
Editor review (08 Dec 2015) 

Comments to the Author 

Page 9, line 25. Replace x2-x1 with |xj-xi|. Am I right? 

 Changed as suggested. 

Page 12, lines 8-9. The sentence “As before… double prime” could be moved where this notation is used 

for the first time. 

Good point. Sentence is slightly modified and, as suggested, moved to the beginning of the 

chapter. 

Page 16, line 25. Please rephrase “show in large the right pattern”. 

 Changed to “…are acceptable, with patterns similar to those of the true recharge field.” 

Page 17, line 27ff. This is true for OLE, but it is also apparent that the improvement for TE is much more 

limited. In other words, the head predictions at the measurement points are strongly improved, whereas 

the improvement of the head prediction over the whole aquifer is questionable. Is this right? Can you 

comment on this, please? 

We see that our choice of Total Error was a bit unclear. As the error is normalized by the 

conditional variance of the ensemble, a high absolute head error (i.e. a bad prediction) can still 

generate a low TE if the variance is large enough. Hence, TE, as presented, is an error that 

measures how well our predictions falls within our estimated variance, and is in this sense not 

related to the statement in Page 17. We do, however, see the need for a ‘real’ error for the full 

system and we have therefore in the revised manuscript been including a third error measure. 

The new Total Error is instead weighted by the average of the two values that are compared and 

is therefore a unitless measure of the actual error.  We differentiate the old and the new Total 

Error by numbering them TE-1 (old) and TE-2 (new). From the new TE-2 we can see that the 

trend from the OLE also holds for the full field, with overall good head predictions for the good 

cases. The text in the manuscript is updated with references to TE-1 and TE-2 as applicable. 

Page 21, lines 7 to 11. Modify “the groundwater-flow equation is non-identifiable when both 

conductivity and recharge are considered parameters that can vary unrestricted in space and time: Even” 

possibly as “conductivity and recharge are not simultaneously identifiable, if considered as parameters 

that can vary unrestricted in space and time: even”. For your convenience, see this paper of mine 

http://iopscience.iop.org/0266-5611/7/2/007 for rigorous definitions of identifiability; please, do not 

cite it in your paper, because HESS editors are requested not to suggest their papers to the authors :-/ 

 Sentence changed as suggested (and the paper is not cited). 

Tables 3 & 4. 

The values of NRMSE for OLE are quite different from those computed with the runs for the first version 

of the paper. Therefore it seems that these values are very uncertain. The remark by the authors in their 

response (“the noise terms are slightly different, leading to different OLE values in the revised 



manuscript compared to the previous submissions”) does not seem sufficient to explain this behavior 

and I ask them to include some comments in the text or in the response. 

First, it should be noted that the OLE values in Table 4 (errors during assimilation period) have 

not changed substantially. However, in the latex-diff-file submitted with the previous response, 

we see that it looks like this for both Table 3 and 4; since we added 3 new columns to the tables 

the numbers next to each other are rather different.  This is, however, not the truth and Table 4 

is very similar to its old version. 

For Table 3 (prediction errors), the editor is right that some of the numbers have changed, at 

most to a double (or half) of the original value, all when estimation of the K-field is involved.  

That these values differ if the estimated K-fields are slightly different is not so strange since the 

error is an aggregated mean value of the full 60 days of predictions, which has to be seen as a 

rather long prediction. When comparing the final mean K-fields between the first and the second 

EnKF-simulations, it is not possible to directly see any differences and one has to look at 

difference-plots to see that there are some differences in the spatial structure of the estimated 

fields. However, as the editor suggested, these differences seems to have an impact on the head 

predictions. A comment concerning this is added to the manuscript (page 19) where we explain 

that the head predictions can be uncertain and highlight that one should not primarily consider 

the exact numbers, but rather the relations; for example between assimilation and prediction 

and between estimating recharge and estimating conductivity.  

I think that the discussion of the results included in these tables could still be improved in the text. 

An additional two paragraphs are added on pages 19-20 to further discuss what can be seen in 

the tables.  We hope these additions are to the satisfaction of the editor. 

I am curious to see a visual comparison between the reconstructed (ensemble average) head fields at 

different times during the experiment (e.g., after 40, 140, 240 and 340 days, based on the data of Table 

1) and the reference head fields, in order to visualize the errors on the predicted heads. 

Following this suggestion by the editor, we have been looking into visually comparing different 

head fields. However, as the spatial gradients are, generally seen, larger than the temporal ones 

(as can also be suspected from Figure 7) and the head fields are often quite well assimilated (see 

Table 3 and 4 and with the new TE-2), the visual comparison does not provide any new 

information. Other than in the really poor cases, the head fields look similar to the true ones. 

Further, to fully show this comparison would require a plot of 40 subplots (4 times x 9 scenarios 

plus 1 truth), which makes it rather large. Hence, since the new information in the suggested 

figure is rather limited and the figure is complicated and, in our opinion, rather suboptimal for 

print, we have not been including it in the revised manuscript. We do, however, think that part 

of the information that the editor is interested in is now shown in the second (new) total error 

(TE-2) in Tables 3 and 4, though of course the information is aggregated over space and time.  

From the new errors, it is clear that the head fields are often good, but that the wrong prior 

leads to larger errors and that recharge estimation alone is by far the best.   
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Abstract

Regional groundwater flow strongly depends on groundwater recharge and hydraulic con-
ductivity. Both are spatially variable fields, and their estimation is an ongoing topic in ground-
water research and practice. In this study, we use the Ensemble Kalman filter as an inver-
sion method to jointly estimate spatially variable recharge and conductivity fields from head5

observations. The success of the approach strongly depends on the assumed prior knowl-
edge. If the structural assumptions underlying the initial ensemble of the parameter fields
are correct, both estimated fields resemble the true ones. However, erroneous prior knowl-
edge may not be corrected by the head data. In the worst case, the estimated recharge field
resembles the true conductivity field, resulting in a model that meets the observations but10

has very poor predictive power. The study exemplifies the importance of prior knowledge in
the joint estimation of parameters from ambiguous measurements.

1 Introduction

Regional groundwater flow depends on spatially variable properties of the subsurface,
notably the hydraulic conductivity field, and boundary conditions such as groundwater15

recharge. In practical groundwater-modeling applications, parameters of both aquifer prop-
erties and boundary conditions are estimated from measurements of hydraulic heads at a
limited number of observation locations (e.g., Hill and Tiedeman, 2007). While many the-
oretical studies on parameter estimation in aquifers have concentrated on the assessment
of the spatially variable hydraulic-conductivity field, also groundwater recharge is known to20

be highly variable in both time and space (e.g., de Vries and Simmers, 2002). Among the
different techniques of estimating recharge reviewed by Scanlon et al. (2002), we consider
here numerical approaches in which measured time series of hydraulic head are used to
estimate groundwater recharge. The key question to be addressed in the present study is
under which conditions it is possible to infer both the recharge field (a space-time function)25
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and the spatial distribution of hydraulic conductivity from the same data set of hydraulic-
head measurements.

In engineering practice, the model domain is typically subdivided into a small number of
zones with given geometry, and uniform values of the material properties are assigned to
each zone. Likewise, the land-surface is subdivided into zones with uniform recharge val-
ues, reflecting land use, soil types, and local climate variability. As an alternative, parameter5

values may be estimated at a limited number of points and interpolated in between (e.g.,
Doherty, 2003). By construction, these approaches can only determine spatial structures of
the parameter fields meeting the prescribed shapes. A particular difficulty of this approach
is that the variability within the given zones may be bigger than between the zones, while
the internal variability is completely neglected in the parameter estimation.10

The estimation of hydraulic conductivity as a continuous field has been intensively inves-
tigated in the past (see the reviews of Sanchez-Vila et al., 2006; Vrugt et al., 2008, and
recently Zhou et al., 2014). In these approaches discretization of the domain leads to a
formal number of parameters to be estimated that is identical to the number of cells or grid
points. Typical 2-D applications result in O (104) parameters, whereas 3-D numerical do-15

mains may easily be made of O (106) cells. As the number of measurement points is by
orders of magnitude smaller, this inverse problem is inherently ill-posed without additional
constraints. Some authors therefore rely on flexible sets of shapes, such as polynomial
trends or Voronoi polygons (e.g., Tsai et al., 2003a, b) rather than estimating O (104–106)
parameter values. In standard geophysical inversion, Tikhonov regularization is the com-20

mon approach to estimate distributed parameter fields from a limited set of measurements.
Here, the parameters are assumed to be continuous spatial functions, but large gradients,
curvatures, or deviations from prior values are penalized (applications to subsurface hy-
drology are given by Doherty and Johnston, 2003; Tonkin and Doherty, 2005; Doherty and
Skahill, 2006, among others). In subsurface hydrology, however, the geostatistical frame-25

work is more common. Kitanidis (1997) and independently Maurer et al. (1998) showed that
the two approaches are mathematically equivalent to each other.
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In geostatistical inversion, the parameter field to be estimated is assumed to be an au-
tocorrelated random space function. This prior knowledge is used in Bayesian inference,
where the statistical distribution of the parameters is conditioned on the measurements
of dependent quantities, such as hydraulic heads. A variety of schemes targets a single
smooth spatial distribution approximating the conditional mean of the parameter field us-
ing Gauss-Newton- or conjugate-gradient-type of estimation schemes (e.g., Yeh and Yoon,
1981; Kitanidis and Lane, 1985; Zou et al., 1993; Li and Elsworth, 1995; Kitanidis, 1995;5

Yeh et al., 1996; Aschenbrenner and Ostin, 1995; McLaughlin and Townley, 1996; Spedi-
cato and Huang, 1997; Loke and Dahlin, 2002; Dai and Samper, 2004; Dai et al., 2010).
These methods can be extended to the generation of multiple conditional realizations by
the method of smallest modification (e.g., RamaRao et al., 1995; Gómez-Hernández et al.,
1997). However, the computational costs to obtain a single conditional realization is iden-10

tical to that of the smooth best estimate. Also, the Gauss-Newton method requires the
evaluation of the sensitivity of each measurement with respect to all parameter values, in-
volving the solution of as many adjoint problems as there are measurements, which may
become unbearable in case of many measurements, such as those obtained from transient
processes. In the context of the present study it may be noteworthy that many geostatistical15

approaches have focused on the exclusive estimation of hydraulic conductivity, some in-
clude storativity (e.g., Gómez-Hernández et al., 1997; Kuhlman et al., 2008; Li et al., 2007),
but most assume that the boundary conditions are deterministic. An exception is the study
of Hendricks Franssen et al. (2004) who used the geostatistical approach of sequential self
calibration to jointly estimate the fields of hydraulic conductivity and groundwater recharge20

from head measurements. The authors considered the problem of a well-capture zone, in
which they estimated hydraulic conductivity as continuously varying spatial field, whereas
recharge was parameterized by zones with uniform values.

In groundwater hydrology, sequential data assimilation and Kalman filter methods have
been used since long (e.g., Ferraresi et al., 1996; Eppstein and Dougherty, 1996; Hantush25

and Mariño, 1997). Particularly, and increasingly, popular is the Ensemble Kalman filter
(EnKF) (Evensen, 1994) or versions thereof. Although the EnKF was primarily constructed
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to update model-state variables, in subsurface hydrology it is commonly used to estimate
hydraulic conductivity. For this purpose Hendricks Franssen and Kinzelbach (2008), Dré-
court et al. (2006), Tong et al. (2010, 2011), Xu et al. (2013a, b), Panzeri et al. (2015),
among others, showed that the use of head observations in an EnKF framework can help
improving the conductivity estimates, while Crestani et al. (2013) and Tong et al. (2013),
among others, considered tracer tests for the same purpose. Most parameter estimations
used 2-D models, as these are conceptually simpler, faster and easier to constrain and dis-5

play. However, EnKF has also successfully been applied to infer 3-D hydraulic-conductivity
fields (e.g., Camporese et al., 2011; Schöniger et al., 2012).

An important step in setting up an EnKF to estimate parameters is the choice of initial
ensemble. This choice is the most straight forward way of allowing prior information, such
as ideas about correlation lengths, mean values or spatial pattern, to influence the filter10

process. From a technical point of view, the issue of initial sampling is how to represent the
prior knowledge in an ensemble that is as small as possible, by, for example, adding ensem-
ble subspace restriction and requirements on the sampling (e.g., Evensen, 2004; Oliver and
Chen, 2008). From a practical point of view, especially in subsurface modeling, the issue
is that our prior knowledge of the parameters, their mean values, deterministic trends, and15

spatial correlation structure is often limited. This may be seen as a more severe problem
than choosing a sufficiently large ensemble size to actually capture the assumed variability
by the ensemble. To overcome the limited knowledge about true parameters values, the use
of synthetic test cases for methods testing and evaluation is very common in subsurface hy-
drology (e.g., Schlüter et al., 2012; Schelle et al., 2013). Here, the prior knowledge is only20

limited to what the modeler considers a reasonable assumption and it is not uncommon in
the groundwater-EnKF context that the synthetic true parameter field is a single realization
generated the same way as the initial ensemble (e.g., Huang et al., 2008; Tong et al., 2011,
2013; Vogt et al., 2012; Panzeri et al., 2014; Zhou et al., 2014). Hence, perfect knowledge
about the statistics of the estimated parameters is implicitly assumed, which is a highly un-25

realistic assumption. The impact of the prior assumptions in groundwater modeling were
considered, for example, by Li et al. (2012) who concluded that it was possible to estimate
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reasonable log-conductivity fields using the EnKF despite wrong priors, although the result
was worse than when using correct information, and by Camporese et al. (2011, 2015),
who showed that it is possible to use the EnKF to correct a biased prior mean and partly a
wrong prior variance, but not erroneous prior correlation lengths.5

In this work we study the impact of the prior knowledge when jointly estimating conduc-
tivity and recharge from hydraulic-head data only. We use an EnKF setup in which the initial
ensemble is drawn using different assumptions of the spatial pattern of the parameters.
Sect. 2 discusses why the conductivity and the recharge are so difficult to estimate jointly
if only pressure-head data are available. Sect. 3 explains the Ensemble Kalman filter and10

the synthetic example used throughout this paper, while results and discussions are found
in Sect. 4. We end with conclusions in Sect. 5.

2 Theory

In regional-scale groundwater-flow problems, we typically rely on the validity of the Dupuit
assumption, stating that variations in hydraulic head and groundwater velocity are restricted15

to the horizontal directions. Under this condition, the depth-averaged, two-dimensional
groundwater-flow equation for a phreatic aquifer reads as:

Sy
∂h

∂t
−∇ · (K (h− z0)∇h) =R (1)

subject to initial and lateral boundary conditions. Sy(x) [–] is the specific-yield field, which is
the drainage-effective porosity of the formation, K(x) [L T−1] denotes the depth-averaged
hydraulic-conductivity field, R(x, t) [L T−1] is the field of groundwater recharge, z0(x) [L]
denotes the geodetic height of the aquifer bottom, h(x, t) [L] is the hydraulic-head field to
be simulated, t [T] is time, and x [L] is the vector of horizontal spatial coordinates.

The term K(h− z0) may be interpreted as a transmissivity field T (x, t) [L2 T−1], varying5

in space and time. We now consider a confined surrogate aquifer with an assumed trans-
missivity field Tass(x) [L2 T−1] that differs from the true one (e.g., an incorrectly estimated
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transmissivity field). The logarithm of the scaling factor between the two transmissivities is
denoted f(x, t) [–]:

f = ln

(
K × (h− z0)

Tass

)
. (2)10

Substituting Eq. (2) into Eq. (1) yields:

Sy
∂h

∂t
−∇ · (Tass exp(f)∇h) =R. (3)

Applying the chain-rule of differentiation to the divergence in Eq. (3), the product rule of
differentiation to ∇exp(f), and dividing by exp(f) results in:

exp(−f)Sy︸ ︷︷ ︸
:=Sapp

∂h

∂t
−∇ · (Tass∇h) = exp(−f)R+∇f · ∇hTass︸ ︷︷ ︸

:=Rapp

(4)15

⇒ Sapp
∂h

∂t
−∇ · (Tass∇h) =Rapp (5)

subject to the same initial and lateral boundary conditions as above. In Eq. (5), Sapp(x, t) [–]
and Rapp(x, t) [L T−1] are apparent specific-yield and groundwater-recharge fields. Equa-
tion (5) results in exactly the same hydraulic-head distribution as the original groundwater-
flow Eq. (1), even though the transmissivity field is different. Note that exp(−f) is positive,20

so that the apparent specific yield Sapp remains positive, whereas no sign restrictions apply
to∇f ·∇h, resulting in both positive and negativeRapp values. In case of a phreatic aquifer,
the true transmissivity varies with hydraulic head, so that the apparent parameters change
with time. If the water-filled thickness of the true aquifer does not change with time, which
is the case for confined aquifers, the apparent fields are time-invariant.25

The derivation given above exemplifies that the same hydraulic-head field can be ob-
tained with different hydraulic-conductivity fields by modifying recharge and, in the case of
transient flow, the specific yield. Noteworthy is that the apparent recharge depends on the
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gradient of the original transmissivity field. Hence, a large – positive or negative – apparent
recharge is expected at locations where the transmissivity changes drastically. Though we5

have shown that modifications of recharge and specific yield can always replace the con-
ductivity, the opposite case is not guaranteed, because the conductivity has clear physical
limitations, notably it cannot be negative.

The fact that conductivity variation can be exchanged by recharge and specific-yield vari-
ations renders the joint estimation of hydraulic conductivity, recharge (and specific yield) an10

inherently ill-posed problem even when the hydraulic-head field is known at every point in
the domain (and every time point).

We may illustrate the problem by the example of an unconfined aquifer at steady state,
shown in Fig. 1. The original simulation (left column in Fig. 1) exhibits a square-shaped
inclusion of low permeability in an otherwise uniform high permeability field (first row; two15

orders of magnitude difference in K) and a constant low recharge rate (second row). As
boundaries, we employ a significant head drop from west (50 m) to east (8 m) and no flow
boundaries on the north and south sides. The resulting head field is shown in the third row
of Fig. 1, and the corresponding field of Darcy velocities in the fourth row of Fig. 1.

If the inclusion is removed, and the recharge remains the same, the system shows a20

perfectly homogeneous behavior (middle column of Fig. 1). The third column in Fig. 1, on
the other hand, shows exactly the same hydraulic-head field as the original simulation,
but the permeability field is uniform, whereas the recharge field shows strong fluctuation.
From Fig. 1 we can note that, in accordance with Eq. (4), the strong positive and negative
recharge rates are introduced at the interface of the removed inclusion. Also, while the head25

fields of the original and surrogate models are identical, the velocity fields are quite different,
because the conductivities are different. The latter implies that transport would be strongly
different between the two cases. It becomes also clear that, without additional constraints,
a unique joint estimation of both recharge and conductivity fields is strictly impossible.

In classical model calibration, the ambiguity between transmissivity and groundwater
recharge may cause problems of ill-posedness, but assuming presumably known zones
with block-wise uniform parameter values restricts the solution of the inverse problem. As
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example, the strong positive and negative recharge values of the surrogate model in Fig. 15

would most likely not be obtained in standard model calibration because the recharge zones
would hardly be chosen as embedded rectangular frames. In shape-free inversion, using
either Tikhonov regularization or geostatistical methods, by contrast, the solution space is
much less restricted and chances that unresolved transmissivity variations are traded for
recharge fluctuations are in principle fairly high. The question thus arises under which con-10

ditions the estimated fields are reasonable despite the ambiguity of aquifer properties and
boundary conditions.

3 Methods

3.1 Ensemble Kalman filter

In the following we briefly repeat the basic assumptions of deriving the Ensemble Kalman15

Filter (EnKF) within a Bayesian framework. While it is possible to have a much more prag-
matic view on EnKF as an extended least-square estimator, we believe that the trans-
parency of the Bayesian framework with respect to the underlying assumptions is bene-
ficial. In particular, the Bayesian framework explains the choice of the initial ensemble as
prior knowledge and the conceptual importance of the prior knowledge in the estimation20

procedure, while a frequentist’s point of view is in contrast to making use of prior knowledge
altogether. For further transparency, we first explain the extended Kalman filter (see similar
derivations by Evensen (2009)).

We denote the vector of all parameters (recharge values and log-hydraulic conductivities
of all cells) Φ. Prior to considering measurements, they are assumed to be random functions25

following a multi-Gaussian distribution, which is fully characterized by the prior mean µ′Φ
and covariance matrix P′ΦΦ.

:::::::::::
Throughout

:::
this

:::::::
paper,

:::
the

:::::
prior

::::::
values

::::
are

::::::::
denoted

::
by

::
a
::::::
single

::::::
prime,

::::
and

::::
the

:::::::::
posterior

:::
by

::
a
:::::::
double

:::::::
prime.

:
If we assume that the covariance function

P ′ΦΦ(v) is stationary with the distance vector v and known structural parameters (variance,

9
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correlation lengths, rotation angles), the element (i, j) of the covariance matrix P′ΦΦ is
P ′ΦΦ(x2:::::::

P ′ΦΦ(|xi−x1)
:::
xj |). The full matrix is constructed by all grid points.

The vector of simulated hydraulic heads ht at time level t depends on the heads ht−1 at5

the previous time level and on the parameters Φ. Because the old heads ht−1 depend on
Φ, they are random variables, too. In the combination of data assimilation and parameter
estimation applied here, the vector of all simulates states (the heads ht in all cells) and the
vector of all parameters Φ are concatenated to a single vector xt of states and parameters,
assumed to be random multi-Gaussian functions with unconditional mean µ′x and covari-10

ance matrix P′xx, in which the prior statistics of ht are obtained by linearized uncertainty
propagation of the statistics of ht−1 and Φ.

For convenience, we denote running the model and simulating the observations (which is
here just picking the heads at the observation locations) as f t(ht−1, xt). It should be noted
that f here, hence, denotes both the forward model and the observation operator. This15

model outcome is contrasted to the measurements of heads at time level t, here denoted
yt. The true (unknown) heads at the measurement locations are considered to be a vector
of random variables with a multi-Gaussian distribution, characterized by the measurement
vector yt as mean and the covariance matrix R, reflecting measurement error.

Since we assume multi-Gaussian distributions, finding the best conditional estimate µ′′x,20

of the entire head field at the new time level and the parameters by application of Bayes’
theorem results in minimizing the following objective function W (xt):

W (xt) =
(
xt−µ′xt

)T
P′−1
xtxt

(
xt−µ′xt

)
+ (f t (ht−1,xt)−yt)T R−1 (f t (ht−1,xt)−yt) (6)

which is done by setting the derivative of W (x) to zero (e.g., Evensen, 2009). In the lin-
earized version, f t(ht−1, xt) is linearized about the prior mean µ′xt , and the linearized25

conditional covariance matrix P′′xtxt of xt is obtained by inverting the Hessian of W (xt),
using the same linearization. Kalman filtering is based on these approximations. Here, the
data are successively accounted for, considering one time level after the other. Then, the
posterior mean µ′′xt and covariance matrix P′′xtxt of time level t are propagated to the next
time level t+ 1 to obtain the corresponding prior mean and covariance matrix.
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By applying rules of matrix identities it can be shown that linearization about the prior5

mean µ′xt leads to the following expression for the conditional mean and covariance matrix:

µ′′xt = µ′xt +P′xtyt
(
P′ytyt +R

)−1 (
yt−f t

(
µht−1 ,µ

′
xt

))
(7)

P′′xtxt = P′xtxt −P′xtyt
(
P′ytyt +R

)−1
P′ytxt (8)

in which P′ytxt = JP′xtxt is the cross-covariance matrix between yt and xt, P′xtyt =P′Tytxt ,
and P′ytyt = JP′xtxt J

T is the propagated covariance matrix of yt, expressing the uncertainty10

of yt caused by the uncertainty of xt. J denotes the sensitivity matrix of f t with respect to
xt, derived about the prior mean.

The scheme described so far is known as extended Kalman filter. It relies on linearization
about the prior mean and has the disadvantages that the full sensitivity matrix J must be
evaluated, which can be computationally very costly. Also, already slight nonlinearities in15

f t(ht−1, xt) imply that the propagated covariance matrices are not correct.
A popular alternative to the original Kalman filter is the Ensemble Kalman
filter (EnKF) (Evensen, 1994), in which the linearization is performed about an entire

ensemble of state and parameter values, and no sensitivity matrices are computed. The

11



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

prior statistics are given by:

µ′xt =
1

n

n∑
i=1

x
′(i)
t (9)

µ′yt =
1

n

n∑
i=1

f t

(
h
′′(i)
t−1,x

′(i)
t

)
(10)

P′xtxt =
1

n− 1

n∑
i=1

(
x
′(i)
t −µ′xt

)
⊗
(
x
′(i)
t −µ′xt

)
(11)5

P′xtyt =
1

n− 1

n∑
i=1

(
x
′(i)
t −µ′xt

)
⊗
(
f t

(
h
′′(i)
t−1,x

′′(i)
t

)
−µ′yt

)
(12)

P′ytyt =
1

n− 1

n∑
i=1

(
f t

(
h
′′(i)
t−1,x

′(i)
t

)
−µ′yt

)
⊗
(
f t

(
h
′′(i)
t−1,x

′(i)
t

)
−µ′yt

)
(13)

in which n is the number of ensemble members, the superscript (i) denotes the ith member,
and a⊗ b is the tensor product of vectors a and b. As before, the prior values are denoted
by a single prime, and the posterior by a double prime. Upon initialization, the original10

ensemble members x(i)
0 are drawn from the unconditioned multi-Gaussian distribution of x,

whereas the updating of the individual ensemble members follows the procedure outlined
above:

x
′′(i)
t = x

′(i)
t + bP′xtyt

(
P′ytyt +R

)−1
(
yt + ε(i)−f t

(
h
′′(i)
t−1,x

′(i)
t

))
(14)

in which ε(i) is a vector of random observation noise drawn from a multi-Gaussian dis-15

tribution with zero mean and covariance matrix R. The factor b is the so called damping
parameter (e.g., Hendricks Franssen and Kinzelbach, 2008) which serves to slow down the
update of states and parameters. It is an ad-hoc tuning parameter that is primarily required
for small ensemble sizes; few guidelines exist on how to select it. In this work, the damping
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is set to 0.6 for the updates of the head values and 0.05 for the parameter update, though20

since the ensemble size is large and there are many temporal observations (see below), the
choice is not crucial in any sense. For a more in-depth description of the filter algorithm, the
interested reader can consult Evensen (2003) or Burgers et al. (1998) for general filter de-
tails or Erdal et al. (2014) and Erdal (2014) for in-depth details on the actual implementation
used in this study.25

It should be noted that the ensemble Kalman filter still relies on the same assumptions
as the original Kalman filter. Notably, the combined vector of states, parameters, and ob-
servations is assumed to be a multi-Gaussian random variable, which means that xt is
multi-Gaussian, the model f t depends linearly on xt, and the measurement error is multi-
Gaussian, too. These conditions are not strictly met, so that the EnKF solution is only a
linearized estimate. However, in contrast to the extended Kalman Filter, in EnKF the lin-
earization is performed by considering an entire ensemble rather than by taking derivatives5

at a single point (e.g., Nowak, 2009). The large ensemble sizes used in this work as well as
the repeated application over many time steps alleviates the effects of nonlinearity to some
extent, by allowing a generous use of the dampening factor. Hence the filter is slowed down
and the possible erroneous updates resulting from the linearization have a less strong effect
on the update. Further, the model considered is only weakly nonlinear, so that in total the10

effects of the linearlizations are likely small compared to other sources of errors (e.g., prior
uncertainties, as discussed later). For a detailed discussion of the linearization operated by
the ensemble Kalman filter applied to groundwater models, see Crestani et al. (2013).

An important constraint is that the scheme, like any other Bayesian method, depends on
the choice of the unconditional mean and covariance structure of the parameters Φ. It is15

important to keep in mind that our application (estimating spatial patterns of both hydraulic
conductivity and recharge from hydraulic-head data) is based on, at least partially, ambigu-
ous data, as outlined in Sect. 2. Bayesian parameter-estimation schemes are well posed
even in the presence of non-informative or ambiguous data due to the prior information:
In case of non-informative data, the likelihood of the data shows no dependence on the20

parameters, and the posterior falls back to the prior. Thus, while the updating procedure
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leads to modifications of the parameters, the original prior knowledge carries over. Spa-
tial patterns that are in contradiction to the prior knowledge cannot be recovered by the
scheme. This would of course be different if the observations were in strong contradiction
to the prior. If so, we could see a departure from the prior, both in terms of absolute values25

as well as in terms of structure. This point will be discussed in more detail in Sect. 5. In our
application, however, Φ contains parameters describing both aquifer properties and bound-
ary conditions and, as we have shown above, the effects of these two types of parameters
on the measured heads can be similar. Hence, the data can be non-unique with respect to
the parameters and the prior knowledge may determine which patterns of conductivity and
which patterns of recharge can be jointly inferred by the scheme. If the prior knowledge is
erroneous, the estimated fields may also be erroneous.

3.2 Setup of a synthetic experiment5

For testing the possibilities and limitations in jointly estimating conductivity and recharge,
we have set up a synthetic 2-D example of transient flow in an unconfined aquifer. The
model setup is shown in Fig. 2 and consists of spatially variable recharge with a tempo-
ral seasonal trend, spatially variable conductivity, a temporally variable southern boundary
corresponding to a river, as well as 5 pumping wells. The actual recharge is calculated by10

multiplying the trend parameter with the shown recharge field. More technical details about
the setup is found in Table 1. Observations of groundwater heads are taken daily at 45 ob-
servation wells spread throughout the domain during a 1 year simulation and assuming an
observation error of 1 cm. The recharge and log-conductivity fields are both sampled as
random fields with anisotropic, exponential covariance functions and strong rotation of the15

principal directions of anisotropy (Table 2). It should be noted that in the current example
the reference conductivity and the reference recharge fields are generated as fields that
are uncorrelated to each other. This could, for example, represent a scenario in which the
recharge is primarily controlled by variable land use and vegetation while the conductivity
is a material property that varies spatially but is constant over time.20
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For the estimation of the recharge and conductivity fields, we apply the Ensemble Kalman
filter using an ensemble of 2000 members. As this work aims at exploring which prior knowl-
edge is required for the estimation process, three different cases of prior knowledge are
considered. In the first, the initial ensemble members are drawn from the same (hence cor-
rect) distribution as the reference (true) field. The second case is identical to the first apart25

from the rotation angle of the anisotropy being randomly chosen for each ensemble mem-
ber. In the third case, the rotation angle is fixed but wrong. Here, the recharge is sampled
using the rotation angle and correlation lengths of the true conductivity field and vise versa,
creating a rather problematic initial ensemble. A plot of the three correlation structures can
be found in the bottom of Fig. 3 in Sect. 4 where the three initial ensembles are called the5

“good”, “random”, and “wrong” ones. Please note that the correlation plot for the random
initial is only meant as an illustration of the fact that each ensemble has a unique rotation
angle and does not show the actual angles considered.

The goodness of the resulting fields are judged in two ways. First, the ensemble mean
of the fields are visually compared to the reference fields and subjectively judged to be10

similar or not. Second, the normalized root mean square error of the simulated heads in the
45 observation wells is computed by:

NRMSE =

√√√√√ 1

ntnnodes

t2∑
t=t1

nnodes∑
i=1

(
htrue(i, t)−h(i, t)

)2

σ2
h(i, t)

(15)

where nt is the number of temporal observations between t1 and t2, nnodes the number of
nodes considered, h(i, t) is the ensemble mean head observation at position i and time t,15

htrue is the corresponding true value, and σh is a standard deviation used to normalize
the error. As this is a virtual experiment, we can calculate the NRMSE both using the ob-
servation locations as nodes and using all nodes in the model. The latter corresponds to
what can be done with real experimental data and is denoted OLE (Observation Location
Error), while the former only works for a virtual experiment and is denoted TE (Total Er-20

ror). For OLE, the normalizing standard deviation σh(i, t) is the measurement uncertainty
15



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

of hydraulic-head observations, hence here a fixed value decided prior to the EnKF simula-
tions, while for TE this corresponds to the conditional ensemble standard deviation, variable
in both space and time.

::::
Due

:::
to

:::
the

:::::::
choice

::
of

::::
the

:::::::::::
normalizing

:::::::::
standard

:::::::::
deviation,

::::
the

:::::
Total

:::::
Error

:::::
does

:::
not

:::::
give

:
a
::::::
direct

::::::::::
indication

::
of

:::
the

::::::::::
goodness

::
of

::::
the

:::::::::
ensemble

::::::
mean

:::::::::
solution,

:::
but25

:::::
rather

::::::::
indicate

::::
how

::::
well

::::
the

:::::::::
predicted

::::::
heads

::
fit

::::
the

:::::::::
ensemble

:::::::::
standard

:::::::::
deviation.

::::::::::
Therefore,

:
a
::::::::
second

:::::::
version

:::
of

::::
the

:::::
Total

:::::
Error

:::
is

:::::
also

:::::::::::
considered,

:::::::
where

::::
the

:::::::::::
normalizing

:::::::::
standard

::::::::
deviation

:::
is

::::::::
replaced

:::
by

::::::::::::
normalizing

:::
the

:::::
error

:::::
with

::::
the

::::::
mean

::
of

::::
the

::::
two

:::::
head

:::::::
values

::::
(i.e.

::::::::::::::::::::::::::::::::
σh(i, t) = 0.5 ∗ (htrue(i, t) +h(i, t))).

:::::
The

::::
two

::::::::
versions

::
of

::::
the

:::::
Total

:::::
Error

::::
are

:::::::::::
abbreviated

:::
as

:::::
TE-1

::::
and

:::::
TE-2.

:

The use of NRMSE gives a quantitative metric of judging the actual performance of the
estimated model. We assimilate head observations from day 50 to day 300, while the re-
maining 65 days of the one-year data are used to test the model’s predictive capabilities.
This results in an assimilation error for judging how well the assimilation went and a predic-5

tion error for judging the models predictive powers. It should be noted that to properly asses
the predictive power of the model in a scenario different to the one used for the assimilation,
one of the four wells shown in Fig. 2 only starts pumping at day 301.

We have combined the three different prior distributions with three different estimation
problems, namely the estimation of (a) recharge alone, (b) hydraulic conductivity alone,10

and (c) recharge and hydraulic conductivity together, leading to a total of nine different
scenarios. In the stand-alone scenarios, all other parameters and settings are assumed
known and are set to their true values. As can be seen from Fig. 2, the recharge not only
shows a strong spatial pattern but also a temporal trend. In the estimations shown below,
this temporal trend is assumed known.15
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4 Results and discussion

4.1 Stand-alone estimation of recharge or conductivity

The simplest of the estimation problems presented in this study is the stand-alone estima-
tion of recharge, since the hydraulic heads depend linearly on recharge. This is reflected in
Fig. 3, showing the ensemble mean of the estimated recharge fields. As expected, the best20

results are achieved with the best initial estimate (second column). However, also the esti-
mates using the covariance functions with the random and wrong orientations of anisotropy
show in large the right pattern

:::
are

::::::::::::
acceptable,

::::
with

:::::::::
patterns

:::::::
similar

::
to

::::::
those

:::
of

::::
the

::::
true

::::::::
recharge

:::::
field. Table 3 quantitatively confirms these qualitative findings by low values of

the normalized root mean square error of predicted heads. From the last column in Fig. 325

we see that, although the filter manages to produce a reasonable ensemble mean of the
recharge field, the similarity with the covariance function used to create the initial ensemble
is still very prominent. This is especially so if one starts considering individual ensemble
members (not shown), and it demonstrates how sensitive the EnKF method is to the initial
guess, even in this linear problem.

It is important to keep in mind that the ensemble size is large so that the plots of the5

ensemble means shown in Fig. 3 are smoothed. It is not expected that the smooth ensemble
estimate exhibits the same extreme values as those seen in the true parameter distribution,
whereas individual ensemble members should show the same variability as the (unknown)
reference field.

In comparison to estimating the recharge fields, the estimation of conductivity fields alone10

is more complicated. Here, the nonlinearities of Eq. (1) affects the estimation. More impor-
tantly, the orientation of the anisotropy of heterogeneity plays a vital role in the behavior of
groundwater flow. This is also seen in the final estimates of the conductivity fields, shown
in Fig. 4, where the only reasonable result is achieved if the right pattern is assumed in the
prior knowledge (second column) or if the prior pattern is random (third column). The rea-15

sonable performance of the prior distribution with diffuse knowledge about the anisotropy
orientation may be explained by the large initial ensemble containing some members with
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reasonable patterns and decent behavior. In the case that the orientation of anisotropy
is assumed erroneously in the prior knowledge (fourth column), the filter completely fails
to produce any result similar to the truth. This finding does not depend on the ensemble20

size. The prediction errors listed in Table 3 clearly confirm the visual impression. The result
shows similarities with the results of Bailey and Baù (2012) and Camporese et al. (2011),
who both managed to correct a wrong prior mean and variance of conductivity fields (here
corresponding to the good and the random priors), but not the correlation lengths (here
corresponding to having a wrong prior).25

The prediction errorsat the observation locations, listed in Table 3, emphasize that es-
timating recharge leads to smaller errors in predicting heads than the estimation of the
hydraulic-conductivity field. This could indicate that improvements of the estimated conduc-
tivities are more important for lowering the prediction error, which would follow the findings
of Hendricks Franssen et al. (2004). As pointed out above, the higher errors when estimat-
ing conductivities are likely related to the head value in a cell depending not only on the
conductivity of that cell but to the macroscopic anisotropy of hydraulic conductivity in the
entire aquifer.5

4.2 Joint estimation of recharge and conductivity

As derived in Sect. 2, joint estimation of recharge and conductivity fields is impossible with-
out prior knowledge about either of the two quantities. In Bayesian inversion methods, how-
ever, prior knowledge is assumed anyway. In the EnKF method, the prior information is con-
veyed by the initial ensemble drawn from the prior distribution. By this, the jointly estimated10

recharge and conductivity fields are unique and reproducible in a statistical sense. The re-
maining question is whether these estimates also resemble the true fields and whether they
are good for prediction purposes.

Figure 5 shows the results of the joint estimation using the three different initial ensem-
bles and Figure 6 shows the corresponding spatial distributions of the estimation variance.15

If the initial ensemble is good, that is the reference fields are drawn from the same statistical
distribution as the initial ensemble, it is possible to estimate both conductivity and recharge
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with reasonable precision, given the number and accuracy of observations (second col-
umn). When the initial ensemble is poor, however, the result is rather poor for the recharge
and more blurry for the conductivity (third column), or we infer fields that look good but are20

wrong (last column).
As shown theoretically in Sect. 2, it is always possible to compensate a missing or wrong

conductivity field with a wrong recharge field. An effect of this compensation is also clearly
seen in the last column of Fig. 5: even after 250 days of data assimilation, the estimated
recharge shows remarkable similarity with the reference conductivity field. The long assim-25

ilation time is important, since, if there would have been no compensation, the estimated
fields would not retain their erroneous structures for so many filter updates. This shows that
the issue of trading one quantity for the other is not only a theoretical issue, but also relevant
in practice. It should be noted here that the cause of the original poor estimations is not the
compensation mechanism described in this paper, but the false prior sampling. However,
the compensation mechanism sustains the poor estimates when the observations are, as
in this work, non-unique.

The lacking ability of the random and wrong initial ensemble estimates with respect to pre-5

dicting heads under conditions not encountered in the calibration period are documented
::
as

::::
OLE

::::
and

:::::
TE-2

:
in Table 3, where the prediction errors at the observation locations caused

by the poorly estimated fields are often an order of magnitude larger then those result-
ing from a really good estimation. It is interesting to note that the error

::
at

::::
the

:::::::::::
observation

::::::::
locations

:
obtained throughout the assimilation, shown in Table 4, is not a good indicator10

for the predictive capabilities of the various models, as quantified by the prediction errors
listed in Table 3. Although there are differences in the assimilation error, both within and be-
tween the different estimation setups, it would be difficult to predict any model performance
from these errors. That the joint estimation is performing much better with the good prior
compared to the poorer ones is only obvious if the full table is available.15

::::::
When

::::::::::
comparing

::::
the

::::::
errors

::
in

:::::
Table

::
3
::::
and

::::::
Table

::
4

:
it
:::
is

::::::
easily

::::::::::
detectable

::::
that

:::
the

:::::::
errors,

:::::::::
especially

::
at

::::
the

:::::::::::
observation

:::::::::
locations,

::::
are

:::::
much

:::::::
smaller

:::::::
during

:::
the

:::::::::::
assimilation

:::::
than

::::::
during

:::
the

::::::::::
prediction.

:::::
This

:::::::
marks

::::
the

::::
fact

:::::
that

:::
we

::::::
have

::::
not

::::::::::
estimated

:::::::
exactly

::::
the

:::::
true

::::::
fields,

19
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:::
and

:::
as

::::::
soon

:::
as

:::
we

:::::
stop

:::::::::::
assimilating

::::::::::
head-data

::::
into

::::
the

::::::::
system,

::::
the

:::::::
models

:::::
may

:::::
start

::
to

:::::::
deviate.

:::::::::::
Depending

:::
on

:::
the

::::::::::
goodness

::
of

:::
the

::::::::::
estimated

:::::
fields

::::
the

:::::::
models

:::
will

:::::::
deviate

::::::
more

::
or20

::::
less,

::::
but

::
all

:::::::::::
estimation

::::::
setups

::::::
show

:::
an

::::::::
increase

::
in
::::::
error

::
at

:::
the

::::::::::::
observation

::::::::
location

::::::
during

::::::::::
prediction.

:
It
:::::::
should

::::
also

:::
be

::::::
noted

:::::
that,

::::::
during

::
a

::::::::::::
re-simulation

::::::
using

::
a

::::::::
different

:::::::::::
initialization

::
for

::::
the

:::::::::::::
randomness

::
in
::::

the
:::::::

EnKF,
::::
the

:::::::
values

:::
of

::::
the

:::::::::::
observation

:::::::::
location

::::::
errors

:::::::
during

:::::::::
prediction

:::::
were

:::::::
notably

::::::::
different

:::
for

:::::
most

::::::
cases

::
in

::::::
which

::::::::::::
conductivity

:::::
fields

:::::
were

::::::::::
estimated.

::::
This

:::::::::
indicates

::::
that

::::
the

:::::::::
estimated

::::::::::::
conductivity

:::::
fields

:::::
and,

:::::::
hence,

::::
the

:::::
head

:::::::::::
predictions,

::::
are25

:::::::::
influenced

:::
by

:::
the

::::::::::::
randomness

::
in
::::
the

::::::
EnKF.

::::::::::
Therefore,

:::
the

:::::
exact

:::::
error

:::::::
values

:::::::::
presented

:::::
here

::::::
should

:::
be

:::::
used

:::::
with

:::::
care.

::::
For

:::
the

::::::::::::
comparative

::::::::::::
conclusions

::::
and

:::::::::::
discussions

:::
in

::::
this

::::::
paper,

::::::::
however,

::::
the

:::::::::::::::::
EnKF-simulations

:::
are

:::::::::::
considered

::::::
stable

:::::::::
enough,

::
as

::::
the

::::::
errors

::::
are

:::::::
always

::
of

:::
the

::::::
same

:::::
order

::::
and

:::
no

:::::::::::
differences

:::
are

:::::::
directly

:::::::
visible

:::
on

:::
the

::::
final

::::::
mean

::::::::::
estimated

::::::
fields.

::::::::::
Interesting

::
to

:::::
note

::
in

:::::
Table

::
3

::
is

:::
that

::::
the

:::::::
highest

::::::
errors,

:::::
both

::
at

:::
the

::::::::::::
observation

:::::::
location

::::
and

::
for

::::
the

:::::
total

::::::
errors,

::::
are

::::::
found

:::::
when

:::::
only

::::::::::::
conductivity

:::::
fields

::::
are

:::::::::
estimated

::::::
using

::::
the

::::::
wrong

:::::
prior.

:::::::
Hence,

:::::
using

::::
the

::::::
wrong

::::::
priors

:::::
while

::::::
jointly

::::::::::
estimating

::::::::
recharge

::::
and

::::::::::::
conductivity

:::::
gives

:
a
::::::
better

::::::::::
prediction

::
of

::::
the

:::::::
heads.

:::
As

::
is

::::::::
obvious

::::
from

:::::::
Figure

::
4

::::
and

::::::
Figure

:::
5,

::::
both

::::::::::
estimated

:::::::::::
conductivity

:::::
fields

::::
are

::::::::
similarly

::::
poor

:::::
and,

:::::::
hence,

:::
this

:::::::::::::
quantitatively

::::::::
confirms

::::
the

:::::::::
existence

::
of5

:::
the

::::::::
aliasing

::::::::
problem:

::::::
jointly

::::::
wrong

::::::::::
estimated

:::::
fields

::::
can

::::::::::::
compensate

:::::
each

:::::
other

:::
to

::::::::
simulate

:::::
more

:::::::
correct

:::::
head

::::::
fields.

The values of the total normalized errors
::::::
(TE-1), also listed in Table 3, must be interpreted

in light of the standard deviation of estimation used for normalization. A value of unity would
indicate that the mismatch between predicted and true hydraulic heads follows exactly the10

predicted uncertainty of the hydraulic-head estimation. A value significantly smaller than
unity indicates that the conditional ensemble is too wide, whereas a value significantly larger
than unity points to an erroneous estimate with erroneously small error bounds. As can be
seen from Table 3, both the true and random priors lead to a combination of head mismatch
and associated uncertainty close to unity, slightly overestimating the uncertainty, whereas15

the bad
::::::
wrong

:
prior not only leads to wrong patterns of the hydraulic conductivity fields

but also to erroneous head predictions with too small prediction uncertainty.
::
As

:::::
can

::::
also

::
be

::::::
seen

::
in

:::::::
Figure

::
6,

::::
the

:::::::::::
conductivity

:::::
field

::::::::::
estimation

:::::
with

:::
the

:::::::
wrong

:::::
prior

::::::
shows

::
a
::::::
much

20
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:::::::
smaller

::::::::
variance

:::::
than

::::::
using

::::
the

::::::
other

::::::
priors.

:::::
This

::::::
likely

:::::
leads

:::
to

:::
an

:::::::
under

:::::::::
prediction

:::
of

:::
the

:::::::::
variance

::
in

::::
the

:::::
head

::::::
fields

:::::
and,

:::::::
hence,

:::
the

:::::
high

::::::
value

:::::::::
observed

:::
for

::::::
TE-1

::::::
during

::::
the20

:::::::::
prediction

::::::
(Table

:::
3).

:

The issue of low errors in the assimilation period is further illustrated with an example of
two observations wells in Fig. 7, from which it is clearly shown that all approaches show a
good fit during assimilation but that the heads using wrong prior deviate in the prediction.
From a practical point of view this highlights the importance of having relevant validation25

data to test the predictive power of a model when the parameters are inferred using se-
quential data assimilation.

Like in the scenarios in which only recharge or only conductivity were estimated, the
mean joint estimate lack the extreme values of the reference fields. As discussed above,
such behavior is expected for the smooth best estimate even in cases where the scheme5

works perfectly fine. Individual ensemble members show significantly stronger variability,
as can be seen also from the maps of the estimation variance in Fig. 6. We consider the
results from the good initial ensemble as good, since they capture the main patterns of the
parameter fields well and have, overall seen, reasonable absolute parameter values. For
purposes of transport predictions, we would recommend using the entire ensemble rather10

than the ensemble mean. In case of the estimates using the wrong prior knowledge, in
particular where the orientation of anisotropy is chosen randomly, the fluctuations cannot
be aligned well in the right direction, and averaging over features oriented in all directions
lead to particularly smooth estimates of the mean.

5 Conclusions15

In the present study we have shown that it is possible to jointly estimate reasonable fields
of hydraulic conductivity (or its logarithm) and recharge as spatially fluctuating fields from
pure head observations provided that the statistics of the true fields are fairly well under-
stood. Starting with wrong assumptions about conductivity and recharge patterns can lead
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to aliasing, in which not detected features of hydraulic conductivity are traded for erroneous20

fluctuations in recharge.
In real-case applications, the prerequisite of a good prior can pose a severe problem be-

cause the true spatial patterns may be widely unknown. From a more technical point of view
it may be noteworthy that a rather common way of setting up a synthetic groundwater-EnKF
test is to generate a large ensemble of realizations and use one of them as the truth and the25

rest as the initial ensemble. By this it is guaranteed that the statistics of the initial ensemble
is perfect and, as shown here, a good result can be expected. Unfortunately, in real-world
applications the geostatistics of (log)-hydraulic conductivity are typically quite uncertain so
that the good performance of a scheme, involving both the measurement strategy and the
inverse method, in an overly optimistic test case regarding prior knowledge may not be
transferable. We thus highly recommend to design realistic test cases that include potential
bias in prior knowledge.

In the present work, we only used head data for data assimilation and parameter estima-5

tion. As shown in Sect. 2, however, the groundwater-flow equation is non-identifiable when
both conductivity and recharge are considered

:::
not

::::::::::::::
simultaneously

:::::::::::
identifiable,

:
if
:::::::::::
considered

::
as

:
parameters that can vary unrestricted in space and time: Even

::::
even

:
if hydraulic heads

were observed everywhere at all times, exactly the same head field can be achieved with
different combinations of conductivity and recharge fields. Therefore, the joint estimation is10

impossible without prior information about the parameter fields, implying that wrong prior
information cannot be corrected by the head data. Other types of observations could, of
course, also be considered. Ideally we would have (plenty of) observations of subsurface
fluxes or of conductivity. In this case, the total data set would become highly informative and
the prior would be significantly less important. However, this is not realistic for applications15

in subsurface hydrology. Fluxes cannot be measured as such and conductivity measure-
ments are, if existing and trusted, very local. Further observations could be obtained from
tracer tests, which are time consuming, or age tracer data that may be costly and require
very long simulation times. Head observations are, in this respect, common and trustwor-

22



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

thy measurement. Hence, our example can be considered rather realistic for a real world20

scenario of estimating aquifer parameters.
In real-world applications, vague guesses of the hydraulic conductivity distribution may

exist from drilling logs, slug tests, and pumping tests (e.g., Dietrich et al., 2008; Lessoff
et al., 2010). All of these tests are independent of recharge so that making use of this infor-
mation may alleviate the problem of non-uniqueness outlined in this paper to some extent.25

Vague guesses of K can find their way into parameter estimation either by means of an
improved prior of K or by explicitly accounting for the additional measurement types in the
EnKF procedure, including the full observation operator. For recharge, the patterns should
in principle reflect land use and soil types, which are accessible information. Further, spa-
tially variable recharge may also be constrained by the use of remote sensing information
(e.g., Brunner et al., 2006; Hendricks Franssen et al., 2008). These type of data could ei-
ther be used as direct observations in the assimilation (if we trust them) or considered as
prior information and used to condition the initial ensemble (Sun et al., 2009; Panzeri et al.,
2013). The latter could also be seen as a way of discarding initial samples that contain un-5

feasible conductivity-recharge combinations. This would create a much more appropriate
initial ensemble. Hence, as shown in this work, the filter would have an increased chance
of successfully estimating the parameters when the prior is good. The idea of improving
the initial ensemble can also be related to the popular method of multiple-point geostatis-
tics. Here, the use of training images which should represent relevant spatial correlation10

patterns have been used to condition conductivity fields (see Okabe and Blunt, 2004; Hu
and Chugunova, 2008). The combination of assimilating head data and the use of training
images to condition the ensembles has also been tested with promising results (Li et al.,
2013). The combination of these approaches could prove a possible way to achieve a more
correct prior sample and, hence, to improve the performance of the joint estimation of con-15

ductivity and recharge fields by lowering the risk of conductivity-to-recharge aliasing due to
wrong prior knowledge.

In the presented work, we consider a rather standard formulation of the ensemble Kalman
filter without iterations, smoothing and many ad-hoc features. For the joint estimation of
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recharge and conductivity, an iterative approach, such as the dual-state filter (El Gharamti20

et al., 2013), locally iterative filters (Hendricks Franssen and Kinzelbach, 2008), or fully itera-
tive filters or smoothers (Sakov et al., 2012; Bocquet and Sakov, 2013) could be considered.
The advantage would be a separation between the update of the recharge and the update of
the conductivity. This could, potentially, reduce the risk for conductivity-to-recharge aliasing.
The iterative approaches have been reported to have improved performance and physical25

consistency, but tends to come with longer simulation times.
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Table 1. Pumping rates and general model setup∗.

Pump Number 1 2 3 4 5
Rate (m3 h−1) 9 18 90 0.09 0.9
Start (day) 20 300 200 0 0
Stop (day) 150 365 360 370 300

Model setup ∆x (m) ∆y (m) dt (h) z0 (m) poro (–)
50 50 6 0 0.4

∗ Pumps are numberd as in Fig. 2, z0 and poro are the homogeneous bedrock
elevation and porosity.
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Table 2. Parameters and properties used for the generation of the synthetic conductivity and
recharge fields∗.

ln(K) R
ln (m s−1) (mm day−1)

µ −8.5 −0.7
σ 1.7 0.1

α (◦) 291 17
lx (m) 2000 5000
ly (m) 600 500

∗ µ is the mean, σ the variance, α the
rotation angle and lx and ly are the
correlation lenghts in x and y direction,
respectively.
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Table 3. Normalized root mean square error for the prediction period∗.

Good Random Wrong
OLE TE

::::
TE-1

: ::::
TE-2

:
OLE TE

::::
TE-1

: ::::
TE-2

:
OLE TE

::::
TE-1

: ::::
TE-2

:

R 1.3 1.2
:::::
0.001 1.6 1.3

:::::
0.001 1.9 1.8

:::::
0.002

K 4.7 0.9
:::::
0.008 7.8 0.9

:::::
0.008 13.6 3.1

:::::
0.029

R&K 4.6 0.8
:::::
0.009 7.6 1.1

:::::
0.011 12.2 2.4

:::::
0.019

∗ According to Eq. (15) for three setups of prior knowledge (good, random, wrong) to estimate recharge alone (R),
conductivity alone (K) and to jointly estimate conductivity and recharge (R&K). OLE is Observation Location Error
and TE is Total Error.
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Table 4. Normalized root mean square error for the assimilation period.

Good Random Wrong
OLE TE

::::
TE-1

: ::::
TE-2

:
OLE TE

::::
TE-1

: ::::
TE-2

:
OLE TE

::::
TE-1

: ::::
TE-2

:

R 0.3 0.9
:::::
0.002 0.4 1.0

:::::
0.002 0.5 1.8

:::::
0.004

K 1.2 0.9
:::::
0.007 0.9 0.8

:::::
0.007 3.8 2.1

:::::
0.019

R&K 1.9 0.8
:::::
0.008 2.7 0.9

:::::
0.009 3.7 1.7

:::::
0.014
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Figure 1. Illustrative example of replacing a heterogeneous conductivity field (left column panels)
with a homogeneous conductivity and an effective recharge (right column panels). Please note the
different scale on the third recharge plot.
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Figure 2. Setup of the synthetic test case used for the parameter field estimations.

36



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure 3. Estimation of stand-alone recharge. Upper panels show the final ensemble mean after
all assimilation steps and lower plots the covariance function used to generate the initial ensemble.
Please note that the random covariance functions imply drawing the rotation angle from a uniform
distribution between 0 and 2π, whereas only a few illustrative examples are shown.
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Figure 4. Estimation of stand-alone conductivity. Upper panels show the final ensemble mean after
all assimilation steps and lower plots the covariance function used to generate the initial ensemble.
Please note that only a few illustrative examples of the random orientation angle of anisotropy are
shown.
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Figure 5. Joint estimation of recharge (top row panels) and conductivity (middle row panels). Shown
is the final ensemble mean after all assimilation steps and the covariance functions used to generate
the initial ensembles (bottom row panels).
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Figure 6. Joint estimation of recharge (top row panels) and conductivity (bottom row panels). Shown
is the final ensemble variance after all assimilation steps.
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Figure 7. Two head observations plotted over time for the joint estimation of recharge and conduc-
tivity. Shown is the ensemble mean. Assimilation is performed from day 50 to day 300 while the
remaining days are considered for prediction.

41


