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Abstract

A recurrent problem in hydrology is the absence of streamflow data to calibrate rainfall-
runoff models. A commonly used approach in such circumstances conditions model
parameters on regionalized response signatures. While several different signatures are
often available to be included in this process, an outstanding challenge is the selection
of signatures that provide useful and complementary information. Different signatures
do not necessarily provide independent information, and this has led to signatures
being omitted or included on a subjective basis. This paper presents a method that
accounts for the inter-signature error correlation structure so that regional information
is neither neglected nor double-counted when multiple signatures are included. Using
84 catchments from the MOPEX database, observed signatures are regressed against
physical and climatic catchment attributes. The derived relationships are then utilized
to assess the joint probability distribution of the signature regionalization errors that is
subsequently used in a Bayesian procedure to condition a rainfall-runoff model. The re-
sults show that the consideration of the inter-signature error structure may improve pre-
dictions when the error correlations are strong. However, other uncertainties such as
model structure and observational error may outweigh the importance of these corre-
lations. Further, these other uncertainties cause some signatures to appear repeatedly
to be disinformative.

1 Introduction

In many areas of the world the absence of past observational streamflow time se-
ries to calibrate rainfall-runoff models limits the ability to apply such models reliably to
predict streamflow and inform effective water resources management. Whilst a large
and increasing number of regions across the world are insufficiently gauged (Mishra
and Coulibaly, 2009), there are also many highly monitored catchments (Gupta et al.,
2014). Transferring the knowledge gained in data-rich areas to ungauged catchments -
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a process known as regionalization - offers a possible way of overcoming the absence
of streamflow observations in data-scarce regions. Several techniques for transferring
information are reported in the literature (for an overview of different methods used in
continuous streamflow regionalization see He et al. (2011), Peel and Bléschl (2011),
and Razavi and Coulibaly (2013), and for a recent comparative assessment of some of
the most commonly used methods see Parajka et al. (2013)).

A commonly applied approach is to use response signatures (e.g. the runoff ratio and
the base flow index), which can provide insight into the hydrological functional behavior
of a catchment (Wagener et al., 2007). Response signatures are calculated from avail-
able system output or input-output time series for numerous gauged catchments with
known catchment attributes, i.e. physiographic and/or meteorological attributes (e.g.
drainage area, latitude and longitude, average annual temperature, average monthly
precipitation, etc.). Subsequently, statistical models relating each response signature
to a set of catchment attributes can be identified. Given the attributes of an ungauged
catchment, the signatures for the ungauged location can then be estimated using the
derived statistical models. Numerous regional models of this type can be found in the
literature (e.g. Boorman et al., 1995). These regionalized signatures can be used to
constrain the prior range of streamflow simulations generated using a pre-selected
rainfall-runoff model structure and hence restrict the model parameter space (Yadav
et al., 2007; Zhang et al., 2008; Bulygina et al., 2009; Castiglioni et al., 2010).

Different ways of incorporating the regionalized information into a catchment model
have been suggested in the literature. This includes set-theoretic approaches (e.g.
Yadav et al., 2007; Winsemius et al., 2009) and more formal Bayesian data assimila-
tion frameworks (e.g. Bulygina et al., 2009, 2011; Castiglioni et al., 2010; Singh et al.,
2011). Where probability distributions characterizing regionalization quality have been
estimated, a Bayesian conditioning procedure is one of the possibilities (Bulygina et al.,
2009, 2011). This provides a framework for combining prior knowledge with the re-
gionalized data and/or other sources of information (e.g. small scale physics-based
knowledge and hydrological measurements as in Bulygina et al., 2012),which has the
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potential to formally encompass the nature of the errors arising from the regionaliza-
tion.

Conditioning a rainfall-runoff model on multiple independent signatures would reflect
a spectrum of processes and in principle lead to an accurate prediction of flow time
series (Parajka et al., 2013). However, regionalized signatures have correlated errors,
for example if the signatures have been estimated using a common dataset of catch-
ment attributes or using the same hydro-climatic data; and in general the correlations
are expected to be stronger for pairs of signatures that represent similar functional be-
haviors of the catchment. This raises the questions of, not only how many and which
signatures should be used, but also how to avoid double-counting of the information
in signatures with correlated error distributions. Previous applications have tended to
use a small number of signatures (e.g. Bulygina et al., 2009, 2011) and/or have tended
to select signatures that are considered to be independent (e.g. Yadav et al., 2007).
When multiple signatures are used, the correlations between the errors in the different
sources of information are commonly disregarded (e.g. Bulygina et al., 2012). To make
better use of information in available sets of signatures, a formal way of combining them
so that information is neither double-counted nor neglected is required. Using formal
methods to include autocorrelated data errors in model calibration is well-researched
(e.g. Sorooshian and Dracup, 1980); an application of comparable methods in the re-
gionalization context will allow making more formal and rigorous assessments of the
value of correlated information sources.

Formally, in a Bayesian context, it is necessary to distinguish between correlated
signatures and correlated signature errors. It is the correlation between the errors that
should be accounted for in the likelihood function to avoid double-counting of informa-
tion. It is possible to have two highly correlated signatures that are derived from inde-
pendent information sources and therefore they have uncorrelated errors. In that case
it would be valid to include both signatures in the likelihood function without accounting
for correlation. This principle is well established when considering Bayesian calibration
to a time series of flow observations, where flow values are typically strongly autocor-
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related - but it is the observation error autocorrelation that is relevant to the likelihood
function derivation (e.g. Sorooshian and Dracup, 1980). The same principle applies to
adopting signatures as the observations. In the case study below, the signatures are
derived from a common dataset using a common approach, so in practice the signa-
ture correlations are comparable to the signature error correlations; nevertheless for
the sake of formality, we use the term signature error correlations (or covariance).

In this paper we introduce and test a method that considers multiple regionalized
signatures, explicitly accounting for the signature error correlations. By formally ac-
counting for the error covariance, we hypothesize that accuracy of flow predictions
will generally improve and a greater number of signatures can usefully be included
without introducing avoidable bias related to the duplication of information. The objec-
tive is thus to explore how to get fuller value out of a set of regionalized information
than has been achieved in past applications. The method is applied to a set of 84
United States catchments with a broad range of hydro-meteorological characteristics,
obtained from the Model Parameter Estimation Experiment (MOPEX) dataset (Duan
et al., 2006; Schaake et al., 2006). The impact of signature error covariance is as-
sessed using pairs of signatures to condition a rainfall-runoff model. Along with the real
data, synthetic streamflow data are used to isolate the effect of model structural er-
ror. Further, the model is conditioned on a variable number of regionalized signatures
to evaluate whether an increasing number of signatures is justifiable when formally
accounting for the error covariance.

2 Method

2.1 Bayesian method for signature assimilation

Using a simple least-squares regression, observed signatures of catchments’ func-
tional responses are related to physical and climatic attributes of the catchments. As-
suming that the same catchment attributes are available for an ungauged location, it
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is possible to obtain an estimate of the set of signatures for the location. Further, the
parametric distribution of regression errors can be directly translated to a response
signature(s) likelihood function. The likelihood function can then be used to update the
prior available knowledge about model parameters via Bayes’ law, which is expressed
as

L(s(@)|s*,1,M) x p(©|I, M)

@ *,I,M =
p(©|s*,1,M) o)

(1)

where, for one catchment, s* represents the regionalized response signature(s);
p(O|l, M) is the prior distribution of parameters © for a model structure M and inputs
I; L(s(©)|s",1,M) is the likelihood function of the modeled response signature(s) s(@©)
given s”, I and M; p(s’|l, M) is the marginal density of s*; and p(©|s”,1,M) is the pos-
terior distribution of © given s*, I and M. For the purpose of this paper, M is selected
in advance and considered to be fixed (as it is the common practice in regionalization
studies, Wagener and Montanari, 2011), as is | for any one catchment, and so both
these terms are dropped from (Eq. 1) for convenience, resulting in

L(s(©)|s™) x p(©
pels) =~ PO

Parameter sets are then sampled from the parameter posterior to allow an ensemble
of rainfall-runoff simulations and a posterior distribution of flow at each time-step to be
estimated and evaluated against observed flow. This can be repeated using different
sets of signatures and different assumptions about their error correlations.

()

2.2 Prior distribution and likelihood function
2.2.1 Prior distribution

To apply Bayes’ law (Eq. 2) it is necessary to specify the likelihood function (L(s(®)|s")
in Eq. 2) and the prior distribution (p(©) in Eq. 2). The prior is defined so that it reflects
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our initial lack of knowledge. We follow Almeida et al. (2013) and express our initial
state of indifference in the same space that we seek information about — the signature
space. This is different from the common assumption of a uniform distribution on the
rainfall-runoff model parameter space (e.g. Yadav et al., 2007), and is shown to avoid
the problem of bias in predictions (Almeida et al., 2013). As it is usually not possible to
sample directly from the uniform signature prior distributions, an importance sampling
is utilized to approximate the distributions numerically (Doucet et al., 2000).

2.2.2 Likelihood function approximation

The likelihood functions are defined using joint distributions of respective signature
errors obtained from the regionalization model. Errors introduced by the regionalization
procedure may come from at least five sources. First, errors are introduced by the fact
that the regression model is estimated using a specific sample of catchments rather
than the entire population; second, differences may exist between the observed and the
true value of the response signature due, for example, to factors such as the discharge
record length and time period of record used in the computation (Kennard et al., 2010);
third, errors are present due to errors in the catchment properties data; fourth, errors
exist due to the incomplete set of catchment properties used as explanatory variables
in the regression equations; and, fifth, they exist due to the assumed linear regression
structure. It is assumed that the total error model for the regionalized signature(s) s
can be estimated using the following procedure:

1. Considering all available gauged catchments stepwise regression is applied to
each signature independently to determine the predictors to include. The predic-
tors are then fixed for the remaining steps.

2. Considering all available gauged catchments, one catchment is left out and the
remaining are used in the fitting of the regression models for each signature.
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3. The regression models obtained in Step 2 are used to estimate the signature
values for the omitted catchment.

4. The error for each signature is calculated for the omitted catchment by comparing
the regionalized and observed signature values.

5. The process is repeated for all catchments.

6. A parametric joint probability distribution is fitted to all the computed errors. Fur-
thermore, the errors are tested for independence that allows (approximately) fac-
torizing a joint distribution into a product of marginal distributions.

The resultant error distribution defines the likelihood function L in Eq. (2). The main
assumption here is that the potentially complex nature of errors in the set of signature
values can be usefully represented by the fitted error distributions.

2.2.3 Synthetic case and likelihood functions

To avoid masking the potential value of the regionalized signatures with model struc-
ture and observational errors, a “perfect model” is first employed. This involves using
the pre-selected rainfall-runoff model and the observed forcing data to generate the
“observed” catchment signatures. The Nash—Sutcliffe criteria (NSE) (Nash and Sut-
cliffe, 1970) optimal parameter set is taken to generate a “perfect model” streamflow
time series for each catchment. To produce regionalized signature analogues in this
case, two types of imposed errors are introduced to these “observed” signatures. The
first error type is characterized by a range of standard deviations (1, 5, 10 and 20 % of
the signature value range observed over all catchments used in this study) and a range
of inter-signature error correlations (Pearson correlation coefficients equal to 0, 0.25,
0.50, 0.75 and 0.90). This allows the sensitivity of the results to the regionalization
quality and the regionalization errors’ correlations to be evaluated. The second error
type is set to be equal to the observation-based likelihood function (Sect. 2.2.2). These
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error structures are the likelihoods used in Eq. (2) for the synthetic case when flows
are generated by a “perfect model”.

2.3 Case study and rainfall-runoff model
2.3.1 Study catchments

A set of 84 medium sized United States catchments (242 to 8657 km2) from the
MOPEX database (Schaake et al., 2006; Duan et al., 2006), for which a variety of
regional response signature models have been determined in Almeida et al. (2012),
are used to test the method proposed in this paper. Use of more catchments from the
MOPEX database would require different regionalization equations due to changing
process controls, and would be unnecessary given that the focus of the study is on
signature error correlations given a regionalization model. For more details on the mo-
tivation for choosing these specific 84 catchments the reader is referred to Almeida
et al. (2012) and Almeida (2014).

The 84 catchments are hydrologically varied with a selection of properties summa-
rized in Table 1. Daily time series for the period from 1 October 1949 to 30 Septem-
ber 1959 are employed. As highlighted in Aimeida et al. (2012), these 10 years of data,
representing only a subset of all the data available, are assumed to be of sufficient
length to capture climatic variability, but short enough to avoid effects of long-term cli-
matic trends (Sawicz et al., 2011).

2.3.2 Response signatures

Five response signatures are considered: runoff ratio (RR), base flow index (BFl),
streamflow elasticity (SE), slope of flow duration curve (SFDC) and high pulse count
(HPC) (Table 1). This specific subset of signatures is selected to cover a wide range
of different qualities of regionalized information, and also to ensure that some sig-
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nature errors are largely uncorrelated, whilst others are strongly correlated (see also
Sect. 3.1).

RR reflects the amount of precipitation that becomes streamflow over a certain area
and time. It is determined as the ratio of catchment’s outlet streamflow and catchment
average precipitation over the 10 years used in this study. BFI gives the proportion of
streamflow that is considered to be base flow. A simple one-parameter single-pass dig-
ital filter method is used to derive BFI (Arnold and Allen, 1999). SE provides a measure
of the sensitivity of streamflow to changes in precipitation (Sankarasubramanian et al.,
2001). It is calculated as a median of the inter-annual variation in total annual stream-
flow to the inter-annual variation in total annual precipitation ratios normalized by the
long-term runoff ratio (Sawicz et al., 2011; Sankarasubramanian et al., 2001). SFDC
gives an indication of the streamflow variability and is calculated as the slope of the flow
duration curve between the 33 and 66 % flow exceedance values in a semi-log scale
(Sawicz et al., 2011). HPC reflects aspects of the high flow regime and catchment
flashiness, and is calculated as the average number of events per year that exceed
three times the median daily flow (Clausen and Biggs, 2000; Yadav et al., 2007).

2.3.3 Rainfall-runoff model choice

The probability distributed moisture (PDM) model (Moore, 2007) together with two
parallel linear routing stores and a simple snow model (Hock, 2003) is selected with
two major motivations (for a detailed description of the model see Kollat et al., 2012;
Almeida, 2014). First, this type of model has been shown to have a suitable complex-
ity for modelling daily rainfall-runoff over a large sample of the MOPEX catchments
(Wagener and Mcintyre, 2012). Second, the model has been successfully applied in
other regionalization studies across a wide range of climate and physiographic condi-
tions, for example Calver et al. (1999), Lamb and Kay (2004), Mclintyre et al. (2005),
Young (2006), and De Vleeschouwer and Pauwels (2013). Even though other model
structures may be better suited for some specific catchments, it is prohibitively difficult
to vary model structure between catchments and no single model structure will ever
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be best for all catchments (Lidén and Harlin, 2000; Clark et al., 2008; van Werkhoven
et al., 2008). Consequently, the selected model structure is believed to be a sufficient
choice for the purposes of this paper. Most importantly, the general framework is inde-
pendent of the rainfall-runoff model choice.

2.4 Posterior distribution and performance assessment

Employing Bayes’ law (Eq. 2), the rainfall-runoff model is conditioned on different com-
binations of signatures: (1) assuming independence between the signature regionaliza-
tion errors (setting the correlation values to zero in the joint probability function); and
(2) accounting for the inter-signature error correlations (using the estimated covariance
in the joint probability function).

Two metrics are used to assess the effectiveness of the parameter conditioning pro-
cedure: (1) the Bayes factor (Jeffreys, 1961) to assess convergence of the parameter
posteriors to known parameter values; (2) the probabilistic Nash—Sutcliffe efficiency
(Bulygina et al., 2009) to assess convergence of the flow ensembles to the observed
flows.

The Bayes factor BF is defined as the ratio between two marginal distributions of the
data y (e.g. observed streamflow time series) for two competing hypotheses (H; and
H,) (Kass and Raftery, 1995) (more detail is given in Appendix A):

F= p(y|H4)
p(y|H-)

Thus, to test the impact of representing the error correlations, the hypothesis H, corre-
sponds to the inter-signature errors being treated as correlated, while the hypothesis
H, corresponds to the inter-signature errors assumed to be independent. If the result-
ing Bayes factor is greater than 1, there is more support for hypothesis H,, and the
inter-signature error correlation is worth considering.

When using synthetic streamflow data (“perfect model” approach), with the stream-
flow time series generated by a pre-selected parameter set, p(y|H) in Eq. (3) can be
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seen as either the posterior probability of the known observed streamflow time series
under hypothesis H or the probability of the known parameter set that generated that
particular flow time series under hypothesis H. As in a “perfect model” approach there
is no observational error, p(y|H) is the probability estimated for the known value of the
parameter set that generated the observed streamflow under each of the hypotheses
H, and H,. Since there is no known parameter value corresponding to the real data,
the application of the Bayes factor is less useful in this situation. In this case, defin-
ing y as an NSE-optimal parameter set allows an indication of the relative degree of
convergence around the chosen point.

The probabilistic Nash—Sutcliffe efficiency NSEprob (Bulygina et al., 2009) is a prob-
abilistic analogue of the traditional Nash-Sutcliffe efficiency coefficient (Nash and Sut-
cliffe, 1970), and allows both prediction accuracy and precision to be summarized by a
single statistic. The incremental improvement in the NSEprob can be used to measure
the value of adding signatures into the conditioning or otherwise changing the likeli-
hood function. An NSEprob of 1 indicates a perfect fit, i.e. the results are both accurate
and precise.

For model validation, we use a jack-knife approach (or leave-one-out strategy), com-
monly employed in regionalization studies (e.g. Merz and Bldschl, 2004; Shu and
Ouarda, 2012). One catchment at a time is removed as a test “ungauged” catchment
and the remaining gauged catchments are used to support the regionalization pro-
cess, including Steps 2—6 listed in Sect. 2.2.2. The procedure is repeated for each of
the available catchments.

3 Results and discussion

3.1 Regionalized signature errors and likelihood functions

The regionalization error probability distributions (that define the likelihoods) are gen-
erated following Steps 2 to 6 in Sect. 2.2.2 and are shown in Fig. 1. The marginal error
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distributions, shown on the Fig. 1 diagonal, are approximated using histograms, and
parameters of normal distributions are fitted using the method of moments. The univari-
ate Kolmogorov-Smirnov test shows that the marginal distribution normality cannot be
rejected at the 95 % confidence level for each of the five signatures. The off-diagonal
shows the regionalization errors for different signature pairs (lower off-diagonal), the
corresponding correlation coefficient values and their statistical significance (upper off-
diagonal). The joint error distributions are approximated using multivariate normal dis-
tributions that are fitted using estimates of the marginal normal distribution parameters
and the inter-signature error correlations. These marginal and joint distributions define
the likelihood functions in Eq. (2). Note that Fig. 1 represents the regionalization er-
rors based on all 84 catchments. Meanwhile, the jack-knife procedure (see Sect. 2.4)
utilized in the performance assessment employs only 83 catchments at a time.

3.2 The impact of inter-signature error correlations (Pairs of sighatures)

This section considers the role of inter-signature error correlation on model parameter
estimation when pairs of signatures are used. First, different imposed error variances
and correlations together with synthetic streamflow data are employed to test the im-
pact of inter-signature error correlation without the impact of model structural error.
Then, the results obtained using the observation-based error structure, for both syn-
thetic and observed data streamflow, are analyzed.

3.2.1 Synthetic streamflow data (Imposed likelihoods)

Synthetic streamflow data are generated as described in Sect. 2.2.3, and the imposed
likelihood functions are defined as described in Sect. 2.2.3. The imposed likelihoods
are considered to have standard deviations equal to 1, 5, 10, 20 % of the signature
value range observed over all catchments. A comparison of the imposed error struc-
tures under the different levels of variance and the observed error structure is given in
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Table 2. Furthermore, different inter-signature error correlations are also tested, namely
0 (linear independence), 0.25, 0.50, 0.75 and 0.90.

Ten possible pairs of the five response signatures are used in parameter condition-
ing, and the median Bayes factor, calculated over the 84 MOPEX catchments, is cal-
culated for each pair. The Bayes factor (Eq. 3) compares the two following hypothesis:
H,) the inter-signature error correlation is to be taken into account, and H,) the errors
between the different sources of information can be assumed independent. The Bayes
factor is found to be relatively insensitive to the selection of response signature pairs
(Kruskal-Wallis test). Table 3 summarizes the 95 % pooled confidence intervals for the
median Bayes factor across all catchments and across all 10 signature pairs, for each
choice of the likelihood (i.e. 20 likelihoods). This provides reference values indicative of
the error interdependency importance in model regionalization depending on the sig-
nature pair correlations and marginal distribution variances. As it would be expected,
the median Bayes factor is equal to 1 when signatures errors are not correlated (i.e.
o = 0). However, as correlations between signatures errors increase the median Bayes
factor increases noticeably. This suggests that considering error correlations allocates
higher likelihoods to parameter sets that capture a considered signature pair. Further-
more, the results shown in Table 3 also imply that the median Bayes factor is relatively
insensitive to the precision with which the signatures are regionalized.

3.2.2 Synthetic and observed streamflow data (Observation-based likelihoods)

Figure 2 shows the distribution of the Bayes factor values obtained across the 84 catch-
ments for each of the 10 possible different pairs of signatures, when the observation-
based error structure is used for each catchment. Figure 2a shows the results for the
observed streamflow data with regionalized signatures calculated from the derived re-
gressions; Fig. 2b shows the results for the synthetic streamflow data with regionalized
signatures calculated by adding noise to the exact signature values. The Tukey box-
plots in red correspond to pairs of signatures whose errors are statistically significantly
correlated (see Fig. 1). The upper whisker represents the upper quartile plus one and
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a half times the interquartile range, and the lower whisker represents the lower quartile
minus one and a half times the interquartile range. The matrix below Fig. 2b shows the
pairs of signatures used.

The signature pair [SFDC, HPC] shows the strongest correlation between errors
(0 = 0.65, Fig. 1). A likelihood function with a standard deviation equal to 10 % of the
observed signature ranges and p = 0.75 in Table 3 is comparable to the observation-
based likelihood of the pair [SFDC, HPC] (Table 2), with Table 3 indicating [1.45,1.53]
as a 95 % confidence interval for the median Bayes factor. However, a median Bayes
factor of 2.17 is obtained for the observed streamflow data (Fig. 2a). Similar differences
are found for the other pairs of signatures, although the comparison with the reference
table (Table 3) becomes challenging, as the individual signatures have not been region-
alized necessarily with similar quality. On the other hand, Fig. 2b shows that the Bayes
factors for the synthetic study (when there is no model structural error) are consistent
with the values provided in the look-up Table 3. The difference between the median
Bayes factor for the two cases is likely to be caused by the model structure error, or
may be related to the location of the NSE-optimal in the parameter space.

Nevertheless, it is clear from Fig. 2 that those pairs of signatures whose errors are
significantly correlated (i.e. [SFDC, HPC], [BFI, HPC], [BFI, SFDC] and [BFI, SE]) have
wider interquartile ranges. Furthermore, the pair of signatures with the strongest corre-
lation between errors [SFDC, HPC] presents the greatest interquartile range. Therefore
the inclusion of significant correlations in the likelihood function matters, but whether
or not it is beneficial to conditioning the parameters seems to depend on the interplay
between model structure error, parameter space and likelihood function. Only strong
correlations (as in the [SFDC, HPC] case) can be expected to result in a median Bayes
factor clearly above 1.
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3.3 The impact of inter-signature error correlations (Multiple signatures)

Multiple signatures are used for parameter constraining and flow prediction. The infor-
mation value of multiple signatures and its dependence on inter-signature error corre-
lations is explored in this section.

3.3.1 Synthetic streamflow data (Observation-based likelihood)

Figure 3 shows Bayes factors derived for the synthetic streamflow data (generated us-
ing the NSE-optimal parameter set) when the observation-based likelihood is used.
The Bayes factor considers p(.|H,) to be the prior parameter distribution, and p(.|H;)
to be one of the parameter posteriors that includes or ignores the inter-signature error
correlations. Figure 3 summarizes the variability in the Bayes factor for the different
combinations of signatures for all 84 catchments. Boxplots are color coded by the total
number of signatures combined, when the inter-signatures error correlation is consid-
ered in the likelihood function definition. The grey dashed boxplots correspond to the
results obtained assuming that the inter-signature errors are independent when defin-
ing the likelihood function. Although the colored boxplots visually seem to have higher
values than the grey dashed boxplots, these differences are not statistically significant
at a 95 % confidence level (Kolmogorov—Smirnov two-sided tests).

To better evaluate whether the incorporation of additional sources of information im-
proves parameter identification, one-sided Kolmogorov-Smirnov tests are applied be-
tween any combination of certain signatures (e.g. [SE, SFDC]) and any other combi-
nation that contains the same signatures and a new one (e.g. [SE, SFDC, HPC]). It is
found that adding more signatures improves parameter identification in 82.5 % of the
cases (66 out of 80 cases) at a 95 % confidence level).

Figure 4 summarizes the variability in the analog Nash-Sutcliffe efficiency measure
NSEprob for different combinations of signatures for all 84 catchments. The colored
boxplots correspond to the results obtained when the inter-signature error correlations
are considered in the likelihood definition, and the grey dashed boxplots correspond to
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the results when the inter-signature errors are assumed to be independent. There is no
visual or statistical (two-sided Kolmogorov Smirnov tests) difference between the col-
ored boxplots and the grey dashed boxplots in Fig. 4. Moreover, visually, adding more
response signatures seems to improve streamflow predictions in terms of accuracy
and precision when no model structure error exists. However, only in 59 % of the cases
(47 out of 80 cases) more signatures contribute to improved streamflow predictions at
a 95 % confidence level (one-sided Kolmogorov—Smirnov test). The other 33 cases al-
ways involve the inclusion of the most poorly regionalized signatures (with the highest
variance from the five regionalized signatures) — SE, SFDC or HPC — as additional
sources of information (see Table 2).

3.3.2 Observed streamflow data (Observation-based likelihood)

Figure 5 shows the results when the same methodology as in the Sect. 3.3.1 is applied
using the observed streamflow data. As in the synthetic streamflow case, the differ-
ences between the Bayes factor distributions when inter-signature error correlations
are considered and when inter-signature errors are assumed to be independent are
not statistically significant at a 95 % confidence level (Kolmogorov—Smirnov two-sided
tests).

Further, by comparing Fig. 5 with Fig. 3, it becomes clear that the signatures con-
tribute less information, and there is a smaller increase in performance as more signa-
tures are added. It is found that adding more signatures tends to improve parameter
identification only in half of the cases when compared to the synthetic streamflow case
at a 95 % confidence level (42.5% versus 82.5% in the synthetic streamflow case).
Furthermore, and contrastingly to the case where no structural error exists, in five sit-
uations adding more signatures contributes to a decrease in performance. These five
cases always involve adding either SFDC or HPC as an additional source of informa-
tion. This performance deterioration can be attributed to model structure and obser-
vational error. Overall, a statistically significant drop in performance with regard to the
Bayes factor is observed most of the time when model structural error is present.
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Figure 6 presents the results in terms of NSEprob using the observed streamflow
data. As in the synthetic study in Sect. 3.3.1, there is no statistically significant dif-
ference at a 95 % confidence difference between the NSEprob distributions when the
inter-signature error correlations are considered and when the errors are treated inde-
pendently (Kolmogorov—Smirnov two-sided tests).

Figure 6 shows that better results in terms of NSEprob are not necessarily achieved
when all five signatures are used simultaneously. It is found that adding more signa-
tures tends to improve parameter identification only in 36 % of the cases at a 95 %
confidence level (compared to 59 % when there is no model structure error). Further-
more, and contrasting the case where no model structure error exists, in two situations,
adding more signatures may contribute to a decrease in performance (when we start
with [RR, BFI] and add HPC, and when we start with [RR, BFI] and add SFDC). This
might be due to regionalization biases in SFDC and HPC and/or due to the inability
of the PDM model to maintain a satisfactory overall performance when conditioned
on high peak flow and medium flow information. This negative impact is not observed
when synthetic streamflow data are used (Fig. 4), indicating that the decrease in perfor-
mance may be due to model structural deficiencies. Moreover, a statistically significant
drop in performance with regard to NSEprob is observed most of the time when there
is model structural error.

In summary, unless there is no model structural error, an all-round performance im-
provement is not guaranteed by adding more signatures. Furthermore, model structure
uncertainty seems to have a much bigger effect on the performance than the explicit
inclusion of the inter-signature error correlations.

3.4 Limitations and applicability

The main feature of the method suggested in this paper lies in the possibility of al-

lowing a large number of signatures to be added to the conditioning process, without

worrying about double-counting of information or degree of uncertainty in signature

estimates, and avoiding subjective decisions about removal of possibly nonindepen-
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dent information. Although the proposed framework can be applied to any number of
signatures, the limited sample size (i.e. number of gauged catchments available) can
have an impact on the definition of the likelihood distribution. For this specific study 83
samples were available to define that distribution. When a single response signature
is used to condition the hydrological model this sample size is likely to be sufficient
to confidently judge whether the normal distribution assumption is sufficient. However,
when moving to multidimensional problems, in which various signatures may be used
simultaneously to condition the hydrological model, it is increasingly difficult to judge
the adequacy of any multivariate parametric distribution and to judge which catchments
are outliers. This implies that as more signatures are used simultaneously in the con-
ditioning of the hydrological model, the more gauged catchments should be used to
define the likelihood function. As stressed by Gupta et al. (2014), large samples are
of great importance to support statistical regionalization of uncertainty estimates, and
this is particularly the case if dependencies between information sources are to be
specified.

While the work presented in this paper addresses a number of issues associated
with model regionalization, it is important to highlight some additional areas for future
research. An important source of uncertainty comes from model structure error (Gupta
et al., 1998; Kuczera et al., 2006). The conditioning framework suggested here is in-
dependent of the selected model, and, in principle, Figs. 5 and 6 could be created by
using the model structure that is considered suitable for each catchment rather than
using a model structure that we consider good for generalizing. Further research is
needed to diagnose the relative importance of different model structures in various cli-
mate regimes and for different catchment characteristics (Clark et al., 2008; Hrachowitz
et al., 2013). This is crucial to both identifying the most appropriate model structure for
an ungauged location and quantifying the uncertainty in the model structure that should
be integrated into the likelihood, thus allowing virtually any model choice. Similarly,
other sources of uncertainty, namely observational error (e.g. rainfall error), should ide-
ally be evaluated and integrated into the likelihood function. By accounting for all the
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important sources of uncertainty, further insight should be achieved into the informa-
tion value of sets of signatures and the value of including their dependencies in the
likelihood function.

Some of the results presented may be sensitive to the response signatures used.
The relationship between value of signatures and catchment type remains ambiguous
and an interesting aspect for posterior evaluation would be how the value of signa-
tures depends on catchment type. Other aspects that are worth further research in-
clude whether a similar framework could be applied to different types of information
source, e.g. can some discharge measurements be added into the model condition-
ing process? While Bulygina et al. (2012) suggests a framework capable of combining
multiple sources of knowledge, namely physically based information, regionalized sig-
natures and spot observations to identify parameters for models of ungauged catch-
ments, the errors between them were assumed to be independent in their case study.
A combination of the framework suggested by Bulygina et al. (2012) and the method
proposed in this paper may be the way forward to maximizing the value of the available
information within a framework of uncertainty reduction.

4 Conclusions

Uncertainty in streamflow estimation in ungauged catchments originates not only from
the traditional sources of error generally identified in rainfall-runoff modelling (i.e. model
structural, parameter and data errors), but also by errors introduced by the transposition
of information from data-rich areas and use of this information to condition model sim-
ulations. To identify which and how many types of signatures can usefully be included
in model conditioning, it is critical to understand the effects of all these uncertainties.
Moreover, when multiple signatures are used simultaneously to condition model sim-
ulations, inter-signature error dependencies may also introduce uncertainty and affect
decisions about the value of information. While error and uncertainty analyses are quite
common in regionalization studies, the question of how much information can be taken
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from a set of uncertain signatures and determining how many and which signatures
should be used given their error dependencies has not been extensively studied.

The method suggested in this paper allows the specification of a signature error
structure. A common reason for not including large numbers of signatures in regional-
ization studies is the potential for under-estimation of uncertainty due to duplication of
information. This study helps to justify the inclusion of larger sets of signatures in the
regionalization procedure if their error correlations are formally accounted for and thus
enables a more complete use of all available information. The results show that adding
response signatures to constrain the hydrological model, while accounting for inter-
signature error correlations, can contribute to a stronger identification of the optimum
parameter set when the error correlations between different sources of information are
strong. Furthermore, the results show that assuming independency of errors does not
result in significant deterioration in model performance, unless the error correlation is
very strong. The results also show that the effect of error correlations is likely to be
overwhelmed by model structure and observation errors. The method suggested here
can therefore become more relevant if observational and structural errors are reduced.
In addition, it is illustrated that using more signatures, with and without considering
their error correlations, may lead to deterioration in performance. In our case, there
were particular problems when adding the slope of the flow duration curve and/or the
high pulse count. As this is likely to be specific to the rainfall-runoff model used, the
selected performance criteria and the set of catchments, it is recommended that the
disinformative information sources are identified as part of any regionalization study, in
a similar manner as has been done here.

Appendix A: The Bayes factor

When evaluating the impact of inter-signature error correlations on model parameter
identification, results are assessed in terms of Bayes factor (Jeffreys, 1961). This form
of assessment is preferred to the most commonly used QQ plots (Laio and Tamea,
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2007), due to the particular nature of the problem under analysis. When signature(s)
(either regionalized for the case of an ungauged catchment, or derived from actual
observations for the case of gauged catchments) is employed to reduce uncertainty
beyond what is possible by defining the priors on model parameters, QQ plots may
not be the most effective form of assessment. Although response signatures are mea-
sures of theoretically relevant system process behaviors (Gupta et al., 2008; Wagener
et al., 2007), they reflect fragmented knowledge as different signatures capture dif-
ferent catchment processes. Consequently, the quantiles of observed flows are not
conditioned to follow a uniform distribution, as QQ plots assess. Rather, quantiles
of response signatures should follow this condition (for all catchments considered —
Almeida et al., 2013). Therefore, an alternative performance measure that more ad-
equately reflects the aim of this particular application (i.e. the reproduction of certain
aspects of the hydrograph) is used. The Bayes factor BF is particularly relevant in the
current context as it allows comparison of predictions based on two competing theories
(Jeffreys, 1961). It is defined as the ratio between the marginal distributions of the data
y for the two hypotheses (H; and H,) being compared (Kass and Raftery, 1995):

_ p(y|H4)
p(y|Hs)

BF (A1)

When the two hypotheses are equally likely a priori, the Bayes factor is the posterior
odds in favor of H, (Kass and Raftery, 1995). In other words, a value of BF greater than
1 means that H, is more strongly supported by the data than H,. For example, a Bayes
factor equal to 2 implies that H, is favored over H, with 2:1 odds given the evidence
provided by the data.

For a given hypothesis H, parameterized by model parameter set ©, the marginal
density p(y|H) represents the likelihood of the data and it is given by

pyIH) = / p(y|©, H)p(O|H)de (A2)
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where p(y|©, H) is the conditional density function given parameters © under hypothe-

sis H and p(©|H) is the distribution of parameters under H. Hypothesis H may repre-

sent different model and parameter distributions. In this paper, the same model struc-

ture is considered. However, different parameter distributions are used in Eq. (A2) to

enable prediction comparison based on two theories about parameter distributions.
The above integral can be numerically approximated as,

N
[pie.mp@IH)e ~ 3 > p(y18”, )@ ) (A3)
i=1

where @) is the jth of N draws from p(.|®), and N is the size of the Monte Carlo
sample (in this paper N is equal to 10000).

In a “perfect model” study, data y are generated by a model with parameter set ©",
so that there is no model structural or observational error. This means that p(y|0(’),H)
is always equal to zero, except when o -o. Mathematically this is expressed as
p(y|e(’),H) = bg)_@-» Where 6 is the Dirac delta function. Therefore Eq. (A3) is equal

to 1/N times p(e(i) = ©"|H) and the Bayes factor is given by

7 2121060 _oP(@"|Hy) _p@" =0'H,)
%Zﬁﬁe(w:e«ﬁ(@("’l%) P(e(/) = O'|H,)

BF = (A4)

While other choices can be made, two cases are considered in this paper. First, the
two distributions in Eq. (A4) are posterior distributions, but with different assumptions
about the likelihood functions. Given that we are particularly interested in evaluating
the impact of considering the inter-signature error correlations versus ignoring them,
H, will correspond to the joint likelihood defined such that inter-signature error correla-
tions are considered, while H, corresponds to the likelihood when inter-signature error
correlations are ignored. For the Bayes factor defined in this way, a value greater than
1 supports the idea that considering inter-signature error correlations contributes to an
5411

Jladed uoissnosiq | Jadeq uoissnosiq | Jedeq uoissnosiq | Jaded uoissnosiqg

HESSD
12, 5389-5426, 2015

Accounting for
dependencies in
regionalized
signatures

S. Almeida et al.

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/5389/2015/hessd-12-5389-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/5389/2015/hessd-12-5389-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

improved specification of the optimum parameter set. In this paper we are also inter-
ested in the value of adding/not adding more signatures in model conditioning, and so
the Bayes factor will be also calculated for p(.|H,) set to be the prior parameter distri-
bution, and p(.|H) set to one of the derived parameter posteriors. For the Bayes factor
defined in this way, a value greater than 1 supports the idea that additional sources of
information contribute to a stronger identification of the optimum parameter set.
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Table 1. Summary of general catchment properties and response signatures of the 84 MOPEX

catchments.

Catchment property Units Range
Average annual streamflow (mmyr 1) 208-896
Average annual precipitation (mmyr™") 758-1495
Average annual maximum temperature ("C) 12-23
Average annual minimum temperature  (°C) 0-10
Average annual potential evaporation (mm yr") 679-1112
Aridity index* (-) 0.5-1.2
Average elevation (m) 176-1056
Runoff ratio (-) 0.16-0.76
Base flow index (-) 0.36-0.90
Streamflow elasticity (-) 0.02-4.34
Slope of flow duration curve (-) 0.01-0.08
High pulse count (yr™" 2.10-120.80

* Long-term ratio of potential evaporation over precipitation.
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Observed error signature signature signature signature w _
structure ranges ranges ranges ranges - -
RR residuals 0.054° 0.005° 0.027 0.055° 0.109°
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Table 3. Reference table showing the 95% confidence interval for the median Bayes factor. The
correlation coefficient p and the standard deviation of the marginal distributions ¢ are shown.
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Figure 1. Distribution of individual signature residuals (res) are approximated as histograms
and normal distributions. The scatterplots and correlation coefficients (o) show correlation be-

tween the signature residuals.
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Figure 2. The Bayes factor for the 10 pairs of signatures over the 84 catchments when the
observation-based error structure is used with (a) observed streamflow data, (b) synthetic
streamflow data. The upper whisker represents the upper quartile plus one and a half times
the interquartile range, and the lower whisker represents the lower quartile minus one and a
half times the interquartile range. The dashed line represents BF = 1.
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Figure 3. Boxplots representing the distribution of the Bayes factor for each combination of sig-
natures for synthetic streamflow data. The colored boxplots correspond to the results obtained
when inter-signature error correlations are considered in the likelihood function, whereas the
grey dashed boxplots correspond to the results obtained assuming that the inter-signature er-
rors are independent.
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Figure 4. Boxplots representing the distribution of NSEprob values for each combination of sig-
natures for synthetic streamflow data. The colored boxplots correspond to the results obtained
when inter-signature error correlations are considered in the likelihood function, whereas the
grey dashed boxplots correspond to the results obtained assuming that the inter-signature er-
rors are independent.
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Figure 5. Boxplots representing the distribution of the Bayes factor for each combination of
signatures for observed streamflow data. The colored boxplots correspond to the results ob-
tained when inter-signature error correlations are considered in the likelihood function, whereas
the grey dashed boxplots correspond to the results obtained assuming that the inter-signature
errors are independent.
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Figure 6. Boxplots representing the distribution of NSEprob values for each combination of
signatures for observed streamflow data. The colored boxplots correspond to the results ob-
tained when inter-signature error correlations are considered in the likelihood function, whereas
the grey dashed boxplots correspond to the results obtained assuming that the inter-signature

errors are independent.
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