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Revision highlights 

 
• The text is altered such that it is clearer that the importance of the prior, as exemplified in 

the manuscript, is strongly related to the non-uniqueness of the data with respect to the 

estimated parameters.  
• New texts included to highlight that the addition of informative data to the estimation 

process would alleviate the need for a strong prior. 
• New figure with the ensemble variance included for the joint estimation simulations. 
• Numerous small changes to clear misunderstandings and improve and clarify our 

argumentation. 

 

In the following, specific answers to all comments from both reviewers will be presented. The reply is 

structured as follows: 

Reviewer text 

 Author reply as published on HESSD 

  Specific reply describing to the actual changes applied to the manuscript 

 

 

 

  



Reviewer #1 

MAIN COMMENT 
The paper discusses the interesting issue of the difficulty to identify simultaneously hydraulic 

conductivity and recharge from piezometric head observations. For this purpose the authors use the 

ensemble Kalman filter and build a synthetic experiment to conclude that unless the prior information 

used to generate the initial set of realizations is "correct" it is impossible to identify simultaneously both 

hydraulic conductivity and recharge. 

Although the authors prove nicely their point, the arguments given to justify the final results are flawed: 

the emphasis should not be put in the prior information but rather in the need of extra information to be 

able to single out the combination of hydraulic conductivity and recharge that is correct out of the many 

combinations that are coherent with the observed piezometric head. 

It is wrong to say that the prior information used to generate the initial set of ensemble realizations 

determines what the final estimates will be (after data assimilation) and that you cannot generate 

realizations outside the prior random function model. The final ensemble of realizations can largely 

depart from the initial one, when the observations are inconsistent with the prior model. The sequential 

set of ensembles that are obtained after each assimilation step can be interpreted as a Markov chain 

that will "forget" the structure built in the initial ensemble after some assimilation steps. More so, the 

updating of the ensemble realizations is solely based on the covariance structure of the ensemble, and 

for this reason, there is a tendency for the final ensemble of estimates to converge towards realizations 

drawn from a multiGaussian function, even when the initial ensemble is far from being multiGaussian. 

Enough observation data can change completely the random function of the final ensemble with regard 

to the one used to generate the initial ensemble. 

What happens in the example presented by the authors is that the observations are consistent with all 

prior models used. In fact, the reference could be the one used, or it could be a realization generated 

with the "wrong" model, the results would be the same. Therefore, you need some additional piece of 

information, to discriminate among the different prior models which one is the one consistent with your 

unknown reality. It is not that the EnKF does not work when the prior model is incorrect. Knowing which 

is the orientation of the deposition will draw to prefer a prior model over another. 

My request is that the paper be rewritten removing all these comments about the importance about the 

prior information, and the influence that this prior information has in the final ensemble, and replacing it 

by talking about the importance of having additional information that would allow you to discriminate 

among alternative models. I contend that assimilating data on fluxes or concentrations would also 

alleviate the problem of the prior model. And I insist that the prior model information will fade away as 

time passes and data are assimilated, and could vanish if the prior model is inconsistent with the 

observational data. 

ADDITIONAL COMMENT 
I do not think there is any need to present the extended Kalman filter equations, especially when they 

are not used to justify the use of the ensemble Kalman filter. In this respect, there are some conceptual 

misunderstandings about the ensemble Kalman filter that must be corrected. First of all, there is no need 



to make any multi-Gaussian assumption to get to the ensemble Kalman filter equations, like there is no 

need to make any multi-Gaussian assumption to get to the cokriging equations; it is true that under the 

multi-Gaussian assumption the ensemble mean and ensemble covariance would be the mean and 

covariance of the conditional distribution given the obsevations; however, from the point of view of 

optimal estimate in the a least-square sense, the Kalman filter equations do not need any multi-Gaussian 

assumption.  

 

We would like to thank the reviewer for his/her extended review, and we are happy that she/he 

overall has a positive image of it. In this reply we will start by addressing the major comment 

together with the first of the additional comments, which we believe are strongly related to each 

other. 

The reviewer’s points may be summarized as follows: 1) The reviewer is convinced that formal 

priors, as considered in the manuscript, are not essential, they are only used to initialize the filter 

and given enough informative data, the prior knowledge will fade away, 2) the reviewer points 

out that Gaussian assumptions are not needed to use the EnKF, there are enough informative 

data, 3) following 1 and 2, (s)he concludes that we obviously have too little data to perform our 

EnKF analysis and should thus focus on evaluating which additional data we would need to 

overcome the issues exemplified in the manuscript rather than focusing on the importance of 

prior knowledge. 

Obviously, we and the reviewer have a fundamentally different view on parameter estimation in 

general, which roots in a decades-old debate on the validity of the Bayesian paradigm, known as 

‘Bayesian vs Frequentist debate’. Honestly, we don’t think it would be beneficial for the 

manuscript to continue this debate. By this we don’t want to imply that the frequentists’ view is 

necessarily wrong, but we clearly take the Bayesian standpoint, and will not leave it. We find, 

among other reasons, the Bayesian framework to be refreshingly transparent when it comes to 

which assumptions are being made throughout the estimation process (in difference to making 

more subjective assumptions, such as selecting a specific objective function). As our 

consideration in this manuscript is the importance of relevant prior, the Bayesian framework is 

elegant, as it offers a way to compensate for non-unique data by the use of a strong prior. 

The major point to be made clear is: groundwater-head data, which we consider in this study, 

are non-unique with respect to unknown conductivity and unknown recharge. This is derived and 

exemplified in Section 2 of the manuscript and this non-uniqueness is also the core of our 

manuscript. We do not disagree with the reviewer that different types of data would help 

improve the parameter estimation. On the contrary, we share those views. However, in 

subsurface hydrology the data scarcity is usually a great problem. Fluxes, as suggested by the 

reviewer, cannot be measured as such; conductivity measurements are, if existing and trusted, 

very local; tracer tests are time consuming; age tracers may be costly and require very long 

simulation times. Head measurements are common and trustworthy measurement, and also in 

the literature (as cited in the Introduction) the observation setup used by us is not uncommon. 

Hence, our example is rather realistic for a real world scenario in which we want to estimate 

aquifer parameters! If anything, we have unrealistically many observation points. The main 

difference between the Bayesian standpoint and the standpoint suggested by the reviewer is 



that without a formal inclusion of the prior, we require fully informative data to perform 

parameter estimation. This is, as rightly pointed out by the reviewer, not what we are doing. 

The reviewer points out that “need of extra information to be able to single out the combination 

of hydraulic conductivity and recharge that is correct” is important. However, this is also a form 

of prior. If we have this extra information we are, in the view of our manuscript, in the Good 

(correct) prior case. As such, we do not see that there is a large difference, in practice, between 

the suggestions of the reviewer and the approach and aims stated in the manuscript. The 

bottom line of the manuscript is that we need to be careful to have correct prior information. 

How to do this is not the topic of the current manuscript, nor do we wish it to be. 

Many practitioners would argue that we should simplify the model, that is, assume fixed zones 

of uniform hydraulic conductivity and recharge. While we agree that this can “fix” the problem 

of non-uniqueness, restricting the solution space by hard-wiring the structure of the subsurface 

is the most extreme prior to be thought of, as it does not allow any uncertainty in the identified 

structure itself. That is, the problem does not really vanish, it’s just hidden. 

Concerning the statement that the prior caries over, we again agree with the reviewer. If the 

data is fully informative, we can also estimate values outside of our initial sample. Similarly, the 

prior could in such cases vanish as more data come in. As pointed out above, the data is rarely 

fully informative in the subsurface-flow applications. However, the original manuscript was 

probably not clearly enough formulated that we throughout consider the case of non-unique 

data (hence, using head observations). In the revised manuscript this will be revised and made 

clearer. 

To summarize, we see the requests made by the reviewer as a wish to alter our philosophy of 

parameter estimation. We believe, by contrast, that the Bayesian framework is a legitimate way 

of introducing and interpreting Ensemble-Kalman approaches. Within this framework, studying 

the importance of the prior is highly relevant as the prior is at the very heart of Bayesian 

analysis. Thus, we will not rewrite the manuscript to coincide with philosophical viewings of the 

reviewer, who obviously thinks otherwise. However, in the revised manuscript we will take great 

care to make clear that the data considered are non-unique, and will surely point out that other 

types of data could help resolving the issue of the incorrect prior. 

The manuscript is updated on numerous points in sections 3-5 in order to make it clear 

that (1) the data considered is non-unique with respect to the joint estimation of 

conductivity and recharge, and this is the full point with the paper, and (2) other types of 

data that are informative to our estimation (and hence solves the non-uniqueness) would 

make the prior sampling a lot less important. The main changes to the manuscript in this 

respect can be found on page 9 (lines 10-18), pages 13-14 and page 20-21 (lines 19-13). 

We would also like to draw the reviewers’ attention to the track-changes version of the 

manuscript attached to this reply letter, where also the smaller changes can be detected. 

We hope that the reviewer finds the changes to her/his liking.  

I do not quite understand the last paragraph in page 5576 when the authors say that the EnKF is a 

linearized estimate that is alleviated by the repeated application over many time steps. The authors 

should understand that the EnKF captures the linear relationship that there is between the parameter 

and state variables through the experimental covariance –that’s all–, the fact that you apply the updating 



equations over many time steps does not "alleviate the effects of non-linearity". The reason why the 

EnKF works and the extended Kalman filter did not is because the covariances are computed on 

parameters and states which have been obtained by solving the state equation through an ensemble of 

realizations, and therefore are much closer to the "true" covariance than the one obtained by 

propagating the initial covariance in time through a linearization of the state equation. 

The section referred to was not particularly well formulated. What we really mean is that when 

we have many observations in time we make good use of the filter dampening. This slows the 

filter down (hence we may need more temporal observations to reach a stable result) but also 

avoids making too large jumps in the parameter space. This can be beneficial when the non-

linear relations between parameters and observations cases erroneous updates, and as such it is 

helping to alleviate the effects of the linearizations. We see that this was not clear within the 

text and in the revised manuscript the full section will be thoroughly revised.  

 Section revised as describe above (page 13, lines 14-20). 

Please revise your presentation and discussion of the EnKF. 

While we are willing to explain steps more clearly, we will keep the EnKF within a Bayesian 

framework, with all the consequences. 

OTHER COMMENTS 
Since the state (piezometric heads) is not updated, you should explain how the state is computed after 

each assimilation step. Is the model rerun from time zero with the updated parameters? 

We do not understand why the reviewer believes, that we do not update heads, which, in fact, 

we do. 

As we do not understand the nature of this comment, no alterations has been possible to 

perform in the manuscript. 

Page 5577, line 2, the original prior knowledge is smeared out after the first assimilation step by the 

Kalman gain, it carries over at the beginning but it will eventually disappear. 

 See answer to general comments. 

Page 5577, line 8, if the prior knowledge is erroneous and there are sufficient observation data 

inconsistent with that prior model the estimates will converge to the "truth". 

With enough informative data we agree with the reviewer. This was maybe not clear in the 

original submission and will be improved in the revision. However, for the data in question 

(groundwater heads), we cannot expect to recover any pattern that are not part of the prior. For 

a better reasoning on this question, please consider the reply to the major comment.  

Text is updated to make clear that other data could lead to parameters outside the prior, 

but that this is not the case with the non-unique head data used in our study (pages 13-

15, lines 21-9). 

Page 5578, why is NRMSE only computed at the observation wells and not over all the aquifer, since you 

have the reference information? 



The NRMSE could, as the reviewer suggests, also be calculated for all grid cells in the model. The 

approach to calculate the error given the observation locations available is chosen to represent 

the type of information available in a real case, for which one would of course not know the 

head value in each cell. In the end we also conclude that the NRMSE on its own is not a sufficient 

metric to judge which EnKF setups are good or bad, which we find an illustrative example of a 

problem that can occur in any real parameter estimation setup. 

A clarification of why we chose this setup has been added to the revised manuscript 

(pages 15-16, lines 26-4). 

Page 5578, it is unclear what is the denominator of the equation, is it the ensemble variance? or is it the 

prior measurement uncertainty (in which case it is a constant value)? 

Here we mean the uncertainty of the measurement (which indeed is considered a constant). This 

missing information will be added to the revised manuscript. 

 Information added (page 15, line 18-20). 

It would have been nice to see some variance maps along the ensemble mean maps. 

 This is a useful suggestion that we intend to pick up in the revision. 

New figure with variance maps for the joint estimation is added (Figure 6 in revised 

manuscript). 

Top of 5583, in real applications you need information to discern among alternative combinations of 

conductivity and recharge, this information could help you in choosing the prior model, or it could be 

other types of data (such as fluxes). 

Yes, we do agree with the reviewer. This will be better highlighted to the revised manuscript. 

 Text is updated (pages 20-21) 

End of 5583. No, multiple-point statistics will not help here, that is, it will not allow you to discriminate 

between a good and a wrong model as long as the observation data are consistent with those models. 

Besides, it has been proven that the EnKF will filter out the non multi-Gaussian characteristics of the 

initial ensemble of realizations. 

To a certain extent this is right: if we have the wrong training images, we will be back to square 

one again (wrong initial sample). However, what we wanted to express was that the use of 

training images is a slightly more advanced way of introducing prior information than generating 

multi-Gaussian fields.  

The text about MPS has been updated to: “The combination of these approaches could 

prove a possible way to better include a more correct prior information and, hence, to 

improve the performance of the joint estimation of conductivity and recharge fields by 

lowering the risk of conductivity-to-recharge aliasing due to wrong prior knowledge” 

(pages 21-22,lines 27-2). 

 



SUMMARY 
I liked the paper and I think it should be published, but only after the emphasis in the conclusions is 

shifted. 

 We are glad that the reviewer likes our work; the focus of the paper has been discussed above. 

  



Reviewer #2 

General comments 
Ensemble Kalman filter is used here to jointly infer hydraulic conductivities and recharge by assimilating 

head data. The authors evaluated effect of the prior model on success of the method and concluded that 

a correct prior model is critical, which is consistent with previous research. My main concern includes 

two items in the “specific comments”: item 4 and 8, in which the former is related to the mathematical 

model of EnKF and the latter the example to illustrate the compensation between hydraulic conductivity 

and recharge. Please revise the manuscript accordingly. 

We would like to thank the reviewer for the thorough review. All comments are addressed 

below.  

For ease of reading, references to changes made in the manuscript will be printed in 

brown italic, while blue texts are still identical to the previously posted replies.  

Specific comments 
1. Page 5568 line 20-25: The authors cited work by Hendricks Franssen et al. (2004) who jointly 

estimated hydraulic conductivity and groundwater recharge. What is the difference between this work 

and the one in the submission? What is the improvement here? Can the authors comment it? 

A major difference is that Hendricks-Franssen et al (2004) considered only spatially (blockwise) 

uniform recharge while the current manuscript considers spatially random fields also for the 

recharge. A new sentence will be added to the manuscript in order to clarify this point “The 

authors [here meaning Hendricks Franssen et al. (2004)] considered the problem of a well-

capture zone, in which they estimated hydraulic conductivity as continuously varying spatial 

field, whereas recharge was parameterized by zones with uniform values.” Another difference is 

the choice of the estimation method (as already in the manuscript) and the actual purpose of the 

investigation.  

Manuscript altered as already described (page 4, lines 22-24). 

2. Page 5572 line 1-5: Recharge rate, as a boundary condition, is determined based on such as 

precipitation, infiltration and geographic conditions (rivers and pumping wells). However the recharge 

here seems more likely the specific flux at the interface of blocks (discretized for numerical simulation) 

according to the authors “recharge depends on the gradient of the original transmissivity field”. Please 

clarify the meaning of “recharge” that is inferred from head data in this study. 

Recharge in the context of this work is a flux into each cell across the top boundary; potentially 

variable in both space and time. In the citation above, the reviewer misses that the cited text 

talks about apparent recharge, which is a mathematical construct. Seen from the flow model it is 

also a flux, in the same way as the real recharge, but its value is calculated as a function of the 

(erroneous) conductivity field. This is the essence of Section 2.  

That recharge is based on geo-features is discussed on page 21, lines 13-16. That 

recharge is a flux is evident from Eq. 1 and the explaining texts. These texts are not new 

to the revision, but as we believe that the missing apparent recharge in the reviewers 



text is just a small mistake, no additional changes has been performed to the manuscript 

following this comment. Please also see reply to Comment 7 below. 

3.  Page 5572 on Fig.1: What are the initial and boundary conditions (except the recharge at the center) 

of this example? 

Boundary conditions (west 50m, east 8m, north and south no flow) will be added to the figure in 

the revised manuscript. As this is a steady-state problem, the question about initial condition is 

not applicable.  

Added on page 8, lines 12-14. 

4. Section 3.1 Kalman filter on page 5573 through 5574: Vector Xt consists of two elements, heads ht and 

parameters (recharge and log-conductivity) while the head ht can be simulated as ft(ht-1, Xt), that is ht = 

ft(ht-1, Xt). If this is correct there would be mistake in the objective function W(x) (equation 6) since the 

Xt contains head vector ht that is considered again separately in the second term (ft(ht-1, Xt) - Yt)T R-

1(ft(ht-1, Xt) – Yt). Either the head vectors can be excluded from the vector Xt or the second term of the 

objective function should be removed. The corresponding comments and following equations should be 

revised accordingly, i.e., equations 7-13. 

This is a bit of a misunderstanding. The term ft(ht-1,Xt) does not denote the simulated head, but 

the observation operator. Hence, ft(ht-1,Xt) represents the simulated observations and the full 

term is the difference between the observed heads and the simulated ones. The two terms of 

the objective function are the prior (first term) and the likelihood of observations (second term), 

hence a standard objective function formulation. In the revised manuscript we will consider 

reformulating/renaming the terms to avoid any misunderstanding.  

The following sentence has been added: “It should be noted that $f$ here, hence, denotes 

both the forward model and the observation operator” (page 10, lines 10-11). 

5. Page 5575 equation 11-13: The series of equations are used to calculate the covariance between 

parameters and/or simulations. The denominator should be n-1 rather than n, that is, 1/(n-1) instead of 

1/n in these equations. 

The reviewer is right; this error will be corrected.  

Error is corrected. 

6. Page 5577 line 6-7: What do the authors mean by “combined patterns of hydraulic conductivity and 

recharge”? 

We meant: [the prior knowledge determines what] “patterns of conductivity and patterns of 

recharge that can be jointly inferred by the scheme”. The sentence will be reformulated in the 

revised manuscript.  

The sentence in question is replaced by the one in the answer (page 14, lines 5-8) 

7. Page 5577 line 20: Here it says “the conductivity and recharge fields are uncorrelated”. On the 

contrary the authors stated earlier that “the apparent recharge depends on the gradient of the original 

transmissivity field” (page 5572 line 1-2), which indicates a close correlation. Please clarify this. 



We disagree that the two statements contradict each other. The first (page 5572) concerns the 

mathematical calculation of the apparent recharge that can be used to replace a false 

conductivity field with. The second (page 5577) on the other hand concerns the setup of the 

virtual experiment and simply states that the model input fields are generated without any 

correlation between the two fields. The apparent recharge is dependent on the false 

conductivity field, but this has no relation to the virtual experiment input data. Please also see 

the answer to Comment 2 above.  

The first sentence is updated such that it is clearer that this concerns the generation of 

the reference fields. We now write “It should be noted that here the reference 

conductivity and the reference recharge fields are generated as fields that are 

uncorrelated to each other” (page 14, lines 21-23).  

 

8.  Page 5581 line 16-20: “it is always possible to compensate a missing or wrong conductivity with a 

recharge, and this is also clearly seen in the last column of Fig.5: the estimated recharge shows 

remarkable similarity with the reference conductivity field.” In Fig.5 the estimated recharge does show 

similarity with the reference conductivity field because the wrong recharge prior is sampled using the 

true conductivity field model NOT because they can compensate each other. They are two different 

things in my opinion. The authors need find another example to illustrate the compensation effect 

between conductivity and recharge derived in Section 2. 

We see the reviewer’s point. The text was not well formulated in this section. The compensation 

effect does not cause the estimated fields, which are enforced by the erroneously sampled prior 

parameter distributions (as rightly pointed out by the reviewer). However, if the data were 

uniquely informative and no compensation was possible, the effect of the erroneously sampled 

prior would have disappeared after 300 days of data assimilation and the estimated fields would 

have altered into structurally (more) correct fields! Because the head data are not unique, 

compensation between conductivity and recharge is possible, and wrong prior assumptions 

prevail in data-assimilation and parameter estimation practically forever. The combination of 

wrong conductivity and recharge fields reproduce the head observations quite well, and the 

filter algorithm sees no need to change the (erroneous) fields. 

We see that the choice of wording was suboptimal and in the revised manuscript we will make it 

clear that what we see is that the compensation effect sustains the erroneous fields. We believe, 

however, that the example is illustrative and assess that adding another experiment would 

unnecessarily complicate the manuscript.  

The section referred to by the reviewer has been reformulated to better highlight the 

sustaining effect of the compensation mechanism. In the revised manuscript the section 

in question is found on page 18, lines 17-27. 

9. Page 5595 Fig.2: The last plot in Fig.2 shows the spatial distribution of recharge over the domain. The 

recharge is time-varying with a seasonal trend (page 5577 line 13 as well as shown in the “river stage” 

plot of Fig.2). So the question is which time does this recharge plot show? Also please add title for the X 

axis in the plot of “river stage” (it should be time I guess). 

The actual recharge is calculated by multiplying the spatially uniform, temporal trend parameter 

(at the right day) with the shown (relative) recharge field. The spatial field shown is for the case 



that temporal trend parameter has the value of unity. The sentence “The actual recharge is 

calculated by multiplying the trend parameter at any given time with the shown recharge field” 

will be added to the revised manuscript to make this setup clearer.  

The above mentioned sentence is added (page 14, lines 15-16). Missing axis title is also 

added.  

Technical corrections 
All technical corrections corrected as already described.  

1. Page 5570 line 3: “...was worse then...” should be “...was worse than...” 

 Corrected. 

2.  Page 5570 line 5-10, page 5578 line4, page 5581 line 2 and 16: The authors mentioned “Section 2”, 

“Sect.2”, “Section 3”, “Sect.4” and “Sect.5”. It would be better to keep consistent. 

 Corrected. 

3. Page 5576 line 9-10: “...parameter that it is primarily required...” remove “it” 

 Corrected. 

4. Page 5577 line 19: “. it should be...” use capital letter in “it” 

 Corrected. 

5. Page 5579 line 7-8: “We have also conducted successful assimilations also estimating the trend 

parameter.” Too many “also” 

 Corrected. 

6. Page 5580 line 20: “smaller errors in predicting heads then the...”. Correct “then”to “than” 

 Corrected. 

7. Page 5581 line 28: “...it would to be difficult to...” modify this sentence. 

 Sentence is altered and split in two. 

8. Page 5582 line 4-6: revise this sentence. 

 Sentence revised and shortened. 
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Abstract

Regional groundwater flow strongly depends on groundwater recharge and hydraulic con-
ductivity. Both are spatially variable fields, and their estimation is an ongoing topic in ground-
water research and practice. In this study, we use the Ensemble Kalman filter as an inver-
sion method to jointly estimate spatially variable recharge and conductivity fields from head
observations. The success of the approach strongly depends on the assumed prior knowl-
edge. If the structural assumptions underlying the initial ensemble of the parameter fields
are correct, both estimated fields resemble the true ones. However, erroneous prior knowl-
edge may not be corrected by the

:::::
head data. In the worst case, the estimated recharge field

resembles the true conductivity field, resulting in a model that meets the observations but
has very poor predictive power. The study exemplifies the importance of prior knowledge in
the joint estimation of parameters from ambiguous measurements.

1 Introduction

Regional groundwater flow depends on spatially variable properties of the subsurface,
notably the hydraulic conductivity field, and boundary conditions such as groundwater
recharge. In practical groundwater-modeling applications, parameters of both aquifer prop-
erties and boundary conditions are estimated from measurements of hydraulic heads at a
limited number of observation locations (e.g. Hill and Tiedeman, 2007). While many theo-
retical studies on parameter estimation in aquifers have concentrated on the assessment
of the spatially variable hydraulic-conductivity field, also groundwater recharge is known to
be highly variable in both time and space (e.g. de Vries and Simmers, 2002). Among the
different techniques of estimating recharge reviewed by Scanlon et al. (2002), we consider
here numerical approaches in which measured time series of hydraulic head are used to
estimate groundwater recharge. The key question to be addressed in the present study is
under which conditions it is possible to infer both the recharge field (a space-time function)

2
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and the spatial distribution of hydraulic conductivity from the same data set of hydraulic-
head measurements.

In engineering practice, the model domain is typically subdivided into a small number
of zones with given geometry, and uniform values of the material properties are assigned
to each zone. Likewise, the land-surface is subdivided into zones with uniform recharge
values, reflecting land use, soil types, and local climate variability. As an alternative, param-
eter values may be estimated at a limited number of points and interpolated in between (e.g.
Doherty, 2003). By construction, these approaches can only determine spatial structures of
the parameter fields meeting the prescribed shapes. A particular difficulty of this approach
is that the variability within the given zones may be bigger than between the zones, while
the internal variability is completely neglected in the parameter estimation.

The estimation of hydraulic conductivity as a continuous field has been intensively inves-
tigated in the past (see for example the reviews of Sanchez-Vila et al., 2006; Vrugt et al.,
2008 and recently Zhou et al., 2014). In these approaches discretization of the domain
leads to a formal number of parameters to be estimated that is identical to the number
of cells or grid points. Typical 2-D applications result in O (104) parameters, whereas 3-D
numerical domains may easily be made of O (106) cells. As the number of measurement
points is by orders of magnitude smaller, this inverse problem is inherently ill-posed with-
out additional constraints. Some authors therefore rely on flexible sets of shapes, such as
polynomial trends or Voronoi polygons (e.g. Tsai et al., 2003a, b) rather than estimating O
(104–106) parameter values. In standard geophysical inversion, Tikhonov regularization is
the common approach to estimate distributed parameter fields from a limited set of mea-
surements. Here, the parameters are assumed to be continuous spatial functions, but large
gradients, curvatures, or deviations from prior values are penalized (applications to sub-
surface hydrology are given by Doherty and Johnston, 2003; Tonkin and Doherty, 2005;
Doherty and Skahill, 2006, among others). In subsurface hydrology, however, the geostatis-
tical framework is more common. Kitanidis (1997) and independently Maurer et al. (1998)
showed that the two approaches are mathematically equivalent to each other.
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In geostatistical inversion, the parameter field to be estimated is assumed to be an au-
tocorrelated random space function. This prior knowledge is used in Bayesian inference,
where the statistical distribution of the parameters is conditioned on the measurements
of dependent quantities, such as hydraulic heads. A variety of schemes targets a single
smooth spatial distribution approximating the conditional mean of the parameter field us-
ing Gauss-Newton- or conjugate-gradient-type of estimation schemes (e.g. Yeh and Yoon,
1981; Kitanidis and Lane, 1985; Zou et al., 1993; Li and Elsworth, 1995; Kitanidis, 1995;
Yeh et al., 1996; Aschenbrenner and Ostin, 1995; McLaughlin and Townley, 1996; Spedi-
cato and Huang, 1997; Loke and Dahlin, 2002). These methods can be extended to the
generation of multiple conditional realizations by the method of smallest modification (e.g.
RamaRao et al., 1995; Gómez-Hernández et al., 1997). However, the computational costs
to obtain a single conditional realization is identical to that of the smooth best estimate. Also,
the Gauss-Newton method requires the evaluation of the sensitivity of each measurement
with respect to all parameter values, involving the solution of as many adjoint problems as
there are measurements, which may become unbearable in case of many measurements,
such as those obtained from transient processes. In the context of the present study it may
be noteworthy that many geostatistical approaches have focused on the exclusive estima-
tion of hydraulic conductivity, some include storativity (e.g. Gómez-Hernández et al., 1997;
Kuhlman et al., 2008; Li et al., 2007), but most assume that the boundary conditions are de-
terministic. An exception is Hendricks Franssen et al. (2004) who used the geostatistical ap-
proach of sequential self calibration to jointly estimate the fields of hydraulic conductivity and
groundwater recharge from head measurements.

:::
The

::::::::
authors

:::::::::::
considered

:::
the

::::::::
problem

::
of

::
a

:::::::::::
well-capture

::::::
zone,

::
in

::::::
which

:::::
they

::::::::::
estimated

:::::::::
hydraulic

:::::::::::
conductivity

:::
as

:::::::::::::
continuously

:::::::
varying

::::::
spatial

:::::
field,

::::::::
whereas

:::::::::
recharge

::::
was

::::::::::::::
parameterized

:::
by

::::::
zones

::::
with

::::::::
uniform

:::::::
values.

:

In groundwater hydrology, sequential data assimilation and Kalman filter methods have
been used since long (e.g. Ferraresi et al., 1996; Eppstein and Dougherty, 1996; Hantush
and Mariño, 1997). Particularly, and increasingly, popular is the Ensemble Kalman filter
(EnKF) (Evensen, 1994) or versions thereof. Although the EnKF was primarily constructed
to update model-state variables, in subsurface hydrology it is commonly used to estimate
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hydraulic conductivity. For this purpose Hendricks Franssen and Kinzelbach (2008), Dré-
court et al. (2006), Tong et al. (2010, 2011), Xu et al. (2013a, b), Panzeri et al. (2015)
all showed that the use of head observations in an EnKF framework can help improving
the conductivity estimates, while Crestani et al. (2013) and Tong et al. (2013), among oth-
ers, considered tracer tests for the same purpose. Most parameter estimations used 2-D
models, as these are conceptually simpler, faster and easier to constrain and display. How-
ever, EnKF has also successfully been applied to infer 3-D hydraulic-conductivity fields (e.g.
Schöniger et al., 2012).

An important step in setting up an EnKF to estimate parameters is the choice of initial
ensemble. This choice is the most straight forward way of allowing prior information, such
as ideas about correlation lengths, mean values or spatial pattern, to influence the filter
process. From a technical point of view, the issue of initial sampling is how to represent the
prior knowledge in an ensemble that is as small as possible, by, for example, adding ensem-
ble subspace restriction and requirements on the sampling (e.g, Evensen, 2004; Oliver and
Chen, 2008). From a practical point of view, especially in subsurface modeling, the issue
is that our prior knowledge of the parameters, their mean values, deterministic trends, and
spatial correlation structure is often limited. This may be seen as a more severe problem
than choosing a sufficiently large ensemble size to actually capture the assumed variability
by the ensemble. To overcome the limited knowledge about true parameters values, the use
of synthetic test cases for methods testing and evaluation is very common in subsurface hy-
drology (e.g. Schlüter et al., 2012; Schelle et al., 2013). Here, the prior knowledge is only
limited to what the modeler considers a reasonable assumption and it is not uncommon in
the groundwater-EnKF context that the synthetic true parameter field is a single realization
generated the same way as the initial ensemble (e.g. Huang et al., 2008; Tong et al., 2011,
2013; Vogt et al., 2012; Panzeri et al., 2014; Zhou et al., 2014). Hence, perfect knowledge
about the statistics of the estimated parameters is implicitly assumed, which is a highly un-
realistic assumption. The impact of the prior assumptions in groundwater modeling were
considered, for example, by Li et al. (2012) who concluded that it was possible to estimate
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reasonable log-conductivity fields using the EnKF despite wrong priors, although the result
was worse then

::::
than

:
when using correct information.

In this work we study the impact of the prior knowledge when jointly estimating conductiv-
ity and recharge. We use an EnKF setup in which the initial ensemble is drawn using differ-
ent assumptions of the spatial pattern of the parameters. Section

:::::
Sect. 2 discusses why the

conductivity and the recharge are so difficult to estimate jointly if only pressure-head data
is available. Section

:::::
Sect. 3 explains the Ensemble Kalman filter and the synthetic example

used throughout this paper, while results and discussions are found in Sect. 4. We end with
conclusions in Sect. 5.

2 Theory

In regional-scale groundwater-flow problems, we typically rely on the validity of the Dupuit
assumption, stating that variations in hydraulic head and groundwater velocity are restricted
to the horizontal directions. Under this condition, the depth-averaged, two-dimensional
groundwater-flow equation for a phreatic aquifer reads as:

Sy
∂h

∂t
−∇ · (K (h− z0)∇h) =R (1)

subject to initial and lateral boundary conditions. Sy(x) [–] is the specific-yield field, which is
the drainage-effective porosity of the formation, K(x) [L T−1] denotes the depth-averaged
hydraulic-conductivity field, R(x, t) [L T−1] is the field of groundwater recharge, z0(x) [L]
denotes the geodetic height of the aquifer bottom, h(x, t) [L] is the hydraulic-head field to
be simulated, t [T] is time, and x [L] is the vector of horizontal spatial coordinates.

The term K(h− z0) may be interpreted as a transmissivity field T (x, t) [L2 T−1], varying
in space and time. We now consider a confined surrogate aquifer with an assumed trans-
missivity field Tass(x) [L2 T−1] that differs from the true one (e.g. an incorrectly estimated
transmissivity field). The logarithm of the scaling factor between the two transmissivities is

6
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denoted f(x, t) [–]:

f = ln

(
K × (h− z0)

Tass

)
. (2)

Substituting Eq. (2) into Eq. (1) yields:

Sy
∂h

∂t
−∇ · (Tass exp(f)∇h) =R. (3)

Applying the chain-rule of differentiation to the divergence in Eq. (3), the product rule of
differentiation to ∇exp(f), and dividing by exp(f) results in:

exp(−f)Sy︸ ︷︷ ︸
:=Sapp

∂h

∂t
−∇ · (Tass∇h) = exp(−f)R+∇f · ∇hTass︸ ︷︷ ︸

:=Rapp

(4)

⇒ Sapp
∂h

∂t
−∇ · (Tass∇h) =Rapp (5)

subject to the same initial and lateral boundary conditions as above. In Eq. (5), Sapp(x, t) [–]
and Rapp(x, t) [L T−1] are apparent specific-yield and groundwater-recharge fields. Equa-
tion (5) results in exactly the same hydraulic-head distribution as the original groundwater-
flow Eq. (1), even though the transmissivity field is different. Note that exp(−f) is positive,
so that the apparent specific yield Sapp remains positive, whereas no sign restrictions apply
to∇f ·∇h, resulting in both positive and negativeRapp values. In case of a phreatic aquifer,
the true transmissivity varies with hydraulic head, so that the apparent parameters change
with time. If the water-filled thickness of the true aquifer does not change with time, which
is the case for confined aquifers, the apparent fields are time-invariant.

The derivation given above exemplifies that the same hydraulic-head field can be ob-
tained with different hydraulic-conductivity fields by modifying recharge and, in the case of
transient flow, the specific yield. Noteworthy is that the apparent recharge depends on the
gradient of the original transmissivity field. Hence, a large – positive or negative – apparent
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recharge is expected at locations where the transmissivity changes drastically. Though we
have shown that modifications of recharge and specific yield can always replace the con-
ductivity, the opposite case is not guaranteed, because the conductivity has clear physical
limitations, notably it cannot be negative.

The fact that conductivity variation can be exchanged by recharge and specific-yield vari-
ations renders the joint estimation of hydraulic conductivity, recharge (and specific yield) an
inherently ill-posed problem even when the hydraulic-head field is known at every point in
the domain (and every time point).

We may illustrate the problem by the example of an unconfined aquifer at steady state,
shown in Fig. 1. The original simulation (left column in Fig. 1) exhibits a square-shaped
inclusion of low permeability in an otherwise uniform high permeability field (first row; two
orders of magnitude difference in K) ,

::::
and a constant low recharge rate (second row)and

:
.
:::
As

:::::::::::
boundaries,

::::
we

:::::::
employ a significant head drop from west to east

:::
(50

:::
m)

:::
to

::::
east

:::
(8

:::
m)

:::
and

:::
no

:::::
flow

:::::::::::
boundaries

:::
on

:::
the

::::::
north

::::
and

::::::
south

:::::
sides. The resulting head field is shown in

the third row of Fig. 1, and the corresponding field of Darcy velocities in the fourth row of
Fig. 1.

If the inclusion is removed, and the recharge remains the same, the system shows a
perfectly homogeneous behavior (middle column of Fig. 1). The third column in Fig. 1, on
the other hand, shows exactly the same hydraulic-head field as the original simulation,
but the permeability field is uniform, whereas the recharge field shows strong fluctuation.
From Fig. 1 we can note that, in accordance with Eq. (4), the strong positive and negative
recharge rates are introduced at the interface of the removed inclusion. Also, while the head
fields of the original and surrogate models are identical, the velocity fields are quite different,
because the conductivities are different. The latter implies that transport would be strongly
different between the two cases. It becomes also clear that, without additional constraints,
a unique joint estimation of both recharge and conductivity fields is strictly impossible.

In classical model calibration, the ambiguity between transmissivity and groundwater
recharge may cause problems of ill-posedness, but assuming presumably known zones
with block-wise uniform parameter values restricts the solution of the inverse problem. As

8
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example, the strong positive and negative recharge values of the surrogate model in Fig. 1
would most likely not be obtained in standard model calibration because the recharge zones
would hardly be chosen as embedded rectangular frames. In shape-free inversion, using
either Tikhonov regularization or geostatistical methods, by contrast, the solution space is
much less restricted and chances that unresolved transmissivity variations are traded for
recharge fluctuations are in principle fairly high. The question thus arises under which con-
ditions the estimated fields are reasonable despite the ambiguity of aquifer properties and
boundary conditions.

3 Methods

3.1 Kalman filter

::
In

:::
the

:::::::::
following

:::
we

:::::::
briefly

::::::
repeat

::::
the

:::::
basic

:::::::::::::
assumptions

::
of

::::::::
deriving

:::
the

::::::::::
Ensemble

::::::::
Kalman

:::::
Filter

:::::::
(EnKF)

:::::::
within

::
a

:::::::::
Bayesian

:::::::::::
framework.

:::::::
While

::
it

::
is

:::::::::
possible

:::
to

:::::
have

::
a
::::::

much
::::::

more

:::::::::
pragmatic

:::::
view

::::
on

::::::
EnKF

:::
as

::::
an

:::::::::
extended

:::::::::::::
least-square

::::::::::
estimator,

::::
we

:::::::
believe

:::::
that

::::
the

::::::::::::
transparency

:::
of

::::
the

:::::::::
Bayesian

:::::::::::
framework

::::
with

::::::::
respect

:::
to

:::
the

:::::::::::
underlying

:::::::::::::
assumptions

::
is

:::::::::
beneficial.

:::
In

::::::::::
particular,

::::
the

:::::::::
Bayesian

:::::::::::
framework

::::::::
explains

::::
the

:::::::
choice

:::
of

:::::
initial

::::::::::
ensemble

::
as

:::::
prior

::::::::::
knowledge

::::
and

::::
the

:::::::::::
conceptual

::::::::::
importance

:::
of

:::
the

:::::
prior

::::::::::
knowledge

:::
in

:::
the

::::::::::
estimation

::::::::::
procedure,

::::::
while

::
a

::::::::::::
frequentist’s

::::::::::
standpoint

:::
of

:::::
view

::
is

:::
in

::::::::
contrast

:::
to

:::::::
making

::::
use

:::
of

:::::
prior

::::::::::
knowledge

::::::::::
altogether.

::::
For

:::::::
further

:::::::::::::
transparency,

:::
we

::::
first

:::::::
explain

::::
the

:::::::::
extended

::::::::
Kalman

::::
filter

::::
(see

:::
for

::::::::
example

:::::::
similar

:::::::::::
derivations

::
by

:::::::::::::::::
Evensen (2009) ).

:

We denote the vector of all parameters (recharge values and log-hydraulic conductivities
of all cells) Φ. Prior to considering measurements, they are assumed to be random functions
following a multi-Gaussian distribution, which is fully characterized by the prior mean µ′Φ
and covariance matrix P′ΦΦ. If we assume that the covariance function P ′ΦΦ(h) is stationary
with the distance vector h and known structural parameters (variance, correlation lengths,
rotation angles), the element (i, j) of the covariance matrix P′ΦΦ is P ′ΦΦ(x2−x1). The full
matrix is constructed by all grid points.
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The vector of simulated hydraulic heads ht at time level t depends on the heads ht−1 at
the previous time level and on the parameters Φ. Because the old heads ht−1 depend on
Φ, they are random variables, too. In the combination of data assimilation and parameter
estimation applied here, the vector of all simulates states (the heads ht in all cells) and the
vector of all parameters Φ are concatenated to a single vector xt of states and parameters,
assumed to be random multi-Gaussian functions with unconditional mean µ′x and covari-
ance matrix P′xx, in which the prior statistics of ht are obtained by linearized uncertainty
propagation of the statistics of ht−1 and Φ.

For convenience, we denote running the model and simulating the observations (which is
here just picking the heads at the observation locations) as f t(ht−1, xt). :

It
::::::
should

:::
be

::::::
noted

:::
that

:::
f

:::::
here,

:::::::
hence,

:::::::::
denotes

:::::
both

:::
the

::::::::
forward

:::::::
model

::::
and

::::
the

:::::::::::
observation

:::::::::
operator.

:
This

model outcome is contrasted to the measurements of heads at time level t, here denoted
yt. The true (unknown) heads at the measurement locations are considered to be a vector
of random variables with a multi-Gaussian distribution, characterized by the measurement
vector yt as mean and the covariance matrix R, reflecting measurement error.

Since we assume multi-Gaussian distributions, finding the best conditional estimate µ′′x,
of the entire head field at the new time level and the parameters by application of Bayes’
theorem results in minimizing the following objective function W (xt):

W (xt) =
(
xt−µ′xt

)T
P′−1
xtxt

(
xt−µ′xt

)
+ (f t (ht−1,xt)−yt)T R−1 (f t (ht−1,xt)−yt) (6)

which is done by setting the derivative of W (x) to zero. In the linearized version, f t(ht−1,
xt) is linearized about the prior mean µ′xt , and the linearized conditional covariance matrix
P′′xtxt of xt is obtained by inverting the Hessian of W (xt), using the same linearization.
Kalman filtering is based on these approximations. Here, the data are successively ac-
counted for, considering one time level after the other. Then, the posterior mean µ′′xt and
covariance matrix P′′xtxt of time level t are propagated to the next time level t+ 1 to obtain
the corresponding prior mean and covariance matrix.
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By applying rules of matrix identities it can be shown that linearization about the prior
mean µ′xt leads to the following expression for the conditional mean and covariance matrix:

µ′′xt = µ′xt +P′xtyt
(
P′ytyt +R

)−1 (
yt−f t

(
µht−1 ,µ

′
xt

))
(7)

P′′xtxt = P′xtxt −P′xtyt
(
P′ytyt +R

)−1
P′ytxt (8)

in which P′ytxt = JP′xtxt is the cross-covariance matrix between yt and xt, P′xtyt =P′Tytxt ,
and P′ytyt = JP′xtxt J

T is the propagated covariance matrix of yt, expressing the uncertainty
of yt caused by the uncertainty of xt. J denotes the sensitivity matrix of f t with respect to
xt, derived about the prior mean.

The scheme described so far is known as extended Kalman filter. It relies on linearization
about the prior mean and has the disadvantages that the full sensitivity matrix J must be
evaluated, which can be computationally very costly. Also, already slight nonlinearities in
f t(ht−1, xt) imply that the propagated covariance matrices are not correct.

A popular alternative to the original Kalman filter is the Ensemble Kalman filter (EnKF)
(Evensen, 1994), in which the linearization is performed about an entire ensemble of state
and parameter values, and no sensitivity matrices are computed. The prior statistics are

11
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given by:

µ′xt =
1

n

n∑
i=1

x
′(i)
t (9)

µ′yt =
1

n

n∑
i=1

f t

(
h
′′(i)
t−1,x

′(i)
t

)
(10)

P′xtxt =
1

n

1

n− 1
:::::

n∑
i=1

(
x
′(i)
t −µ′xt

)
⊗
(
x
′(i)
t −µ′xt

)
(11)

P′xtyt =
1

n

1

n− 1
:::::

n∑
i=1

(
x
′(i)
t −µ′xt

)
⊗
(
f t

(
h
′′(i)
t−1,x

′′(i)
t

)
−µ′yt

)
(12)

P′ytyt =
1

n

1

n− 1
:::::

n∑
i=1

(
f t

(
h
′′(i)
t−1,x

′(i)
t

)
−µ′yt

)
⊗
(
f t

(
h
′′(i)
t−1,x

′(i)
t

)
−µ′yt

)
(13)

in which n is the number of ensemble members, the superscript (i) denotes the ith member,
and a⊗ b is the tensor product of vectors a and b. As before, the prior values are denoted
by a single prime, and the posterior by a double prime. Upon initialization, the original
ensemble members x(i)

0 are drawn from the unconditioned multi-Gaussian distribution of x,
whereas the updating of the individual ensemble members follows the procedure outlined
above:

x
′′(i)
t = x

′(i)
t + bP′xtyt

(
P′ytyt +R

)−1
(
yt + ε(i)−f t

(
h
′′(i)
t−1,x

′(i)
t

))
(14)

in which ε(i) is a vector of random observation noise drawn from a multi-Gaussian dis-
tribution with zero mean and covariance matrix R. The factor b is the so called damping
parameter (e.g. Hendricks Franssen and Kinzelbach, 2008) which serves to slow down the
update of states and parameters. It is an ad-hoc tuning parameter that it is primarily re-
quired for small ensemble sizes; few guidelines exist on how to select it. In this work, the
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damping is set to 0.6 for the updates of the head values and 0.05 for the parameter update,
though since the ensemble size is large and there are many temporal observations (see
below), the choice is not crucial in any sense. For a more in-depth description of the filter
algorithm, the interested reader can consult Evensen (2003) or Burgers et al. (1998) for
general filter details or Erdal et al. (2014) and Erdal (2014) for in-depth details on the actual
implementation used in this study.

It should be noted that the ensemble Kalman filter still relies on the same assumptions
as the original Kalman filter. Notably, the combined vector of states, parameters, and ob-
servations is assumed to be a multi-Gaussian random variable, which means that xt is
multi-Gaussian, the model f t depends linearly on xt, and the measurement error is multi-
Gaussian, too. These conditions are not strictly met, so that the EnKF solution is only a lin-
earized estimate. However, the repeated application over many time steps as well as the

::
in

:::::::
contrast

:::
to

:::
the

:::::::::
extended

:::::::
Kalman

::::::
Filter,

::
in

::::::
EnKF

:::
the

::::::::::::
linearization

:
is
::::::::::
performed

:::
by

:::::::::::
considering

::
an

::::::
entire

::::::::::
ensemble

::::::
rather

:::::
than

::
by

:::::::
taking

::::::::::
derivatives

:::
at

:
a
:::::::
single

:::::
point

:::::::::::::::::::
(e.g. Nowak, 2009) .

::::
The large ensemble sizes used in this work

::
as

::::
well

:::
as

:::
the

:::::::::
repeated

:::::::::::
application

::::
over

::::::
many

::::
time

::::::
steps

:
alleviates the effects of nonlinearity to some extent

:
,
:::
by

::::::::
allowing

:::
a

:::::::::
generous

:::
use

:::
of

:::
the

:::::::::::
dampening

:::::::
factor.

:::::::
Hence

:::
the

:::::
filter

::
is

:::::::
slowed

::::::
down

::::
and

::::
the

::::::::
possible

::::::::::
erroneous

:::::::
updates

:::::::::
resulting

::::
from

::::
the

::::::::::::
linearization

::::
have

::
a
::::
less

:::::::
strong

:::::
effect

:::
on

:::
the

:::::::
update. Further, the

model considered is only weakly nonlinear, so that in total the effects of the linearlizations
are likely small compared to other sources of errors (e.g. prior uncertainties, as discussed
later).

A second
::
An

:
important constraint is that the scheme, like any other Bayesian method,

depends on the choice of the unconditional mean and covariance structure of the parame-
ters Φ. While

::
It

::
is

:::::::::
important

::
to

:::::
keep

:::
in

:::::
mind

::::
that

:::
our

:::::::::::
application

::::::::::
(estimating

:::::::
spatial

::::::::
patterns

::
of

::::
both

:::::::::
hydraulic

::::::::::::
conductivity

::::
and

:::::::::
recharge

::::
from

:::::::::::::::
hydraulic-head

:::::
data)

::
is

::::::
based

::::
on,

::
at

:::::
least

::::::::
partially,

::::::::::
ambiguous

::::::
data,

:::
as

::::::::
outlined

::
in

:::::
Sect.

:::
2.

:::::::::
Bayesian

::::::::::::::::::::
parameter-estimation

:::::::::
schemes

:::
are

::::
well

::::::
posed

:::::
even

:::
in

:::
the

:::::::::
presence

:::
of

:::::::::::::::
non-informative

::
or

:::::::::::
ambiguous

::::
data

::::
due

:::
to

:::
the

:::::
prior

:::::::::::
information.

::::::
Thus,

:::::
while

:
the updating procedure leads to modifications of the parameters,

the original prior knowledge carries over. Spatial patterns that are in contradiction to the
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prior knowledge cannot be recovered by the scheme.
::::
This

:::::
would

:::
of

::::::
course

:::
be

::::::::
different

::
if

:::
the

::::::::::::
observations

:::::
were

::
in

:::::::
strong

::::::::::::
contradiction

::
to

::::
the

:::::
prior.

::
If

:::
so,

:::
we

::::::
could

::::
see

::
a

:::::::::
departure

:::::
from

:::
the

:::::
prior,

:::::
both

::
in

::::::
terms

::
of

::::::::
absolute

:::::::
values

:::
as

::::
well

:::
as

::
in

::::::
terms

::
of

:::::::::
structure.

:::::
This

:::::
point

:::
will

:::
be

:::::::::
discussed

::::::
more

::
in

:::::
Sect.

:::
5.

:
In our application,

::::::::
however,

:
Φ contains parameters describing

both aquifer properties and boundary conditions and, as we have shown above, the effects
of these two types of parameters on the measured heads can be similar. Hence, the prior
knowledge determines which combined patterns of hydraulic conductivity and recharge
are

::::
data

::::
can

:::
be

:::::::::::
non-unique

::::
with

::::::::
respect

::
to

::::
the

:::::::::::
parameters

::::
and

::::
the

:::::
prior

:::::::::::
knowledge

::::
may

:::::::::
determine

::::::
which

::::::::
patterns

:::
of

:::::::::::
conductivity

::::
and

::::::
which

::::::::
patterns

:::
of

::::::::
recharge

::::
that

::::
can

:::
be

::::::
jointly

inferred by the scheme. If the prior knowledge is erroneous, the estimated fields may also
be erroneous.

3.2 Setup of a synthetic experiment

For testing the possibilities and limitations in jointly estimating conductivity and recharge,
we have set up a synthetic 2-D example of transient flow in an unconfined aquifer. The
model setup is shown in Fig. 2 and consists of spatially variable recharge with a tempo-
ral seasonal trend, spatially variable conductivity, a temporally variable southern boundary
corresponding to a river, as well as 5 pumping wells.

::::
The

::::::
actual

:::::::::
recharge

::
is

::::::::::
calculated

:::
by

::::::::::
multiplying

:::
the

::::::
trend

::::::::::
parameter

::::
with

:::
the

:::::::
shown

:::::::::
recharge

:::::
field. More technical details about

the setup is found in Table 1. Observations of groundwater heads are taken daily at 45 ob-
servation wells spread throughout the domain during a 1 year simulation and assuming an
observation error of 1 cm. The recharge and log-conductivity fields are both sampled as
random fields with anisotropic, exponential covariance functions and strong rotation of the
principal directions of anisotropy (Table 2). it

:
It
:
should be noted that here the conductivity

and
:::::::::
reference

:::::::::::
conductivity

::::
and

::::
the

:::::::::
reference

:
recharge fields are uncorrelated

:::::::::
generated

:::
as

:::::
fields

::::
that

::::
are

::::::::::::
uncorrelated

::
to

:::::
each

::::::
other. This could, for example, represent a scenario in

which the recharge is primarily controlled by variable land use and vegetations while the
conductivity is a constant material property.
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For the estimation of the recharge and conductivity fields, we apply the Ensemble Kalman
filter using an ensemble of 2000 members. As this work aims at exploring which prior knowl-
edge is required for the estimation process, three different cases of prior knowledge are
considered. In the first, the initial ensemble members are drawn from the same (hence cor-
rect) distribution as the reference (true) field. The second case is identical to the first apart
from the rotation angle of the anisotropy being randomly chosen for each ensemble mem-
ber. In the third case, the rotation angle is fixed but wrong. Here, the recharge is sampled
using the rotation angle and correlation lengths of the true conductivity field and vise versa,
creating a rather problematic initial ensemble. A plot of the three correlation structures can
be found in the bottom of Fig. 3 in Sect. 4 where the three initial ensembles are called the
“good”, “random” and “wrong” ones. Please note that the correlation plot for the random
initial is only meant as an illustration of the fact that each ensemble has a unique rotation
angle and does not show the actual angles considered.

The goodness of the resulting fields are judged in two ways. First, the ensemble mean
of the fields are visually compared to the reference fields and subjectively judged to be
similar or not. Second, the normalized root mean square error of the simulated heads in the
45 observation wells is computed by:

NRMSE =

√√√√√ 1

ntnobs

t2∑
t=t1

nobs∑
i=1

(
htrue(i, t)−h(i, t)

)2

σ2
h

(15)

where nt is the number of temporal observations between t1 and t2, nobs the number of
observation locations (here 45), h(i, t) is the ensemble mean head observation at posi-
tion i and time t, htrue is the corresponding true value, and σh is the measurement uncer-
tainty of hydraulic-head observations

:
,
::::::
hence

:::::
here

::
a

:::::
fixed

:::::
value

::::::::
decided

:::::
prior

:::
to

:::
the

::::::
EnKF

::::::::::
simulations. This gives a quantitative metric of judging the actual performance of the esti-
mated model. We assimilate head observations from day 50 to day 300, while the remaining
65 days of the one-year data is used to test the model’s predictive capabilities. This results
in an assimilation error for judging how well the assimilation went and a prediction error for
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judging the models predictive powers. It should be noted that to properly asses the predic-
tive power of the model in a scenario different to the one used for the assimilation, one of
the four wells shown in Fig. 2 only starts pumping at day 301.

::
As

::::
this

::
is

::
a

::::::
virtual

:::::::::::
experiment,

:::
one

::::::
could

:::::
also

::::::::
consider

:::::::::::
calculating

:::
the

:::::::::
NRMSE

::::::
based

:::
on

::::
the

:::::
head

:::::
error

:::
in

::
all

:::::
grid

:::::
cells,

:::
but

::
in

::
a

:::::::::
real-world

:::::::::::
application

:::::
such

::::
data

::::::
would

::::
not

:::::
exist.

::
In

::::
this

::::::
work,

:::
we

::::::
prefer

:::::::::::
considering

::::
only

::::
the

::::::::::::
head-values

::
at

::::::::::::
observation

:::::::
points,

:::
as

:
it
:::::

also
::::::
gives

:::
an

:::::
idea

::
of

::::
the

:::::::::::
usefulness

::
of

:::::
using

:::::::::
available

::::::::::::
observations

:::
as

::
a

::::::
means

:::
to

::::::::
estimate

::::
the

:::::::::
goodness

::
of

::::
the

::::::
result.

:

We have combined the three different prior distributions with three different estimation
problems, namely the estimation of (a) recharge alone, (b) hydraulic conductivity alone,
and (c) recharge and hydraulic conductivity together, leading to a total of nine different
scenarios. In the stand alone scenarios, all other parameters and settings are assumed
known and, hence, set to their true values. As can be seen from Fig. 2, the recharge not only
shows a strong spatial pattern but also a temporal trend. In the estimations shown below,
this temporal trend is assumed known. We have also conducted successful assimilations
also estimating the trend parameter. However, as the absolute recharge values of these
tests may vary with the absolute value of the scaling parameter, the results are less intuitive
to display and therefore only the assimilations with known trend function are shown.

4 Results and discussion

4.1 Stand-alone estimation of recharge or conductivity

The simplest of the estimation problems presented in this study is the stand-alone estima-
tion of recharge, since the hydraulic heads depend linearly on recharge. This is reflected in
the estimated recharge fields shown in Fig. 3. As expected, the best results are achieved
with the best initial estimate (second column). However, also the estimates using the co-
variance functions with the random and wrong orientations of anisotropy show in large
the right pattern. Table 3 quantitatively confirms these qualitative findings by low values of
the normalized root mean square error of predicted heads. From the last column in Fig. 3
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we see that, although the filter manages to produce a reasonable ensemble mean of the
recharge field, the similarity with the covariance function used to create the initial ensemble
is still very prominent. This is especially so if one starts considering individual ensemble
members (not shown), and it demonstrates how sensitive the EnKF method is to the initial
guess, even in this linear problem.

It is important to keep in mind that the ensemble size is large so that the plots of the
ensemble means shown in Fig. 3 are smoothed. It is not expected that the smooth ensemble
estimate exhibits the same extreme values as those seen in the true parameter distribution,
whereas individual ensemble members should show the same variability as the (unknown)
reference field.

In comparison to estimating the recharge fields, the estimation of conductivity fields alone
is more complicated. Here, the nonlinearities of Eq. (1) affects the estimation. More impor-
tantly, the orientation of the anisotropy of heterogeneity plays a vital role in the behavior of
groundwater flow. This is also seen in the final estimates of the conductivity fields, shown
in Fig. 4, where the only reasonable result is achieved if the right pattern is assumed in the
prior knowledge (second column) or if the prior pattern is random (third column). The rea-
sonable performance of the prior distribution with diffuse knowledge about the anisotropy
orientation may be explained by the large initial ensemble containing some members with
reasonable patterns and decent behavior. In the case that the orientation of anisotropy is
assumed erroneously in the prior knowledge (fourth column), the filter completely fails to
produce any result similar to the truth. This finding does not depend on the ensemble size.
The prediction errors listed in Table 3 clearly confirm the visual impression.

The prediction errors listed in Table 3 emphasize that estimating recharge leads to
smaller errors in predicting heads then

::::
than

:
the estimation of the hydraulic-conductivity

field. This could indicate that improvements of the estimated conductivities are more impor-
tant for lowering the prediction error, which would follow the findings of Hendricks Franssen
et al. (2004). As pointed out above, the higher errors when estimating conductivities are
likely related to the head value in a cell depending not only on the conductivity of that cell
but to the macroscopic anisotropy of hydraulic conductivity in the entire aquifer.
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4.2 Joint estimation of recharge and conductivity

As derived in Sect. 2, joint estimation of recharge and conductivity fields is impossible with-
out prior knowledge about either of the two quantities. In Bayesian inversion methods, how-
ever, prior knowledge is assumed anyway. In the EnKF method, the prior information is con-
veyed by the initial ensemble drawn from the prior distribution. By this, the jointly estimated
recharge and conductivity fields are unique and reproducible in a statistical sense. The re-
maining question is whether these estimates also resemble the true fields and whether they
are good for prediction purposes.

Figure 5 shows the results of the joint estimation using the three different initial ensem-
bles

::::
and

::::::
Figure

::
6
:::::::
shows

:::
the

::::::::::::::
corresponding

::::::
spatial

::::::::::::
distributions

::
of

::::
the

::::::::::
estimation

:::::::::
variance.

If the initial ensemble is good, that is the reference fields are drawn from the same statistical
distribution as the initial ensemble, it is possible to estimate both conductivity and recharge
with reasonable precision, given the number and accuracy of observations (second col-
umn). When the initial ensemble is poor, however, the result is rather poor for the recharge
and more blurry for the conductivity (third column), or we infer fields that look good but are
wrong (last column).

As shown theoretically in Sect. 2, it is always possible to compensate a missing or wrong
conductivity with a recharge, and this

:
.
:::
An

::::::
effect

::
of

::::
this

:::::::::::::
compensation

:
is also clearly seen in

the last column of Fig. 5:
::::
even

:::::
after

::::
250

:::::
days

::
of

:::::
data

::::::::::::
assimilation,

:
the estimated recharge

shows remarkable similarity with the reference conductivity field.
::::
The

::::
long

::::::::::::
assimilation

::::
time

::
is

:::::::::
important,

:::::::
since,

:
if
::::::
there

::::::
would

:::::
have

:::::
been

:::
no

::::::::::::::
compensation,

::::
the

:::::::::
estimated

::::::
fields

::::::
would

:::
not

::::::
retain

:::::
their

::::::::::
erroneous

::::::::::
structures

:::
for

::
so

::::::
many

:::::
filter

:::::::::
updates. This shows that the issue

of trading one quantity for the other is not only a theoretical issue, but also relevant in
practice.

:
It

::::::
should

:::
be

::::::
noted

:::::
here

::::
that

::::
the

::::::
cause

:::
of

:::
the

::::::::
original

:::::
poor

:::::::::::
estimations

::
is

:::
not

::::
the

:::::::::::::
compensation

:::::::::::
mechanism

::::::::::
described

::
in
::::

this
:::::::

paper,
::::
but

:::
the

:::::
false

:::::
prior

::::::::::
sampling.

:::::::::
However,

:::
the

::::::::::::::
compensation

:::::::::::
mechanism

::::::::
sustains

::::
the

:::::
poor

:::::::::
estimates

::::::
when

:::
the

:::::::::::::
observations

::::
are,

:::
as

::
in

:::
this

::::::
work,

::::::::::::
non-unique.
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The lacking ability of the random and wrong initial ensemble estimates with respect to pre-
dicting heads under conditions not encountered in the calibration period are documented in
Table 3, where the prediction errors caused by the poorly estimated fields are often an order
of magnitude larger then those resulting from a good estimation. It is interesting to note that
the error obtained throughout the assimilation, shown in Table 4, is not a good indicator for
the predictive capabilities of the various models, as quantified by the prediction errors listed
in Table 3. There

::::::::
Although

:::::
there

:
are differences in the assimilation error

:
,
:
both within and

between the different estimation setups, but it would to
:
it

::::::
would be difficult to foresee that

::::::
predict

::::
any

:::::::
model

::::::::::::
performance

:::::
from

::::::
these

:::::::
errors.

:::::
That the joint estimation is performing

much better with the good prior compared to the poorer ones
::
is

::::
only

::::::::
obvious

:
if
::::
the

:::
full

:::::
table

::
is

::::::::
available. The same behavior is illustrated with an example of two observations wells in

Fig. 7, from which it is clearly shown that all approaches has a good fit during assimilation
but that the wrong prior deviates during the predictions. From a practical standpoint of view
this highlights that it is important have relevant validation data to test the predictive power
of a model when performing data assimilationwith parameter update by EnKF (or any other
approach)

:::
the

:::::::::::
parameters

::::
are

:::::::
inferred

::::::
using

::::::::::
sequential

:::::
data

:::::::::::
assimilation.

Like in the scenarios in which only recharge or only conductivity were estimated, the
mean joint estimate lack the extreme values of the reference fields. As discussed above,
such behavior is expected for the smooth best estimate even in cases where the scheme
works perfectly fine. Individual ensemble members show significantly stronger variability,

::
as

::::
can

:::
be

::::::
seen

::::
also

:::::
from

::::
the

:::::
maps

:::
of

:::
the

:::::::::::
estimation

::::::::
variance

::
in
:::::

Fig.
::
6. We consider the

results from the good initial ensemble as good, since they capture the main patterns of the
parameter fields well and have, overall seen, reasonable absolute parameter values. For
purposes of transport predictions, we would recommend using the entire ensemble rather
than the ensemble mean. In case of the estimates using the wrong prior knowledge, in
particular where the orientation of anisotropy is chosen randomly, the fluctuations cannot
be aligned well in the right direction, and averaging over features oriented in all directions
lead to particularly smooth estimates of the mean.

19



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

5 Conclusions

In the present study we have shown that it is possible to jointly estimate reasonable fields
of hydraulic conductivity (or its logarithm) and recharge as spatially fluctuating fields from
pure head observations provided that the statistics of the true fields are fairly well under-
stood. Starting with wrong assumptions about conductivity and recharge patterns can lead
to aliasing, in which not detected features of hydraulic conductivity are traded for erroneous
fluctuations in recharge.

In real-case applications, the prerequisite of a good prior can pose a severe problem
because the true spatial patterns may be widely unknown. From a more technical stand-
point of view it may be noteworthy that a rather common way of setting up a synthetic
groundwater-EnKF test is to generate a large ensemble of realizations and use one of them
as the truth and the rest as the initial ensemble. By this it is guaranteed that the statistics of
the initial ensemble is perfect and, as shown here, a good result can be expected. Unfortu-
nately, in real-world applications the geostatistics of (log)-hydraulic conductivity are typically
quite uncertain so that the good performance of a scheme, involving both the measurement
strategy and the inverse method, in an overly optimistic test case regarding prior knowl-
edge may not be transferable. We thus highly recommend to design realistic test cases that
include potential bias in prior knowledge.

In the present work, we only used head data for data assimilation and parameter es-
timation, while in reality probably at least a vague idea of conductivity values couldbe
available from the bore holes required for the observations, and the patterns of recharge
should .

:::::
With

::::::::
respect

::
to

:::::::::
unknown

::::::::::::
conductivity

::::
and

:::::::::
unknown

::::::::::
recharge,

:::
the

::::::::::
drawback

::::
with

:::::
head

:::::::::::::
observations,

::
as

:::::::
shown

::
in

::::::
Sect.

::
2,

::
is

::::
that

::::
the

::::::::::::
observations

::::
are

:::::::::::
non-unique.

:::::::::
Including

:::::
more

:::::
head

::::::::::::
observations

::::
will,

:::::
due

::
to

:::
the

::::::::::::::::
non-uniqueness,

::::
not

::::::::
alleviate

::::
this

::::::::::
drawback.

:::::
Even

:
a
:::::::::
perfectly

:::::::::
observed

::::::::::::
groundwater

::::::::
system

:::::
could

:::
be

::::::::::::
non-unique,

::::::
since

:::::::
exactly

::::::
same

:::::
head

::::
field

::::
can

:::
be

:::::::::
achieved

::::
with

::::::::
different

:::::::::::::
combinations

:::
of

:::::::::::
conductivity

::::
and

::::::::::
recharge.

::::::::::
Therefore,

:::
the

::::
joint

::::::::::
estimation

::
is

:::::::
difficult

::::
and

::::
the

:::::::::
goodness

::
of

::::
the

::::
prior

:::::::::::
information

:::::::::
becomes

::::::::::
important.

:::::
Other

::::::
types

::
of

:::::::::::::
observations

::::::
could,

:::
of

:::::::
course,

:::::
also

:::
be

::::::::::::
considered.

::::::
Ideally

::::
we

::::::
would

:::::
have
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::::::
(plenty

:::
of)

:::::::::::::
observations

::
of

:::::::::::
subsurface

::::::
fluxes

:::
or

::
of

::::::::::::
conductivity.

:::
In

:::
this

::::::
case,

::::
the

::::
total

:::::
data

:::
set

::::::
would

::::::::
become

::::::
highly

:::::::::::
informative

:::::
and

:::
the

:::::
prior

:::::::
would

:::
be

:::::::::::
significantly

:::::
less

::::::::::
important.

:::::::::
However,

::::
this

::
is

::::
not

::::::::
realistic

:::
for

::::::::::::
applications

::
in
::::::::::::

subsurface
::::::::::
hydrology.

:::::::
Fluxes

:::::::
cannot

:::
be

:::::::::
measured

:::
as

:::::
such

::::
and

::::::::::::
conductivity

::::::::::::::
measurements

:::::
are,

:
if
::::::::
existing

::::
and

::::::::
trusted,

:::::
very

:::::
local.

:::::::
Further

::::::::::::
observations

::::::
could

:::
be

::::::
tracer

::::::
tests,

::::::
which

::::
are

::::
time

:::::::::::
consuming

:::
or

::::
age

:::::::
tracers

::::
that

::::
may

:::
be

:::::
costly

::::
and

:::::::
require

:::::
very

::::
long

::::::::::
simulation

::::::
times.

:::::
Head

::::::::::::
observations

::::
are,

:::
in

:::
this

::::::::
respect,

::::::::
common

::::
and

::::::::::::
trustworthy

::::::::::::::
measurement.

:::::::
Hence,

::::
our

:::::::::
example

::::
can

::::
be

:::::::::::
considered

::::::
rather

:::::::
realistic

:::
for

::
a

::::
real

:::::
world

:::::::::
scenario

::
of

::::::::::
estimating

:::::::
aquifer

::::::::::::
parameters.

::
In

::::::::::::
real-world

::::::::::::::
applications,

::::::::
vague

:::::::::::
guesses

::::
of

::::::
the

:::::::::::
hydraulic

:::::::::::::
conductivity

::::::::::
distribution

::::::
may

:::::::
exist

:::::::
from

:::::::::
drilling

:::::::
logs,

::::::
slug

::::::::
tests,

::::::
and

::::::::::
pumping

:::::::
tests

:::::::::::::::::::::::::::::::::::::::::::
(e.g. Dietrich et al., 2008; Lessoff et al., 2010) .

:::::
All

:::
of

:::::::
these

:::::::
tests

:::::
are

:::::::::::::
independent

::
of

:::::::::
recharge

::::
so

:::::
that

::::::::
making

:::::
use

:::
of

:::::
this

:::::::::::
information

::::::
may

:::::::::
alleviate

::::
the

:::::::::
problem

:::
of

:::::::::::::::
non-uniqueness

::::::::
outlined

:::
in

::::
this

:::::::
paper

:::
to

::::::
some

:::::::
extent.

:::::::
Vague

:::::::::
guesses

:::
of

::
K

:::::
can

::::
find

::::
their

:::::
way

::::
into

:::::::::::
parameter

::::::::::
estimation

::::::
either

::::
by

:::::::
means

:::
of

:::
an

::::::::::
improved

:::::
prior

:::
of

::
K

:::
or

:::
by

::::::::
explicitly

:::::::::::
accounting

::::
for

::::
the

:::::::::::
additional

::::::::::::::
measurement

::::::
types

:::
in

::::
the

:::::::
EnKF

:::::::::::
procedure,

::::::::
including

::::
the

:::
full

:::::::::::
observation

:::::::::
operator.

::::
For

:::::::::
recharge,

:::
the

:::::::::
patterns

::::::
should

::
in
:::::::::
principle reflect

land use and soil types, which are accessible information. Spatially
:::::::
Further,

:::::::::
spatially

variable recharge may also be constrained by the use of remote sensing information
(Brunner et al., 2006; Hendricks Franssen et al., 2008). These type of data could either
be used as

:::::
direct

:
observations in the assimilation or

::
(if

:::
we

:::::
trust

::::::
them)

:::
or

:::::::::::
considered

:::
as

::::
prior

:::::::::::
information

::::
and

:::::
used

:
to condition the initial ensemble (Sun et al., 2009; Panzeri et al.,

2013). The latter
:::::
could

::::
also

:::
be

::::::
seen

:::
as

::
a

::::
way

:::
of

::::::::::
discarding

::::::
initial

::::::::
samples

:::::
that

:::::::
contain

:::::::::
unfeasible

:::::::::::::::::::::
conductivity-recharge

:::::::::::::
combinations.

::::
This

::::::
would

:::::::
create

:
a
::::::
much

:::::
more

:::::::::::
appropriate

:::::
initial

::::::::::
ensemble.

:::::::
Hence,

:::
as

:::::::
shown

::
in

::::
this

::::::
work,

:::
the

:::::
filter

::::::
would

:::::
have

:::
an

::::::::::
increased

:::::::
change

::
of

::::::::::::
successfully

::::::::::
estimating

::::
the

:::::::::::
parameters

::::::
when

:::
the

:::::
prior

:::
is

::::::
good.

::::
The

:::::
idea

::
of

::::::::::
improving

:::
the

:::::
initial

::::::::::
ensemble

:
can also be related to the popular method of multiple-point statistics,

where
:
.
:::::
Here,

:
the use of training images which should represent relevant spatial correlation

patterns have been used to condition conductivity fields (see Okabe and Blunt, 2004;
Hu and Chugunova, 2008). The combination of assimilating head data and the use of
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training images to condition the ensembles has also been tested with promising results
(Li et al., 2013). The combination of these approaches could prove a possible way to
perform

:::::::
achieve

::
a

:::::
more

::::::::
correct

:::::
prior

:::::::
sample

:::::
and,

:::::::
hence,

::
to

::::::::
improve

::::
the

:::::::::::::
performance

::
of

:::
the

:
joint estimation of conductivity and recharge fields with a lowered

::
by

:::::::::
lowering

:::
the

:
risk

of conductivity-to-recharge aliasing due to wrong prior knowledge.
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Table 1. Pumping rates and general model setup∗.

Pump 1 2 3 4 5
Rate (m3 h−1) 9 18 90 0.09 0.9
Start (day) 20 300 200 0 0
Stop (day) 150 365 360 370 300

Model setup ∆x (m) ∆y (m) dt (h) z0 (m) poro (–)
50 50 6 0 0.4

∗ Pumps are numberd as in Fig. 2, z0 and poro are the homogeneous bedrock
elevation and porosity.
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Table 2. Parameters and properties used for the generation of the synthetic examples conductivity
and recharge fields∗.

ln(K) R
ln (m s−1) (mm day−1)

µ −8.5 −0.7
σ 1.7 0.1

α (◦) 291 17
lx (m) 2000 5000
ly (m) 600 500

∗ µ is the mean, σ the variance, α the
rotation angle and lx and ly are the
correlation lenghts in x and y direction,
respectively.
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Table 3. Normalized root mean square error for the prediction period∗.

Good Random Wrong

R 1.3 1.6 1.9
K 2.6 3.1 17.4
R&K 6.0 13.5 15.0

∗ According to Eq. (15) for three setups of prior
knowledge (good, random, wrong) to estimate
recharge alone (R), conductivity alone (K) and
to jointly estimate conductivity and recharge
(R&K).
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Table 4. Normalized root mean square error for the assimilation period.

Good Random Wrong

R 0.3 0.4 0.5
K 1.2 0.9 3.7
R&K 2.2 2.4 3.7
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Figure 1. Illustrative example of replacing a heterogeneous conductivity field (left column panels)
with a homogeneous conductivity and an effective recharge (right column panels). Please note the
different scale on the third recharge plot.
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Figure 2. Setup of the synthetic test case used for the parameter field estimations.
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Figure 3. Estimation of stand-alone recharge. Upper panels show the ensemble mean and lower
plots the covariance function used to generate the initial ensemble. Please note that the random
covariance functions imply drawing the rotation angle from a uniform distribution between 0 and 2π,
whereas only a few illustrative examples are shown.
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Figure 4. Estimation of stand-alone conductivity. Upper panels show the ensemble mean and lower
plots the covariance function used to generate the initial ensemble. Please note that only a few
illustrative examples of the random orientation angle of anisotropy are shown.
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Figure 5. Joint estimation of recharge (top row panels) and conductivity (middle row panels). Shown
is the ensemble mean and the covariance functions used to generate the initial ensembles (bottom
row panels).
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Figure 6.
::::
Joint

:::::::::
estimation

::
of
::::::::
recharge

::::
(top

::::
row

::::::
panels)

::::
and

::::::::::
conductivity

:::::::
(bottom

::::
row

:::::::
panels).

::::::
Shown

:
is
::::
the

::::::::
ensemble

::::::::
variance.
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Figure 7. Two head observations plotted over time for the joint estimation of recharge and conduc-
tivity. Shown is the ensemble mean. Assimilation is performed from day 50 to day 300 while the
remaining days are considered for prediction.
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