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Abstract. A recurrent problem in hydrology is the absence of streamflow data to calibrate rainfall-

runoff models. A commonly used approach in such circumstances conditions model parameters on

regionalized response signatures. While several different signatures are often available to be included

in this process, an outstanding challenge is the selection of signatures that provide useful and com-

plementary information. Different signatures do not necessarily provide independent information,5

and this has led to signatures being omitted or included on a subjective basis. This paper presents a

method that accounts for the inter-signature error correlation structure so that regional information

is neither neglected nor double-counted when multiple signatures are included. Using 84 catchments

from the MOPEX database, observed signatures are regressed against physical and climatic catch-

ment attributes. The derived relationships are then utilized to assess the joint probability distribution10

of the signature regionalization errors that is subsequently used in a Bayesian procedure to condition

a rainfall-runoff model. The results show that the consideration of the inter-signature error structure

may improve predictions when the error correlations are strong. However, other uncertainties such as

model structure and observational error may outweigh the importance of these correlations. Further,

these other uncertainties cause some signatures to appear repeatedly to be disinformative.15

1 Introduction

In many areas of the world the absence of past observational streamflow time series to calibrate

rainfall-runoff models limits the ability to apply such models reliably to predict streamflow and in-

form effective water resources management. Whilst a large and increasing number of regions across

the world are insufficiently gauged (Mishra and Coulibaly, 2009), there are also many highly mon-20
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itored catchments (Gupta et al., 2014). Transferring the knowledge gained in data-rich areas to un-

gauged catchments - a process known as regionalization - offers a possible way of overcoming the

absence of streamflow observations in data-scarce regions. Several techniques for transferring in-

formation are reported in the literature (for an overview of different methods used in continuous

streamflow regionalization see He et al. (2011), Peel and Blöschl (2011), and Razavi and Coulibaly25

(2013), and for a recent comparative assessment of some of the most commonly used methods see

Parajka et al. (2013)).

A commonly applied approach is to use response signatures (e.g. the runoff ratio and the base flow

index), which can provide insight into the hydrological functional behavior of a catchment (Wagener

et al., 2007). Response signatures are calculated from available system output or input-output time30

series for numerous gauged catchments with known catchment attributes, i.e. physiographic and/or

meteorological attributes (e.g. drainage area, latitude and longitude, average annual temperature, av-

erage monthly precipitation, etc.). Subsequently, statistical models relating each response signature

to a set of catchment attributes can be identified. Given the attributes of an ungauged catchment, the

signatures for the ungauged location can then be estimated using the derived statistical models. Nu-35

merous regional models of this type can be found in the literature (e.g. Boorman et al., 1995). These

regionalized signatures can be used to constrain the prior range of streamflow simulations generated

using a pre-selected rainfall-runoff model structure and hence restrict the model parameter space

(Yadav et al., 2007; Zhang et al., 2008; Bulygina et al., 2009; Castiglioni et al., 2010). Advantages

of this approach include: the flexibility in the selection of the response signatures allowing it to be40

based on the specific parts of the hydrograph that are of greatest importance for a given application

and, if known, on the dominant hydrological processes of the catchment; access to readily available

regional models for different signatures in the literature (such as base flow index from the Hydrology

of Soil Types system (Boorman et al., 1995) and curve number from the United States Department

of Agriculture’s Soil Conservation Service soil and land use classification (USDA, 1986)) hence45

eliminating the need to build new regional regression models; the relationships between response

signatures and catchment and climatic characteristics are not specific to any rainfall-runoff model

nor to a particular calibration method used in the gauged catchments and are therefore not obscured

by model structural error and can be used to condition any model.

Different ways of incorporating the regionalized information into a catchment model have been50

suggested in the literature. This includes set-theoretic approaches (e.g. Yadav et al., 2007; Win-

semius et al., 2009) and more formal Bayesian data assimilation frameworks (e.g. Bulygina et al.,

2009, 2011; Castiglioni et al., 2010; Singh et al., 2011). Where probability distributions character-

izing regionalization quality have been estimated, a Bayesian conditioning procedure is one of the

possibilities (Bulygina et al., 2009, 2011). This provides a framework for combining prior knowl-55

edge with the regionalized data and/or other sources of information (e.g. small scale physics-based
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knowledge and hydrological measurements as in Bulygina et al., 2012),which has the potential to

formally encompass the nature of the errors arising from the regionalization.

Conditioning a rainfall-runoff model on multiple independent signatures would reflect a spec-

trum of processes and in principle lead to an accurate prediction of flow time series (Parajka et al.,60

2013). However, regionalized signatures have correlated errors, for example if the signatures have

been estimated using a common dataset of catchment attributes or using the same hydro-climatic

data; and in general the correlations are expected to be stronger for pairs of signatures that repre-

sent similar functional behaviors of the catchment. This raises the questions of, not only how many

and which signatures should be used, but also how to avoid double-counting of the information in65

signatures with correlated error distributions. Previous applications have tended to use a small num-

ber of signatures (e.g. Bulygina et al., 2009, 2011) and/or have tended to select signatures that are

considered to be independent (e.g. Yadav et al., 2007). When multiple signatures are used, the cor-

relations between the errors in the different sources of information are commonly disregarded (e.g.

Bulygina et al., 2012). To make better use of information in available sets of signatures, a formal way70

of combining them so that information is neither double-counted nor neglected is required. Using

formal methods to include autocorrelated data errors in model calibration is well-researched (e.g.

Sorooshian and Dracup, 1980); an application of comparable methods in the regionalization con-

text will allow making more formal and rigorous assessments of the value of correlated information

sources.75

Formally, in a Bayesian context, it is necessary to distinguish between correlated signatures and

correlated signature errors. It is the correlation between the errors that should be accounted for in

the likelihood function to avoid double-counting of information. It is possible to have two highly

correlated signatures that are derived from independent information sources and therefore they have

uncorrelated errors. In that case it would be valid to include both signatures in the likelihood function80

without accounting for correlation. This principle is well established when considering Bayesian cal-

ibration to a time series of flow observations, where flow values are typically strongly autocorrelated

- but it is the observation error autocorrelation that is relevant to the likelihood function derivation

(e.g. Sorooshian and Dracup, 1980). The same principle applies to adopting signatures as the obser-

vations. In the case study below, the signatures are derived from a common dataset using a common85

approach, so in practice the signature correlations are comparable to the signature error correlations;

nevertheless for the sake of formality, we use the term signature error correlations (or covariance).

In this paper we introduce and test a method that considers multiple regionalized signatures, ex-

plicitly accounting for the signature error correlations. By formally accounting for the error covari-

ance, we hypothesize that accuracy of flow predictions will generally improve and a greater number90

of signatures can usefully be included without introducing avoidable bias related to the duplication

of information. This should allow the modeler to use all signatures available without having to select,

on a more or less subjective basis, the most relevant (independent) signatures. The objective is thus
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to explore how to get fuller value out of a set of regionalized information than has been achieved in

past applications. The method is applied to a set of 84 United States catchments with a broad range95

of hydro-meteorological characteristics, obtained from the Model Parameter Estimation Experiment

(MOPEX) dataset (Duan et al., 2006; Schaake et al., 2006). The impact of signature error covariance

is assessed using pairs of signatures to condition a rainfall-runoff model. Along with the real data,

synthetic streamflow data are used to isolate the effect of model structural error. Further, the model

is conditioned on a variable number of regionalized signatures to evaluate whether an increasing100

number of signatures is justifiable when formally accounting for the error covariance.

2 Method

2.1 Bayesian Method for Signature Assimilation

Using a simple least-squares regression, observed signatures of catchments’ functional responses

are related to physical and climatic attributes of the catchments. Assuming that the same catchment105

attributes are available for an ungauged location, it is possible to obtain an estimate of the set of

signatures for the location. Further, the parametric distribution of regression errors can be directly

translated to a response signature(s) likelihood function. The likelihood function can then be used to

update the prior available knowledge about model parameters via Bayes’ law, which is expressed as

p(Θ|s∗,I,M) =
L(s(Θ)|s∗,I,M)× p(Θ|I,M)

p(s∗|I,M)
(1)110

where, for one catchment, s∗ represents the regionalized response signature(s); p(Θ|I,M) is the

prior distribution of parameters Θ for a model structure M and inputs I; L(s(Θ)|s∗,I,M) is the

likelihood function of the modeled response signature(s) s(Θ) given s∗, I and M ; p(s∗|I,M) is the

marginal density of s∗; and p(Θ|s∗,I,M) is the posterior distribution of Θ given s∗, I and M . For

the purpose of this paper, M is selected in advance and considered to be fixed (as it is the common115

practice in regionalization studies, Wagener and Montanari, 2011), as is I for any one catchment,

and so both these terms are dropped from (Eq. (1)) for convenience, resulting in

p(Θ|s∗) = L(s(Θ)|s∗)× p(Θ)

p(s∗)
(2)

Parameter sets are then sampled from the parameter posterior to allow an ensemble of rainfall-runoff

simulations and a posterior distribution of flow at each time-step to be estimated and evaluated120

against observed flow. This can be repeated using different sets of signatures and different assump-

tions about their error correlations.
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2.2 Prior Distribution and Likelihood Function

2.2.1 Prior Distribution

To apply Bayes’ law (Eq. (2)) it is necessary to specify the likelihood function (L(s(Θ)|s∗) in125

Eq. (2)) and the prior distribution (p(Θ) in Eq. (2)). The prior is defined so that it reflects our

initial lack of knowledge. We follow Almeida et al. (2013) and sample sets of signature values

from uniform distributions representing the feasible ranges of signatures. This approach allows the

signatures to be sampled uniformly using a simple amendment to the commonly applied approach

of sampling from uniform parameter priors, which avoids highly skwed signature priors that have130

undue influence on the posterior likelihood. More specifically, N parameter sets (N is equal to

10000 in our study) are sampled from a uniform distribution using Latin Hypercube sampling, so

that probability of each parameter set is 1/N (10−4 in our study). Subsequently, to provide parameter

samples that correspond to a uniform in signatures prior distribution, the parameter probabilities are

re-weighted (see Almeida et al., 2013), and used in the further posterior distribution approximation.135

This allows accounting for correlation among the parameters imposed by the uniform in signatures

prior distribution.

2.2.2 Likelihood Function Approximation

The likelihood functions are defined using joint distributions of respective signature errors obtained

from the regionalization model. Errors introduced by the regionalization procedure may come from140

at least five sources. First, errors are introduced by the fact that the regression model is estimated

using a specific sample of catchments rather than the entire population; second, differences may exist

between the observed and the true value of the response signature due, for example, to factors such

as the discharge record length and time period of record used in the computation (Kennard et al.,

2010); third, errors are present due to errors in the catchment properties data; fourth, errors exist145

due to the incomplete set of catchment properties used as explanatory variables in the regression

equations; and, fifth, they exist due to the assumed linear regression structure. It is assumed that the

total error model for the regionalized signature(s) s∗ can be estimated using the following procedure:

1. Considering all available gauged catchments stepwise regression is applied to each signature

independently to determine the predictors to include. The predictors are then fixed for the150

remaining steps.

2. Considering all available gauged catchments, one catchment is left out and the remaining are

used in the fitting of the regression models for each signature.

3. The regression models obtained in Step 2 are used to estimate the signature values for the

omitted catchment.155
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4. The error for each signature is calculated for the omitted catchment by comparing the region-

alized and observed signature values.

5. The process is repeated for all catchments.

6. A parametric joint probability distribution is fitted to all the computed errors. Furthermore, the

errors are tested for independence that allows (approximately) factorizing a joint distribution160

into a product of marginal distributions.

The resultant error distribution defines the likelihood function L in Eq. (2). The main assumption

here is that the potentially complex nature of errors in the set of signature values can be usefully

represented by the fitted error distributions.

2.2.3 Synthetic Case and Likelihood Functions165

To avoid masking the potential value of the regionalized signatures with model structure and ob-

servational errors, a “perfect model” is first employed. This involves using the pre-selected rainfall-

runoff model and the observed forcing data to generate the “observed” catchment signatures. The

Nash-Sutcliffe criteria (NSE) (Nash and Sutcliffe, 1970) optimal parameter set is taken to generate a

“perfect model” streamflow time series for each catchment. To produce regionalized signature ana-170

logues in this case, two types of imposed errors are introduced to these “observed” signatures. The

first error type is characterized by a range of standard deviations (1, 5, 10 and 20 % of the signature

value range observed over all catchments used in this study) and a range of inter-signature error

correlations (Pearson correlation coefficients equal to 0, 0.25, 0.50, 0.75 and 0.90). This allows the

sensitivity of the results to the regionalization quality and the regionalization errors’ correlations to175

be evaluated. The second error type is set to be equal to the observation-based likelihood function

(Sect. 2.2.2). These error structures are the likelihoods used in Eq. (2) for the synthetic case when

flows are generated by a “perfect model”.

2.3 Case Study and Rainfall-Runoff Model

2.3.1 Study Catchments180

A set of 84 medium sized United States catchments (242 to 8657 km2) from the MOPEX database

(Schaake et al., 2006; Duan et al., 2006), for which a variety of regional response signature models

have been determined in Almeida et al. (2012), namely runoff ratio, base base flow index, streamflow

elasticity, slope of slow duration curve and high pulse count, are used to test the method proposed in

this paper. It has proven difficult to derive regionalization equations of acceptable prediction quality185

for all catchments in the MOPEX dataset (Almeida, 2014). This is due to the lack of descriptive

power in the set of available catchment attributes, e.g. the attributes do not provide satisfactory

information about catchment geology. To isolate the effect of variable geology on the regression
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equations, the selected 84 catchments are grouped based on the underlying geology, namely, Middle

Paleozoic sedimentary rocks. Use of more catchments from the MOPEX database would require190

different regionalization equations due to changing process controls, and would be unnecessary given

that the focus of the study is on signature error correlations given a regionalization model. For more

details on the motivation for choosing these specific 84 catchments the reader is referred to Almeida

et al. (2012) and Almeida (2014).

The 84 catchments are hydrologically varied with a selection of properties summarized in Table 1.195

Daily time series for the period from 1 October 1949 to 30 September 1959 are employed. As

highlighted in Almeida et al. (2012), these 10 years of data, representing only a subset of all the data

available, are assumed to be of sufficient length to capture climatic variability, but short enough to

avoid effects of long-term climatic trends (Sawicz et al., 2011).

2.3.2 Response Signatures200

Five response signatures are considered: runoff ratio (RR), base flow index (BFI), streamflow elas-

ticity (SE), slope of flow duration curve (SFDC) and high pulse count (HPC) (Table 1). This specific

subset of signatures is selected to cover a wide range of different qualities of regionalized informa-

tion, and also to ensure that some signature errors are largely uncorrelated, whilst others are strongly

correlated (see also Sect. 3.1).205

RR reflects the amount of precipitation that becomes streamflow over a certain area and time.

It is determined as the ratio of catchment’s outlet streamflow and catchment average precipitation

over the 10 years used in this study. BFI gives the proportion of streamflow that is considered to be

base flow. A simple one-parameter single-pass digital filter method is used to derive BFI (Arnold

and Allen, 1999). SE provides a measure of the sensitivity of streamflow to changes in precipitation210

(Sankarasubramanian et al., 2001). It is calculated as a median of the inter-annual variation in total

annual streamflow to the inter-annual variation in total annual precipitation ratios normalized by

the long-term runoff ratio (Sawicz et al., 2011; Sankarasubramanian et al., 2001). SFDC gives an

indication of the streamflow variability and is calculated as the slope of the flow duration curve

between the 33 and 66 % flow exceedance values in a semi-log scale (Sawicz et al., 2011). HPC215

reflects aspects of the high flow regime and catchment flashiness, and is calculated as the average

number of events per year that exceed three times the median daily flow (Clausen and Biggs, 2000;

Yadav et al., 2007).

2.3.3 Rainfall-Runoff Model Choice

The probability distributed moisture (PDM) model (Moore, 2007) together with two parallel lin-220

ear routing stores and a simple snow model (Hock, 2003) is selected with two major motivations

(a detailed description of the model is given in Appendix A). First, this type of model has been

shown to have a suitable complexity for modelling daily rainfall-runoff over a large sample of the
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MOPEX catchments (Wagener and McIntyre, 2012). Second, the model has been successfully ap-

plied in other regionalization studies across a wide range of climate and physiographic conditions,225

for example Calver et al. (1999), Lamb and Kay (2004), McIntyre et al. (2005), Young (2006), and

De Vleeschouwer and Pauwels (2013). Even though other model structures may be better suited for

some specific catchments, it is prohibitively difficult to vary model structure between catchments

and no single model structure will ever be best for all catchments (Lidén and Harlin, 2000; Clark

et al., 2008; van Werkhoven et al., 2008). Consequently, the selected model structure is believed230

to be a sufficient choice for the purposes of this paper. Most importantly, the general framework is

independent of the rainfall-runoff model choice.

2.4 Posterior Distribution and Performance Assessment

Employing Bayes’ law (Eq. (2)), the rainfall-runoff model is conditioned on different combinations

of signatures: (1) assuming independence between the signature regionalization errors (setting the235

correlation values to zero in the joint probability function); and (2) accounting for the inter-signature

error correlations (using the estimated covariance in the joint probability function).

Two metrics are used to assess the effectiveness of the parameter conditioning procedure: (1) the

Bayes factor (Jeffreys, 1961) to assess convergence of the parameter posteriors to known parameter

values; (2) the probabilistic Nash-Sutcliffe efficiency (Bulygina et al., 2009) to assess convergence240

of the flow ensembles to the observed flows.

The Bayes factor BF is defined as the ratio between two marginal distributions of the data y (e.g.

observed streamflow time series) for two competing hypotheses (H1 and H2) (Kass and Raftery,

1995) (more detail is given in Appendix B):

BF =
p(y|H1)

p(y|H2)
(3)245

Thus, to test the impact of representing the error correlations, the hypothesis H1 corresponds to the

inter-signature errors being treated as correlated, while the hypothesis H2 corresponds to the inter-

signature errors assumed to be independent. If the resulting Bayes factor is greater than 1, there is

more support for hypothesis H1, and the inter-signature error correlation is worth considering.

When using synthetic streamflow data (“perfect model” approach), with the streamflow time series250

generated by a pre-selected parameter set, p(y|H) in Eq. (3) can be seen as either the posterior

probability of the known observed streamflow time series under hypothesis H or the probability

of the known parameter set that generated that particular flow time series under hypothesis H . As

in a “perfect model” approach there is no observational error, p(y|H) is the probability estimated

for the known value of the parameter set that generated the observed streamflow under each of the255

hypotheses H1 and H2. Since there is no known parameter value corresponding to the real data, the

application of the Bayes factor is less useful in this situation. In this case, defining y as an NSE-
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optimal parameter set allows an indication of the relative degree of convergence around the chosen

point.

The probabilistic Nash-Sutcliffe efficiency NSEprob (Bulygina et al., 2009) is a probabilistic ana-260

logue of the traditional Nash-Sutcliffe efficiency coefficient (Nash and Sutcliffe, 1970), and allows

both prediction accuracy and precision to be summarized by a single statistic (Eq. (4)).

NSEprob =

{
1−

∑T
t=1(E[q̂t]− qt)2∑T
t=1(qt−E[q])2

}
−

∑T
t=1Var[q̂t]∑T

t=1(qt−E[q])2
(4)

qt denotes a set of streamflow observations for time t= 1, . . . ,T , E[q] is the average value for the

qt time series, q̂t is the simulated time series of streamflow for time t= 1, . . . ,T , Var[q̂t] is the265

prediction variance at time t,E[q̂t] is the mathematical expectation of the predictions at time t, and T

is the total number of time steps in the sequence. The first part of Eq. (4) corresponds to the traditional

Nash-Sutcliffe efficiency coefficient (Nash and Sutcliffe, 1970) in which expected streamflow values

are considered as predictors. The latter part of the equation represents the variance, whereby higher

predictor variance corresponds to less precise predictions (Bulygina et al., 2009). An NSEprob of 1270

indicates a perfect fit, i.e. the results are both accurate and precise. The incremental improvement

in the NSEprob can be used to measure the value of adding signatures into the conditioning or

otherwise changing the likelihood function.

For model validation, we use a jack-knife approach (or leave-one-out strategy), commonly em-

ployed in regionalization studies (e.g. Merz and Blöschl, 2004; Shu and Ouarda, 2012). One catch-275

ment at a time is removed as a test “ungauged” catchment and the remaining gauged catchments are

used to support the regionalization process, including Steps 2–6 listed in Sect. 2.2.2 The procedure

is repeated for each of the available catchments.

3 Results and Discussion

3.1 Regionalized Signature Errors and Likelihood Functions280

The regionalization error probability distributions (that define the likelihoods) are generated follow-

ing Steps 2 to 6 in Sect. 2.2.2 and are shown in Fig. 1. The marginal error distributions, shown on the

Fig. 1 diagonal, are approximated using histograms, and parameters of normal distributions are fitted

using the method of moments. The univariate Kolmogorov-Smirnov test shows that the marginal dis-

tribution normality cannot be rejected at the 95 % confidence level for each of the five signatures. The285

off-diagonal shows the regionalization errors for different signature pairs (lower off-diagonal), the

corresponding correlation coefficient values and their statistical significance (upper off-diagonal).

The joint error distributions are approximated using multivariate normal distributions that are fitted

using estimates of the marginal normal distribution parameters and the inter-signature error corre-

lations. These marginal and joint distributions define the likelihood functions in Eq. (2). Note that290

Fig. 1 represents the regionalization errors based on all 84 catchments. Meanwhile, the jack-knife
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procedure (see Sect. 2.4) utilized in the performance assessment employs only 83 catchments at a

time.

3.2 The Impact of Inter-Signature Error Correlations (Pairs of Signatures)

This section considers the role of inter-signature error correlation on model parameter estimation295

when pairs of signatures are used. First, different imposed error variances and correlations together

with synthetic streamflow data are employed to test the impact of inter-signature error correlation

without the impact of model structural error. Then, the results obtained using the observation-based

error structure, for both synthetic and observed data streamflow, are analyzed.

3.2.1 Synthetic Streamflow Data (Imposed Likelihoods)300

Synthetic streamflow data are generated as described in Sect. 2.2.3, and the imposed likelihood

functions are defined as described in Sect. 2.2.3. The imposed likelihoods are considered to have

standard deviations equal to 1, 5, 10, 20 % of the signature value range observed over all catchments.

A comparison of the imposed error structures under the different levels of variance and the observed

error structure is given in Table 2. Furthermore, different inter-signature error correlations are also305

tested, namely 0 (linear independence), 0.25, 0.50, 0.75 and 0.90.

Ten possible pairs of the five response signatures are used in parameter conditioning, and the

median Bayes factor, calculated over the 84 MOPEX catchments, is calculated for each pair. The

Bayes factor (Eq. 3) compares the two following hypothesis: H1) the inter-signature error corre-

lation is to be taken into account, and H2) the errors between the different sources of information310

can be assumed independent. The Bayes factor is found to be relatively insensitive to the selection

of response signature pairs (Kruskal–Wallis test). Table 3 summarizes the 95 % pooled confidence

intervals for the median Bayes factor across all catchments and across all 10 signature pairs, for each

choice of the likelihood (i.e. 20 likelihoods). This provides reference values indicative of the error

interdependency importance in model regionalization depending on the signature pair correlations315

and marginal distribution variances. As it would be expected, the median Bayes factor is equal to

1 when signatures errors are not correlated (i.e. ρ= 0). However, as correlations between signa-

tures errors increase the median Bayes factor increases noticeably. This suggests that considering

error correlations allocates higher likelihoods to parameter sets that capture a considered signature

pair. Furthermore, the results shown in Table 3 also imply that the median Bayes factor is relatively320

insensitive to the precision with which the signatures are regionalized.

3.2.2 Synthetic and Observed Streamflow Data (Observation-Based Likelihoods)

Figure 2 shows the distribution of the Bayes factor values obtained across the 84 catchments for each

of the 10 possible different pairs of signatures, when the observation-based error structure is used

for each catchment. Figure 2a shows the results for the observed streamflow data with regionalized325
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signatures calculated from the derived regressions; Fig. 2b shows the results for the synthetic stream-

flow data with regionalized signatures calculated by adding noise to the exact signature values. The

Tukey boxplots in red correspond to pairs of signatures whose errors are statistically significantly

correlated (see Fig. 1). The upper whisker represents the upper quartile plus one and a half times the

interquartile range, and the lower whisker represents the lower quartile minus one and a half times330

the interquartile range. The matrix below Fig. 2b shows the pairs of signatures used.

The signature pair [SFDC, HPC] shows the strongest correlation between errors (ρ= 0.65, Fig. 1).

A likelihood function with a standard deviation equal to 10 % of the observed signature ranges and

ρ= 0.75 in Table 3 is comparable to the observation-based likelihood of the pair [SFDC, HPC] (Ta-

ble 2), with Table 3 indicating [1.45,1.53] as a 95 % confidence interval for the median Bayes factor.335

However, a median Bayes factor of 2.17 is obtained for the observed streamflow data (Fig. 2a). Simi-

lar differences are found for the other pairs of signatures, although the comparison with the reference

table (Table 3) becomes challenging, as the individual signatures have not been regionalized neces-

sarily with similar quality. On the other hand, Fig. 2b shows that the Bayes factors for the synthetic

study (when there is no model structural error) are consistent with the values provided in the look-up340

Table 3. The difference between the median Bayes factor for the two cases is likely to be caused

by the model structure error, or may be related to the location of the NSE-optimal in the parameter

space.

Nevertheless, it is clear from Fig. 2 that those pairs of signatures whose errors are significantly

correlated (i.e. [SFDC, HPC], [BFI, HPC], [BFI, SFDC] and [BFI, SE]) have wider interquartile345

ranges. Furthermore, the pair of signatures with the strongest correlation between errors [SFDC,

HPC] presents the greatest interquartile range. Therefore the inclusion of significant correlations in

the likelihood function matters, but whether or not it is beneficial to conditioning the parameters

seems to depend on the interplay between model structure error, parameter space and likelihood

function. Only strong correlations (as in the [SFDC, HPC] case) can be expected to result in a350

median Bayes factor clearly above 1.

3.3 The Impact of Inter-Signature Error Correlations (Multiple Signatures)

Multiple signatures are used for parameter constraining and flow prediction. The information value

of multiple signatures and its dependence on inter-signature error correlations is explored in this

section.355

3.3.1 Synthetic Streamflow Data (Observation-Based Likelihood)

Figure 3 shows Bayes factors derived for the synthetic streamflow data (generated using the NSE-

optimal parameter set) when the observation-based likelihood is used. The Bayes factor considers

p(.|H2) to be the prior parameter distribution, and p(.|H1) to be one of the parameter posteriors

that includes or ignores the inter-signature error correlations. Figure 3 summarizes the variability360
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in the Bayes factor for the different combinations of signatures for all 84 catchments. Boxplots are

color coded by the total number of signatures combined, when the inter-signatures error correlation

is considered in the likelihood function definition. The grey dashed boxplots correspond to the re-

sults obtained assuming that the inter-signature errors are independent when defining the likelihood

function. Although the colored boxplots visually seem to have higher values than the grey dashed365

boxplots, these differences are not statistically significant at a 95 % confidence level (Kolmogorov–

Smirnov two-sided tests).

To better evaluate whether the incorporation of additional sources of information improves pa-

rameter identification, one-sided Kolmogorov–Smirnov tests are applied between any combination

of certain signatures (e.g. [SE, SFDC]) and any other combination that contains the same signatures370

and a new one (e.g. [SE, SFDC, HPC]). It is found that adding more signatures improves parameter

identification in 82.5 % of the cases (66 out of 80 cases) at a 95 % confidence level).

Figure 4 summarizes the variability in the analog Nash-Sutcliffe efficiency measure NSEprob

for different combinations of signatures for all 84 catchments. The colored boxplots correspond

to the results obtained when the inter-signature error correlations are considered in the likelihood375

definition, and the grey dashed boxplots correspond to the results when the inter-signature errors are

assumed to be independent. There is no visual or statistical (two-sided Kolmogorov–Smirnov tests)

difference between the colored boxplots and the grey dashed boxplots in Fig. 4. Moreover, visually,

adding more response signatures seems to improve streamflow predictions in terms of accuracy and

precision when no model structure error exists. However, only in 59 % of the cases (47 out of 80380

cases) more signatures contribute to improved streamflow predictions at a 95 % confidence level

(one-sided Kolmogorov–Smirnov test). The other 33 cases always involve the inclusion of the most

poorly regionalized signatures (with the highest variance from the five regionalized signatures) - SE,

SFDC or HPC - as additional sources of information (see Table 2).

It is worth noting that very similar results (not shown here) are obtained when instead of region-385

alized signatures(calculated by adding noise to the exact signature value), “observed” signatures

(the exact signature value) are used
:::
are

::::
used

:::
but

::::
with

:::
the

:::::
same

:::::
error

::::::
derived

:::::
from

::::::::::::
regionalization.

This suggests that the uncertainty around the regionalized signatures values
:
, as well as signature

information content,
:
are the key factors leading to the results shown in Fig. 4.

3.3.2 Observed Streamflow Data (Observation-Based Likelihood)390

Figure 5 shows the results when the same methodology as in the Sect. 3.3.1 is applied using the

observed streamflow data. As in the synthetic streamflow case, the differences between the Bayes

factor distributions when inter-signature error correlations are considered and when inter-signature

errors are assumed to be independent are not statistically significant at a 95 % confidence level

(Kolmogorov–Smirnov two-sided tests).395
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Further, by comparing Fig. 5 with Fig. 3, it becomes clear that the signatures contribute less

information, and there is a smaller increase in performance as more signatures are added. It is found

that adding more signatures tends to improve parameter identification only in half of the cases when

compared to the synthetic streamflow case at a 95 % confidence level (42.5 % versus 82.5 % in the

synthetic streamflow case). Furthermore, and contrastingly to the case where no structural error400

exists, in five situations adding more signatures contributes to a decrease in performance. These

five cases always involve adding either SFDC or HPC as an additional source of information. This

performance deterioration can be attributed to model structure and observational error. Overall, a

statistically significant drop in performance with regard to the Bayes factor is observed most of the

time when model structural error is present.405

Figure 6 presents the results in terms of NSEprob using the observed streamflow data. As in the

synthetic study in Sect. 3.3.1, there is no statistically significant difference at a 95 % confidence dif-

ference between the NSEprob distributions when the inter-signature error correlations are considered

and when the errors are treated independently (Kolmogorov–Smirnov two-sided tests).

Figure 6 shows that better results in terms of NSEprob are not necessarily achieved when all410

five signatures are used simultaneously. It is found that adding more signatures tends to improve

parameter identification only in 36 % of the cases at a 95 % confidence level (compared to 59 %

when there is no model structure error). Furthermore, and contrasting the case where no model

structure error exists, in two situations, adding more signatures may contribute to a decrease in

performance (when we start with [RR, BFI] and add HPC, and when we start with [RR, BFI] and415

add SFDC). This might be due to regionalization biases in SFDC and HPC and/or due to the inability

of the PDM model to maintain a satisfactory overall performance when conditioned on high peak

flow and medium flow information. This negative impact is not observed when synthetic streamflow

data are used (Fig. 4), indicating that the decrease in performance may be due to model structural

deficiencies. Moreover, a statistically significant drop in performance with regard to NSEprob is420

observed most of the time when there is model structural error.

In summary, unless there is no model structural error, an all-round performance improvement

is not guaranteed by adding more signatures. Furthermore, model structure uncertainty seems to

have a much bigger effect on the performance than the explicit inclusion of the inter-signature error

correlations.425

3.4 Limitations and Applicability

The main feature of the method suggested in this paper lies in the possibility of allowing a large num-

ber of signatures to be added to the conditioning process, without worrying about double-counting of

information or degree of uncertainty in signature estimates, and avoiding subjective decisions about

removal of possibly nonindependent information. Although the proposed framework can be applied430

to any number of signatures, the limited sample size (i.e. number of gauged catchments available)
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can have an impact on the definition of the likelihood distribution. For this specific study 83 sam-

ples were available to define that distribution. When a single response signature is used to condition

the hydrological model this sample size is likely to be sufficient to confidently judge whether the

normal distribution assumption is sufficient. However, when moving to multidimensional problems,435

in which various signatures may be used simultaneously to condition the hydrological model, it is

increasingly difficult to judge the adequacy of any multivariate parametric distribution and to judge

which catchments are outliers. This implies that as more signatures are used simultaneously in the

conditioning of the hydrological model, the more gauged catchments should be used to define the

likelihood function. As stressed by Gupta et al. (2014), large samples are of great importance to440

support statistical regionalization of uncertainty estimates, and this is particularly the case if depen-

dencies between information sources are to be specified.

While the work presented in this paper addresses a number of issues associated with model re-

gionalization, it is important to highlight some additional areas for future research. An important

source of uncertainty comes from model structure error (Gupta et al., 1998; Kuczera et al., 2006).445

The conditioning framework suggested here is independent of the selected model, and, in princi-

ple, Figs. 5 and 6 could be created by using the model structure that is considered suitable for each

catchment rather than using a model structure that we consider good for generalizing. Further re-

search is needed to diagnose the relative importance of different model structures in various climate

regimes and for different catchment characteristics (Clark et al., 2008; Hrachowitz et al., 2013). This450

is crucial to both identifying the most appropriate model structure for an ungauged location and

quantifying the uncertainty in the model structure that should be integrated into the likelihood, thus

allowing virtually any model choice. Similarly, other sources of uncertainty, namely observational

error (e.g. rainfall error), should ideally be evaluated and integrated into the likelihood function. By

accounting for all the important sources of uncertainty, further insight should be achieved into the455

information value of sets of signatures and the value of including their dependencies in the likelihood

function.

Some of the results presented may be sensitive to the response signatures used. The relationship

between value of signatures and catchment type remains ambiguous and an interesting aspect for

posterior evaluation would be how the value of signatures depends on catchment type. Other aspects460

that are worth further research include whether a similar framework could be applied to different

types of information source, e.g. can some discharge measurements be added into the model condi-

tioning process? While Bulygina et al. (2012) suggests a framework capable of combining multiple

sources of knowledge, namely physically based information, regionalized signatures and spot ob-

servations to identify parameters for models of ungauged catchments, the errors between them were465

assumed to be independent in their case study. A combination of the framework suggested by Buly-

gina et al. (2012) and the method proposed in this paper may be the way forward to maximizing the

value of the available information within a framework of uncertainty reduction.
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4 Conclusions

Uncertainty in streamflow estimation in ungauged catchments originates not only from the traditional470

sources of error generally identified in rainfall-runoff modelling (i.e. model structural, parameter and

data errors), but also by errors introduced by the transposition of information from data-rich areas

and use of this information to condition model simulations. To identify which and how many types of

signatures can usefully be included in model conditioning, it is critical to understand the effects of all

these uncertainties. Moreover, when multiple signatures are used simultaneously to condition model475

simulations, inter-signature error dependencies may also introduce uncertainty and affect decisions

about the value of information. While error and uncertainty analyses are quite common in regional-

ization studies, the question of how much information can be taken from a set of uncertain signatures

and determining how many and which signatures should be used given their error dependencies has

not been extensively studied.480

The method suggested in this paper allows the specification of a signature error structure. A com-

mon reason for not including large numbers of signatures in regionalization studies is the potential

for under-estimation of uncertainty due to duplication of information. This study helps to justify the

inclusion of larger sets of signatures in the regionalization procedure if their error correlations are

formally accounted for and thus enables a more complete use of all available information. The re-485

sults show that adding response signatures to constrain the hydrological model, while accounting for

inter-signature error correlations, can contribute to a stronger identification of the optimum parame-

ter set when the error correlations between different sources of information are strong. Furthermore,

the results show that assuming independency of errors does not result in significant deterioration in

model performance, unless the error correlation is very strong. The results also show that the effect490

of error correlations is likely to be overwhelmed by model structure and observation errors. The

method suggested here can therefore become more relevant if observational and structural errors

are reduced. In addition, it is illustrated that using more signatures, with and without considering

their error correlations, may lead to deterioration in performance. In our case, there were particular

problems when adding the slope of the flow duration curve and/or the high pulse count. As this is495

likely to be specific to the rainfall-runoff model used, the selected performance criteria and the set

of catchments, it is recommended that the disinformative information sources are identified as part

of any regionalization study, in a similar manner as has been done here.

Appendix A: Model Structure

A schematic representation of the model structure used in this study is shown in Fig. A1. The500

snowmelt routine is based on the degree-day method. Precipitation accumulates as snow or rain

depending whether the air temperature is above or below a threshold temperature (Tth). When the

air temperature is above the temperature threshold for snowmelt (Tm), snowmelt occurs at a rate
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that is proportional to the degree-day factor (DDF ). The soil moisture storage component describes

the water balance at the soil level. The PDM model uses a probability density function to represent505

changes in the catchment storage capacity, defined by the maximum soil moisture storage (cmax) -

the maximum soil water storage capacity within the modelled element - and a shape parameter (b)

that controls the degree of spatial variability of storage capacity over the catchment. Interception

is not explicitly modelled. Transpiration and evaporation are lumped into a single term. The actual

evapotranspiration (AE) is determined based on a relationship between evapotranspiration and soil510

moisture deficit (Moore, 2007). After evapotranspiration, the remaining available water is used to

fill the soil moisture store. When effective rainfall is produced through overflow of the storage ele-

ments, excess water is passed to the routing stores. The routing module channels this water into two

reservoirs, according to a fraction split coefficient (α). A proportion α of the water excess goes to the

quick flow reservoir, controlled by the quick flow residence time (kq), and (1−α) of the water excess515

goes to the slow flow reservoir, controlled by the slow flow residence time (ks). The streamflow at

the catchment outlet is the sum of the outputs from each of these quick and slow flow reservoirs.

The parameter ranges (Table A1) are selected after Kollat et al. (2012) based largely on the maxi-

mum range sampled from several recent studies, such that only sufficiently extreme values are ruled

out.520

Appendix B: The Bayes Factor

When evaluating the impact of inter-signature error correlations on model parameter identification,

results are assessed in terms of Bayes factor (Jeffreys, 1961). This form of assessment is preferred

to the most commonly used QQ plots (Laio and Tamea, 2007), due to the particular nature of the

problem under analysis. When signature(s) (either regionalized for the case of an ungauged catch-525

ment, or derived from actual observations for the case of gauged catchments) is employed to reduce

uncertainty beyond what is possible by defining the priors on model parameters, QQ plots may not

be the most effective form of assessment. Although response signatures are measures of theoretically

relevant system process behaviors (Gupta et al., 2008; Wagener et al., 2007), they reflect fragmented

knowledge as different signatures capture different catchment processes. Consequently, the quan-530

tiles of observed flows are not conditioned to follow a uniform distribution, as QQ plots assess.

Rather, quantiles of response signatures should follow this condition (for all catchments considered

– Almeida et al., 2013). Therefore, an alternative performance measure that more adequately reflects

the aim of this particular application (i.e. the reproduction of certain aspects of the hydrograph) is

used. The Bayes factor BF is particularly relevant in the current context as it allows comparison of535

predictions based on two competing theories (Jeffreys, 1961). It is defined as the ratio between the

marginal distributions of the data y for the two hypotheses (H1 and H2) being compared (Kass and
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Raftery, 1995):

BF =
p(y|H1)

p(y|H2)
(B1)

When the two hypotheses are equally likely a priori, the Bayes factor is the posterior odds in favor540

of H1 (Kass and Raftery, 1995). In other words, a value of BF greater than 1 means that H1 is more

strongly supported by the data than H2. For example, a Bayes factor equal to 2 implies that H1 is

favored over H2 with 2 : 1 odds given the evidence provided by the data.

For a given hypothesis H , parameterized by model parameter set Θ, the marginal density p(y|H)

represents the likelihood of the data and it is given by545

p(y|H) =

∫
p(y|Θ,H)p(Θ|H)dΘ (B2)

where p(y|Θ,H) is the conditional density function given parameters Θ under hypothesis H and

p(Θ|H) is the distribution of parameters under H . Hypothesis H may represent different model and

parameter distributions. In this paper, the same model structure is considered. However, different

parameter distributions are used in Eq. (B2) to enable prediction comparison based on two theories550

about parameter distributions.

The above integral can be numerically approximated as,∫
p(y|Θ,H)p(Θ|H)dΘ≈ 1

N

N∑
i=1

p(y|Θ(i),H)p(Θ(i)|H) (B3)

where Θ(i) is the ith of N draws from p(.|Θ), and N is the size of the Monte Carlo sample (in this

paper N is equal to 10 000).555

In a “perfect model” study, data y are generated by a model with parameter set Θ∗, so that there

is no model structural or observational error. This means that p(y|Θ(i),H) is always equal to zero,

except when Θ(i) = Θ∗. Mathematically this is expressed as p(yΘ(i),H) = δΘ(i)=Θ∗ , where δ is

the Dirac delta function. Therefore Eq. (B3) is equal to 1/N times p(Θ(i) = Θ∗|H) and the Bayes

factor is given by560

BF =
1
N

∑N
i=1 δΘ(i)=Θ∗p(Θ(i)|H1)

1
N

∑N
i=1 δΘ(i)=Θ∗p(Θ(i)|H2)

=
p(Θ(i) = Θ∗|H1)

p(Θ(i) = Θ∗|H2)
(B4)

While other choices can be made, two cases are considered in this paper. First, the two distri-

butions in Eq. (B4) are posterior distributions, but with different assumptions about the likelihood

functions. Given that we are particularly interested in evaluating the impact of considering the inter-

signature error correlations versus ignoring them, H1 will correspond to the joint likelihood defined565

such that inter-signature error correlations are considered, while H2 corresponds to the likelihood

when inter-signature error correlations are ignored. For the Bayes factor defined in this way, a value

greater than 1 supports the idea that considering inter-signature error correlations contributes to an

improved specification of the optimum parameter set. In this paper we are also interested in the value
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of adding/not adding more signatures in model conditioning, and so the Bayes factor will be also570

calculated for p(.|H2) set to be the prior parameter distribution, and p(.|H1) set to one of the derived

parameter posteriors. For the Bayes factor defined in this way, a value greater than 1 supports the

idea that additional sources of information contribute to a stronger identification of the optimum

parameter set.
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Table 1. Summary of general catchment properties and response signatures of the 84 MOPEX catchments.

Catchment property Units Range

Average annual streamflow (mm yr−1) 208–896

Average annual precipitation (mm yr−1) 758–1495

Average annual maximum temperature (◦C) 12–23

Average annual minimum temperature (◦C) 0–10

Average annual potential evaporation (mm yr−1) 679–1112

Aridity index* (-) 0.5–1.2

Average elevation (m) 176–1056

Runoff ratio (-) 0.16–0.76

Base flow index (-) 0.36–0.90

Streamflow elasticity (-) 0.02–4.34

Slope of flow duration curve (-) 0.01–0.08

High pulse count (yr−1) 2.10–120.80

* Long-term ratio of potential evaporation over precipitation.

Table 2. Tested variance values for the data-based and imposed error structures.

1 % observed 5 % observed 10 % observed 20 % observed

Observed error signature signature signature signature

structure ranges ranges ranges ranges

RR residuals 0.0542 0.0052 0.0272 0.0552 0.1092

BFI residuals 0.0442 0.0062 0.0302 0.0602 0.1212

SE residuals 0.6352 0.0232 0.1162 0.2322 0.4642

SFDC residuals 0.0062 0.00052 0.0022 0.0052 0.0102

HPC residuals 10.6872 0.9772 4.8832 9.7672 19.5332

Table 3. Reference table showing the 95% confidence interval for the median Bayes factor. The correlation

coefficient ρ and the standard deviation of the marginal distributions σ are shown.

σ

1 % 5 % 10 % 20 %

0 1 1 1 1

0.25 1.01–1.03 1.03–1.04 1.02–1.04 1.04–1.05

ρ 0.50 1.09–1.15 1.16–1.19 1.14–1.17 1.14–1.18

0.75 1.41–1.51 1.50–1.57 1.45–1.53 1.40–1.49

0.90 1.94–2.11 2.11–2.32 2.12–2.26 2.20–2.34
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Table A1. Conceptual model prior parameter ranges.

Parameter Description Units Range

DDF Degree day factor (mm day−1 ◦C−1) 0–20

Tm Base temperature for melting (◦C) 0–5

Tth Threshold temperature for snow formation (◦C) -5–5

cmax Maximum storage capacity within the catchment (mm) 0–2000

b Shape Pareto distribution (-) 0–4

be Evaporation reduction parameter (-) 0–4

kq Time constant for fast routing store (days) 0–7

ks Time constant for slow routing store (days) 7–20000

α Fraction of slow through fast routing store (-) 0–1
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Figure 1. Distribution of individual signature residuals (res) are approximated as histograms and normal distri-

butions. The scatterplots and correlation coefficients (ρ) show correlation between the signature residuals.
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Figure 2. The Bayes factor for the 10 pairs of signatures over the 84 catchments when the observation-based

error structure is used with (a) observed streamflow data, (b) synthetic streamflow data. The upper whisker

represents the upper quartile plus one and a half times the interquartile range, and the lower whisker represents

the lower quartile minus one and a half times the interquartile range. The dashed line represents BF = 1.
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Figure 3. Boxplots representing the distribution of the Bayes factor for each combination of signatures for

synthetic streamflow data. The colored boxplots correspond to the results obtained when inter-signature error

correlations are considered in the likelihood function, whereas the grey dashed boxplots correspond to the

results obtained assuming that the inter-signature errors are independent.
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Figure 4. Boxplots representing the distribution of NSEprob values for each combination of signatures for

synthetic streamflow data. The colored boxplots correspond to the results obtained when inter-signature error

correlations are considered in the likelihood function, whereas the grey dashed boxplots correspond to the

results obtained assuming that the inter-signature errors are independent.
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Figure 5. Boxplots representing the distribution of the Bayes factor for each combination of signatures for

observed streamflow data. The colored boxplots correspond to the results obtained when inter-signature error

correlations are considered in the likelihood function, whereas the grey dashed boxplots correspond to the

results obtained assuming that the inter-signature errors are independent.
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Figure 6. Boxplots representing the distribution of NSEprob values for each combination of signatures for

observed streamflow data. The colored boxplots correspond to the results obtained when inter-signature error

correlations are considered in the likelihood function, whereas the grey dashed boxplots correspond to the

results obtained assuming that the inter-signature errors are independent.
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Figure A1. Schematic representation of the rainfall-runoff conceptual model structure used.
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