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Abstract

Regional groundwater flow strongly depends on groundwater recharge and hydraulic con-
ductivity. Both are spatially variable fields, and their estimation is an ongoing topic in ground-
water research and practice. In this study, we use the Ensemble Kalman filter as an inver-
sion method to jointly estimate spatially variable recharge and conductivity fields from head5

observations. The success of the approach strongly depends on the assumed prior knowl-
edge. If the structural assumptions underlying the initial ensemble of the parameter fields
are correct, both estimated fields resemble the true ones. However, erroneous prior knowl-
edge may not be corrected by the head data. In the worst case, the estimated recharge field
resembles the true conductivity field, resulting in a model that meets the observations but10

has very poor predictive power. The study exemplifies the importance of prior knowledge in
the joint estimation of parameters from ambiguous measurements.

1 Introduction

Regional groundwater flow depends on spatially variable properties of the subsurface,
notably the hydraulic conductivity field, and boundary conditions such as groundwater15

recharge. In practical groundwater-modeling applications, parameters of both aquifer prop-
erties and boundary conditions are estimated from measurements of hydraulic heads at a
limited number of observation locations (e.g. Hill and Tiedeman, 2007). While many theo-
retical studies on parameter estimation in aquifers have concentrated on the assessment
of the spatially variable hydraulic-conductivity field, also groundwater recharge is known to20

be highly variable in both time and space (e.g. de Vries and Simmers, 2002). Among the
different techniques of estimating recharge reviewed by Scanlon et al. (2002), we consider
here numerical approaches in which measured time series of hydraulic head are used to
estimate groundwater recharge. The key question to be addressed in the present study is
under which conditions it is possible to infer both the recharge field (a space-time function)25
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and the spatial distribution of hydraulic conductivity from the same data set of hydraulic-
head measurements.

In engineering practice, the model domain is typically subdivided into a small number
of zones with given geometry, and uniform values of the material properties are assigned
to each zone. Likewise, the land-surface is subdivided into zones with uniform recharge5

values, reflecting land use, soil types, and local climate variability. As an alternative, param-
eter values may be estimated at a limited number of points and interpolated in between (e.g.
Doherty, 2003). By construction, these approaches can only determine spatial structures of
the parameter fields meeting the prescribed shapes. A particular difficulty of this approach
is that the variability within the given zones may be bigger than between the zones, while10

the internal variability is completely neglected in the parameter estimation.
The estimation of hydraulic conductivity as a continuous field has been intensively inves-

tigated in the past (see for example the reviews of Sanchez-Vila et al., 2006; Vrugt et al.,
2008 and recently Zhou et al., 2014). In these approaches discretization of the domain
leads to a formal number of parameters to be estimated that is identical to the number15

of cells or grid points. Typical 2-D applications result in O (104) parameters, whereas 3-D
numerical domains may easily be made of O (106) cells. As the number of measurement
points is by orders of magnitude smaller, this inverse problem is inherently ill-posed with-
out additional constraints. Some authors therefore rely on flexible sets of shapes, such as
polynomial trends or Voronoi polygons (e.g. Tsai et al., 2003a, b) rather than estimating O20

(104–106) parameter values. In standard geophysical inversion, Tikhonov regularization is
the common approach to estimate distributed parameter fields from a limited set of mea-
surements. Here, the parameters are assumed to be continuous spatial functions, but large
gradients, curvatures, or deviations from prior values are penalized (applications to sub-
surface hydrology are given by Doherty and Johnston, 2003; Tonkin and Doherty, 2005;25

Doherty and Skahill, 2006, among others). In subsurface hydrology, however, the geostatis-
tical framework is more common. Kitanidis (1997) and independently Maurer et al. (1998)
showed that the two approaches are mathematically equivalent to each other.
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In geostatistical inversion, the parameter field to be estimated is assumed to be an au-
tocorrelated random space function. This prior knowledge is used in Bayesian inference,
where the statistical distribution of the parameters is conditioned on the measurements
of dependent quantities, such as hydraulic heads. A variety of schemes targets a single
smooth spatial distribution approximating the conditional mean of the parameter field us-5

ing Gauss-Newton- or conjugate-gradient-type of estimation schemes (e.g. Yeh and Yoon,
1981; Kitanidis and Lane, 1985; Zou et al., 1993; Li and Elsworth, 1995; Kitanidis, 1995;
Yeh et al., 1996; Aschenbrenner and Ostin, 1995; McLaughlin and Townley, 1996; Spedi-
cato and Huang, 1997; Loke and Dahlin, 2002). These methods can be extended to the
generation of multiple conditional realizations by the method of smallest modification (e.g.10

RamaRao et al., 1995; Gómez-Hernández et al., 1997). However, the computational costs
to obtain a single conditional realization is identical to that of the smooth best estimate. Also,
the Gauss-Newton method requires the evaluation of the sensitivity of each measurement
with respect to all parameter values, involving the solution of as many adjoint problems as
there are measurements, which may become unbearable in case of many measurements,15

such as those obtained from transient processes. In the context of the present study it may
be noteworthy that many geostatistical approaches have focused on the exclusive estima-
tion of hydraulic conductivity, some include storativity (e.g. Gómez-Hernández et al., 1997;
Kuhlman et al., 2008; Li et al., 2007), but most assume that the boundary conditions are
deterministic. An exception is Hendricks Franssen et al. (2004) who used the geostatistical20

approach of sequential self calibration to jointly estimate the fields of hydraulic conductivity
and groundwater recharge from head measurements. The authors considered the prob-
lem of a well-capture zone, in which they estimated hydraulic conductivity as continuously
varying spatial field, whereas recharge was parameterized by zones with uniform values.

In groundwater hydrology, sequential data assimilation and Kalman filter methods have25

been used since long (e.g. Ferraresi et al., 1996; Eppstein and Dougherty, 1996; Hantush
and Mariño, 1997). Particularly, and increasingly, popular is the Ensemble Kalman filter
(EnKF) (Evensen, 1994) or versions thereof. Although the EnKF was primarily constructed
to update model-state variables, in subsurface hydrology it is commonly used to estimate
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hydraulic conductivity. For this purpose Hendricks Franssen and Kinzelbach (2008), Dré-
court et al. (2006), Tong et al. (2010, 2011), Xu et al. (2013a, b), Panzeri et al. (2015)
all showed that the use of head observations in an EnKF framework can help improving
the conductivity estimates, while Crestani et al. (2013) and Tong et al. (2013), among oth-
ers, considered tracer tests for the same purpose. Most parameter estimations used 2-D5

models, as these are conceptually simpler, faster and easier to constrain and display. How-
ever, EnKF has also successfully been applied to infer 3-D hydraulic-conductivity fields (e.g.
Schöniger et al., 2012).

An important step in setting up an EnKF to estimate parameters is the choice of initial
ensemble. This choice is the most straight forward way of allowing prior information, such10

as ideas about correlation lengths, mean values or spatial pattern, to influence the filter
process. From a technical point of view, the issue of initial sampling is how to represent the
prior knowledge in an ensemble that is as small as possible, by, for example, adding ensem-
ble subspace restriction and requirements on the sampling (e.g, Evensen, 2004; Oliver and
Chen, 2008). From a practical point of view, especially in subsurface modeling, the issue15

is that our prior knowledge of the parameters, their mean values, deterministic trends, and
spatial correlation structure is often limited. This may be seen as a more severe problem
than choosing a sufficiently large ensemble size to actually capture the assumed variability
by the ensemble. To overcome the limited knowledge about true parameters values, the use
of synthetic test cases for methods testing and evaluation is very common in subsurface hy-20

drology (e.g. Schlüter et al., 2012; Schelle et al., 2013). Here, the prior knowledge is only
limited to what the modeler considers a reasonable assumption and it is not uncommon in
the groundwater-EnKF context that the synthetic true parameter field is a single realization
generated the same way as the initial ensemble (e.g. Huang et al., 2008; Tong et al., 2011,
2013; Vogt et al., 2012; Panzeri et al., 2014; Zhou et al., 2014). Hence, perfect knowledge25

about the statistics of the estimated parameters is implicitly assumed, which is a highly un-
realistic assumption. The impact of the prior assumptions in groundwater modeling were
considered, for example, by Li et al. (2012) who concluded that it was possible to estimate
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reasonable log-conductivity fields using the EnKF despite wrong priors, although the result
was worse than when using correct information.

In this work we study the impact of the prior knowledge when jointly estimating conduc-
tivity and recharge. We use an EnKF setup in which the initial ensemble is drawn using
different assumptions of the spatial pattern of the parameters. Sect. 2 discusses why the5

conductivity and the recharge are so difficult to estimate jointly if only pressure-head data
is available. Sect. 3 explains the Ensemble Kalman filter and the synthetic example used
throughout this paper, while results and discussions are found in Sect. 4. We end with con-
clusions in Sect. 5.

2 Theory10

In regional-scale groundwater-flow problems, we typically rely on the validity of the Dupuit
assumption, stating that variations in hydraulic head and groundwater velocity are restricted
to the horizontal directions. Under this condition, the depth-averaged, two-dimensional
groundwater-flow equation for a phreatic aquifer reads as:

Sy
∂h

∂t
−∇ · (K (h− z0)∇h) =R (1)15

subject to initial and lateral boundary conditions. Sy(x) [–] is the specific-yield field, which is
the drainage-effective porosity of the formation, K(x) [L T−1] denotes the depth-averaged
hydraulic-conductivity field, R(x, t) [L T−1] is the field of groundwater recharge, z0(x) [L]
denotes the geodetic height of the aquifer bottom, h(x, t) [L] is the hydraulic-head field to
be simulated, t [T] is time, and x [L] is the vector of horizontal spatial coordinates.20

The term K(h− z0) may be interpreted as a transmissivity field T (x, t) [L2 T−1], varying
in space and time. We now consider a confined surrogate aquifer with an assumed trans-
missivity field Tass(x) [L2 T−1] that differs from the true one (e.g. an incorrectly estimated
transmissivity field). The logarithm of the scaling factor between the two transmissivities is
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denoted f(x, t) [–]:

f = ln

(
K × (h− z0)

Tass

)
. (2)

Substituting Eq. (2) into Eq. (1) yields:

Sy
∂h

∂t
−∇ · (Tass exp(f)∇h) =R. (3)

Applying the chain-rule of differentiation to the divergence in Eq. (3), the product rule of5

differentiation to ∇exp(f), and dividing by exp(f) results in:

exp(−f)Sy︸ ︷︷ ︸
:=Sapp

∂h

∂t
−∇ · (Tass∇h) = exp(−f)R+∇f · ∇hTass︸ ︷︷ ︸

:=Rapp

(4)

⇒ Sapp
∂h

∂t
−∇ · (Tass∇h) =Rapp (5)

subject to the same initial and lateral boundary conditions as above. In Eq. (5), Sapp(x, t) [–]
and Rapp(x, t) [L T−1] are apparent specific-yield and groundwater-recharge fields. Equa-10

tion (5) results in exactly the same hydraulic-head distribution as the original groundwater-
flow Eq. (1), even though the transmissivity field is different. Note that exp(−f) is positive,
so that the apparent specific yield Sapp remains positive, whereas no sign restrictions apply
to∇f ·∇h, resulting in both positive and negativeRapp values. In case of a phreatic aquifer,
the true transmissivity varies with hydraulic head, so that the apparent parameters change15

with time. If the water-filled thickness of the true aquifer does not change with time, which
is the case for confined aquifers, the apparent fields are time-invariant.

The derivation given above exemplifies that the same hydraulic-head field can be ob-
tained with different hydraulic-conductivity fields by modifying recharge and, in the case of
transient flow, the specific yield. Noteworthy is that the apparent recharge depends on the20

gradient of the original transmissivity field. Hence, a large – positive or negative – apparent
7
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recharge is expected at locations where the transmissivity changes drastically. Though we
have shown that modifications of recharge and specific yield can always replace the con-
ductivity, the opposite case is not guaranteed, because the conductivity has clear physical
limitations, notably it cannot be negative.

The fact that conductivity variation can be exchanged by recharge and specific-yield vari-5

ations renders the joint estimation of hydraulic conductivity, recharge (and specific yield) an
inherently ill-posed problem even when the hydraulic-head field is known at every point in
the domain (and every time point).

We may illustrate the problem by the example of an unconfined aquifer at steady state,
shown in Fig. 1. The original simulation (left column in Fig. 1) exhibits a square-shaped10

inclusion of low permeability in an otherwise uniform high permeability field (first row; two
orders of magnitude difference in K) and a constant low recharge rate (second row). As
boundaries, we employ a significant head drop from west (50 m) to east (8 m) and no flow
boundaries on the north and south sides. The resulting head field is shown in the third row
of Fig. 1, and the corresponding field of Darcy velocities in the fourth row of Fig. 1.15

If the inclusion is removed, and the recharge remains the same, the system shows a
perfectly homogeneous behavior (middle column of Fig. 1). The third column in Fig. 1, on
the other hand, shows exactly the same hydraulic-head field as the original simulation,
but the permeability field is uniform, whereas the recharge field shows strong fluctuation.
From Fig. 1 we can note that, in accordance with Eq. (4), the strong positive and negative20

recharge rates are introduced at the interface of the removed inclusion. Also, while the head
fields of the original and surrogate models are identical, the velocity fields are quite different,
because the conductivities are different. The latter implies that transport would be strongly
different between the two cases. It becomes also clear that, without additional constraints,
a unique joint estimation of both recharge and conductivity fields is strictly impossible.25

In classical model calibration, the ambiguity between transmissivity and groundwater
recharge may cause problems of ill-posedness, but assuming presumably known zones
with block-wise uniform parameter values restricts the solution of the inverse problem. As
example, the strong positive and negative recharge values of the surrogate model in Fig. 1
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would most likely not be obtained in standard model calibration because the recharge zones
would hardly be chosen as embedded rectangular frames. In shape-free inversion, using
either Tikhonov regularization or geostatistical methods, by contrast, the solution space is
much less restricted and chances that unresolved transmissivity variations are traded for
recharge fluctuations are in principle fairly high. The question thus arises under which con-5

ditions the estimated fields are reasonable despite the ambiguity of aquifer properties and
boundary conditions.

3 Methods

3.1 Kalman filter

In the following we briefly repeat the basic assumptions of deriving the Ensemble Kalman10

Filter (EnKF) within a Bayesian framework. While it is possible to have a much more prag-
matic view on EnKF as an extended least-square estimator, we believe that the trans-
parency of the Bayesian framework with respect to the underlying assumptions is bene-
ficial. In particular, the Bayesian framework explains the choice of initial ensemble as prior
knowledge and the conceptual importance of the prior knowledge in the estimation proce-15

dure, while a frequentist’s standpoint of view is in contrast to making use of prior knowledge
altogether. For further transparency, we first explain the extended Kalman filter (see for
example similar derivations by Evensen (2009)).

We denote the vector of all parameters (recharge values and log-hydraulic conductivities
of all cells) Φ. Prior to considering measurements, they are assumed to be random functions20

following a multi-Gaussian distribution, which is fully characterized by the prior mean µ′Φ
and covariance matrix P′ΦΦ. If we assume that the covariance function P ′ΦΦ(h) is stationary
with the distance vector h and known structural parameters (variance, correlation lengths,
rotation angles), the element (i, j) of the covariance matrix P′ΦΦ is P ′ΦΦ(x2−x1). The full
matrix is constructed by all grid points.25
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The vector of simulated hydraulic heads ht at time level t depends on the heads ht−1 at
the previous time level and on the parameters Φ. Because the old heads ht−1 depend on
Φ, they are random variables, too. In the combination of data assimilation and parameter
estimation applied here, the vector of all simulates states (the heads ht in all cells) and the
vector of all parameters Φ are concatenated to a single vector xt of states and parameters,5

assumed to be random multi-Gaussian functions with unconditional mean µ′x and covari-
ance matrix P′xx, in which the prior statistics of ht are obtained by linearized uncertainty
propagation of the statistics of ht−1 and Φ.

For convenience, we denote running the model and simulating the observations (which is
here just picking the heads at the observation locations) as f t(ht−1, xt). It should be noted10

that f here, hence, denotes both the forward model and the observation operator. This
model outcome is contrasted to the measurements of heads at time level t, here denoted
yt. The true (unknown) heads at the measurement locations are considered to be a vector
of random variables with a multi-Gaussian distribution, characterized by the measurement
vector yt as mean and the covariance matrix R, reflecting measurement error.15

Since we assume multi-Gaussian distributions, finding the best conditional estimate µ′′x,
of the entire head field at the new time level and the parameters by application of Bayes’
theorem results in minimizing the following objective function W (xt):

W (xt) =
(
xt−µ′xt

)T
P′−1
xtxt

(
xt−µ′xt

)
+ (f t (ht−1,xt)−yt)T R−1 (f t (ht−1,xt)−yt) (6)

which is done by setting the derivative of W (x) to zero. In the linearized version, f t(ht−1,20

xt) is linearized about the prior mean µ′xt , and the linearized conditional covariance matrix
P′′xtxt of xt is obtained by inverting the Hessian of W (xt), using the same linearization.
Kalman filtering is based on these approximations. Here, the data are successively ac-
counted for, considering one time level after the other. Then, the posterior mean µ′′xt and
covariance matrix P′′xtxt of time level t are propagated to the next time level t+ 1 to obtain25

the corresponding prior mean and covariance matrix.
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By applying rules of matrix identities it can be shown that linearization about the prior
mean µ′xt leads to the following expression for the conditional mean and covariance matrix:

µ′′xt = µ′xt +P′xtyt
(
P′ytyt +R

)−1 (
yt−f t

(
µht−1 ,µ

′
xt

))
(7)

P′′xtxt = P′xtxt −P′xtyt
(
P′ytyt +R

)−1
P′ytxt (8)

in which P′ytxt = JP′xtxt is the cross-covariance matrix between yt and xt, P′xtyt =P′Tytxt ,5

and P′ytyt = JP′xtxt J
T is the propagated covariance matrix of yt, expressing the uncertainty

of yt caused by the uncertainty of xt. J denotes the sensitivity matrix of f t with respect to
xt, derived about the prior mean.

The scheme described so far is known as extended Kalman filter. It relies on linearization
about the prior mean and has the disadvantages that the full sensitivity matrix J must be10

evaluated, which can be computationally very costly. Also, already slight nonlinearities in
f t(ht−1, xt) imply that the propagated covariance matrices are not correct.

A popular alternative to the original Kalman filter is the Ensemble Kalman filter (EnKF)
(Evensen, 1994), in which the linearization is performed about an entire ensemble of state
and parameter values, and no sensitivity matrices are computed. The prior statistics are15
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given by:

µ′xt =
1

n

n∑
i=1

x
′(i)
t (9)

µ′yt =
1

n

n∑
i=1

f t

(
h
′′(i)
t−1,x

′(i)
t

)
(10)

P′xtxt =
1

n− 1

n∑
i=1

(
x
′(i)
t −µ′xt

)
⊗
(
x
′(i)
t −µ′xt

)
(11)

P′xtyt =
1

n− 1

n∑
i=1

(
x
′(i)
t −µ′xt

)
⊗
(
f t

(
h
′′(i)
t−1,x

′′(i)
t

)
−µ′yt

)
(12)5

P′ytyt =
1

n− 1

n∑
i=1

(
f t

(
h
′′(i)
t−1,x

′(i)
t

)
−µ′yt

)
⊗
(
f t

(
h
′′(i)
t−1,x

′(i)
t

)
−µ′yt

)
(13)

in which n is the number of ensemble members, the superscript (i) denotes the ith member,
and a⊗ b is the tensor product of vectors a and b. As before, the prior values are denoted
by a single prime, and the posterior by a double prime. Upon initialization, the original
ensemble members x(i)

0 are drawn from the unconditioned multi-Gaussian distribution of x,10

whereas the updating of the individual ensemble members follows the procedure outlined
above:

x
′′(i)
t = x

′(i)
t + bP′xtyt

(
P′ytyt +R

)−1
(
yt + ε(i)−f t

(
h
′′(i)
t−1,x

′(i)
t

))
(14)

in which ε(i) is a vector of random observation noise drawn from a multi-Gaussian dis-
tribution with zero mean and covariance matrix R. The factor b is the so called damping15

parameter (e.g. Hendricks Franssen and Kinzelbach, 2008) which serves to slow down the
update of states and parameters. It is an ad-hoc tuning parameter that is primarily required
for small ensemble sizes; few guidelines exist on how to select it. In this work, the damping
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is set to 0.6 for the updates of the head values and 0.05 for the parameter update, though
since the ensemble size is large and there are many temporal observations (see below), the
choice is not crucial in any sense. For a more in-depth description of the filter algorithm, the
interested reader can consult Evensen (2003) or Burgers et al. (1998) for general filter de-
tails or Erdal et al. (2014) and Erdal (2014) for in-depth details on the actual implementation5

used in this study.
It should be noted that the ensemble Kalman filter still relies on the same assumptions

as the original Kalman filter. Notably, the combined vector of states, parameters, and ob-
servations is assumed to be a multi-Gaussian random variable, which means that xt is
multi-Gaussian, the model f t depends linearly on xt, and the measurement error is multi-10

Gaussian, too. These conditions are not strictly met, so that the EnKF solution is only a
linearized estimate. However, in contrast to the extended Kalman Filter, in EnKF the lin-
earization is performed by considering an entire ensemble rather than by taking derivatives
at a single point (e.g. Nowak, 2009). The large ensemble sizes used in this work as well as
the repeated application over many time steps alleviates the effects of nonlinearity to some15

extent, by allowing a generous use of the dampening factor. Hence the filter is slowed down
and the possible erroneous updates resulting from the linearization have a less strong effect
on the update. Further, the model considered is only weakly nonlinear, so that in total the
effects of the linearlizations are likely small compared to other sources of errors (e.g. prior
uncertainties, as discussed later).20

An important constraint is that the scheme, like any other Bayesian method, depends
on the choice of the unconditional mean and covariance structure of the parameters Φ. It
is important to keep in mind that our application (estimating spatial patterns of both hy-
draulic conductivity and recharge from hydraulic-head data) is based on, at least partially,
ambiguous data, as outlined in Sect. 2. Bayesian parameter-estimation schemes are well25

posed even in the presence of non-informative or ambiguous data due to the prior infor-
mation. Thus, while the updating procedure leads to modifications of the parameters, the
original prior knowledge carries over. Spatial patterns that are in contradiction to the prior
knowledge cannot be recovered by the scheme. This would of course be different if the

13
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observations were in strong contradiction to the prior. If so, we could see a departure from
the prior, both in terms of absolute values as well as in terms of structure. This point will
be discussed more in Sect. 5. In our application, however, Φ contains parameters describ-
ing both aquifer properties and boundary conditions and, as we have shown above, the
effects of these two types of parameters on the measured heads can be similar. Hence,5

the data can be non-unique with respect to the parameters and the prior knowledge may
determine which patterns of conductivity and which patterns of recharge that can be jointly
inferred by the scheme. If the prior knowledge is erroneous, the estimated fields may also
be erroneous.

3.2 Setup of a synthetic experiment10

For testing the possibilities and limitations in jointly estimating conductivity and recharge,
we have set up a synthetic 2-D example of transient flow in an unconfined aquifer. The
model setup is shown in Fig. 2 and consists of spatially variable recharge with a tempo-
ral seasonal trend, spatially variable conductivity, a temporally variable southern boundary
corresponding to a river, as well as 5 pumping wells. The actual recharge is calculated by15

multiplying the trend parameter with the shown recharge field. More technical details about
the setup is found in Table 1. Observations of groundwater heads are taken daily at 45 ob-
servation wells spread throughout the domain during a 1 year simulation and assuming an
observation error of 1 cm. The recharge and log-conductivity fields are both sampled as
random fields with anisotropic, exponential covariance functions and strong rotation of the20

principal directions of anisotropy (Table 2). It should be noted that here the reference con-
ductivity and the reference recharge fields are generated as fields that are uncorrelated to
each other. This could, for example, represent a scenario in which the recharge is primarily
controlled by variable land use and vegetations while the conductivity is a constant material
property.25

For the estimation of the recharge and conductivity fields, we apply the Ensemble Kalman
filter using an ensemble of 2000 members. As this work aims at exploring which prior knowl-
edge is required for the estimation process, three different cases of prior knowledge are
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considered. In the first, the initial ensemble members are drawn from the same (hence cor-
rect) distribution as the reference (true) field. The second case is identical to the first apart
from the rotation angle of the anisotropy being randomly chosen for each ensemble mem-
ber. In the third case, the rotation angle is fixed but wrong. Here, the recharge is sampled
using the rotation angle and correlation lengths of the true conductivity field and vise versa,5

creating a rather problematic initial ensemble. A plot of the three correlation structures can
be found in the bottom of Fig. 3 in Sect. 4 where the three initial ensembles are called the
“good”, “random” and “wrong” ones. Please note that the correlation plot for the random
initial is only meant as an illustration of the fact that each ensemble has a unique rotation
angle and does not show the actual angles considered.10

The goodness of the resulting fields are judged in two ways. First, the ensemble mean
of the fields are visually compared to the reference fields and subjectively judged to be
similar or not. Second, the normalized root mean square error of the simulated heads in the
45 observation wells is computed by:

NRMSE =

√√√√√ 1

ntnobs

t2∑
t=t1

nobs∑
i=1

(
htrue(i, t)−h(i, t)

)2

σ2
h

(15)15

where nt is the number of temporal observations between t1 and t2, nobs the number of
observation locations (here 45), h(i, t) is the ensemble mean head observation at posi-
tion i and time t, htrue is the corresponding true value, and σh is the measurement uncer-
tainty of hydraulic-head observations, hence here a fixed value decided prior to the EnKF
simulations. This gives a quantitative metric of judging the actual performance of the esti-20

mated model. We assimilate head observations from day 50 to day 300, while the remaining
65 days of the one-year data is used to test the model’s predictive capabilities. This results
in an assimilation error for judging how well the assimilation went and a prediction error for
judging the models predictive powers. It should be noted that to properly asses the predic-
tive power of the model in a scenario different to the one used for the assimilation, one of25

the four wells shown in Fig. 2 only starts pumping at day 301. As this is a virtual experiment,
15
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one could also consider calculating the NRMSE based on the head error in all grid cells,
but in a real-world application such data would not exist. In this work, we prefer considering
only the head-values at observation points, as it also gives an idea of the usefulness of
using available observations as a means to estimate the goodness of the result.

We have combined the three different prior distributions with three different estimation5

problems, namely the estimation of (a) recharge alone, (b) hydraulic conductivity alone,
and (c) recharge and hydraulic conductivity together, leading to a total of nine different
scenarios. In the stand alone scenarios, all other parameters and settings are assumed
known and, hence, set to their true values. As can be seen from Fig. 2, the recharge not only
shows a strong spatial pattern but also a temporal trend. In the estimations shown below,10

this temporal trend is assumed known. We have also conducted successful assimilations
estimating the trend parameter. However, as the absolute recharge values of these tests
may vary with the absolute value of the scaling parameter, the results are less intuitive to
display and therefore only the assimilations with known trend function are shown.

4 Results and discussion15

4.1 Stand-alone estimation of recharge or conductivity

The simplest of the estimation problems presented in this study is the stand-alone estima-
tion of recharge, since the hydraulic heads depend linearly on recharge. This is reflected in
the estimated recharge fields shown in Fig. 3. As expected, the best results are achieved
with the best initial estimate (second column). However, also the estimates using the co-20

variance functions with the random and wrong orientations of anisotropy show in large
the right pattern. Table 3 quantitatively confirms these qualitative findings by low values of
the normalized root mean square error of predicted heads. From the last column in Fig. 3
we see that, although the filter manages to produce a reasonable ensemble mean of the
recharge field, the similarity with the covariance function used to create the initial ensemble25

is still very prominent. This is especially so if one starts considering individual ensemble
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members (not shown), and it demonstrates how sensitive the EnKF method is to the initial
guess, even in this linear problem.

It is important to keep in mind that the ensemble size is large so that the plots of the
ensemble means shown in Fig. 3 are smoothed. It is not expected that the smooth ensemble
estimate exhibits the same extreme values as those seen in the true parameter distribution,5

whereas individual ensemble members should show the same variability as the (unknown)
reference field.

In comparison to estimating the recharge fields, the estimation of conductivity fields alone
is more complicated. Here, the nonlinearities of Eq. (1) affects the estimation. More impor-
tantly, the orientation of the anisotropy of heterogeneity plays a vital role in the behavior of10

groundwater flow. This is also seen in the final estimates of the conductivity fields, shown
in Fig. 4, where the only reasonable result is achieved if the right pattern is assumed in the
prior knowledge (second column) or if the prior pattern is random (third column). The rea-
sonable performance of the prior distribution with diffuse knowledge about the anisotropy
orientation may be explained by the large initial ensemble containing some members with15

reasonable patterns and decent behavior. In the case that the orientation of anisotropy is
assumed erroneously in the prior knowledge (fourth column), the filter completely fails to
produce any result similar to the truth. This finding does not depend on the ensemble size.
The prediction errors listed in Table 3 clearly confirm the visual impression.

The prediction errors listed in Table 3 emphasize that estimating recharge leads to20

smaller errors in predicting heads than the estimation of the hydraulic-conductivity field.
This could indicate that improvements of the estimated conductivities are more important
for lowering the prediction error, which would follow the findings of Hendricks Franssen et al.
(2004). As pointed out above, the higher errors when estimating conductivities are likely re-
lated to the head value in a cell depending not only on the conductivity of that cell but to the25

macroscopic anisotropy of hydraulic conductivity in the entire aquifer.
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4.2 Joint estimation of recharge and conductivity

As derived in Sect. 2, joint estimation of recharge and conductivity fields is impossible with-
out prior knowledge about either of the two quantities. In Bayesian inversion methods, how-
ever, prior knowledge is assumed anyway. In the EnKF method, the prior information is con-
veyed by the initial ensemble drawn from the prior distribution. By this, the jointly estimated5

recharge and conductivity fields are unique and reproducible in a statistical sense. The re-
maining question is whether these estimates also resemble the true fields and whether they
are good for prediction purposes.

Figure 5 shows the results of the joint estimation using the three different initial ensem-
bles and Figure 6 shows the corresponding spatial distributions of the estimation variance.10

If the initial ensemble is good, that is the reference fields are drawn from the same statistical
distribution as the initial ensemble, it is possible to estimate both conductivity and recharge
with reasonable precision, given the number and accuracy of observations (second col-
umn). When the initial ensemble is poor, however, the result is rather poor for the recharge
and more blurry for the conductivity (third column), or we infer fields that look good but are15

wrong (last column).
As shown theoretically in Sect. 2, it is always possible to compensate a missing or wrong

conductivity with a recharge. An effect of this compensation is also clearly seen in the
last column of Fig. 5: even after 250 days of data assimilation, the estimated recharge
shows remarkable similarity with the reference conductivity field. The long assimilation time20

is important, since, if there would have been no compensation, the estimated fields would
not retain their erroneous structures for so many filter updates. This shows that the issue
of trading one quantity for the other is not only a theoretical issue, but also relevant in
practice. It should be noted here that the cause of the original poor estimations is not the
compensation mechanism described in this paper, but the false prior sampling. However,25

the compensation mechanism sustains the poor estimates when the observations are, as
in this work, non-unique.
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The lacking ability of the random and wrong initial ensemble estimates with respect to pre-
dicting heads under conditions not encountered in the calibration period are documented
in Table 3, where the prediction errors caused by the poorly estimated fields are often an
order of magnitude larger then those resulting from a good estimation. It is interesting to
note that the error obtained throughout the assimilation, shown in Table 4, is not a good5

indicator for the predictive capabilities of the various models, as quantified by the predic-
tion errors listed in Table 3. Although there are differences in the assimilation error, both
within and between the different estimation setups, it would be difficult to predict any model
performance from these errors. That the joint estimation is performing much better with the
good prior compared to the poorer ones is only obvious if the full table is available. The10

same behavior is illustrated with an example of two observations wells in Fig. 7, from which
it is clearly shown that all approaches has a good fit during assimilation but that the wrong
prior deviates during the predictions. From a practical standpoint of view this highlights that
it is important have relevant validation data to test the predictive power of a model when the
parameters are inferred using sequential data assimilation.15

Like in the scenarios in which only recharge or only conductivity were estimated, the
mean joint estimate lack the extreme values of the reference fields. As discussed above,
such behavior is expected for the smooth best estimate even in cases where the scheme
works perfectly fine. Individual ensemble members show significantly stronger variability,
as can be seen also from the maps of the estimation variance in Fig. 6. We consider the20

results from the good initial ensemble as good, since they capture the main patterns of the
parameter fields well and have, overall seen, reasonable absolute parameter values. For
purposes of transport predictions, we would recommend using the entire ensemble rather
than the ensemble mean. In case of the estimates using the wrong prior knowledge, in
particular where the orientation of anisotropy is chosen randomly, the fluctuations cannot25

be aligned well in the right direction, and averaging over features oriented in all directions
lead to particularly smooth estimates of the mean.
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5 Conclusions

In the present study we have shown that it is possible to jointly estimate reasonable fields
of hydraulic conductivity (or its logarithm) and recharge as spatially fluctuating fields from
pure head observations provided that the statistics of the true fields are fairly well under-
stood. Starting with wrong assumptions about conductivity and recharge patterns can lead5

to aliasing, in which not detected features of hydraulic conductivity are traded for erroneous
fluctuations in recharge.

In real-case applications, the prerequisite of a good prior can pose a severe problem
because the true spatial patterns may be widely unknown. From a more technical stand-
point of view it may be noteworthy that a rather common way of setting up a synthetic10

groundwater-EnKF test is to generate a large ensemble of realizations and use one of them
as the truth and the rest as the initial ensemble. By this it is guaranteed that the statistics of
the initial ensemble is perfect and, as shown here, a good result can be expected. Unfortu-
nately, in real-world applications the geostatistics of (log)-hydraulic conductivity are typically
quite uncertain so that the good performance of a scheme, involving both the measurement15

strategy and the inverse method, in an overly optimistic test case regarding prior knowl-
edge may not be transferable. We thus highly recommend to design realistic test cases that
include potential bias in prior knowledge.

In the present work, we only used head data for data assimilation and parameter esti-
mation. With respect to unknown conductivity and unknown recharge, the drawback with20

head observations, as shown in Sect. 2, is that the observations are non-unique. Including
more head observations will, due to the non-uniqueness, not alleviate this drawback. Even
a perfectly observed groundwater system could be non-unique, since exactly same head
field can be achieved with different combinations of conductivity and recharge. Therefore,
the joint estimation is difficult and the goodness of the prior information becomes impor-25

tant. Other types of observations could, of course, also be considered. Ideally we would
have (plenty of) observations of subsurface fluxes or of conductivity. In this case, the total
data set would become highly informative and the prior would be significantly less impor-
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tant. However, this is not realistic for applications in subsurface hydrology. Fluxes cannot
be measured as such and conductivity measurements are, if existing and trusted, very lo-
cal. Further observations could be tracer tests, which are time consuming or age tracers
that may be costly and require very long simulation times. Head observations are, in this
respect, common and trustworthy measurement. Hence, our example can be considered5

rather realistic for a real world scenario of estimating aquifer parameters.
In real-world applications, vague guesses of the hydraulic conductivity distribution may

exist from drilling logs, slug tests, and pumping tests (e.g. Dietrich et al., 2008; Lessoff
et al., 2010). All of these tests are independent of recharge so that making use of this infor-
mation may alleviate the problem of non-uniqueness outlined in this paper to some extent.10

Vague guesses of K can find their way into parameter estimation either by means of an
improved prior of K or by explicitly accounting for the additional measurement types in the
EnKF procedure, including the full observation operator. For recharge, the patterns should
in principle reflect land use and soil types, which are accessible information. Further, spa-
tially variable recharge may also be constrained by the use of remote sensing information15

(Brunner et al., 2006; Hendricks Franssen et al., 2008). These type of data could either be
used as direct observations in the assimilation (if we trust them) or considered as prior in-
formation and used to condition the initial ensemble (Sun et al., 2009; Panzeri et al., 2013).
The latter could also be seen as a way of discarding initial samples that contain unfeasi-
ble conductivity-recharge combinations. This would create a much more appropriate initial20

ensemble. Hence, as shown in this work, the filter would have an increased change of suc-
cessfully estimating the parameters when the prior is good. The idea of improving the initial
ensemble can also be related to the popular method of multiple-point statistics. Here, the
use of training images which should represent relevant spatial correlation patterns have
been used to condition conductivity fields (see Okabe and Blunt, 2004; Hu and Chugunova,25

2008). The combination of assimilating head data and the use of training images to con-
dition the ensembles has also been tested with promising results (Li et al., 2013). The
combination of these approaches could prove a possible way to achieve a more correct
prior sample and, hence, to improve the performance of the joint estimation of conductivity
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and recharge fields by lowering the risk of conductivity-to-recharge aliasing due to wrong
prior knowledge.
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Table 1. Pumping rates and general model setup∗.

Pump 1 2 3 4 5
Rate (m3 h−1) 9 18 90 0.09 0.9
Start (day) 20 300 200 0 0
Stop (day) 150 365 360 370 300

Model setup ∆x (m) ∆y (m) dt (h) z0 (m) poro (–)
50 50 6 0 0.4

∗ Pumps are numberd as in Fig. 2, z0 and poro are the homogeneous bedrock
elevation and porosity.
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Table 2. Parameters and properties used for the generation of the synthetic examples conductivity
and recharge fields∗.

ln(K) R
ln (m s−1) (mm day−1)

µ −8.5 −0.7
σ 1.7 0.1

α (◦) 291 17
lx (m) 2000 5000
ly (m) 600 500

∗ µ is the mean, σ the variance, α the
rotation angle and lx and ly are the
correlation lenghts in x and y direction,
respectively.
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Table 3. Normalized root mean square error for the prediction period∗.

Good Random Wrong

R 1.3 1.6 1.9
K 2.6 3.1 17.4
R&K 6.0 13.5 15.0

∗ According to Eq. (15) for three setups of prior
knowledge (good, random, wrong) to estimate
recharge alone (R), conductivity alone (K) and
to jointly estimate conductivity and recharge
(R&K).
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Table 4. Normalized root mean square error for the assimilation period.

Good Random Wrong

R 0.3 0.4 0.5
K 1.2 0.9 3.7
R&K 2.2 2.4 3.7
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Figure 1. Illustrative example of replacing a heterogeneous conductivity field (left column panels)
with a homogeneous conductivity and an effective recharge (right column panels). Please note the
different scale on the third recharge plot.
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Figure 2. Setup of the synthetic test case used for the parameter field estimations.
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Figure 3. Estimation of stand-alone recharge. Upper panels show the ensemble mean and lower
plots the covariance function used to generate the initial ensemble. Please note that the random
covariance functions imply drawing the rotation angle from a uniform distribution between 0 and 2π,
whereas only a few illustrative examples are shown.
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Figure 4. Estimation of stand-alone conductivity. Upper panels show the ensemble mean and lower
plots the covariance function used to generate the initial ensemble. Please note that only a few
illustrative examples of the random orientation angle of anisotropy are shown.
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Figure 5. Joint estimation of recharge (top row panels) and conductivity (middle row panels). Shown
is the ensemble mean and the covariance functions used to generate the initial ensembles (bottom
row panels).
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Figure 6. Joint estimation of recharge (top row panels) and conductivity (bottom row panels). Shown
is the ensemble variance.
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Figure 7. Two head observations plotted over time for the joint estimation of recharge and conduc-
tivity. Shown is the ensemble mean. Assimilation is performed from day 50 to day 300 while the
remaining days are considered for prediction.
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