last paragraph of chapter 4.1 the authors describe "elevated values of electrical conductivity towards the end of the experiment near the bottom" by referring to figure 5. This does not become visible from the figure that shows a permanent slight decrease in the whole lower water layer during the experiment.

We decided to replace one profile in fig. 5 (see appendix) and changed the scaling of the y-axis that it aligns with figure 4, increased the font size as suggested and add lines to increase the visibility of the increased conductivity values close to the bottom. We hope that this facilitates an easier perception of increased EC-values in the range up to 1.2 mS/cm at the bottom of the column

R2 6.) It would be interesting to test if the assumptions drawn from the experiment results and lake measurements could be confirmed by geochemical modelling. This would also allow a more reliable assumption for the interpretation of the carbon data (chapter 4.2).

There has been a geochemical simulation of Waldsee by Moreira et al. (2011). Thank you for this comment, we should cite this publication in our paper. However, they provided no quantification of the partial re-dissolution of the precipitated iron. This is where our investigation delivers new parametrizations. Running a geochemical model is far outside the scope of this paper, but definitely an interesting challenge. We added a new subchapter "5.3 Consequences for Lake Stratification Modelling". We hope that the extension of knowledge presented in this publication can be seen more clearly bedded into the wider limnological perspective

R2_7.) The conclusions expressed in the first paragraph of chapter 4.3 have to be proved by statistical analyses.

We decided to calculate the statistical moments mean and standard deviation for our results in the first paragraph of chapter 4.3 in order to justify our statements and conclusions.

R2_8.) The chapter entitled "Conclusions" more resembles a "Summary" than what can be expected from conclusions. It should be renamed or be revised.

Changed to "Summary"

R2_9.) The authors should call their research lake always "Waldsee" as in the abstract and not "Lake Waldsee" (due to doubling of the term "lake").

We replaced all terms "Lake Waldsee" by "Waldsee"

R2_10.) Does the lake originate from surface (abstract) or underground mining (chapter 2.1)?

The lake originated from underground mining. We changed the wrong expression in the abstract (line 9)

R2_11.) Figure 2 is far too small. It is not possible to read the different legends.

We increased the font size and the axis scaling of Figure 2 in order to increase readability

R2_12.) Figure 4: 06/25 measurement has to be placed as third bar instead of sixths

Figure 4 was changed completely (see reply on comment R2_4)

R2_13.) Figure 5: Same depth scale from bottom to surface should be used as in figure 4.

Y-axis was reversed and font size increased

R2_13.) Figure 6: enlarge for better readability.

Font size was increased to improve readability

Quantitative analysis of bBiogeochemically processes controlcontrolled ling

density stratification in an iron-meromictic lake

Erik Nixdorf^{1,2} and Bertram Boehrer²

¹Department of Environmental Informatics, Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany (erik.nixdorf@ufz.de)

²Department of Lake Research, Helmholtz Centre for Environmental Research, 39114 Magdeburg, Germany (bertram.boehrer@ufz.de)

Abstract

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Lake stratification controls the cycling of dissolved matter within the water body. This is of particular interest in the case of meromictic lakes, where permanent density stratification of the deep water limits the vertical transport and a chemically different (reducing) milieu can establish. As a consequence, the Biogeochemical setting and the processes and mixing regime of a lake can stabilize control each other mutually. We attempt a quantitative approach to the contribution of chemical reactions sustaining the density stratification. As a demonstration object, Www chose tThe prominent case of iron meromixis is investigated in Waldsee near Doebern, a small lake that originated from near surface underground mining of lignite, as a demonstration object. From a four years data set of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed changing chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we constructed a lab experiment, in which aeration of monimolimnetic waters removed iron compounds and organic material. Precipitates could be

1	identified by visual inspection. Introduced air bubbles ascended through the water column and
2	formed a water mass similar to the mixolimnetic Waldsee water. The remaining less dense
3	water remained floating on the nearly unchanged monimolimnetic water. In conclusion, iron
4	meromixis as seen in Waldsee did not require two different sources of incoming waters, but
5	the inflow of iron rich deep groundwater and the aeration through the lake surface were fully
6	sufficient.
7	
8	1. Introduction
9	In meromictic lakes (see below), transport of matter differs from other lakes fundamentally.
10	Oxygen supply to the deep water, recycling of nutrients from the sediments and deep
11	recirculation during winter do not happen as in holomictic lakes. As a consequence, entirely
12	different chemical milieus can establish, with all consequences for water quality and the food
13	web. The permanent stratification can be imposed from outside by inflows, but lake intrinsic
14	processes, which create meromixis or contribute essentially to the creation of meromixis, are
15	of particular interest.
16	
17	Lakes are called meromictic, if a deep water layer, the monimolimnion, perennially shows
18	pronounced chemical differences to the surface water due to incomplete recirculation during
19	the deep mixing period (Boehrer and Schultze, 2008). The exclusion of the monimolimnia
20	from gas exchange with atmosphere creates anoxic, reducing conditions leading to an
21	enrichment of dissolved gases and ionic substances in the deep water-(Boehrer and Schultze,
22	<u>2008).</u>
23	
24	Meromictic lakes show a global distribution. Meromictic lakes could be identified in mining
25	regions on Earth, such as the Iberian Pyrite Belt, Spain (e.g. Lake San Telmo, Cánovas et al.,

1 2012, and Lake Conception, Santofimia and López-Pamo, 2013), Vancouver Island, Canada (Island Copper Mine pit lake, Wilton et al., 1998; Stevens and Lawrence, 1998), the Central 2 3 German Mining District (e.g. Lake Wallendorfer See and Lake Rassnitzer See, Boehrer et al., 4 2014) and the Lower Lusatian Mining District, Germany (e.g. Lake Moritzteich, von Rohden 5 et al, 2009) to name just a few Despite their worldwide occurrence, only Aa small number of internal and external processes can be responsible for the formation of density stratification 6 7 (e.g. Hakala, 2004; Walker and Likens, 1975; Hakala, 2004; Boehrer and Schultze, 2008). 8 9 There are good reasons for scientific interest in meromictic lakes: Some of the largest lakes are meromictic (Tanganyika, e.g. Lake -Malawi-/-Nyasa, e.g. Vollmer et al., 2002). Chemical 10 11 gradients in meromictic lakes form habitats for specialized organisms (e.g. sulfur bacteria performing anoxygenic photosynthesis (Camacho et al., 2001) or anammox (Hamersley et al., 12 13 2009)). Some meromictic lakes became famous through their dangerous gas loads (e.g. Lake Nyos and, Lake Monoun in , Cameroon, Halbwachs et al., 2004). The monimolimnion of 14 15 Lake Kivu contains considerable methane deposits (Tietze, 1978), which will be exploited in 16 near future. Sediments in some meromictic lakes have been undisturbed for thousands of years and hence the varved sediments represent excellent climate archives and fossil deposits 17 (e.g. Walker and Likens, 1975; Lenz et al., 2011). Meromictic lakes could be identified in 18 19 many mining regions on Eearth where stratification limited the vertical transport of 20 undesirable substances (e.g. Spain: Lake San Telmo, Cánovas et al., 2012, and Lake Conception, Santofimia and López-Pamo, 2013; Germany: Lake Wallendorfer See and Lake 21 Rassnitzer See, Boehrer et al., 2014; Lake Moritzteich, von Rohden et al., 2009). In some 22 cases, stratification was even implemented to restrict the vertical transport (Island Copper 23 24 Mine pit lake in Canada, Wilton et al., 1998; Stevens and Lawrence, 1998). 25

Meromictic conditions- cain mining lakes aren be sustained by a continuous inflow of high
density groundwater_formed by weathering processes of exposed sulfide bearing material
(Geller et al., 1998) and low density surface water via streams or precipitation and the very
low diffusion rate of substances over sharp gradients (e.g. von Rohden and Ilmberger, 2001;
Wiessner et al., 2014), the chemocline. The dense water can may also be formed within the
lake e.g. by weathering processes of exposed sulfide-bearing material (Geller et al.,
1998).von Rohden and Ilmberger, 2001). In case of mining lakes, establishing stable
meromictic conditions might be favorable as it allows the confinement of water quality
problems (e.g. heavy metals) from the surface water into the deep water layers (Jöhnk, 1999;
Nixdorf et al., 2001; Wiessner et al., 2014). The exclusion of the monimolimnia from gas
exchange with atmosphere creates anoxic, reducing conditions leading to an enrichment of
dissolved gases and ionic substances in the deep water (Bochrer and Schultze, 2008).
<i>ਕ</i>
Subterranean ion rich acid mining drainage (AMD) can be formed by weathering processes of
exposed sulfide-bearing material (Geller et al., 1998). Meromietic conditions in mining lakes
are sustained by a continuous inflow of high density groundwater and low density surface
water via streams or precipitation and the very low diffusion rate of substances over sharp
gradients, the chemocline (von Rohden and Ilmberger, 2001). In case of mining lakes,
establishing stable meromictic conditions might be favorable as it allows the confinement of
water quality problems (e.g. heavy metals) from the surface water into the deep water layers
(Jöhnk, 1999; Nixdorf et al., 2001; Wiessner et al., 2014).
The volume ratio between the monimolimnion and the mixolimnion can show seasonal

by increased surface runoff, whereas increased groundwater inflow and higher surface 1 evaporation as well as diffusive processes are able to cause an upward movement of the 2 3 chemocline (e.g. Santofimia and López-Pamo, 2013). Additionally, chemical reactions are 4 able to sustain meromixis in mining lakes. 5 One prominent reactant is iron, which gets precipitated from the oxygenated mixolimnetic 6 7 waters and dissolves in the anoxic (reducing) chemical conditions of the monimolimnion 8 (Kjensmo, 1967; Hongve, 1997). Exemplarily it is proposed for the shallow mining Llake 9 Waldsee that changes in chemocline height trigger internal, trans-chemocline transport of iron 10 species by oxidation, precipitation and re-dissolution, in combination with related CO₂ 11 outgassing and regeneration. Both processes are able to maintain density gradients between 12 both water layers and inhibit a complete mixing of this shallow lake (Boehrer et al., 2009). 13 For Waldsee, Dietz et al. (2012) showed that dissolved iron and carbon species (CO₂, bicarbonate and DOC) contribute the same amount to the density gradient and all other 14 15 substances contribute a much subordinate portion. 16 From previous investigations, it is clear that both precipitation of iron out of the mixolimnion 17 18 and gas exchange with the atmosphere are important contributors to the permanent 19 stratification. It is also known that re-dissolution of iron happens in the monimolimnion, but 20 there has not been any quantitative approach to determine its role in sustaining meromixis. 21 22 23 24 In this paper, we use easily measurable vertical profiles of in-situ electrical conductivity as a 25 quantitative bulk measure of solutes like calculating salinity from electrical conductivity

26

measurements in oceanography (e.g. Fofonoff and Millard, 1983). We calculate "summed

1	conductivity" as a measure for the amount of solutes within Lake Waldsee, and give a rough
2	quantitative estimate for the re-dissolution of precipitated iron. Furthermore a lab experiment
3	was conducted to physically reproduce the assumed chemical reactions in the lake in order to
4	get evidence about the origin of the two different water types in the lake and the production of
5	mixolimnetic water from monimolimnetic waters during periods of vertical chemocline
6	propagation.
7	
8	2. Site Description and Measurements
9	2.1 Study Sitesite
10	The demonstration site Lake Waldsee (51°37'14.1''N, 14°34'16.7''E) is a former mining site
11	located in a forested area in the Lower Lusatian Mining District 130 km southeast of Berlin
12	(Figure 1). The lake covers an area of about 2400 m², has a volume of 6500 m³ and reaches a
13	maximum depth of 4.7 m (Boehrer et al., 2009). Lake Waldsee is embedded in The Muskau
14	Arch which represents an Elsterian push moraine cut by deep erosion. This geological
15	deformation process folded up the horizontal geological layers which caused the crop out of
16	Miocene lignite layers in conjunction with later glacier advances (Kozma and Kupetz, 2008).
17	The near-surface coal was exploited by both underground mining and surface mining. Lake
18	Waldsee is the water filled depression of the former underground mining site
19	"Pflanzgartenmulde", which has been formed by the collapse of the underground mining
20	structures after cessation of mining activities in 1948 (Schossig and Kulke, 2006).
21	
22	The location of Lake Waldsee shows an annual average precipitation between 500-600 mm
23	and a potential open water surface evaporation of 752 mm (Seebach et al., 2008). Lake
24	Waldsee does not have a surface inflow. Hence groundwater is the main source of recharge.
25	Tracer experiments estimate a mean groundwater recharge to Lake Waldsee of 8.2 m³/d

- 1 (mostly from southern direction) and a mean groundwater outflow of 6 m³/s (von Rohden et
- 2 al., 2009). Lake Waldsee does not have a surface inflow, which makes groundwater the main
- 3 source of recharge. A small only occasionally filled drainage trench connects Lake Waldsee
- 4 with a mining lake (RL 0622/6) below. The resulting annual water level changes are in the
- 5 range of a few decimeters.

11

18

6 2.2 Lake Stratification stratification and Water water Chemistrychemistry

- 7 The physico-chemical profiles of Lake Waldsee clearly showed pronounced differences in
- 8 water parameters between the upper 1-1.5 m thick mixolimnic water layer and the
- 9 monimolimnion below. pH in both mixolimnion and monimolimnion was slightly acidic with
- values between 5.5 and 7.0 having lower values during spring time (Figure 2a).
- 12 The mixolimnion was oxygenated (Figure 2b) and had an electrical conductivity of about 0.4-
- 13 0.5 mS/cm which was approximately half of related values in the anoxic monimolimnion
- 14 (Figure 2c). Due to the absence of large pH differences (Diesing and Boehrer, 2010) this
- 15 gradient in electrical conductivity could be related to gradients in the concentrations of
- 16 electro-active water constituents, mainly ferrous iron and bicarbonate also being the major
- 17 contributors to the density difference (Dietz et al., 2012).
- 19 Constituent concentration measurements in the mixolimnion and the monimolimnion had
- shown a difference in ferrous iron concentration of about 150 mg/l and in bicarbonate
- 21 concentration of about 300-400 mg/l between both water layers (Boehrer et al., 2009). The
- 22 resulting density gradient across the chemocline over-compensated the destabilizing
- 23 temperature gradient during winter time (Figure 2d) and in consequence no complete lake
- 24 turnover was detected within more than 10 years of lake monitoring. However, both the

1 mixolimnion and the monimolimnion could form two independent convection cells (Boehrer

2 et al., 2009).

3

6

7

8

9

10

11

12

4 The depth of the chemocline, which could be marked as the point of inflection of the κ_{25}

5 conductivity profiles and thus the volumetric ratio between mixolimnion and monimolimnion,

varied seasonally by about 1 m (Figure 2c). During the warm season the erosion (lowering) of

the chemocline was caused by wind driven nocturnal mixolimnetic convection currents. On

the other hand in winter, the monimolimnetic water section volume increased due to the

weakened erosive forces and significant net groundwater inflow (von Rohden et al., 2009).

Additionally the density driven stratification of the two different water sections was

maintained and stabilized by an internal iron redox cycle and the outgassing of diffused

bicarbonate from the mixolimnion counterbalanced by biological bicarbonate producing

processes in the monimolimnion (Boehrer et al., 2009).

14

16

17

15 Ferrous iron transported into the oxygenated water layers, either by convective transport due

to chemocline erosion or by molecular diffusion was oxidized to ferric iron and was

subsequently transported back to the monimolimnion as rust-colored, voluminous iron

18 hydroxide precipitate:

19

20

$$Fe^{2+} + 0.25O_2 + 2.5H_2O \rightarrow Fe(OH)_3 \downarrow +2H^+$$
 (1)

21

22

Thus the zone of iron hydroxide formation was traceable by its increase in turbidity and was

23 located slightly below the current chemocline height (Figure 2e).

- 1 Similarly, bicarbonate ions transferred into oxygenated water layers could either be up-taken
- 2 by photosynthetic organisms or outgas as CO₂ through the carbonate equilibrium to the
- 3 atmosphere:

4

6

10

12

$$5 \qquad HCO_3^- + H^+ \rightarrow CO_2 \uparrow + H_2O \tag{2}$$

- 7 Internally, dissolved ferrous iron and inorganic carbon were resupplied by the micro-bacterial
- 8 anaerobic degradation of organic matter in the monimolimnion using precipitated iron
- 9 hydroxide as an electron acceptor:

11
$$CH_2O + 4Fe(OH)_3 + 7H^+ \rightarrow HCO_3^- + 4Fe^{2+} + 10H_2O$$
 (3)

- 13 The increase of measured conductivity and pH in the monimolimnion near the lake bottom
- 14 (Figure 2a and 2c) might be interpreted as evidence for this reduction process.
- 15 **2.3 Field and lab measurements**
- 16 45 monthly field measurements have been conducted in Lake Waldsee between July 2006 and
- 17 April 2010. Vertical profiles of temperature, pressure, pH, turbidity and in-situ electrical
- 18 conductivity were collected in Lake Waldsee using the multi-parameter probes Ocean Seven
- 19 316CTD (Idronaut, Italy) and CTD90M (Sea & Sun, Germany). The sampling rate was
- 20 between 1 and 4 Hz and the small offset between the sensors of the two different probes was
- 21 compensated. Measured electrical conductivity C was converted into electrical conductivity
- 22 K₂₅ at 25°C (sometimes named as electrical conductance) by

24
$$\kappa_{25} = \frac{C}{\alpha_{25} \cdot (T - 25^{\circ}C) + 1} = -\frac{(4)}{\alpha_{25} \cdot (T - 25^{\circ}C) + 1}$$

1	
2	where a lake specific α ₂₅ value of 0.0194 (Bochrer et al., 2009) was used.
3	
4	Water depth was estimated by the hydrostatic pressure equation taking into account a lake
5	specific empirical density function, which allowed calculating density profiles based on
6	temperature and electrical conductivity measurements (Boehrer et al., 2009). On May 18th
7	2011, mixolimnion and monimolimnion water were collected for chemical analysis (Table 1).
8	In addition, 150 l of monimolimnion were sampled and air-tightly and opaquely stored at a
9	temperature of 4°C for later use in a column experiment.
10	
11	3. Methodology
12	3.1 Sampling and Setset-up of column experiment
13	On May 18th 2011, mixolimnion and monimolimnion water were collected for chemical
14	analysis. This included the measurement of electrical conductivity using a 7-pole platinum
15	cell conductivity sensor and pH with a pH-meter as well as determining concentration of
16	carbon species (DOC; TIC, TOC) by infrared spectroscopy following thermal-catalytic
17	oxidation and iron species (ferrous and ferric iron) by atomic emission spectroscopy.
18	(Table 1). In addition, 150 l of monimolimnion were sampled and air-tightly and opaquely
19	stored at a temperature of 4°C for later use in a column experiment.
20	
21	A 5 m high bluish-transparent PVC-column with an outer diameter of 20 cm and a wall
22	thickness of 0.5 cm was installed and fastened at the technical hangar of UFZ Magdeburg
23	(Figure 3). The column was covered by PE-containing mattresses in order to thermally
24	insulate the column and to avoid photo-chemical iron reduction (Herzsprung et al., 1998).

Prior to filling, the column was flushed with nitrogen gas to avoid initial oxidation of ferrous

- 1 iron. On May 25th 2011, The the column was subsequently filled with 1301 of this
- 2 monimolimnetic lake water to reproduce the maximum water depth of 4.7 m in Lake
- 3 Waldsee. The water was filled in slowly from below. We implemented a thermal stratification
- 4 to prevent vertical circulation at the beginning of the experiment.

5

- 6 The aeration was accomplished with pressurized air at a water depth of 50 cm. Between the
- 7 25.05.2011 13:00 and the 14.06.2011 09:00 o'clock, 28 vertical profiles of temperature,
- 8 pressure, turbidity and electrical conductivity were sampled with the multi-parameter CTD-O₂
- 9 fast profiling probe with a sampling frequency of 4 Hz. The airflow was increased after 24 h
- of experiment time and additional 20 hours later the aeration depth was changed to 1 m for a
- 11 time span of three additional days in order to see the response of chemocline height in the
- water. Finally the aeration was stopped and four further profiles were measured during the
- 13 next 14 days. At the end of the experiment, water samples were taken from the aerated top
- water layer and the bottom water and analyzed in the lab together with collected mixolimnion
- and monimolimnion water from the lake.

3.2 Calculating summed e Electrical conductivity

- 45 monthly field measurements have been conducted in Lake Waldsee between July 2006 and
- April 2010. Vertical profiles of temperature, pressure, pH, turbidity and in-situ electrical
- 19 conductivity were collected in Lake Waldsee using the multi-parameter probes *Ocean Seven*
- 20 316CTD (Idronaut, Italy) and CTD90M (Sea & Sun, Germany). The sampling rate was
- 21 <u>between 1 and 4 Hz and the small offset between the sensors of the two different probes was</u>
- 22 compensated. Measured electrical conductivity C was converted into electrical conductivity
- 23 κ_{25} at 25°C (sometimes named as electrical conductance) by

24

25
$$\kappa_{25} = \frac{C}{\alpha_{25} \cdot (T - 25^{\circ}C) + 1}$$
 (4)

1

where a lake specific α_{25} value of 0.0194 (Boehrer et al., 2009) was used.

3

2

- 4 Water depth was estimated by the hydrostatic pressure equation taking into account a lake
- 5 specific empirical density function, which allowed calculating density profiles based on
- 6 temperature and electrical conductivity measurements (Boehrer et al., 2009).

7 3.3 Calculating summed electrical conductivity

The summed conductivity $S_{\kappa 25}$ could be interpreted as a value representing the total amount of electro-active constituents in the water. It was calculated by multiplying the measured

10 electrical conductivity with the corresponding water volume and subsequently integrating

results over the complete water depth. Therefore the lake was vertically portioned into j=1...n

layers of volumina V_j where layer j=1 represented the bottom water layer. In the lake, the

number of layers varied between 40 and 45 due to changes in water level whereas in the

column experiment a constant value of 47 layers could be used in each time step. Each layer j

had a respective height h_j of 10 cm. Furthermore, it was assumed that conductivity gradients

in the planar directions were negligible. The summed conductivity, given in $S \cdot m^2$, could be

calculated for each time of measurement t_i by

18

11

12

13

14

15

16

17

19
$$S_{\kappa_{25}}(t_i) = \sum_{j=1}^{n} \kappa_{25}(j, t_i) \cdot V_j = \sum_{j=1}^{n} \kappa_{25}(j, t_i) \cdot A(j) \cdot h_j$$
 (5)

20

- 21 For the column experiment, the area of each layer was 0.028 m² according to the geometry. In
- 22 the lake the specific size of each layer was derived from a former bathymetric study
- 23 (Brandenburg University of Technology, 1998).

- 1 The spatially averaged monimolimnion conductivity $\overline{\kappa}_{25}^{\text{moni}}(t_i)$ could be derived from
- 2 measurements by solving eq.5 for κ_{25} and summing up all layers from the lake bottom up to
- 3 layer j_c where the chemocline was located:

$$5 \qquad \overline{\kappa}_{25}^{\text{moni}}(t_{i}) = \frac{S_{\kappa 25}^{\text{moni}}(t_{i})}{V^{\text{moni}}(t_{i})} = \frac{\sum_{j=1}^{j=j_{c}(t_{i})} \kappa_{25}(j, t_{i}) \cdot A(j) \cdot h_{j}}{\sum_{j=1}^{j=j_{c}(t_{i})} A(j) \cdot h_{j}}$$
(6)

- 7 The average mixolimnion conductivity $\bar{\kappa}_{25}^{\text{mixo}}(t_i)$ could be calculated similarly to the approach
- 8 shown in eq. 6.

4

6

9

14

- 10 In the hypothetical scenario of a closed Lake Waldsee, a rise in the chemocline (
- $j_c(t_i) > j_c(t_{i-1})$) would be connected to a decrease of the calculated average electrical
- 12 conductivity in the monimolimnion $\overline{\kappa}_{25}^{calc}(t_i)$. Mathematically this could be written as
- inclusion of less conductive mixolimnic water layers into the expanding monimolimnion:

$$15 \qquad \overline{\kappa}_{25}^{calc}(t_{i}) = \frac{V^{moni}(t_{i-1}) \cdot \overline{\kappa}_{25}^{calc}(t_{i-1}) + \sum_{j=j_{c}(t_{i-1})+1}^{j=j_{c}(t_{i})} A_{j} \cdot h_{j} \cdot \kappa_{25}(j, t_{i-1})}{V^{moni}(t_{i})}$$

$$(7)$$

- In contrast in our model during seasonal observed chemocline erosion $(j_c(t_i) < j_c(t_{i-1}))$, the
- iron redox-cycle was able to restore the gradient between monimolimnion and mixolimnion.
- 19 Mathematically, the corresponding increase in electrical conductivity could be calculated
- 20 assuming that previous monimolimnic water (time step t_{i-1}) affected by the chemocline
- 21 erosion was changed to mixolimnic water (time step t_i) with a complete loss of excess

- 1 conductivity $\kappa_{25}^{moni}(j,t_{i-1}) \overline{\kappa}_{25}^{mixo}(t_i)$ and that the entire amount of conductivity was transferred
- 2 to the remaining monimolimnion volume:

$$4 \qquad \overline{\kappa}_{25}^{\text{calc}}\left(t_{i}\right) = \frac{V^{\text{moni}}\left(t_{i-1}\right) \cdot \overline{\kappa}_{25}^{\text{calc}}\left(t_{i}\right) + \sum_{j=j_{c}\left(t_{i}\right)+1}^{j_{c}\left(t_{i}-1\right)} A_{j} \cdot \left(\kappa_{25}\left(j, t_{i-1}\right) - \overline{\kappa}_{25}^{\text{mixo}}\left(t_{i}\right)\right) \cdot h_{j}}{V^{\text{moni}}\left(t_{i}\right)}$$

$$(8)$$

4. Results

4.1 Development of summed conductivity in the column experiment

of ferrous iron ions remaining in the aerated part of the column.

continuously (Figure 4). This decline continued after cessation of the aeration with the exception of the measurement on the 30th of May. Over all, the summed conductivity dropped by about 12 % from 13.44 S·m² to 11.84 S·m² over the complete experiment time. This could be attributed to expected oxidation and subsequent precipitation of iron hydroxide from the aerated part of the column. The precipitation process could be visually verified by a water discoloration to reddish brown and a measured increase in the turbidity NTU of the surface water by a factor of 26.5 in comparison to the deep column water value. The iron hydroxide flocks precipitation was visible. The flocks sank at a settling speed of about 1 mm/s. The

During the aeration period from 25th to 27th of May, the summed conductivity decreased

A distinct chemocline was formed in a water depth of about 0.5 m similar to the aeration depth after an initial phase of about 1 h. The increase of airflow on the 26th of May 13:00 and the change of aeration depth 20 hours later shifted the chemocline in the vertical by 20 cm and 50 cm, respectively. The chemocline height continued declining after the cessation of the

decline of summed conductivity decelerated during the experiment due to the limited amount

- aeration due to the diffusion of oxygen into deeper water layers. However the quantitative
- 2 analysis is was beyond the scope of this experiment.

3

12

- 4 Profiles of electrical conductivity (Figure 5) showed a distinct step similar to measured
- 5 profiles in Lake Waldsee. Elevated values of electric conductivity appeared towards the end
- of the experiment near the bottom. In conclusion, iron hydroxide flocks precipitated down to
- 7 the bottom before reduction and re-dissolution could set in. However, this obviously
- 8 happened at a small rate. The temporal delay could be a consequence of limited bacterial
- 9 presence in the beginning. The formation of a visible several centimeter thick iron hydroxide
- 10 layer at the column bottom confirmed the quantitative removal of substances from the
- 11 experimental water.

4.2 Comparison of column experiment samples with lake samples properties

- 13 The results of the lab analysis showed that the aeration of the column's upper water changed
- 14 the water characteristics drastically (Figure 6). Dissolved iron (DFe) was removed almost
- entirely from the upper water. Resulting concentrations of 5 mg/l concurred with mixolimnic
- lake water (2 mg/l). In parallel, electrical conductivity fell from 1.0 mS/cm to 0.77 mS/cm
- 17 close to the mixolimnetic value of the lake. Most of the dissolved organic carbon was
- 18 removed from the aerated water, DOC concentration fell from 46 mg/l to 10 mg/l. The
- 19 aeration also stripped CO₂ from the water resulting in a measurable drop in TIC (Total
- 20 Inorganic Carbon) concentration from 122 mg/l to 17.5 mg/l, which were in the range of the
- 21 mixolimnion water (13.1 mg/l). pH of the surface water has decreased slightly from 6.3 to 5.9
- 22 probably due to the acidifying process of ferrous iron oxidation and precipitation.

23

- Similarly, changes of lower water properties during the experiment could be attributed to the
- 25 impact of the iron hydroxide reduction and re-dissolution process. The re-dissolution process

1	of precipitated iron caused a measurable increase of dissolved iron (177 mg/l) compared to
2	the initial concentration (148 mg/l). The supplementary measured TFe in the bottom water
3	313 mg/l indicated that not all precipitated iron had been re-dissolved during the experiment.
4	The determination of a plausible TFe value for the monimolimnion failed and was therefore
5	excluded from Figure 6. On the other hand, the partial reduction and re-dissolution of iron
6	caused only a slight increase in both electrical conductivity and pH in the bottom water.
7	
8	TIC concentrations of the water at the column bottom of 75 mg/l were lower than
9	monimolimnetic water (122 mg/l) reflecting losses during sampling, transport and filling
10	process. DOC in the deeper column of 54 mg/l was higher than the initial value of 48 mg/l.
11	Possibly precipitating iron hydroxide flocks could include DOC but released some into the
12	ambient water on the way to the column bottom (Duan and Gregory, 2003).
13	4.3 Dynamics of chemocline height and summed conductivity in Lake Waldsee
13 14	4.3 Dynamics of chemocline height and summed conductivity in Lake WaldseeThe height of the chemocline varied seasonally over 4-four years of monthly observation (see
,	
14	The height of the chemocline varied seasonally over 4-four years of monthly observation (see
14 15	The height of the chemocline varied seasonally over 4-four years of monthly observation (see also von Rohden et al., 2009). From April to October, the chemocline rosesank, while it sank
141516	The height of the chemocline varied seasonally over 4-four years of monthly observation (see also von Rohden et al., 2009). From April to October, the chemocline rosesank, while it sank rose during winter months (Figure 7). The height above the deepest point varied between
14151617	The height of the chemocline varied seasonally over 4-four years of monthly observation (see also von Rohden et al., 2009). From April to October, the chemocline rosesank, while it sank rose during winter months (Figure 7). The height above the deepest point varied between 2.3 m and 3.5 m showing a mean of 2.86±0.29 m showing a slightly rising trend. In contrast,
1415161718	The height of the chemocline varied seasonally over 4-four years of monthly observation (see also von Rohden et al., 2009). From April to October, the chemocline rosesank, while it sank rose during winter months (Figure 7). The height above the deepest point varied between 2.3 m and 3.5 m showing a mean of 2.86±0.29 m showing a slightly rising trend. In contrast, water level in Waldsee was on average at 4.18 ±0.10 m. This meant that the amplitude of the
141516171819	The height of the chemocline varied seasonally over 4- <u>four</u> years of monthly observation (see also von Rohden et al., 2009). From April to October, the chemocline <u>rosesank</u> , while it <u>sank</u> rose during winter months (Figure 7). The height above the deepest point varied between 2.3 m and 3.5 m showing a mean of 2.86±0.29 m showing a slightly rising trend. In contrast, water level in Waldsee was on average at 4.18 ±0.10 m. This meant that the amplitude of the chemocline changes, expressed by standard deviation, were <u>significantly</u> about three times
14 15 16 17 18 19 20	The height of the chemocline varied seasonally over 4- <u>four</u> years of monthly observation (see also von Rohden et al., 2009). From April to October, the chemocline <u>rosesank</u> , while it <u>sank</u> rose during winter months (Figure 7). The height above the deepest point varied between 2.3 m and 3.5 m showing a mean of 2.86±0.29 m showing a slightly rising trend. In contrast, water level in Waldsee was on average at 4.18 ±0.10 m. This meant that the amplitude of the chemocline changes, expressed by standard deviation, were <u>significantly</u> about three times
14 15 16 17 18 19 20 21	The height of the chemocline varied seasonally over 4-four years of monthly observation (see also von Rohden et al., 2009). From April to October, the chemocline rosesank, while it sank rose during winter months (Figure 7). The height above the deepest point varied between 2.3 m and 3.5 m showing a mean of 2.86±0.29 m showing a slightly rising trend. In contrast, water level in Waldsee was on average at 4.18 ±0.10 m. This meant that the amplitude of the chemocline changes, expressed by standard deviation, were significantly about three times higher than the observed variations in lake water level.
14 15 16 17 18 19 20 21 22	The height of the chemocline varied seasonally over 4-four years of monthly observation (see also von Rohden et al., 2009). From April to October, the chemocline rosesank, while it sank rose during winter months (Figure 7). The height above the deepest point varied between 2.3 m and 3.5 m showing a mean of 2.86±0.29 m showing a slightly rising trend. In contrast, water level in Waldsee was on average at 4.18 ±0.10 m. This meant that the amplitude of the chemocline changes, expressed by standard deviation, were significantly about three times higher than the observed variations in lake water level. The summed conductivity of Lake Waldsee waldsee underwent seasonal variations, similar to

- 1 summer when the chemocline was moved downwards, but recovered again when the
- 2 chemocline rose during winter months.

3

- 4 The initial summed conductivity of 465.18 S·m² was only slightly different from the last
- 5 measurement of 468.72 S·m² indicating a similar amount of electro-active substances at the
- 6 beginning and at the end of the observation period. The linear correlation coefficient between
- 7 the variations in summed conductivity and chemocline height was calculated to 0.71-84
- 8 indicating a connection between electrical conductivity of the monimolimnion and
- 9 chemocline location (Figure 8).

10

11

14

15

16

18

19

21

22

23

24

25

5. Discussion

12 <u>5.1 Preservation of permanent stratification by the iron-redox cycle</u>

13 The measured averaged electrical conductivity of the monimolimnion in Lake Waldsee was in

a range between 0.93 mS/cm and 1.09 mS/cm within the observation period, having a

temporal mean of 1.00 mS/cm (Figure 9) and a standard deviation of 0.041 mS/cm.

Considering that the averaged electrical conductivity of the mixolimnion never exceeded

17 0.54 mS/cm, this result confirmed that the Ppermanent stratification of Lake Waldsee was

preserved over the observation period by the presence of conductivity gradients dissolved

compounds considering that the averaged electrical conductivity of the mixolimnion never

20 exceeded 0.54 mS/cm and the electrical conductivity of the monimolimnion in Lake Waldsee

was in a range between 0.93 mS/cm and 1.09 mS/cm (Figure 9). The variations of the average

monimolimnion conductivity showed an inverse relationship to the variations of the

chemocline height. Assuming that groundwater showed fairly constant chemical properties,

this indicated that internal physico-chemical processes were potential drivers of the

monimolimnetic electrical conductivity variations.

1	
2	For qu
3	values
4	Based
5	chemo
6	value o
7	deviati
8	monim
9	
10	The gr

For quantification of internal processes versus external sources, we compared measured

values with the calculated values of our simplified model of a closed system Lake Waldsee.

Based on eq. 7 and 8, the average monimolimnion conductivity $\bar{\kappa}_{25}^{calc}\left(t_{i}\right)$ depending on the

chemocline location could be calculated for each time step. For each time step the calculated

value of the previous time step was used in the equations in order to see the development of

deviations between the calculated and the measured average electrical conductivity of the

monimolimnion.

conductivities.

The graph of the calculated values showed that even in total absence of groundwater related ion exchange, the internal iron redox cycle alone was able to maintain the conductivity gradient. Although the curves resembled each other in terms of mean value and location of maxima and minima, the graph of the calculated values showed, with values in a range between 0.81 mS/cm and 1.25 mS/cm and a corresponding standard deviation of 0.12 mS/cm, a much larger excursion than the graph of the measured monimolimnetic electrical

17

18

19

20

21

22

23

11

12

13

14

15

16

One potential reason for the discrepancy in the excursions of both curves is the precipitation of iron hydroxide flocks on oxic sediments close to the side walls following a decrease in chemocline height (Schultze et al., 2011). A subsequent <u>increase_rise</u> of chemocline would lead to a delayed re-dissolution of these flocks which meant that this mechanism would be able to buffer fluctuations in the electrical conductivity. However, due to the morphology of the Lake Waldsee, the area of the sidewalls <u>is-was</u> only about 1-3% of the total area of each lake layer. Hence, the potential storage capacity <u>efficiency</u> of this process was limited.

25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

As a consequence, we had to conclude that not all electrical conductivity came back into solution. However the synchronous variation indicated that a considerable portion remained in or returned quickly into the water body. Focusing on the three periods of chemocline erosion between spring and autumn in the years 2007 to 2009, measured excursions were in a range between 26 % and 66% of the closed model, showing a mean of 47 %. In conclusion, the electrical conductivity of precipitated ions from chemocline erosion re-appeared in the monimolimnion, but some iron was deposited in the sediment. High iron mass concentrations of about 20 % in a sediment depth of more than 10 cm (Friese, 2004) indicated that this could be also valid in Lake Waldsee itself. FurthermoreOn the other hand, the closed model silently assumed that the loss of the bicarbonate conductivity by CO₂ escaping to the atmosphere (eq. 2) was entirely counterbalanced by CO₂ production as a by-product of the biochemically iron hydroxide reduction (eq. 3). The additional impact of a potential disequilibrium in the CO₂ balance on the changes in monimolimnion conductivity could not be delineated by our simple quantitative analysis As this was taking place in a chemically similar setting, it is justified to use summed conductivity as a quantitative measure to draw conclusions about relevant processes involved in the stratification of Lake Waldsee. 5.2 Impact of groundwater recharge on permanent stratification A less pronounced re-covering of electrical conductivity losses in the monimolimnion, as discussed above, would lead to a further decrease in monimolimnion conductivity. Even for the chosen model, the calculated conductivity values dropped below the measured values significantly. Excluding the temporarily storage of iron flocks on the side walls of being an efficient storage mechanism, the inflow of significant amounts of ion rich groundwater was the only remaining mechanism for the recovery of summed conductivity during times of

1	rising chemocline in Waldsee. Finally, a net outflow of groundwater during periods of
2	chemocline erosion (von Rohden et al., 2009) could also contribute to the less pronounced
3	decrease of the measured monimolimnion conductivity in comparison to the results of the
4	model.
5	5.3 Consequences for lake stratification modelling
6	Modelling lake stratification in meromictic lakes allows forecasting future stability of the
7	density gradients. In particular, this is of high importance for many pit lakes, as undesired
8	substances such as heavy metals are typically trapped in enriched concentrations within the
9	monimolimnion. Hence, an unexpected turnover of a meromictic lake could produce serious
10	environmental problems.
11	Early numerical models for meromictic lakes such as Böhrer et al. (1998) did not include the
12	effect of chemical reactions on the permanent density stratification. There has been a
13	geochemical simulation of Waldsee by Moreira et al. (2011) including geochemical
14	equilibrium based chemical equations for the iron-redox system but provided no
15	quantification of the partial re-dissolution of the precipitated iron in the sediments.
16	Furthermore, as their geochemical model ran entirely during a time of chemocline decline, the
17	proposed effect of gradient stabilization by the inflow of significant amounts of ion rich
18	groundwater was not included in their model. This is where our investigation our findings
19	based on measurements and simple 1D algebraic mass balance equations may deliver new
20	insight in the parametrization of numerical models for the prediction of stratification in
21	meromictic lakes.
22	
23	
24	

6. Conclusions Summary

1

Regular measurements of electrical conductivity could confirm that the induced stratification 2 of Lake Waldsee in two water sections was sustained throughout the observation period of 3 4 four years. Both layers, mixolimnion and monimolimnion, experienced volume changes, 5 which followed a seasonal pattern with an increase of monimolimnion volume in winter and 6 early spring and a decrease in the remaining months. 7 8 An aeration experiment in a 5 m high PVC pipe filled with monimolimnetic lake water 9 replicated the stratification features in Lake Waldsee. The immediate precipitation of iron 10 hydroxide flocks after the beginning of the aeration from the upper part of the column led to 11 an approximation of electrical conductivity towards the mixolimnion value of Lake Waldsee. A sharp conductivity (and hence density) gradient formed as had been observed in Lake 12 13 Waldsee. The deep water basically retained its properties, while the upper water layer was 14 changed to chemical conditions close to mixolimnion properties of Lake Waldsee: iron 15 removal, pH depression, DOC removal and CO2 loss. This confirmed previous research that 16 the density-gradient in meromictic Lake Waldsee was sustained by internal geochemical processes and that mixolimnion and monimolimnion could both originate from the same 17 18 groundwater source. 19 20 Calculating "summed conductivity" as a quantitative bulk value for the dissolved ionic solutes 21 revealed an oscillation in phase with the chemocline depth. However a comparison with an 22 idealized model of complete retention of conductivity in the water body revealed that not all conductivity removed by chemocline erosion was lost, but a considerable part of it reappeared 23 24 in the monimolimnion. Numerically we found 47 %. Though this number was affected by rough assumptions, it clearly indicated that re_dissolution was taking place, and this process 25 must be considered as a factor for sustaining the density stratification. A groundwater inflow 26

1	however was still required to balance the conductivity over the years in agreement with von
2	Rohden et al. (2009).
3	
4	Contributing to the aim of making reliable predictions of future water quality in meromictic
5	lakes our findings imply that additional effects such as the limited re-dissolution of iron
6	hydroxide in the monimolimnion and the buffering of mixing processes by ion-rich
7	groundwater inflow have to be considered for the setup of numerical geochemical models
8	predicting permanent stratification in iron-meromictic lakes.
9	
10	Acknowledgement
10	removieugement.
11	This work was funded in part by Deutsche Forschungsgemeinschaft DFG. The authors thank
12	Uwe Kiwel and Karsten Rahn for great support during field and lab-work. Measurement data
13	are available from the authors upon request (erik.nixdorf@ufz.de). The data are archived at
14	the Helmholtz Centre for Environmental Research (UFZ).
15	

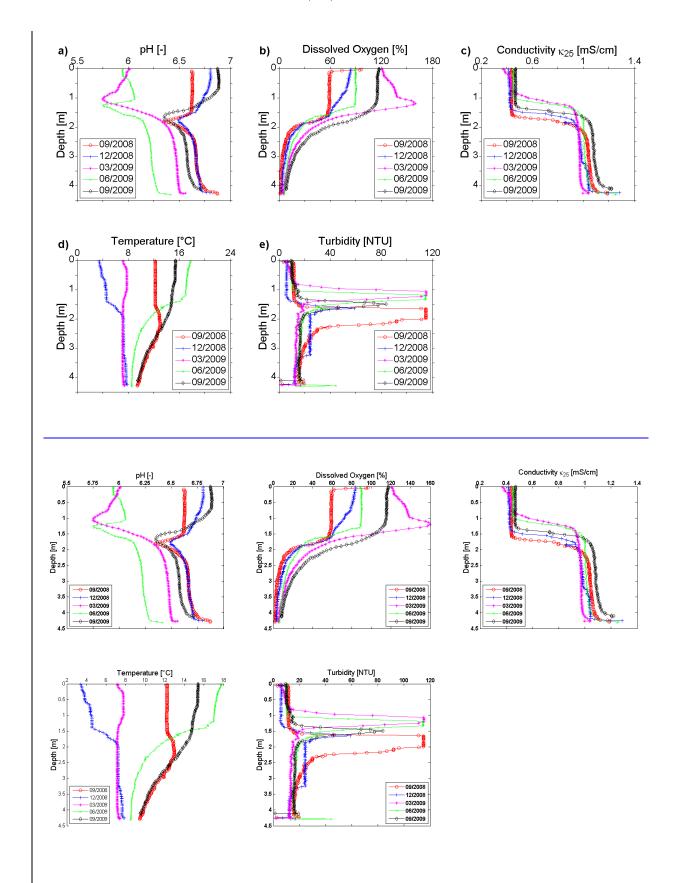
References

- 2 Boehrer, B. and Schultze, M.: Stratification of lakes, Rev. Geophys., 46(RG2005), 1–27,
- 3 doi:10.1029/2006RG000210, 2008.
- 4 Boehrer, B., Dietz, S., von Rohden, C., Kiwel, U., Jöhnk, K. D., Naujoks, S., Ilmberger, J.
- 5 and Lessmann, D.: Double-diffusive deep water circulation in an iron-meromictic lake,
- 6 Geochemistry, Geophys. Geosystems, 10(6), 1–7, doi:10.1029/2009GC002389, 2009.
- 7 Boehrer, B., Kiwel, U., Rahn, K. and Schultze, M.: Chemocline erosion and its conservation
- 8 by freshwater introduction to meromictic salt lakes, Limnol. Ecol. Manag. Inl. Waters,
- 9 44, 81–89, doi:10.1016/j.limno.2013.08.003, 2014.
- 10 Brandenburg University of Technology: Internal Measurements, Cottbus., 1998.
- Böhrer, B., Heidenreich, H., Schimmele, M., and Schultze, M.: Numerical prognosis for
- salinity profiles of future lakes in the opencast mine Merseburg-Ost, International
- 13 Journal of Salt Lake Research, 7(3), 235–260, doi:10.1023/A:1009097319823, 1998.
- 14 Camacho, A., Erez J., Chicote A., Florin M., Squires M.M., Lehmann C. and Bachofen R.:
- Microbial microstratification, inorganic carbon photoassimilation and dark carbon fixation
- at the chemocline of the meromictic Lake Cadagno (Switzerland) and its relevance to the
- food web, Aquat. Sci., 63(1), 91–106,2001. doi:10.1007/PL00001346.
- 18 Cánovas, C. R., Alvarez, M. O. and Liñán, J. M. N.: Geochemical processes in an acidic mine
- lake in the Iberian Pyrite Belt: San Telmo pit lake (SW Spain), Geogaceta, 52, 153–156,
- 20 2012.
- 21 Diesing, S. C. and Boehrer, B.: Näherungsverfahren für die Bestimmung der elektrischen
- Leitfähigkeit in Gewässern, in 26. Jahrestagung der Deutschen Gesellschaft für Limnologie
- 23 2010, 27 September–1 October, Bayreuth., 2010.
- 24 Dietz, S., Lessmann, D. and Boehrer, B.: Contribution of Solutes to Density Stratification in a
- 25 Meromictic Lake (Waldsee/Germany), Mine Water Environ., 31(2), 129–137,
- 26 doi:10.1007/s10230-012-0179-3, 2012.
- Duan, J. and Gregory, J.: Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci.,
- 28 100-102, 475–502, doi:10.1016/S0001-8686(02)00067-2, 2003.
- 29 Fofonoff, N. P. and Millard, R. C.: Algorithms for computation of fundamental properties of
- 30 seawater, UNESCO Tech. Pap. Mar. Sci., 44, 1–58, 1983.
- 31 Friese, K.: Depth Distribution of Heavy Metals in Lake Sediments from Lignite Mine Pit
- Lakes of Lusatia (Germany), Stud. Quarternaria, 21, 197–205, 2004.
- 33 Geller, W., Klapper, H. and Salomons, W.: Acidic mining lakes: acid mine drainage,
- limnology and reclamation., Springer-Verlag, Berlin., 1998.
- Halbwachs, M., et al.: Degassing the "Killer Lakes" Nyos and Monoun, Cameroon, Eos
- 36 <u>Trans. AGU, 85(30), 281, doi:10.1029/2004EO300001, 2004.</u>

1 2	Hakala, A.: Meromixis as a part of lake evolution — observations and a revised classification of true meromictic lakes in Finland, Boreal Environ. Res., 9, 37–53, 2004.
3 4 5	Hamersley, M. R., Woebken, D., Boehrer, B., Schultze, M., Lavik, G., Kuypers, M.M.M.: Water column anammox and denitrification in a temperate permanently stratified lake (Lake Rassnitzer, Germany), systematic and Applied Microbiology, 32(8), 571-582, 2009
6 7 8	Herzsprung, P., Friese, K., Packroff, G., Schimmele, M., Wendt-Potthoff, K. and Winkler, M.: Vertical and annual distribution of ferric and ferrous iron in acidic mining lakes, Acta Hydrochim. Hydrobiol., 26(5), 253–262, 1998.
9 10	Hongve, D.: Cycling of iron, manganese, and phosphate in a meromictic lake, Limnol. Oceanogr., 42(4), 635–647, 1997.
11 12 13	Jöhnk, K. D.: Meromixis aus physikalischer Perspektive, in: Deutsche Gesellschaft für Limnologie (DGL)-Tagungsbericht 1998, pp. 82–96, Eigenverlag der DGL, Klagenfurt., 1999.
14	
15 16	Kjensmo, J.: The development and some main features of "ironmeromictic" soft water lakes, Arch. Hydrobiol., 32, 137–312, 1967.
17 18	Kozma, J. and Kupetz, M.: The transboundary Geopark Muskau Arch (Geopark Luk Muzakowa, Geopark Muskauer Faltenbogen), Prz. Geol., 56(8), 692–698, 2008.
19 20 21 22	Lenz O.K., Wilde V. and Riegel W.: Short-term fluctuations in vegetation and phytoplankton during the Middle Eocene greenhouse climate: a 640-kyr record from the Messel oil shale (Germany) Int J Earth Sci (Geol Rundsch) (2011) 100:1851–1874, DOI 10.1007/s00531-010-0609-z, 2011.
23 24 25 26	Nixdorf, B., Hemm, M., Schlundt, A., Kapfer, M. and Krumbeck, H.: Braunkohlentagebauseen in Deutschland-Gegenwärtiger Kenntnisstand über wasserwirtschaftliche Belange von Braunkohlentagebaurestlöchern, in UBA Texte 35/01, pp. 1–519, Umweltbundesamt, Berlin., 2001.
27 28 29	Von Rohden, C. and Ilmberger, J.: Tracer experiment with sulfur hexafluoride to quantify the vertical transport in a meromictic pit lake, Aquat. Sci., 63(4), 417–431, doi:10.1007/s00027-001-8042-9, 2001.
30 31 32	Von Rohden, C., Ilmberger, J. and Boehrer, B.: Assessing groundwater coupling and vertical exchange in a meromictic mining lake with an SF6-tracer experiment, J. Hydrol., 372(1-4), 102–108, doi:10.1016/j.jhydrol.2009.04.004, 2009.
33 34 35	Santofimia, E. and López-Pamo, E.: The role of surface water and mine groundwater in the chemical stratification of an acidic pit lake (Iberian Pyrite Belt, Spain), J. Hydrol., 490, 21–31, doi:10.1016/j.jhydrol.2013.03.018, 2013.
36 37 38	Schossig, W. and Kulke, W.: Braunkohlenbergbau auf dem Muskauer Faltenbogen: Aus der Geschichte der Braunkohlengrube" Conrad" bei Groß Kölzig, Band 6., Förderverein Kulturlandschaft Niederlausitz, Cottbus., 2006.

- 1 Schultze, M., Boehrer, B., Friese, K., Koschorreck, M., and Stasik, S.: Disposal of waste
- 2 materials at the bottom of pit lakes, in: Proceedings of 6th international conference on
- mine closure, 18–21 September, Lake Louise, Alberta, Canada, edited by: Australian
- 4 Centre for Geomechanics, Perth, Vol. 1, 555–564, 2011.
- 5 Seebach, A., Dietz, S., Lessmann, D. and Knoeller, K.: Estimation of lake water -
- 6 groundwater interactions in meromictic mining lakes by modelling isotope signatures of
- 7 lake water., Isotopes Environ. Health Stud., 44(1), 99–110,
- 8 doi:10.1080/10256010801887513, 2008.
- 9 Tietze, K.: Geophysikalische Untersuchung des Kivusees und seiner ungewöhnlichen
- 10 Methangaslagerstätte—Schichtung, Dynamik und Gasgehalt des Seewassers, Ph.D. thesis,
- 11 Christian-Albrechts-Univ., Kiel, Germany, 1978.
- 12 Stevens, C. L. and Lawrence, G. a.: Stability and meromixis in a water-filled mine pit,
- Limnol. Oceanogr., 43(5), 946–954, doi:10.4319/lo.1998.43.5.0946, 1998.
- 14 Vollmer, M. K., Weiss R.F., and Bootsma H.A.: Ventilation of Lake Malawi/Nyasa, in The
- East African Great Lakes: Limnology, Paleolimnology and Biodiversity, edited by E. O.
- Odada and D. O. Olago, pp. 209–233, Kluwer, Dordrecht, Netherlands, 2002.
- Walker, K. and Likens, G.: Meromixis and a reconsidered typology of lake circulation
- 18 patterns, Verh. Internat. Ver. Limnol., 19, 442 458, 1975.
- 19 Wiessner, A., Müller, J. A., Kuschk, P., Kappelmeyer, U., Kästner, M., Liu, Y.-J. and
- 20 Stottmeister, U.: Environmental pollution by wastewater from brown coal processing--a
- 21 remediation case study in Germany, J. Environ. Eng. Landsc. Manag., 22(1), 71–83, 2014.
- Wilton, M. J., Lawrence, G. A. and Eng, P.: The evolution of the Island Copper Mine Pit
- Lake, in Proceedings of the 22nd Annual British Columbia Mine reclamation Symposium,
- pp. 173–182, The Technical and Research Committee on Reclamation, Penticton, British
- 25 Columbia., 1998.

Tables


Table 1: Analyzed physical and chemical water parameters and used lab measurement methods

Measured variable	Measurement procedure
Electrical conductivity	7-pole platinum cell conductivity sensor
pH-value	pH meter
Carbon species (DOC, TIC, TOC)	Thermal-catalytic oxidation with subsequent
	infrared spectroscopy
Iron	Atomic emission spectroscopy

Figures

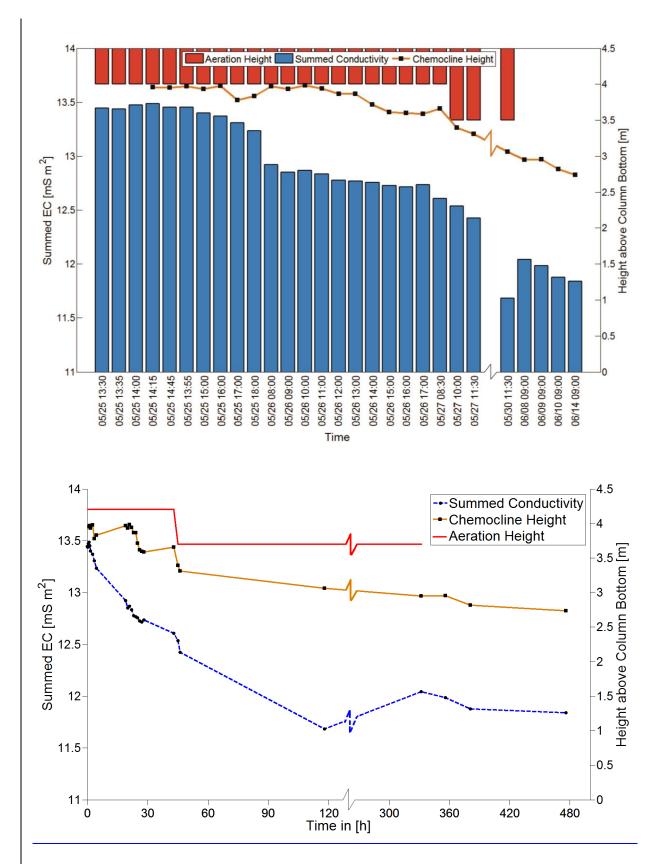

Figure 1: Geographical location of Lake Waldsee within the Muskau Arch in Eastern Germany [after *Kozma and Kupetz*, 2008]

Figure 2: Physico-chemical profiles in Lake Waldsee between September 2008 and September 2009

Figure 3: Initial conditions of the water column experiment: brownish monimolimnion water in a PVC pipe, thermally insulated by PE matrasses. Uppermost matrasses were removed for the purpose of this photograph.

Figure 4: Temporal dynamics of chemocline height and summed conductivity during the column experiment. The scale breakage indicates the end of the hourly range sampling period of the experiment.

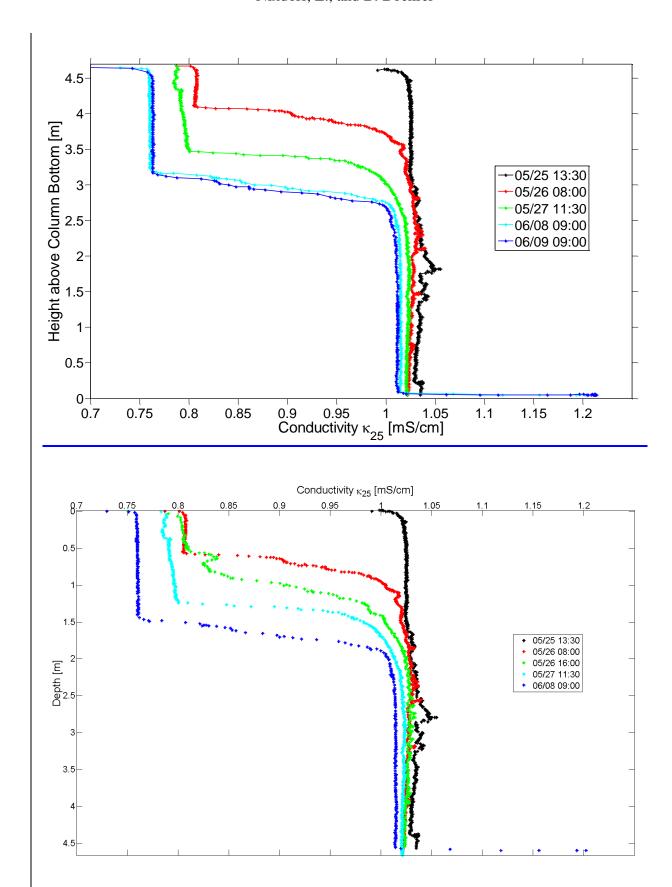
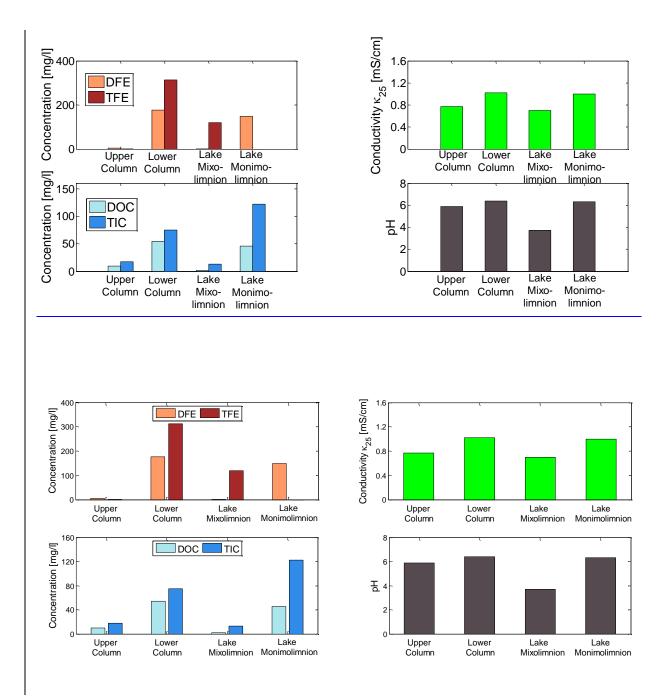
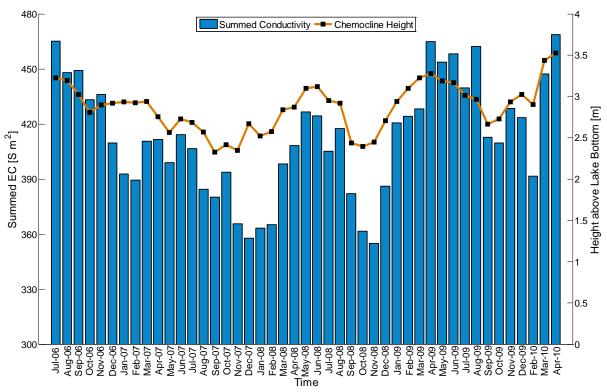
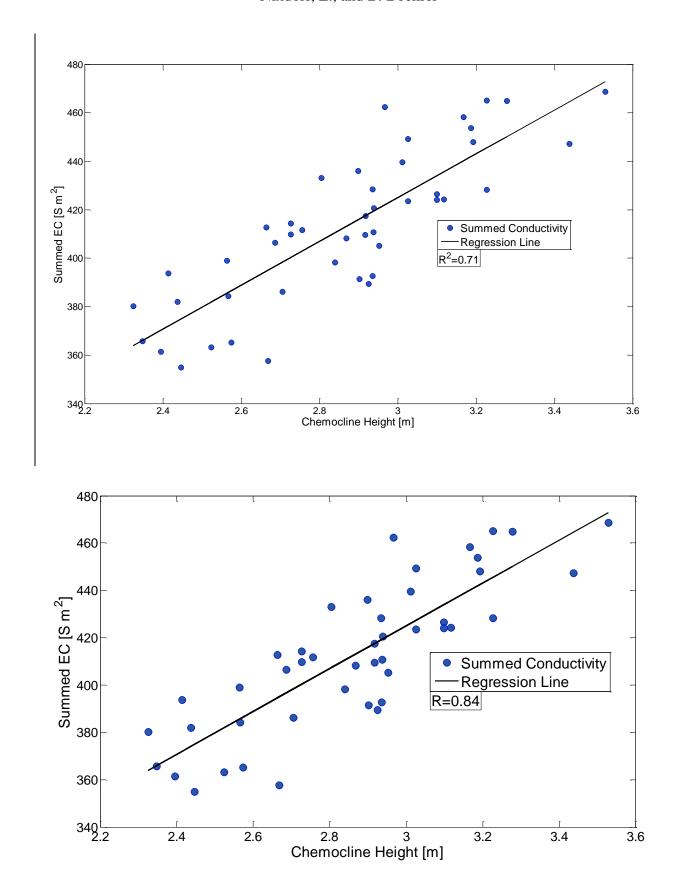




Figure 5: Selected conductivity profiles in the <u>lab experimentwater column</u>


Quantitative analysis of biogeochemically controlled stratification in an iron-meromictic lake Biogeochemical processes controlling density stratification in an iron-meromictic lake

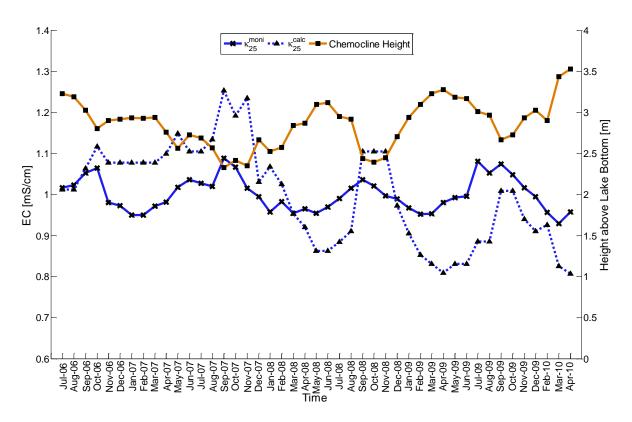

Figure 6: Iron species content (DFE and TFE), electrical conductivity, carbon species content (DOC and TIC) and pH-value of samples from different water layers in Lake Waldsee and the water column

Figure 7: Time series of chemocline height and summed conductivity at Lake Waldsee between July 2006 and April 2010.

Figure 8: Correlation between summed conductivity and chemocline height. A linear regression results in a correlation coefficient of 0.7841.

Figure 9: Comparison of time series of measured and calculated average electrical conductivity in the monimolimnion.

List of changes made in the manuscript

Quantitative analysis of b Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Control Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 controled Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 controlled Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 controlled Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can estable As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 Setting and the	Main document changes	and comments	
Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 CONTROI Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 CONTROI Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 CONTROIL Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 CONTROIL Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can estable As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 Setting and the	Page 1: Inserted	Bertram Böhrer boehrer	9/14/2015 8:10:00 AM
Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 processes Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 control Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 controled Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 controlled Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 controlled Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can estable As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 setting and the	Quantitative analysis	of b	
Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 processes Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 control Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 controlled Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 controlled Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 controlled Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 controlled Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can estab As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 setting and the	Page 1: Deleted	Bertram Böhrer boehrer	9/14/2015 8:11:00 AM
Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Processes Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Control Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 Controlled Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Ing Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can estable As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 Setting and the	В		
Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Control Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 Controlled Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Controlled Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can establish a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 Setting and the	Page 1: Inserted	Bertram Böhrer boehrer	9/14/2015 8:11:00 AM
Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Control Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 Controlled Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Iling Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:12:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can estable As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 Setting and the	ly		
Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Controlled Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 Controlled Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 ling Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:12:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can estable As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 Setting and the	Page 1: Deleted	Bertram Böhrer boehrer	9/14/2015 8:11:00 AM
Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 Controlled Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:12:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can estable As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 setting and the	processes		
Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:11:00 Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 ling Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:12:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can estable As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 setting and the	Page 1: Deleted	Bertram Böhrer boehrer	9/14/2015 8:11:00 AM
Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 ling Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:12:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can estable As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 Setting and the	control		
Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:11:00 Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:12:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can estable As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 Setting and the	Page 1: Inserted	Bertram Böhrer boehrer	9/14/2015 8:11:00 AM
Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:12:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can establish a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 Setting and the	controlled		
Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:12:00 Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can establish as a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 setting and the	Page 1: Deleted	Bertram Böhrer boehrer	9/14/2015 8:11:00 AM
Lake stratification controls the cycling of dissolved matter within the water body. This is particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can estable As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 setting and the	ling		
particular interest in the case of meromictic lakes, where permanent density stratification of deep water limits the vertical transport and a chemically different (reducing) milieu can estable. As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 setting and the	Page 1: Inserted	Bertram Böhrer boehrer	9/14/2015 8:12:00 AM
deep water limits the vertical transport and a chemically different (reducing) milieu can establish As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 setting and the	Lake stratification contro	ls the cycling of dissolved matter within	the water body. This is of
As a consequence, the Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 setting and the	particular interest in the c	ase of meromictic lakes, where permanent	density stratification of the
Page 1: Deleted Bertram Böhrer boehrer 9/14/2015 8:16:00 Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 setting and the	deep water limits the verti-	cal transport and a chemically different (rec	ducing) milieu can establish.
Bio Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 setting and the	As a consequence, the		
Page 1: Inserted Bertram Böhrer boehrer 9/14/2015 8:16:00 setting and the	Page 1: Deleted	Bertram Böhrer boehrer	9/14/2015 8:16:00 AM
setting and the	Bio		
	Page 1: Inserted	Bertram Böhrer boehrer	9/14/2015 8:16:00 AM
Dago 1: Dolotod Portram Pöhrar hashrar 0/14/2015 0:17:00	setting and the		
rage 1. Deleteu Dertrain Donrer Doenrer 9/14/2015 8:17:00	Page 1: Deleted	Bertram Böhrer boehrer	9/14/2015 8:17:00 AM

Page 1: Inserted		Bertram Böhrer boehrer	9/14/2015 8:17:00 AM
stabilize			
Page 1: Deleted		Bertram Böhrer boehrer	9/14/2015 8:17:00 AM
control			
Page 1: Deleted		Erik Nixdorf	9/18/2015 11:12:00 AM
Page 1: Inserted		Bertram Böhrer boehrer	9/14/2015 8:31:00 AM
We attempt a	quantitative approach	to the contribution of	chemical reactions sustaining the
density stratific	cation.		
Page 1: Inserted		Erik Nixdorf	9/17/2015 4:12:00 PM
As a demonstra	ation object,		
Page 1: Deleted		Erik Nixdorf	9/18/2015 10:26:00 AM
W		LIK MAGOII	3/15/2013 10:20:00 API
**			
Page 1: Inserted		Bertram Böhrer boehrer	9/14/2015 8:33:00 AM
W			
Page 1: Inserted		Erik Nixdorf	9/18/2015 10:26:00 AM
w			
Page 1: Inserted		Bertram Böhrer boehrer	9/14/2015 8:33:00 AM
e chose t			
Page 1: Deleted		Bertram Böhrer boehrer	9/14/2015 8:33:00 AM
T			
Page 1: Deleted		Bertram Böhrer boehrer	9/14/2015 8:33:00 AM
is investigated			
Page 1: Inserted		Erik Nixdorf	7/22/2015 5:39:00 PM
near surface un	nderground		
Page 1: Deleted		Erik Nixdorf	9/18/2015 10:36:00 AM
. age 1. Deleted		LIIK MIAUUII	7/ 10/ 2013 10:30:00 AM

, as a demonstration object

particular interest.

Page 1: Inserted	Bertram Böhrer boehrer	9/14/2015 8:34:00 AM
, as a demonstration object		

Page 2: Inserted Bertram Böhrer boehrer	9/16/2015 12:05:00 PM
---	-----------------------

Page 2: Deleted Erik Nixdorf	9/18/2015 11:12:00 AM
------------------------------	-----------------------

In meromictic lakes (see below), transport of matter differs from other lakes fundamentally.

Oxygen supply to the deep water, recycling of nutrients from the sediments and deep recirculation during winter do not happen as in holomictic lakes. As a consequence, entirely different chemical milieus can establish, with all consequences for water quality and the food web. The permanent stratification can be imposed from outside by inflows, but lake intrinsic processes, which create meromixis or contribute essentially to the creation of meromixis, are of

Page 2: Moved from page 3 (Move #3) ms785479 7/22/2015 10:19:00 AM

The exclusion of the monimolimnia from gas exchange with atmosphere creates anoxic, reducing conditions leading to an enrichment of dissolved gases and ionic substances in the deep water (Boehrer and Schultze, 2008).

Page 2: Deleted	Bertram Böhrer boehrer	7/23/2015 9:53:00 AM
(Boehrer and Schultze, 2008)		

Page 2: Inserted	ms785479	7/22/2015 10:19:00 AM

Meromictic lakes show a global distribution. Meromictic lakes could be identified in mining regions on Earth, such as the Iberian Pyrite Belt, Spain (e.g. Lake San Telmo, Cánovas et al., 2012, and Lake Conception, Santofimia and López-Pamo, 2013), Vancouver Island, Canada (Island Copper Mine pit lake, Wilton et al., 1998; Stevens and Lawrence, 1998), the Central German Mining District (e.g. Lake Wallendorfer See and Lake Rassnitzer See, Boehrer et al., 2014) and the Lower Lusatian Mining District, Germany (e.g. Lake Moritzteich, von Rohden et al., 2009) to name just a few

Page 2: Inserted	ms785479	7/22/2015 10:20:00 AM
Despite their worldwide od	ccurrence, only	
Page 2: Deleted	ms785479	7/22/2015 10:20:00 AM
A		
Page 2: Inserted	ms785479	7/22/2015 10:20:00 AM
a		
Page 2: Inserted	Bertram Böhrer boehrer	9/16/2015 2:57:00 PM
Page 2: Deleted	Bertram Böhrer boehrer	9/16/2015 12:06:00 PM
Hakala, 2004;		
Page 2: Inserted	Bertram Böhrer boehrer	9/16/2015 12:06:00 PM
; Hakala, 2004; Boehrer an	nd Schultze	
Page 2: Inserted	Erik Nixdorf	9/18/2015 11:12:00 AM
,		
Page 2: Inserted	Bertram Böhrer boehrer	9/16/2015 12:06:00 PM
2008		

2008

Erik Nixdorf	9/17/2015 4:14:00 PM
cientific interest in meromictic lakes:	
Erik Nixdorf	9/17/2015 4:14:00 PM
Bertram Böhrer boehrer	9/16/2015 3:08:00 PM
Erik Nixdorf	9/17/2015 4:14:00 PM
	2/2//2020 1121100 111
Bertram Böhrer boehrer	9/16/2015 3:08:00 PM
meromictic (Tanganyika,	
Erik Nixdorf	9/18/2015 11:17:00 AM
Frik Nixdorf	9/18/2015 11:17:00 AM
	5,10,100
Erik Nixdorf	9/18/2015 11:17:00 AM
Bertram Böhrer boehrer	9/16/2015 3:08:00 PM
er et al.	
Erik Nixdorf	9/18/2015 11:17:00 AM
Erik Nixdorf	9/18/2015 11:17:00 AM
Erik Nixdorf	9/18/2015 11:13:00 AM
	Erik Nixdorf Bertram Böhrer boehrer Bertram Böhrer boehrer meromictic (Tanganyika, Erik Nixdorf Erik Nixdorf

,

Page 2: Inserted	Bertram Böhrer boehrer	9/16/2015 3:31:00 PM
2002).		

Page 2: Inserted

Erik Nixdorf

9/17/2015 4:14:00 PM

Chemical gradients in meromictic lakes form habitats for specialized organisms (e.g. sulfur bacteria performing anoxygenic photosynthesis (Camacho et al., 2001) or anammox (Hamersley et al., 2009)).

Page 2: Inserted	Bertram Böhrer boehrer	9/16/2015 3:08:00 PM
Some meromictic lakes b	ecame famous through their dangerous gas	s loads (e.g. Lake Nyos
Page 2: Inserted	Erik Nixdorf	9/18/2015 11:31:00 AM
and		
Page 2: Deleted	Erik Nixdorf	9/18/2015 11:30:00 AM
,		
Page 2: Inserted	Bertram Böhrer boehrer	9/16/2015 3:08:00 PM
, Lake Monoun		
D		0/10/2015 11 21 20 11
Page 2: Inserted	Erik Nixdorf	9/18/2015 11:31:00 AM
in		
Page 2: Deleted	Erik Nixdorf	9/18/2015 11:31:00 AM
,		
Page 2: Inserted	Bertram Böhrer boehrer	9/16/2015 3:09:00 PM
, Cameroon, Halbwachs e	et al.	
, ,		
Page 2: Inserted	Erik Nixdorf	9/18/2015 11:31:00 AM
,		
Page 2: Inserted	Bertram Böhrer boehrer	9/16/2015 3:32:00 PM
2004). The monimolimnion of Lake Kivu contains considerable methane deposits (Tietze		
Page 2: Inserted	Erik Nixdorf	9/18/2015 10:29:00 AM

Bertram Böhrer boehrer

9/16/2015 3:41:00 PM

Page 2: Inserted

1978), which will be exploited in near future. Sediments in some meromictic lakes have been undisturbed for thousands of years and hence the varved sediments represent excellent climate archives and fossil deposits (e.g. Walker and Likens

Page 2: Inserted	Erik Nixdorf	9/18/2015 11:31:00 AM
,		
Page 2: Inserted	Bertram Böhrer boehrer	9/16/2015 3:55:00 PM
1975		
Page 2: Inserted	Erik Nixdorf	9/18/2015 11:31:00 AM
		., .,
,		
Page 2: Deleted	Erik Nixdorf	9/18/2015 11:31:00 AM
rage 2: Deleted	EHR MIXUUH	9/16/2015 11:51:00 AM
,		

Page 2: Inserted	Bertram Böhrer boehrer	9/16/2015 3:55:00 PM
, Lenz et al.		
Page 2: Inserted	Erik Nixdorf	9/18/2015 11:31:00 AM
,		
Page 2: Inserted	Bertram Böhrer boehrer	9/16/2015 3:57:00 PM
2011). Meromictic lakes co	ould be identified in many mining regions on	ιE
Page 3: Deleted	Erik Nixdorf	9/17/2015 4:15:00 PM
Е		., ,
_		
Page 3: Inserted	Erik Nixdorf	9/17/2015 4:15:00 PM
e	LIIK NIXUOII	9/17/2013 4.13.00 PM
C		
Dawa 2s Turasaka i	Parkers Pile	0/46/2045 2 22 22 22
Page 3: Inserted	Bertram Böhrer boehrer	9/16/2015 3:02:00 PM
arm where stratification lim	nited the vertical transport of undesirable sub	stances (e.g.
Page 3: Inserted	Erik Nixdorf	9/18/2015 11:31:00 AM
Page 3: Inserted	Bertram Böhrer boehrer	9/16/2015 3:23:00 PM

Spain: Lake San Telmo, Cánovas et al., 2012, and Lake Conception, Santofimia and López-Pamo, 2013; Germany: Lake Wallendorfer See and Lake Rassnitzer See, Boehrer et al., 2014; Lake Moritzteich, von Rohden et al

.

Page 3: Inserted Bertram Böhrer boehrer 9/16/2015 3:23:00 PM, 2009). In some cases, stratification was even implemented to restrict the vertical transport (Island Copper Mine pit lake in Canada, Wilton et al., 1998; Stevens and Lawrence, 1998).

Meromictic conditions cain mining lakes aren be sustained by a continuous inflow of high density groundwater formed by weathering processes of exposed sulfide-bearing material (Geller et al., 1998) and low density surface water via streams or precipitation and the very low diffusion rate of substances over sharp gradients (e.g. von Rohden and Ilmberger, 2001; Wiessner et al., 2014), the chemocline. The dense water can may also be formed within the lake e.g.(by weathering processes of exposed sulfide-bearing material (Geller et al., 1998).von Rohden and Ilmberger, 2001). In case of mining lakes, establishing stable meromictic conditions might be favorable as it allows the confinement of water quality problems (e.g. heavy metals) from the surface water into the deep water layers (Jöhnk, 1999; Nixdorf et al., 2001; Wiessner et al., 2014).

Page 3: Deleted	Bertram Böhrer boehrer	9/16/2015 3:27:00 PM
-----------------	------------------------	----------------------

Page 3: Inserted Bertram Böhrer boehrer 9/16/2015 2:52:00 PM

Page 3: Deleted	Bertram Böhrer boehrer	9/16/2015 12:07:00 PM
in mining lakes are		
Page 3: Inserted	Bertram Böhrer boehrer	9/16/2015 12:07:00 PM
n be		
Page 3: Deleted	Bertram Böhrer boehrer	9/16/2015 12:08:00 PM
formed by weathering proce	esses of exposed sulfide-bearing materia	l (Geller et al., 1998)
Page 3: Inserted	ms785479	7/22/2015 10:25:00 AM
formed by weathering proces	sses of exposed sulfide-bearing material	(Geller et al., 1998)
Page 3: Inserted	Bertram Böhrer boehrer	9/16/2015 12:08:00 PM
Page 3: Inserted	Bertram Böhrer boehrer	9/16/2015 2:53:00 PM
(e.g. von Rohden and Ilmbe	rger, 2001; Wiessner et al., 2014)	
Page 3: Deleted	Bertram Böhrer boehrer	9/16/2015 2:52:00 PM
, the chemocline		
Page 3: Inserted	Bertram Böhrer boehrer	9/16/2015 2:53:00 PM
. The dense water can		
Page 3: Deleted	Erik Nixdorf	9/17/2015 4:15:00 PM
can		
Page 3: Inserted	Erik Nixdorf	9/17/2015 4:15:00 PM
may		
Page 3: Inserted	Bertram Böhrer boehrer	9/16/2015 2:53:00 PM
also be		
Page 3: Inserted	Erik Nixdorf	9/17/2015 4:15:00 PM
formed		
Page 3: Inserted	Bertram Böhrer boehrer	9/16/2015 2:53:00 PM
within the lake e.g.		
Page 3: Deleted	Bertram Böhrer boehrer	9/16/2015 2:53:00 PM
(

Page 3: Inserted	Bertram Böhrer boehrer	9/16/2015 2:53:00 PM
------------------	------------------------	----------------------

by weathering processes of exposed sulfide-bearing material (Geller et al., 1998).

von Rohden and Ilmberger, 2001). In case of mining lakes, establishing stable meromictic conditions might be favorable as it allows the confinement of water quality problems (e.g. heavy metals) from the surface water into the deep water layers (Jöhnk, 1999; Nixdorf et al., 2001; Wiessner et al., 2014). The exclusion of the monimolimnia from gas exchange with atmosphere creates anoxic, reducing conditions leading to an enrichment of dissolved gases and ionic substances in the deep water (Boehrer and Schultze, 2008).

Page 3: Moved to page 2 (Move #3) ms785479 7/22/2015 10:19:00 AM

The exclusion of the monimolimnia from gas exchange with atmosphere creates anoxic, reducing conditions leading to an enrichment of dissolved gases and ionic substances in the deep water (Boehrer and Schultze, 2008).

Page 3: Inserted Bertram Böhrer boehrer	9/16/2015 2:50:00 PM
---	----------------------

Page 3: Deleted	ms785479	7/22/2015 10:26:00 AM

Subterranean ion rich acid mining drainage (AMD) can be formed by weathering processes of exposed sulfide-bearing material (Geller et al., 1998).

Page 3: Moved to page 3 (Move #4) ms785479 7/22/2015 10:24:00 AM

Meromictic conditions in mining lakes are sustained by a continuous inflow of high density groundwater and low density surface water via streams or precipitation and the very low diffusion rate of substances over sharp gradients, the chemocline (von Rohden and Ilmberger, 2001). In case of mining lakes, establishing stable meromictic conditions might be favorable as it allows the confinement of water quality problems (e.g. heavy metals) from the surface water into the deep water layers (Jöhnk, 1999; Nixdorf et al., 2001; Wiessner et al., 2014).

35479 7/22/2015 10:26:00 AM
ε

Page 3: Inserted	Bertram Böhrer boehrer	9/16/2015 12:10:00 PM
Page 3: Deleted	Bertram Böhrer boehrer	9/16/2015 12:10:00 PM
mining		
Page 3: Inserted	Erik Nixdorf	9/17/2015 4:43:00 PM

Page 3: Inserted

Bertram Böhrer boehrer

9/16/2015 12:10:00 PM

One prominent reactant is iron, which gets precipitated from the oxygenated mixolimnetic waters

and dissolves in the anoxic (reducing) chemical conditions of the monimolimnion (Kjensmo, 1967; Hongve, 1997).

Page 3: Deleted	Bertram Böhrer boehrer	7/23/2015 9:56:00 AM
L		
_		
Page 3: Inserted	Bertram Böhrer boehrer	7/23/2015 9:56:00 AM
1		
1		
Page 3: Deleted	Bertram Böhrer boehrer	9/16/2015 12:24:00 PM
are able to		
are usie to		
Page 3: Inserted	Bertram Böhrer boehrer	9/16/2015 12:18:00 PM

For Waldsee, Dietz et al. (2012) showed that dissolved iron and carbon species (CO₂, bicarbonate and DOC) contribute the same amount to the density gradient and all other substances contribute a much subordinate portion.

From previous investigations, it is clear that

Page 4: Deleted

Page 4: Inserted	Erik Nixdorf	9/17/2015 4:16:00 PM
both		
Page 4: Inserted	Bertram Böhrer boehrer	9/16/2015 12:20:00 PM
precipitation of iron out of	the mixolimnion and gas exchange with the	he atmosphere are important
contributors to the permane	nt stratification. It is also known that re-d	issolution of iron happens in
the monimolimnion, but th	ere has not been any quantitative appro-	ach to determine its role in
sustaining meromixis.		
David A. Dalatad	Dautuana Dälauan kaskuan	0/46/2015 1,20:00 PM
Page 4: Deleted	Bertram Böhrer boehrer	9/16/2015 1:38:00 PM
Page 4: Inserted	Erik Nixdorf	9/17/2015 4:17:00 PM
Page 4: Inserted	Erik Nixdorf	9/17/2015 4:17:00 PM
Page 4: Deleted	Bertram Böhrer boehrer	9/16/2015 1:38:00 PM
rage 4. Deleteu	bertram bomer boemer	9/10/2013 1:30:00 FM
Page 4: Deleted	Erik Nixdorf	9/17/2015 4:17:00 PM
Page 4: Deleted	Erik Nixdorf	9/18/2015 11:32:00 AM

Erik Nixdorf

9/21/2015 3:48:00 PM

Description

Page 4: Inserted	Erik Nixdorf	9/21/2015 3:48:00 PM
description		
Page 4: Deleted	Erik Nixdorf	7/21/2015 5:55:00 PM
and Measurements		
Page 4: Deleted	Erik Nixdorf	9/21/2015 3:48:00 PM
Site		
Page 4: Inserted	Erik Nixdorf	9/21/2015 3:48:00 PM
site		
Page 5: Inserted	Bertram Böhrer boehrer	9/14/2015 8:52:00 AM
Page 5: Inserted	Erik Nixdorf	9/17/2015 4:17:00 PM
	not have a surface inflow. Hence groundwater	is the main source of
	č	
recharge.		
Page 5: Deleted	Erik Nixdorf	9/17/2015 4:18:00 PM
Lake Waldsee does	not have a surface inflow, which makes groundwa	ater the main source of
	·	
recharge.		
Page 5: Deleted	Erik Nixdorf	9/21/2015 3:48:00 PM
Stratification		
Page 5: Inserted	Erik Nixdorf	9/21/2015 3:48:00 PM
stratification		
Page 5: Deleted	Erik Nixdorf	9/21/2015 3:48:00 PM
Water		
Page 5: Inserted	Erik Nixdorf	9/21/2015 3:48:00 PM
water		>,, or roll 111
,, 4001		
Page 5: Deleted	Erik Nixdorf	9/21/2015 3:48:00 PM
raye 3. Deleteu	LIK MIXUUII	3/ 21/ 2013 3:40:00 PM

Chemistry

Page 7: Deleted

Page 5: Inserted	Erik Nixdorf	9/21/2015 3:48:00 PM
chemistry		
Page 6: Deleted	Erik Nixdorf	9/17/2015 4:18:00 PM
driven		
Page 7: Inserted	Erik Nixdorf	9/18/2015 11:32:00 AM
formation		
Page 7: Inserted	Erik Nixdorf	9/18/2015 11:33:00 AM

Erik Nixdorf

9/17/2015 4:44:00 PM

2.3 Field and lab measurements

Page 7: Moved to page 9 (Move #2)	Erik Nixdorf	7/21/2015 5:53:00 PM
45 monthly field measurements h	ave been conducted in Lake	Waldsee between July 2006 and
April 2010. Vertical profiles of	temperature, pressure, pH,	, turbidity and in-situ electrical
conductivity were collected in La	ake Waldsee using the mult	i-parameter probes Ocean Seven
316CTD (Idronaut, Italy) and CTI	090M (Sea & Sun, Germany)). The sampling rate was between
1 and 4 Hz and the small off	set between the sensors of	f the two different probes was
compensated. Measured electrical	conductivity C was converted	ed into electrical conductivity κ_{25}
at 25°C (sometimes named as elec	trical conductance) by	

$$\kappa_{25} = \frac{C}{\alpha_{25} \cdot (T - 25^{\circ}C) + 1}$$
 (4)

where a lake specific α_{25} value of 0.0194 (Boehrer et al., 2009) was used.

Water depth was estimated by the hydrostatic pressure equation taking into account a lake specific empirical density function, which allowed calculating density profiles based on temperature and electrical conductivity measurements (Boehrer et al., 2009).

Page 7: Deleted	Erik Nixdorf	9/17/2015 4:44:00 PM
rage 7. Deleteu	LIIK MIXUUII	9/1//2013 T:TT:00 FIN

$$\kappa_{25} = \frac{C}{\alpha_{25} \cdot (T - 25^{\circ}C) + 1} \tag{4}$$

Page 7: Deleted	Erik Nixdorf	9/17/2015 4:44:00 PM

On May 18th 2011, mixolimnion and monimolimnion water were collected for chemical analysis (Table 1). In addition, 150 l of monimolimnion were sampled and air-tightly and opaquely stored at a temperature of 4°C for later use in a column experiment.

Page 7: Inserted	ms785479	7/22/2015 10:00:00 AM
Sampling and		
•		
Page 7: Deleted	Erik Nixdorf	9/17/2015 4:18:00 PM

Page 8: Deleted

Page 7: Inserted	Erik Nixdorf	9/17/2015 4:18:00 PM
set	LIIK MIXGOII	9/17/2013 4.16.00 FM
Page 7: Inserted	Erik Nixdorf	7/21/2015 5:52:00 PM
On May 18th 2011, mixolimnion an	d monimolimnion water we	
•		•
Page 7: Inserted	ms785479	7/22/2015 10:01:00 AM
. This included the measurement	t of electrical conductivity	using a 7-pole platinum cell
conductivity sensor and pH with a	a pH-meter as well as dete	rmining concentration of carbon
species (DOC; TIC, TOC) by infra	ared spectroscopy following	thermal-catalytic oxidation and
iron species (ferrous and ferric iron)	by atomic emission spectro	scopy.
Page 8: Inserted	Erik Nixdorf	9/18/2015 11:33:00 AM
(Table 1). In addition, 150 l of r	monimolimnion were sampl	ed and air-tightly and opaquely
stored at a temperature of 4°C for la	ter use in a column experim	ent
Page 8: Deleted	ms785479	7/22/2015 10:01:00 AM
(Table 1).		
Page 8: Inserted	Erik Nixdorf	9/18/2015 11:43:00 AM
Page 8: Inserted	Erik Nixdorf	7/20/2015 9:27:00 AM
(Figure 3)		
Page 8: Moved from page 7 (Move #1)	Erik Nixdorf	7/21/2015 5:52:00 PM
. On May 25 th 2011,		
Page 8: Deleted	Erik Nixdorf	9/18/2015 11:33:00 AM
	= 11 -11 -1	
Page 8: Inserted	Erik Nixdorf	7/21/2015 5:52:00 PM

ms785479

7/22/2015 10:10:00 AM

Page 8: Inserted	ms785479	7/22/2015 10:10:00 AM
the		
Page 8: Inserted	Erik Nixdorf	7/21/2015 5:53:00 PM
subsequently		
Page 8: Inserted	Erik Nixdorf	7/21/2015 5:53:00 PM
this		
Page 8: Deleted	Erik Nixdorf	9/17/2015 4:19:00 PM
the		
Page 8: Deleted	Erik Nixdorf	9/17/2015 4:18:00 PM
the		
Page 9: Deleted	Bertram Böhrer boehrer	9/16/2015 2:23:00 PM
Calculating		
Page 9: Deleted	Erik Nixdorf	7/21/2015 5:54:00 PM
summed e		
Page 9: Inserted	Erik Nixdorf	9/17/2015 4:19:00 PM
E		

Page 9: Moved from page 7 (Move #2) Erik Nixdorf 7/21/2015 5:53:00 PM 45 monthly field measurements have been conducted in Lake Waldsee between July 2006 and April 2010. Vertical profiles of temperature, pressure, pH, turbidity and in-situ electrical conductivity were collected in Lake Waldsee using the multi-parameter probes *Ocean Seven 316CTD* (Idronaut, Italy) and *CTD90M* (Sea & Sun, Germany). The sampling rate was between 1 and 4 Hz and the small offset between the sensors of the two different probes was compensated. Measured electrical conductivity C was converted into electrical conductivity κ_{25} at 25°C (sometimes named as electrical conductance) by

$$\kappa_{25} = \frac{C}{\alpha_{25} \cdot (T - 25^{\circ}C) + 1} \tag{4}$$

where a lake specific α_{25} value of 0.0194 (Boehrer et al., 2009) was used.

Water depth was estimated by the hydrostatic pressure equation taking into account a lake specific empirical density function, which allowed calculating density profiles based on temperature and electrical conductivity measurements (Boehrer et al., 2009).

Page 9: Inserted	Erik Nixdorf	7/21/2015 5:54:00 PM

3.3 Calculating summed electrical conductivity

Page 10: Deleted	Erik Nixdorf	9/17/2015 4:19:00 PM
former		
Page 10: Inserted	Erik Nixdorf	9/18/2015 11:34:00 AM
Page 11: Deleted	Erik Nixdorf	9/17/2015 4:20:00 PM
the		
Page 12: Deleted	Erik Nixdorf	9/21/2015 12:19:00 PM
is		
Page 12: Inserted	Erik Nixdorf	9/21/2015 12:19:00 PM
was		
Page 12: Inserted	Erik Nixdorf	9/21/2015 12:19:00 PM
ed		
Page 13: Inserted	Erik Nixdorf	9/21/2015 12:20:00 PM

et

Page 14: Deleted	Erik Nixdorf	9/18/2015 11:35:00 AM
4		
Page 14: Inserted	Erik Nixdorf	9/18/2015 11:35:00 AM
four		
Page 14: Deleted	Erik Nixdorf	9/21/2015 1:11:00 PM
rose		
Page 14: Inserted	Erik Nixdorf	9/21/2015 1:11:00 PM
sank		
Page 14: Deleted	Erik Nixdorf	9/21/2015 1:11:00 PM
sank		0, ==, =0=0 =:==:00 : : :
~		
Page 14: Inserted	Erik Nixdorf	9/21/2015 1:11:00 PM
rose		J, 11, 1010 1111100 11
Tose		
Page 14: Inserted	Erik Nixdorf	7/21/2015 4:58:00 PM
showing a mean of 2.86±0.29 m	LIK MAGII	7/21/2013 4130100 11
showing a mean of 2.00±0.25 in		
Page 14: Deleted	Erik Nixdorf	7/21/2015 4:56:00 PM
showing a slightly rising trend		27 = 27 = 20 = 20 = 10 = 10 = 10 = 10
showing a slightly fishing trend		
Page 14: Inserted	Erik Nixdorf	7/21/2015 5:46:00 PM
In contrast, water level in Waldsee		7/21/2013 31-10100 11
in contrast, water level in wardsee	was on average at 1.10 ±0.10 m.	
Page 14: Inserted	Erik Nixdorf	7/21/2015 5:44:00 PM
, expressed by standard deviation,	LIIK MAGOII	7/21/2013 3:44:00 FF
, expressed by standard deviation,		
Page 14: Deleted	Erik Nixdorf	7/21/2015 5:48:00 PM
significantly	ETIK NIXGOTI	7/21/2015 5:46:00 PM
Significantry		
Page 14: Insorted	Evile Nivedouf	7/24/2045 5:40:00 50
Page 14: Inserted	Erik Nixdorf	7/21/2015 5:48:00 PM
Page 14: Inserted about three times	Erik Nixdorf	7/21/2015 5:48:00 PM
about three times		
	Erik Nixdorf Erik Nixdorf	
about three times		
about three times		7/21/2015 5:48:00 PM 9/18/2015 11:35:00 AM 7/21/2015 5:28:00 PM

Page 14: Deleted	Erik Nixdorf	7/21/2015 4:53:00 PM
Lake Waldsee		
Page 14: Inserted	Erik Nixdorf	7/21/2015 4:53:00 PM
Waldsee		
Page 14: Deleted	Erik Nixdorf	7/21/2015 5:10:00 PM
421		
Page 14: Inserted	Erik Nixdorf	7/21/2015 5:10:00 PM
412±31.3		
Page 14: Deleted	Erik Nixdorf	9/7/2015 5:30:00 PM
20		
Page 14: Inserted	Erik Nixdorf	9/7/2015 5:30:00 PM
25		
Page 14: Inserted	Erik Nixdorf	9/18/2015 11:35:00 AM
Page 14: Deleted	Erik Nixdorf	7/17/2015 2:46:00 PM
71		
Page 14: Inserted	Erik Nixdorf	7/17/2015 2:46:00 PM
84		
Page 14: Deleted	Erik Nixdorf	9/18/2015 11:35:00 AM
Page 14: Inserted	Erik Nixdorf	9/9/2015 1:57:00 PM

5.1 Preservation of permanent stratification by the iron-redox cycle

The measured averaged electrical conductivity of the monimolimnion in Lake Waldsee was in a range between 0.93 mS/cm and 1.09 mS/cm within the observation period, having a temporal

mean of 1.00 mS/cm (Figure 9) and a standard deviation of 0.041 mS/cm. Considering that the averaged electrical conductivity of the mixolimnion never exceeded 0.54 mS/cm, this result confirmed that the

Page 14: Inserted	Erik Nixdorf	9/17/2015 4:21:00 PM
P		
Page 14: Deleted	Erik Nixdorf	9/17/2015 4:37:00 PM
p		
Page 14: Inserted	Bertram Böhrer boehrer	9/16/2015 2:30:00 PM
over the observation period		
Page 14: Deleted	Erik Nixdorf	7/17/2015 2:47:00 PM
conductivity gradients		
Page 14: Inserted	Erik Nixdorf	7/17/2015 2:47:00 PM

dissolved compounds considering that the averaged electrical conductivity of the mixolimnion never exceeded 0.54 mS/cm and the electrical conductivity of the monimolimnion in Lake Waldsee was in a range between 0.93 mS/cm and 1.09 mS/cm (Figure 9)

Assuming that groundwater showed fairly constant chemical processes were potential drivers of the monimolimnetic electrical conductivity variations.

Page 15: Deleted	Erik Nixdorf	9/17/2015 4:21:00 PM
of deviations		
Page 15: Deleted	Erik Nixdorf	9/21/2015 1:06:00 PM
increase		
increase		

rise

Page 16: Deleted	Erik Nixdorf	9/21/2015 12:21:00 PM
is		
Page 16: Inserted	Erik Nixdorf	9/21/2015 12:21:00 PM
rage 10. Inserted	LIIK MIXUUTI	9/21/2013 12:21:00 FM
was		
Page 16: Deleted	Bertram Böhrer boehrer	7/23/2015 10:19:00 AM
efficiency		
omeremey		
Page 16: Inserted	Erik Nixdorf	9/18/2015 11:35:00 AM
Page 16: Deleted	Erik Nixdorf	9/17/2015 4:50:00 PM

Furthermore

Page 16: Inserted	Erik Nixdorf	9/17/2015 4:21:00 PM
On the other hand		

The additional impact of a potential disequilibrium in the CO_2 balance on the changes in monimolimnion conductivity could not be delineated by our simple quantitative analysis

Page 16: Deleted Erik Nixdorf 9/17/2015 4:22:00 PM

As this was taking place in a chemically similar setting, it is justified to use summed conductivity as a quantitative measure to draw conclusions about relevant processes involved in the stratification of Lake Waldsee

Page 16: Inserted	Erik Nixdorf	9/9/2015 3:17:00 PM
5.2 Impact of groundwater recharge on permanent stratification		
r g	g I	
Page 17: Inserted	Erik Nixdorf	9/9/2015 2:00:00 PM

5.3 Consequences for lake stratification modelling

Modelling lake stratification in meromictic lakes allows forecasting future stability of the density gradients. In particular, this is of high importance for many pit lakes, as undesired substances such as heavy metals are typically trapped in enriched concentrations within the monimolimnion. Hence, an unexpected turnover of a meromictic lake could produce serious environmental problems.

Page 17: Deleted	Erik Nixdorf	9/17/2015 4:51:00 PM
------------------	--------------	----------------------

Early numerical models for meromictic lakes such as Böhrer et al. (1998) did not include the effect of chemical reactions on the permanent density stratification. There has been a geochemical simulation of Waldsee by Moreira et al. (2011) including geochemical equilibrium based chemical equations for the iron-redox system but provided no quantification of the partial re-dissolution of the precipitated iron in the sediments. Furthermore, as their geochemical model ran entirely during a time of chemocline decline, the proposed effect of gradient stabilization by the inflow of significant amounts of ion rich groundwater was not included in their model. This is where our investigation our findings based on measurements and simple 1D algebraic mass balance equations may deliver new insight in the parametrization of numerical models for the prediction of stratification in meromictic lakes.

ADDIN CSL_CITATION { "citationItems" : [{ "id" : "ITEM-1", "itemData" : { "DOI" : "10.1007/s10498-011-9133-4", "ISSN" : "1380-6165", "author" : [{ "dropping-particle" : "", "family" : "Moreira", "given" : "Santiago", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Boehrer", "given" : "Bertram", "non-

dropping-particle": "", "parse-names": false, "suffix": "" }, { "dropping-particle": "", "family": "Schultze", "given": "Martin", "non-dropping-particle": "", "parse-names": false, "suffix": "" }, { "dropping-particle" : "", "family" : "Dietz", "given" : "Severine", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Samper", "given" : "Javier", "non-dropping-particle": "", "parse-names": false, "suffix": "" }], "container-title": "Aquatic Geochemistry", "id": "ITEM-1", "issue": "3", "issued": { "date-parts": [["2011", "5", "10"]] }, "page" : "265-280", "title" : "Modeling Geochemically Caused Permanent Stratification in Lake Waldsee (Germany)", "type": "article-journal", "volume": "17" }, "uris": ["http://www.mendeley.com/documents/?uuid=801f719a-c30e-41b0-a599-7c8eaead5ba7"]}], "mendeley" : { "formattedCitation" : "(Moreira et al., 2011)", "manualFormatting" : "Moreira et "plainTextFormattedCitation" al.(2011)", "(Moreira 2011)", et al., "previouslyFormattedCitation": "(Moreira et al., 2011)" }, "properties": { "noteIndex": 0 }, "schema": "https://github.com/citation-style-language/schema/raw/master/csl-citation.json" }

Pac	je 17: Deleted	Erik Nixdorf	9/	9/2015 2:23:00 PM

Page 17: Inserted Bertram Böhrer boehrer 9/16/2015 3:34:00 PM

Page 17: Deleted	Erik Nixdorf	9/17/2015 4:24:00 PM
------------------	--------------	----------------------

Page 17: Deleted	Erik Nixdorf	7/21/2015 4:42:00 PM

Conclusions

age 17: Inserted	Erik Nixdorf	7/21/2015 4:42:00 PM
------------------	--------------	----------------------

Summary

Page 18: Inserted	Erik Nixdorf	9/17/2015 4:24:00 PM
et		
Page 18: Inserted	Erik Nixdorf	9/18/2015 11:38:00 AM
-		
Page 18: Inserted	Erik Nixdorf	9/18/2015 11:38:00 AM

Contributing to the aim of making reliable predictions of future water quality in meromictic lakes our findings imply that additional effects such as the limited re-dissolution of iron hydroxide in the monimolimnion and the buffering of mixing processes by ion-rich groundwater inflow have to be considered for the setup of numerical geochemical models predicting permanent stratification in iron-meromictic lakes.

Page 19: Deleted	Erik Nixdorf	9/9/2015 3:11:00 PM
Page 20: Inserted	Erik Nixdorf	9/17/2015 4:25:00 PM

Böhrer, B., Heidenreich, H., Schimmele, M., and Schultze, M.:Numerical prognosis for salinity profiles of future lakes in the opencast mine Merseburg-Ost, International Journal of Salt Lake Research, 7(3), 235–260, doi:10.1023/A:1009097319823, 1998.

Camacho, A., Erez J., Chicote A., Florin M., Squires M.M., Lehmann C. and Bachofen R.: Microbial microstratification, inorganic carbon photoassimilation and dark carbon fixation at the chemocline of the meromictic Lake Cadagno (Switzerland) and its relevance to the food web, Aquat. Sci., 63(1), 91–106,2001. doi:10.1007/PL00001346.

Page 20: Inserted	Bertram Böhrer boehrer	/16	/2015 3:33:00 PM
. uge zer zneerteu		,	,

Halbwachs, M., et al.: Degassing the "Killer Lakes" Nyos and Monoun, Cameroon, Eos Trans. AGU, 85(30), 281, doi:10.1029/2004EO300001, 2004.

Hamersley, M. R., Woebken, D., Boehrer, B., Schultze, M., Lavik, G., Kuypers, M.M.M.: Water column anammox and denitrification in a temperate permanently stratified lake (Lake Rassnitzer, Germany), systematic and Applied Microbiology, 32(8), 571-582, 2009

Page 21: Inserted Bertram Böhrer boehrer 9/16/2015 1:56:00 PM

Hongve, D.: Cycling of iron, manganese, and phosphate in a meromictic lake, Limnol. Oceanogr., 42(4), 635–647, 1997.

Page 21: Deleted Bertram Böhrer boehrer 9/16/2015 1:55:00 PM

Page 21: Inserted Bertram Böhrer boehrer 9/16/2015 1:55:00 PM

Kjensmo, J.: The development and some main features of "ironmeromictic" soft water lakes, Arch. Hydrobiol., 32, 137–312, 1967.

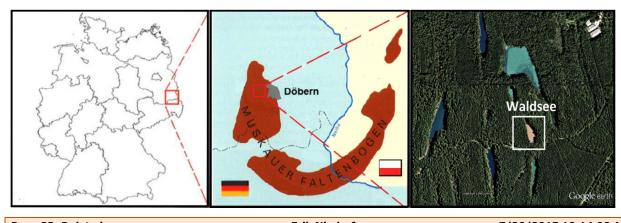
Page 21: Inserted Bertram Böhrer boehrer 9/16/2015 3:57:00 PM

Lenz O.K., Wilde V. and Riegel W.: Short-term fluctuations in vegetation and phytoplankton during the Middle Eocene greenhouse climate: a 640-kyr record from the Messel oil shale (Germany) Int J Earth Sci (Geol Rundsch) (2011) 100:1851–1874, DOI 10.1007/s00531-010-0609-z, 2011.

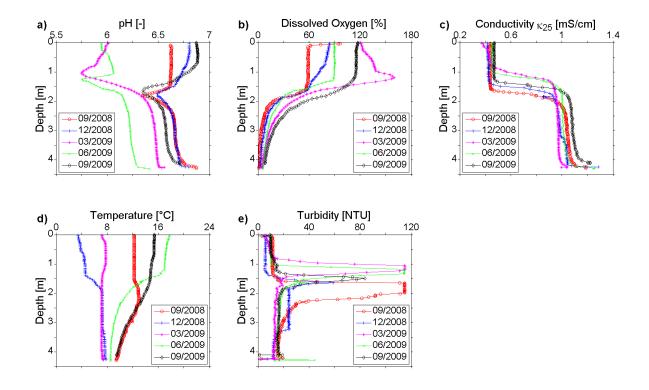
Page 22: Inserted Bertram Böhrer boehrer 9/16/2015 3:42:00 PM

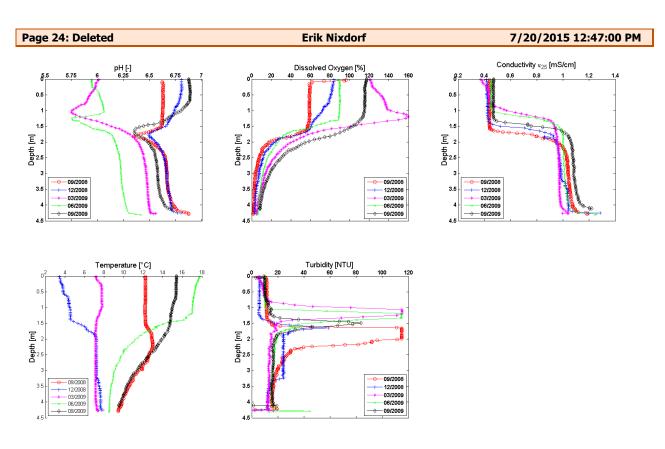
Tietze, K.: Geophysikalische Untersuchung des Kivusees und seiner ungewöhnlichen Methangaslagerstätte—Schichtung, Dynamik und Gasgehalt des Seewassers, Ph.D. thesis, Christian-Albrechts-Univ., Kiel, Germany, 1978.

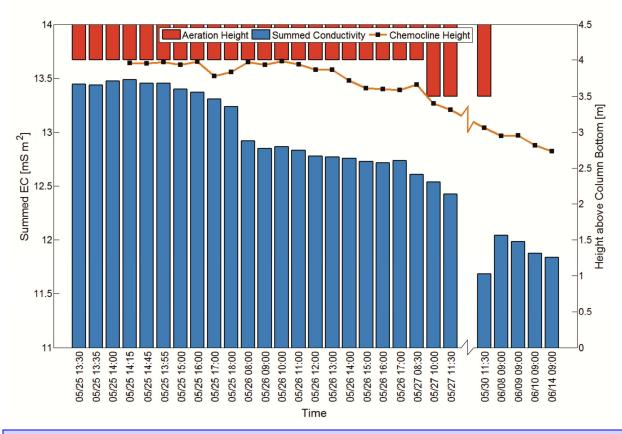
Page 22: Inserted Bertram Böhrer boehrer 9/16/2015 3:30:00 PM

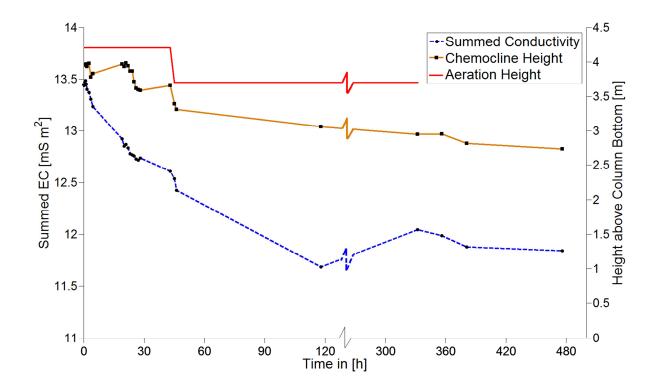

Vollmer, M. K., Weiss R.F., and Bootsma H.A.: Ventilation of Lake Malawi/Nyasa, in The East African Great Lakes: Limnology, Paleolimnology and Biodiversity, edited by E. O. Odada and D. O. Olago, pp. 209–233, Kluwer, Dordrecht, Netherlands, 2002.

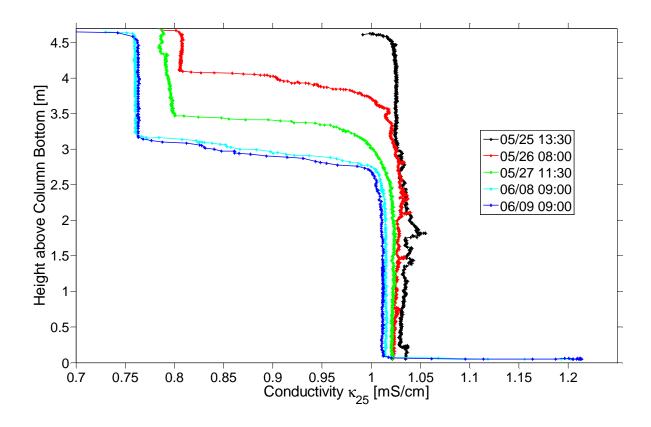
Page 23: Deleted ms785479 7/22/2015 10:10:00 AM

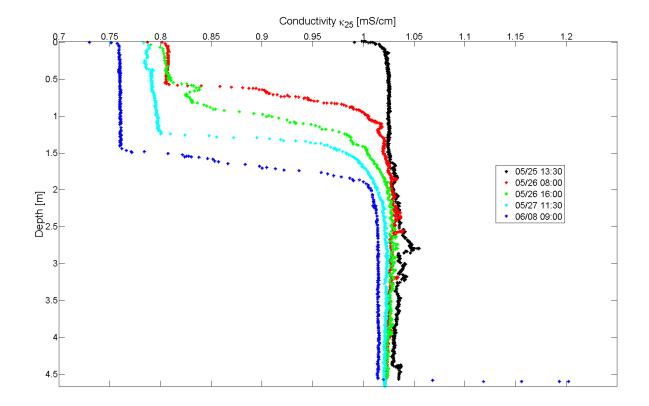

Tables


Table 1: Analyzed physical and chemical water parameters and used lab measurement methods

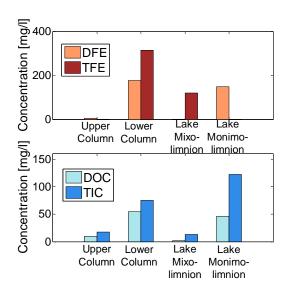

Measured variable	Measurement procedure	
Electrical conductivity	7-pole platinum cell conductivity sensor	
pH-value	pH meter	
Carbon species (DOC, TIC, TOC)	Thermal-catalytic oxidation with subsequent	
	infrared spectroscopy	
Iron	Atomic emission spectroscopy	

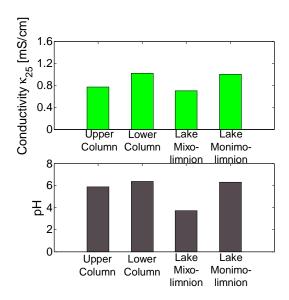


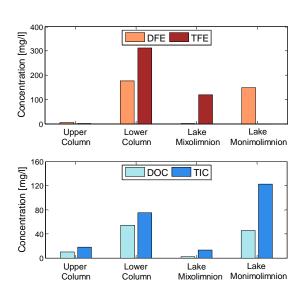

Page 26: Inserted Erik Nixdorf 9/17/2015 4:26:00 PM

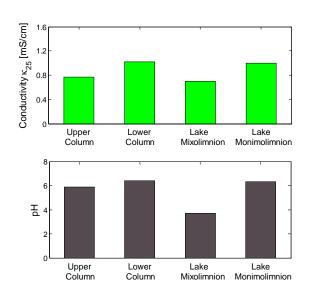


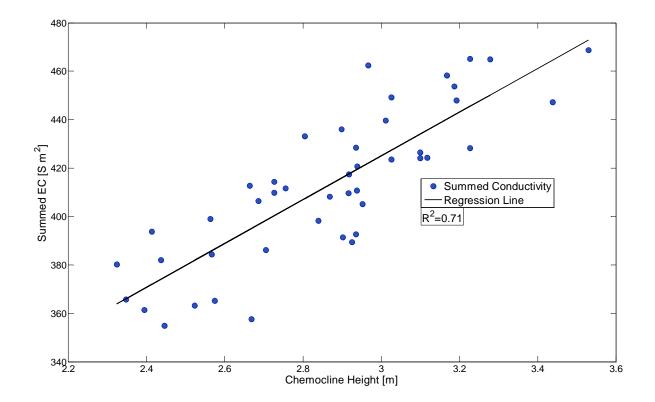
Page 26: Inserted	Erik Nixdorf	7/22/2015 4:20:00 PM
-------------------	--------------	----------------------


Page 26: Deleted Erik Nixdorf 9/17/2015 4:25:00 PM


Page 27: Inserted	Erik Nixdorf	9/17/2015 4:27:00 PM
Page 27: Ilisei leu	ELIK MIXUULI	9/1//2013 4:2/:00 P






Page 27: Inserted	Bertram Böhrer boehrer	7/23/2015 10:32:00 AM
lab experiment		
Page 27: Deleted	Bertram Böhrer boehrer	7/23/2015 10:32:00 AM
water column		
Page 28: Inserted	Erik Nixdorf	9/17/2015 4:27:00 PM

Page 30: Inserted	Erik Nixdorf	7/20/2015 9:26:00 AM
. ugo 50: 2::50: tou		7 / 20 / 2020 7 120:00 7 11 1

Page 30: Deleted	Erik Nixdorf	7/20/2015 9:26:00 AM
_		

Page 30: Inserted	Erik Nixdorf	7/20/2015 9:26:00 AM
84		

Page 30: Deleted	Erik Nixdorf	7/20/2015 9:26:00 AM
1		

Header and footer changes

Page 1: Inserted	Frik Nixdorf	9/21/2015 10:25:00 AM

Quantitative analysis of biogeochemically controlled stratification in an iron-meromictic lake

Page 1: Deleted Erik Nixdorf 9/21/2015 10:25:00 AM

Biogeochemical processes controlling density stratification in an iron-meromictic lake

Text Box changes

Header and footer text box changes

Footnote changes

Endnote changes