
Authors’ response on manuscript entitled "Accounting for dependencies in regionalized signatures 

for predictions in ungauged catchments" by Almeida et al. submitted to Hydrology and Earth 

System Sciences. 

We address the comments of the Editor and each Reviewer below. Editor and Reviewer’s comments 

are in black, and our response is in blue. A marked-up manuscript version is provided, with any 

changes made to the original manuscript highlighted in blue. 

 

Response to Editor 

We thank the Editor for his time and feedback on the manuscript.  

I believe that there is in the reviews a lot of critics to help you improve your manuscript. I read your 

answers with interest, and I would like to draw your attention on three points: 

. you cannot expect readers to have read all the previous papers of your group. It's up to you to 

summarize very briefly the main outcomes to help them follow what you are doing; 

In newly the revised manuscript we have tried to more clearly summarize the main outcomes of our 

previous research that are relevant to the current study, namely Almeida et al. (2012), Almeida et al. 

(2013), Almeida (2014) and Bulygina et al. (2009).  

In section 2.2.1 of the revised manuscript, and addressing also another concern pointed by Reviewer 

#3, we have added the following text (pages 5, lines 127-137 of the revised manuscript): 

“We follow Almeida et al. (2013) and sample sets of signature values from uniform distributions 

representing the feasible ranges of signatures. This approach allows the signatures to be sampled 

uniformly using a simple amendment to the commonly applied approach of sampling from uniform 

parameter priors, which avoids highly skewed signature priors that have undue influence on the 

posterior likelihood. More specifically, N parameter sets (N is equal to 10000 in our study) are 

sampled from a uniform distribution using Latin Hypercube sampling, so that probability of each 

parameter set is 1/N (10-4 in our study). Subsequently, to provide parameter samples that 

correspond to a uniform in signatures prior distribution, the parameter probabilities are re-weighted 

(see Almeida et al., 2013), and used in the further posterior distribution approximation. This allows 

accounting for correlation among the parameters imposed by the uniform in signatures prior 

distribution.”  

In section 2.3.1 of the revised manuscript, and addressing also another concern pointed by Reviewer 

#1, we restate the reasons behind the selection of the catchments used in this study. In the revised 

manuscript we have added the following text on pages 6-7, lines 181-190 (in italic): 

“A set of 84 medium sized United States catchments (242 to 8657 km2) from the MOPEX database 

(Schaake et al., 2006; Duan et al., 2006), for which a variety of regional response signature models 

have been determined in Almeida et al. (2012), namely, base flow index, runoff ratio, stream flow 

elasticity, high pulse count and slope of flow duration curve, are used to test the method proposed in 

this paper. It has proven difficult to derive regionalization equations of acceptable prediction quality 

for all catchments in the MOPEX dataset (Almeida, 2014). This is due to the lack of descriptive power 

in the set of available catchment attributes, e.g. the attributes do not provide satisfactory 

information about catchment geology. To isolate the effect of variable geology on the regression 

equations, the selected 84 catchments are grouped based on the underlying geology, namely, Middle 

Paleozoic sedimentary rocks.” 



Lastly, we expanded on the definition of NSEprob (page 9, lines 260-273) (in italic):  

“The probabilistic Nash-Sutcliffe efficiency NSEprob (Bulygina et al., 2009) is a probabilistic analogue 
of the traditional Nash-Sutcliffe efficiency coefficient (Nash and Sutcliffe, 1970), and allows both 
prediction accuracy and precision to be summarized by a single statistic (Eq. 4).  
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 (4)  

𝑞𝑡 denotes a set of streamflow observations for time 𝑡 = 1,… , 𝑇, 𝐸[𝑞] is the average value for the 𝑞𝑡 

time series, �̂�𝑡 is the simulated time series of streamflow for time 𝑡 = 1,… , 𝑇, Var[�̂�𝑡] is the 

prediction variance at time 𝑡, 𝐸[�̂�𝑡] is the mathematical expectation of the predictions at time 𝑡, and 

𝑇 is the total number of time steps in the sequence. The first part of Eq. (4) corresponds to the 

traditional Nash-Sutcliffe efficiency coefficient (Nash and Sutcliffe, 1970) in which expected 

streamflow values are considered as predictors. The latter part of the equation represents the 

variance, whereby higher predictor variance corresponds to  less precise predictions (Bulygina et al., 

2009). An NSEprob of 1 indicates a perfect fit, i.e. the results are both accurate and precise. The 

incremental improvement in the NSEprob can be used to measure the value of adding signatures 

into the conditioning or otherwise changing the likelihood function.” 

. reviewer 1 is obviously concerned by the need for demonstrating the interest of signature-based 

regionalization. I have seen (and heard) so much confuse things about it, that I do agree with him. 

Try to spend a little time convincing your reader that constraining calibration with simulated 

signatures is worth being tried; 

The literature on this is extensive and it is important to note that the aim of our paper is not to 

compare alternative regionalization approaches, and, instead, the reader is referred to earlier 

papers for a discussion of this topic, namely He et al. (2011), Peel and Blöschl (2011), Razavi and 

Coulibaly (2013) and Parajka et al. (2013) (see Introduction, page 5391, lines 2-6 of the original 

manuscript). Instead, in the revised manuscript we have added the following text that discusses the 

advantages of using signature-based regionalization to condition model simulations in order to 

reproduce response signatures (page 2, lines 39-49, of the revised manuscript): 

 “Advantages of this approach include: the flexibility in the selection of the response signatures 

allowing it to be based on the specific parts of the hydrograph that are of greatest importance for a 

given application and, if known, on the dominant hydrological processes of the catchment; access to 

readily available regional models for different signatures in the literature (such as base flow index 

from the Hydrology of Soil Types system (Boorman et al., 1995)  and curve number from the United 

States Department of Agriculture’s Soil Conservation Service soil and land use classification (USDA, 

1986)) hence eliminating the need to build new regional regression models; the relationships 

between response signatures and catchment and climatic characteristics are not specific to any 

rainfall-runoff model nor to a particular calibration method used in the gauged catchments, and are 

therefore not obscured by model structural error and can be used to condition any model.” 

. last reviewer 3 talks about "disappointing" results and you seem upset... my point of view is that 

there is no shame at all at publishing disappointing results, and I always have a lot of consideration 

for those authors who are not afraid of acknowledging the limits of their work. 

We believe that the Editor is referring to Reviewer #2, not #3, as it is Reviewer #2 who describes the 

results as “disappointing”. Our response to Reviewer #2 reflects the fact that we believe that our 

results provide a number of meaningful and relevant contributions to the literature on signature-



based regionalization. We do not regard the results as disappointing - but surprising because 

including the correlations, and including more signatures, does not improve performance as 

expected theoretically; and the limitations that may have led to this are discussed in detail in section 

3.4. 
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Response to Reviewer #1 

We thank Reviewer #1 for her/his time and feedback on the manuscript. We notice that the 

reviewer mainly seems to be confused about the objective of the paper – we added some text into 

the introduction to clarify that.  

This paper deals with the two-step regionalization of a rainfall-runoff model: 

 The first step lies in regionalizing various flow “signatures” (i.e. statistics which reflect part of 

the behavior of the catchment); 

 The second step lies in using the regionalized signatures in order to constrain the search for 

an adequate parameter set. 

In this paper, the search is made based on a Bayesian framework, and the reader gets lost in the 

details of the Bayesian methodology, and loses sight of the regionalization methodology. The 

methodology seems sound, the problem lies in the way the paper is written: the reader gets lost in 

the details of a statistical procedure, and we end up the paper with conclusions which only refer to 

details. 

The objective of the paper is not to describe/develop a regionalization methodology per se, but to 

look at one of the important aspects of a probabilistic regionalization procedure that arises due to 

dependent information sources. This is clearly stated in the manuscript title and introduction by 

saying ‘(…) we introduce and test a method that considers multiple regionalized signatures, explicitly 

accounting for the signature error correlations. (…) The objective is thus to explore how to get fuller 

value out of a set of regionalized information than has been achieved in past applications.’ (Page 

5393, lines 7-13, of the original manuscript). 

 We addressed the specific reviewer’s concerns below.  

For example: 

 the authors use a first step of synthetic signatures, in order to put aside part of the 

uncertainty. But where is the detailed analysis of the difference between the synthetic case 

and the actual case? Authors’ reply: Detailed analysis on how synthetic case compares with 

actual observed streamflow data for pairs of signatures is given in section 3.2.2, in particular 

in the second paragraph (page 5403, lines 4-16, of the original manuscript) and in Figure 2. 

For multiple signatures, detailed analysis is given in section 3.3.2, more specifically in the 

second paragraph (page 5405, lines 18-28, of the original manuscript), third paragraph (page 

5406, lines 10-19, of the original manuscript) and last paragraph (page 5406, lines 20-23, of 

the original manuscript) of this section.  

 the focus of the paper is put on the correlations between the different signatures, while 

there is no discussion of the actual value of the signature-based regionalization. Before 

worrying about the correlations, we should be at least sure that the two-step procedure is 

worth being followed (where is the demonstration that it is better than the one-step 

procedure?) Authors’ reply: Regionalized signatures have been widely used to constrain the 

prior range of streamflow simulations with large success (e.g. Yadav et al., 2007; Zhang et al., 

2008; Bulygina et al., 2009). All these studies refer to the issue of correlations, but none of 

them propose a way to formally address it. Therefore we feel we are justified in focusing on 

the correlation. We do also illustrate the value of the signature approach in terms of the 

range of performances achieved through e.g. Figures 3, 4, 5 and 6, albeit not in comparison 

to alternative regionalization approaches. This is covered in earlier papers and in our 



Introduction. In the revised manuscript we have added the following text that discusses the 

advantages of using signature-based regionalization to condition model simulations in order 

to reproduce response signatures (page 2, lines 39-49, of the revised manuscript): 

“Advantages of this approach include: the flexibility in the selection of the response 

signatures allowing it to be based on the specific parts of the hydrograph that are of greatest 

importance for a given application and, if known, on the dominant hydrological processes of 

the catchment; access to readily available regional models for different signatures in the 

literature (such as base flow index from the Hydrology of Soil Types system (Boorman et al., 

1995)  and curve number from the United States Department of Agriculture’s Soil 

Conservation Service soil and land use classification (USDA, 1986)) hence eliminating the 

need to build new regional regression models; the relationships between response 

signatures and catchment and climatic characteristics are not specific to any rainfall-runoff 

model nor to a particular calibration method used in the gauged catchments, and are 

therefore not obscured by model structural error and can be used to condition any model.” 

I believe there is a lot of interesting matter in the research that produced this paper. But the first 

author definitely needs help in order to organize her results in a way to make them understandable 

to a wider audience. I would personally prefer a less ambitious analysis based on catchment 

similarity: how do correlated signatures allow to find the most similar catchments. The application to 

PDM could come after. 

Authors’ reply: We appreciate the reviewer’s suggestion that highlights a potentially interesting 

research topic. However, we believe that addressing important, previously unaddressed questions 

concerning the regression approach to regionalization is an important research area. We recognize 

that the paper may take time to understand for readers unfamiliar with Bayesian conditioning; and 

we have tried to include enough description of the method, including appendices, and the key 

references, to help readers. We are sure the paper will be easy to follow to a wide readership with 

interests in model conditioning (see Reviewer #3 comments).   

Minor remark: please justify how you have selected the catchments that you use from the entire 

MOPEX dataset. 

Authors’ reply: In section 2.3.1 we provide two references that describe the motivation for choosing 

the selected catchments: Almeida et al. (2012) and Almeida (2014). To highlight clearly the reasons 

for our choice of catchments, in the revised manuscript we have added the following text in section 

2.3.1 (Pages 6-7, lines 165-190, of the revised manuscript): 

“It has proven difficult to derive regionalization equations of acceptable prediction quality for all 

catchments in the MOPEX dataset (Almeida, 2014). This is due to the lack of descriptive power in the 

set of available catchment attributes, e.g. the attributes do not provide satisfactory information 

about catchment geology. To isolate the effect of variable geology on the regression equations, the 

selected 84 catchments are grouped based on the underlying geology, namely, Middle Paleozoic 

sedimentary rocks.” 

 

References 

Almeida, S. L., Bulygina, N., McIntyre, N., Wagener, T., and Buytaert, W.: Predicting flows in 

ungauged catchments using correlated information sources, British Hydrological Society's Eleventh  

National Hydrology Symposium, Hydrology for a Changing World, Dundee, UK, 9 - 11 July, 2012. 



Almeida, S. M. C. L.: The Value of Regionalised Information for Hydrological Modelling, Doctor of 

Philosophy, Department of Civil and Environmental Engineering, Imperial College London, London, 

UK, 2014. 

Boorman, D. B., Hollis, J. M., and Lilly, A.: Hydrology of soil types: a hydrologically-based 

classification of the soils of the United Kingdom, Tech. rep., Institute of Hydrology, Wallingford, UK, 

1995. 

Bulygina, N., McIntyre, N., and Wheater, H.: Conditioning rainfall-runoff model parameters for 

ungauged catchments and land management impacts analysis, Hydrol. Earth Syst. Sci., 13, 893–904, 

doi:10.5194/hess-13-893-2009, 2009. 

USDA (United States Department of Agriculture) (1986). Urban hydrology for small watersheds. 

United States Department of Agriculture. Technical Release 55. 

Yadav, M., Wagener, T., and Gupta, H.: Regionalization of constraints on expected watershed 

response behavior for improved predictions in ungauged basins, Adv. Water Resour., 30, 1756-1774, 

doi:10.1016/j.advwatres.2007.01.005, 2007. 

Zhang, Z., Wagener, T., Reed, P., and Bhushan, R.: Reducing uncertainty in predictions in ungauged 

basins by combining hydrologic indices regionalization and multiobjective optimization, Water 

Resour. Res., 44, doi:10.1029/2008WR006833, 2008. 

 

  



Response to Reviewer #2 

We thank Reviewer #2 for her/his time and feedback on the manuscript. We note that there is a 

number of confusions/misunderstandings most likely originating from misinterpretation of the paper 

objectives, which we have more clearly identified in the introduction of the revised manuscript.   

Being a “physically-based” hydrologist interested in signatures as indicators of catchment functional 

behaviour, but not a specialist at all of regionalization and statistics, I read the paper with interest, 

expecting to learn more about this topic. The objective of the paper is to propose a methodology for 

selecting the relevant regionalized signatures for calibrating a rainfall runoff model on an ungauged 

catchment. 

Authors’ reply: The objective of our paper is to assess the importance of accounting for 

dependencies in regionalized information when predicting streamflow in ungauged catchments. 

However, we do not attempt to analyze how to select specific sets of relevant regionalized 

signatures. To clarify the objective of the paper to the reader, we have expanded the text in the 

introduction that previously read on page 5393, lines 7-13, of the original manuscript: 

“(…) we introduce and test a method that considers multiple regionalized signatures, explicitly 

accounting for the signature error correlations. By formally accounting for the error covariance, we 

hypothesize that accuracy of flow predictions will generally improve and a greater number of 

signatures can usefully be included without introducing avoidable bias related to the duplication of 

information. The objective is thus to explore how to get fuller value out of a set of regionalized 

information than has been achieved in past applications.”  

to now state in the revised manuscript (pages 3-4, lines 88-95, of the revised manuscript): 

“(…) we introduce and test a method that considers multiple regionalized signatures, explicitly 

accounting for the signature error correlations. By formally accounting for the error covariance, we 

hypothesize that accuracy of flow predictions will generally improve and a greater number of 

signatures can usefully be included without introducing avoidable bias related to the duplication of 

information. This should allow the modeler to use all signatures available without having to select, 

on a more or less subjective basis, the most relevant (independent) signatures. The objective is thus 

to explore how to get fuller value out of a set of regionalized information than has been achieved in 

past applications.” 

In general, I found the paper quite difficult to read and understand, especially Sec 3/Results and the 

corresponding Figures. The Bayesian methodology developed looks mathematically sounded (I am 

not a specialist). 

Authors’ reply: We address the specific reviewer’s points on the paper clarity below as they arise. 

My main comments would be on the testing protocol: 

- the regionalization model used in this study is not described in detail (2.3.1), and, from the 

information given, looks quite simplistic. Simple regression laws are fitted to physical attributes of 

the catchments (we don’t even know which ones). Moreover, using blindly the data of 83 

catchments to estimate regionalized signatures on the 84th looks like a very rough method. This 

regionalization model is not evaluated, although it certainly conditions the final results. 

Authors’ reply: The regionalization models used were not shown in the manuscript, but the reader is 

referred to previous publications (Almeida et al., 2012, and Almeida, 2014) where this information 

can be found. The quality of the regionalization models is shown in Figure 1 in the manuscript, and 



further references in the text are provided that give a detailed description of the derivation and 

respective quality of the models. We believe that this is sufficient information to allow the reader to 

follow-up should they be curious about the regionalization model that we have chosen, and we 

instead focus our discussion on the errors associated with these models. Lastly, leave-one-out (i.e. 

using the data of 83 catchments to estimate regionalized signatures in the 84th) is a standard 

practice in hydrological science when evaluating the performance of methods to predict streamflow 

in ungauged catchments (e.g. Kokkonen et al., 2003; Merz and Blöschl, 2004; Parajka et al., 2005; 

Goswami et al., 2007; Shu and Ouarda, 2012) and, therefore, is an appropriate technique to apply in 

our study. 

- the selection of signatures is quite limited and basic (only 5 really classical signatures on runoff). 

I’m not sure that much can be concluded on the relevant number of signatures / relevant signatures 

using such a small sample. I understand that the objective of the paper is to present the 

methodology, but the application example is also important to convince readers that the 

methodology is useful. 

Authors’ reply: We agree that the application example is important to convince reader that the 

method is useful. This is a fundamental reason why we chose a subset of signatures that both cover 

a wide range of different qualities of regionalized information, and also have variability in the degree 

of signature error correlation. This reasoning for our choice of signatures is discussed on page 5397, 

lines 23-24, and page 5398, lines 1-2, of the original manuscript, where we state: “This specific 

subset of signatures is selected to cover a wide range of different qualities of regionalized 

information, and also to ensure that some signature errors are largely uncorrelated, whilst others 

are strongly correlated (see also Sect. 3.1).” 

- I don’t understand the interest of using synthetic data. It seems to me that rather than simplifying 

the problem, it does bring more complexity to it: the model is first calibrated on the observed time 

series for each catchment, thus model structure and observational errors are still there. 

Authors’ reply: The uncertainty introduced by inter-signature error correlation can be masked by 

other sources of uncertainty, namely model structure and observational errors. Therefore, we chose 

to use synthetic data in order to better understand and evaluate the sensitivity of our results to the 

regionalization quality and the regionalization errors’ correlations (page 5396, lines 13-14, of the 

original manuscript). 

To generate the synthetic streamflow time series, the rainfall-runoff model is in fact first calibrated 

on the observed time series for each catchment. The parameter set with the best NSE is taken to 

generate a ‘perfect model’ streamflow time series, as stated in section 2.2.3. This time series is 

thereafter used as if it was the ‘observed’ streamflow. This way, we can be sure that there is no 

model structure or observational errors.   

- Section 3 is really difficult to understand. The main focus seems to be on the comparison of 

synthetic / observed data, and the initial focus (selecting the relevant regionalized signatures) is lost. 

The Figures are incomprehensible. 

Authors’ reply: As discussed in our reply to the reviewer’s previous comment, the focus of our paper 

is on accounting for dependencies in regionalized information and not on selecting relevant 

regionalized signatures. The motivation behind the selection of a specific subset of signatures is 

covered in section 2.3.2 (page 5397, lines 23-24, and page 5398, lines 1-2, of the original manuscript) 

where we explain that the specific subset of signatures is selected to cover a wide range of different 



qualities of regionalized information, and also to ensure that signatures have variability in the 

degree of signature error correlation.  

With regard to the reviewer’s comment about the figures in section 3, further information about the 

point of confusion would be required in order to make meaningful changes that can improve the 

interoperability of these images. 

- Finally the authors seem to obtain quite disappointing results, and cannot conclude much from the 

study. Potential additional developments are widely discussed in Sec 3.4. Before that, maybe it 

would be worth revisiting and/or discussing the testing protocol, that may be inadequate. 

Authors’ reply: We disagree with the reviewer that the results are disappointing. We believe that the 

results shown in this study make a number of meaningful and relevant contributions to the 

literature. First, we show that, unless correlations are very strong, disregarding these correlations 

does not introduce large errors into regionalized estimates of streamflow. Disregarding inter-

signature errors correlation is common practice in the literature, but our study is the first to 

demonstrate clearly the impact of this assumption on regionalization performance. For 

regionalization practitioners, this is a positive result as it shows that streamflow can be predicted 

even though knowledge about information dependencies typically is very limited. Second, we 

propose a method that is useful when multiple signatures are used simultaneously to condition a 

rainfall-runoff model. A key innovation of this method is the ability to incorporate larger sets of 

signatures in the model conditioning process, without the need to worry about double-counting of 

information or the degree of uncertainty in signature estimates. Furthermore, this method also 

helps to avoid subjective decisions about the removal of possibly nonindependent information. 

Finally on the form of the paper: 

- The paper is really focussed on the mathematics (especially from Sec 3); it could be nice not 

forgetting readers who are not specialists 

 Authors’ reply: We keep the math as simple as possible - a reader is given three equations (1)-(3) in 

the main body of the paper, where eqs. (1) and (2) represent Bayes’ law, and eq. (3) is a ratio of two 

probability density functions, called Bayes factor. The most complicated eqs. (1) and (2) commonly 

appear in papers on Bayesian methods in HESS and other high-impact hydrological journals, and 

indeed require some mathematics knowledge. 

- In section 2, information is mixed up along the paragraphs: for example the regionalization 

technique is described partly p 5393 (in 2.1), p 5395 (in 2.2.2), and 5397 (in 2.3.1). I could be worth 

restructuring this part a bit. 

Authors’ reply: The Bayesian method for signature assimilation is described in section 2.1. Two 

important parts of it is the prior distribution used, which is described in subsection 2.2.1, and the 

likelihood function, which is described in subsection 2.2.2. Section 2.3.1 describes the case study 

used to apply the regionalization method. We believe it is a logical way to present the material, and 

it is unclear how the reviewer would like the section to be restructured. 
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Response to Reviewer #3 

We thank Reviewer #3 for her/his time and helpful suggestions to clarify methodological points in 

the manuscript.  

This paper presents a method to cope with the problem of using correlated signatures when 

calibrating rainfall-runoff model on regionalized signatures. This is a well-recognized problem often 

neglected in regionalization studies and the methodology proposed in this paper appears 

satisfactory to estimate the potential uncertainties stemming from using multiple (in)dependent 

signatures. The paper is well written, to the point and very convincing. 

Below are some minor comments that, to my opinion should be addressed to improve the clarity of 

the text. 

Figure 4 suggests that the performance of the model constrained by signatures is relatively poor 

(median NSEprob around 0.6) whereas synthetic flows are taken as the reference. I am a bit 

confused by this result. Does this mean that the selected signatures are not informative enough to 

constrain satisfactorily the model parameters or does this stem from the uncertainties brought by 

the regionalization of these signatures? What would have happened if the ‘observed’ signatures 

were used instead of the regionalized ones? 

Authors’ reply: The relatively ‘poor’ performance results from both reasons pointed by the reviewer, 

i.e. limited information has been provided to constrain the model parameters and also due to the 

uncertainties introduced by the regionalization procedure.  

It is important to note that, for the synthetic case shown in Figure 4, the regionalized signature 

analogue was produced by imposing an error equal to the observation-likelihood function (page 

5396, lines 24-25, of the original manuscript). For example, streamflow elasticity (SE) could only be 

poorly regionalized leading large errors in model predictions (we only achieved a coefficient of 

determination of about 0.20 for this signature, while for the others the coefficient of determination 

was usually above 0.75  - see Almeida, 2014, for more detail on this). The large errors of SE are 

consistent with the fact that the boxplot corresponding to SE used in isolation to condition the 

model (fourth boxplot from the top in Figure 4) presents the lowest median value when compared 

with the other four boxplots that use RR, BFI, SFDC and HPC to condition the model. This is an 

indication that the regionalization error has an important impact on the results. But, of course, this is 

not the only reason, given that different signatures bring different information, which can be more 

or less valuable depending on the performance measure that we are using to evaluate our results. 

To address the last point raised by the reviewer, we re-calculated the performance measure 

NSEprob when ‘observed’ signatures are used instead of the regionalized ones. And we obtained 

NSEprob value distributions very similar to the ones shown in Figure 4 (see Figure R.1 below). This 

suggests that the uncertainty around the regionalized signatures value as well as signature 

information content are the key factors causing a ‘relatively poor’ performance. In the revised 

manuscript we have added the following text at the end of section 3.3.1 (page 12, lines 385-389, of 

the revised manuscript): 

“It is worth noting that very similar results (not shown here) are obtained when instead of 

regionalized signatures (calculated by adding noise to the exact signature value), ‘observed’ 

signatures (the exact signature value) are used. This suggests that the uncertainty around the 

regionalized signatures values as well as signature information content are the key factors leading to 

the results shown in Fig. 4.” 



 

Figure R.1 - Boxplots representing the distribution of NSEprob values for each signature used in isolation for 
synthetic streamflow data. The blue boxplots correspond to the results obtained when ‘observed’ signatures 

were used (no noise added) and the grey boxplots correspond to the results obtained when the 
‘regionalized’ signatures were used (‘observed’ signatures with added noise). The latter case is the same as 
presented in the original manuscript of our paper in Figure 4. The likelihood used is the same for both the 

blue and the grey boxplots and corresponds to the observed error structure derived as described in section 
2.2.2 of the manuscript. 

We would also like to stress that unlike the traditional NSE, the performance measure used in Figure 

4 penalizes results for both the lack of accuracy and precision. So, if NSE measure is considered for 

the average prediction only, it will be higher than NSEprob of 0.6 (see Figure R.2 below). 
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Figure R.2 - Boxplots representing the distribution of traditional NSE values for each combination of 
signatures for synthetic streamflow data. The colored boxplots correspond to the results obtained when 

inter-signature error correlations are considered in the likelihood function. 

The description of the model should include at least the time step and the number of calibrated 

model parameters. Besides, it is not clear how the parameters are sampled from the posterior when 

generating an ensemble of flow simulations. Are the correlations between parameters taken into 

account in this procedure? 

Authors’ reply: In section 2.3.1, page 5397, line 15, of the original manuscript, we state that ‘daily 

time series (…) are employed.’ However, we do not explicitly say how many parameters the model 

has or what the prior parameter ranges are. Instead, the reader is referred to Kollat et al. (2012) for 

further details on prior parameter ranges. For ease of reference, in the revised manuscript we have 
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also provided a table that reproduces these model prior parameter ranges (see new Appendix A in 

the revised manuscript). 

In terms of the sampling of parameters, 10000 parameter sets were sampled from a uniform 

distribution using the Latin Hypercube sampling so that probability of each parameter set is 10-4. 

Then, to provide parameter samples that correspond to a uniform in signatures prior distribution, 

the parameter probabilities are re-weighted (see Almeida et al., 2013), and used in the further 

posterior distribution approximation. This allows accounting for correlation among the parameters 

due to the uniform in signatures prior. In the revised manuscript we have added the following text to 

the end of section 2.2.1 (page 5, lines 131-137, of the revised manuscript) to provide details about 

the parameter sampling techniques that were used: 

“More specifically, N parameter sets (N is equal to 10000 in our study) are sampled from a uniform 

distribution using Latin Hypercube sampling, so that probability of each parameter set is 1/N (10-4 in 

our study). Subsequently, to provide parameter samples that correspond to a uniform in signatures 

prior distribution, the parameter probabilities are re-weighted (see Almeida et al., 2013), and used in 

the further posterior distribution approximation. This allows accounting for correlation among the 

parameters imposed by the uniform in signatures prior distribution.” 

The discussion proposed in section 3.4 is very interesting but could eventually be extended. With 

regards to the sensitivity of the results to the signatures used, I guess that the methodology 

presented in the paper does not allow removing uninformative signatures. One signature might be 

quite well regionalized but poorly informative for constraining the model and thus a methodology 

that gives more weight on well regionalized signatures might not be suitable in all cases. I fully 

understand that this is not the specific point discussed in the paper but since regionalization studies 

often focus on a specific flow range, the operational main question is which signatures are to be 

taken into account rather than how to avoid redundant information in the chosen signatures. . . 

Authors’ reply: This is a very interesting point. In fact this was one of the motivations to use 

streamflow elasticity, which could only be poorly regionalized. While for the other four signatures 

we obtained coefficients of determination that generally were greater than 0.75, for streamflow 

elasticity we only achieved a coefficient of determination of about 0.20 (for more detail, see 

Almeida, 2014). However, we do not analyze which signatures provide more information, so that 

possible redundant information can be discarded. Instead, in this paper we suggest that when we do 

not know which signatures are the most valuable (i.e. which ones are most informative), we should 

use them all while removing any duplicated information. This is particularly important, because well 

regionalized signatures may bring less information than poorly regionalized signatures, depending 

on what the focus of the study is. Discarding some of the poorly regionalized information on the 

grounds that it was poorly regionalized, therefore, may be a waste of resources.  The method 

suggested in this paper enables all available regional information to be included, without omitting 

relevant information on a subjective basis or risking double-counting the same information.  
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Abstract. A recurrent problem in hydrology is the absence of streamflow data to calibrate rainfall-

runoff models. A commonly used approach in such circumstances conditions model parameters on

regionalized response signatures. While several different signatures are often available to be included

in this process, an outstanding challenge is the selection of signatures that provide useful and com-

plementary information. Different signatures do not necessarily provide independent information,5

and this has led to signatures being omitted or included on a subjective basis. This paper presents a

method that accounts for the inter-signature error correlation structure so that regional information

is neither neglected nor double-counted when multiple signatures are included. Using 84 catchments

from the MOPEX database, observed signatures are regressed against physical and climatic catch-

ment attributes. The derived relationships are then utilized to assess the joint probability distribution10

of the signature regionalization errors that is subsequently used in a Bayesian procedure to condition

a rainfall-runoff model. The results show that the consideration of the inter-signature error structure

may improve predictions when the error correlations are strong. However, other uncertainties such as

model structure and observational error may outweigh the importance of these correlations. Further,

these other uncertainties cause some signatures to appear repeatedly to be disinformative.15

1 Introduction

In many areas of the world the absence of past observational streamflow time series to calibrate

rainfall-runoff models limits the ability to apply such models reliably to predict streamflow and in-

form effective water resources management. Whilst a large and increasing number of regions across

the world are insufficiently gauged (Mishra and Coulibaly, 2009), there are also many highly mon-20
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itored catchments (Gupta et al., 2014). Transferring the knowledge gained in data-rich areas to un-

gauged catchments - a process known as regionalization - offers a possible way of overcoming the

absence of streamflow observations in data-scarce regions. Several techniques for transferring in-

formation are reported in the literature (for an overview of different methods used in continuous

streamflow regionalization see He et al. (2011), Peel and Blöschl (2011), and Razavi and Coulibaly25

(2013), and for a recent comparative assessment of some of the most commonly used methods see

Parajka et al. (2013)).

A commonly applied approach is to use response signatures (e.g. the runoff ratio and the base flow

index), which can provide insight into the hydrological functional behavior of a catchment (Wagener

et al., 2007). Response signatures are calculated from available system output or input-output time30

series for numerous gauged catchments with known catchment attributes, i.e. physiographic and/or

meteorological attributes (e.g. drainage area, latitude and longitude, average annual temperature, av-

erage monthly precipitation, etc.). Subsequently, statistical models relating each response signature

to a set of catchment attributes can be identified. Given the attributes of an ungauged catchment, the

signatures for the ungauged location can then be estimated using the derived statistical models. Nu-35

merous regional models of this type can be found in the literature (e.g. Boorman et al., 1995). These

regionalized signatures can be used to constrain the prior range of streamflow simulations generated

using a pre-selected rainfall-runoff model structure and hence restrict the model parameter space

(Yadav et al., 2007; Zhang et al., 2008; Bulygina et al., 2009; Castiglioni et al., 2010).
::::::::::
Advantages

::
of

:::
this

::::::::
approach

:::::::
include:

:::
the

::::::::
flexibility

:::
in

:::
the

:::::::
selection

:::
of

:::
the

:::::::
response

:::::::::
signatures

:::::::
allowing

::
it
::
to

:::
be40

:::::
based

::
on

:::
the

:::::::
specific

::::
parts

::
of

:::
the

::::::::::
hydrograph

::::
that

:::
are

::
of

:::::::
greatest

:::::::::
importance

:::
for

:
a
:::::
given

::::::::::
application

:::
and,

::
if
:::::::
known,

::
on

:::
the

::::::::
dominant

:::::::::::
hydrological

::::::::
processes

::
of

:::
the

:::::::::
catchment;

::::::
access

::
to

::::::
readily

::::::::
available

:::::::
regional

::::::
models

::
for

::::::::
different

::::::::
signatures

::
in

:::
the

::::::::
literature

:::::
(such

::
as

::::
base

::::
flow

::::
index

:::::
from

:::
the

:::::::::
Hydrology

::
of

:::
Soil

::::::
Types

::::::
system

::::::::::::::::::::::
(Boorman et al., 1995) and

:::::
curve

:::::::
number

::::
from

:::
the

::::::
United

::::::
States

::::::::::
Department

::
of

:::::::::::
Agriculture’s

::::
Soil

:::::::::::
Conservation

:::::::
Service

::::
soil

:::
and

:::::
land

:::
use

:::::::::::
classification

:::::::::::::
(USDA, 1986))

::::::
hence45

:::::::::
eliminating

:::
the

:::::
need

::
to

:::::
build

::::
new

:::::::
regional

:::::::::
regression

:::::::
models;

:::
the

:::::::::::
relationships

:::::::
between

::::::::
response

::::::::
signatures

::::
and

:::::::::
catchment

:::
and

:::::::
climatic

::::::::::::
characteristics

:::
are

::::
not

::::::
specific

::
to
::::

any
::::::::::::
rainfall-runoff

::::::
model

:::
nor

::
to

:
a
::::::::
particular

:::::::::
calibration

:::::::
method

::::
used

::
in

:::
the

::::::
gauged

::::::::::
catchments

:::
and

:::
are

::::::::
therefore

:::
not

::::::::
obscured

::
by

::::::
model

:::::::::
structural

::::
error

:::
and

::::
can

::
be

::::
used

::
to

::::::::
condition

::::
any

::::::
model.

Different ways of incorporating the regionalized information into a catchment model have been50

suggested in the literature. This includes set-theoretic approaches (e.g. Yadav et al., 2007; Win-

semius et al., 2009) and more formal Bayesian data assimilation frameworks (e.g. Bulygina et al.,

2009, 2011; Castiglioni et al., 2010; Singh et al., 2011). Where probability distributions character-

izing regionalization quality have been estimated, a Bayesian conditioning procedure is one of the

possibilities (Bulygina et al., 2009, 2011). This provides a framework for combining prior knowl-55

edge with the regionalized data and/or other sources of information (e.g. small scale physics-based
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knowledge and hydrological measurements as in Bulygina et al., 2012),which has the potential to

formally encompass the nature of the errors arising from the regionalization.

Conditioning a rainfall-runoff model on multiple independent signatures would reflect a spec-

trum of processes and in principle lead to an accurate prediction of flow time series (Parajka et al.,60

2013). However, regionalized signatures have correlated errors, for example if the signatures have

been estimated using a common dataset of catchment attributes or using the same hydro-climatic

data; and in general the correlations are expected to be stronger for pairs of signatures that repre-

sent similar functional behaviors of the catchment. This raises the questions of, not only how many

and which signatures should be used, but also how to avoid double-counting of the information in65

signatures with correlated error distributions. Previous applications have tended to use a small num-

ber of signatures (e.g. Bulygina et al., 2009, 2011) and/or have tended to select signatures that are

considered to be independent (e.g. Yadav et al., 2007). When multiple signatures are used, the cor-

relations between the errors in the different sources of information are commonly disregarded (e.g.

Bulygina et al., 2012). To make better use of information in available sets of signatures, a formal way70

of combining them so that information is neither double-counted nor neglected is required. Using

formal methods to include autocorrelated data errors in model calibration is well-researched (e.g.

Sorooshian and Dracup, 1980); an application of comparable methods in the regionalization con-

text will allow making more formal and rigorous assessments of the value of correlated information

sources.75

Formally, in a Bayesian context, it is necessary to distinguish between correlated signatures and

correlated signature errors. It is the correlation between the errors that should be accounted for in

the likelihood function to avoid double-counting of information. It is possible to have two highly

correlated signatures that are derived from independent information sources and therefore they have

uncorrelated errors. In that case it would be valid to include both signatures in the likelihood function80

without accounting for correlation. This principle is well established when considering Bayesian cal-

ibration to a time series of flow observations, where flow values are typically strongly autocorrelated

- but it is the observation error autocorrelation that is relevant to the likelihood function derivation

(e.g. Sorooshian and Dracup, 1980). The same principle applies to adopting signatures as the obser-

vations. In the case study below, the signatures are derived from a common dataset using a common85

approach, so in practice the signature correlations are comparable to the signature error correlations;

nevertheless for the sake of formality, we use the term signature error correlations (or covariance).

In this paper we introduce and test a method that considers multiple regionalized signatures, ex-

plicitly accounting for the signature error correlations. By formally accounting for the error covari-

ance, we hypothesize that accuracy of flow predictions will generally improve and a greater number90

of signatures can usefully be included without introducing avoidable bias related to the duplication

of information.
::::
This

::::::
should

:::::
allow

::
the

:::::::
modeler

::
to

:::
use

:::
all

::::::::
signatures

::::::::
available

::::::
without

::::::
having

::
to

::::::
select,

::
on

:
a
:::::
more

::
or

::::
less

::::::::
subjective

:::::
basis,

:::
the

:::::
most

:::::::
relevant

:::::::::::
(independent)

:::::::::
signatures.

:
The objective is thus
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to explore how to get fuller value out of a set of regionalized information than has been achieved in

past applications. The method is applied to a set of 84 United States catchments with a broad range95

of hydro-meteorological characteristics, obtained from the Model Parameter Estimation Experiment

(MOPEX) dataset (Duan et al., 2006; Schaake et al., 2006). The impact of signature error covariance

is assessed using pairs of signatures to condition a rainfall-runoff model. Along with the real data,

synthetic streamflow data are used to isolate the effect of model structural error. Further, the model

is conditioned on a variable number of regionalized signatures to evaluate whether an increasing100

number of signatures is justifiable when formally accounting for the error covariance.

2 Method

2.1 Bayesian Method for Signature Assimilation

Using a simple least-squares regression, observed signatures of catchments’ functional responses

are related to physical and climatic attributes of the catchments. Assuming that the same catchment105

attributes are available for an ungauged location, it is possible to obtain an estimate of the set of

signatures for the location. Further, the parametric distribution of regression errors can be directly

translated to a response signature(s) likelihood function. The likelihood function can then be used to

update the prior available knowledge about model parameters via Bayes’ law, which is expressed as

p(Θ|s∗,I,M) =
L(s(Θ)|s∗,I,M)× p(Θ|I,M)

p(s∗|I,M)
(1)110

where, for one catchment, s∗ represents the regionalized response signature(s); p(Θ|I,M) is the

prior distribution of parameters Θ for a model structure M and inputs I; L(s(Θ)|s∗,I,M) is the

likelihood function of the modeled response signature(s) s(Θ) given s∗, I and M ; p(s∗|I,M) is the

marginal density of s∗; and p(Θ|s∗,I,M) is the posterior distribution of Θ given s∗, I and M . For

the purpose of this paper, M is selected in advance and considered to be fixed (as it is the common115

practice in regionalization studies, Wagener and Montanari, 2011), as is I for any one catchment,

and so both these terms are dropped from (Eq. (1)) for convenience, resulting in

p(Θ|s∗) = L(s(Θ)|s∗)× p(Θ)

p(s∗)
(2)

Parameter sets are then sampled from the parameter posterior to allow an ensemble of rainfall-runoff

simulations and a posterior distribution of flow at each time-step to be estimated and evaluated120

against observed flow. This can be repeated using different sets of signatures and different assump-

tions about their error correlations.
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2.2 Prior Distribution and Likelihood Function

2.2.1 Prior Distribution

To apply Bayes’ law (Eq. (2)) it is necessary to specify the likelihood function (L(s(Θ)|s∗) in125

Eq. (2)) and the prior distribution (p(Θ) in Eq. (2)). The prior is defined so that it reflects our initial

lack of knowledge. We follow Almeida et al. (2013) and express our initial state of indifference in the

same space that we seek information about - the signature space. This is different from
::::::
sample

::::
sets

::
of

::::::::
signature

:::::
values

:::::
from

:::::::
uniform

:::::::::::
distributions

::::::::::
representing

:::
the

:::::::
feasible

::::::
ranges

::
of

:::::::::
signatures.

:::::
This

:::::::
approach

::::::
allows

:::
the

::::::::
signatures

::
to

:::
be

:::::::
sampled

::::::::
uniformly

:::::
using

:
a
::::::
simple

::::::::::
amendment

::
to

:::
the

:::::::::
commonly130

::::::
applied

::::::::
approach

::
of

::::::::
sampling

::::
from

:::::::
uniform

:::::::::
parameter

:::::
priors,

::::::
which

::::::
avoids

:::::
highly

::::::
skwed

::::::::
signature

:::::
priors

:::
that

:::::
have

:::::
undue

::::::::
influence

:::
on

:::
the

::::::::
posterior

:::::::::
likelihood.

::::::
More

::::::::::
specifically,

::
N

:::::::::
parameter

::::
sets

::
(N

::
is
:::::
equal

::
to
::::::
10000

::
in

:::
our

::::::
study)

:::
are

:::::::
sampled

::::
from

::
a
:::::::
uniform

::::::::::
distribution

:::::
using

::::
Latin

::::::::::
Hypercube

::::::::
sampling,

::
so

::::
that

:::::::::
probability

:::
of

::::
each

:::::::::
parameter

:::
set

::
is

::::
1/N

::::::
(10−4

::
in

:::
our

:::::::
study).

:::::::::::
Subsequently,

:::
to

::::::
provide

:::::::::
parameter

::::::
samples

::::
that

:::::::::
correspond

::
to

:
a
:::::::
uniform

::
in

:::::::::
signatures

::::
prior

::::::::::
distribution,

:
the common135

assumption of a uniform distribution on the rainfall-runoff model parameter space (e.g. Yadav et al., 2007),

and is shown to avoid the problem of bias in predictions (Almeida et al., 2013). As it is usually not

possible to sample directly from the uniform signature prior distributions, an importance sampling

is utilized to approximate the distributions numerically (?).
::::::::
parameter

:::::::::::
probabilities

:::
are

::::::::::
re-weighted

:::::::::::::::::::::
(see Almeida et al., 2013),

::::
and

::::
used

::
in

:::
the

::::::
further

:::::::
posterior

::::::::::
distribution

:::::::::::::
approximation.

::::
This

::::::
allows140

:::::::::
accounting

::
for

::::::::::
correlation

:::::
among

:::
the

:::::::::
parameters

:::::::
imposed

:::
by

:::
the

:::::::
uniform

:
in
:::::::::
signatures

::::
prior

::::::::::
distribution.

2.2.2 Likelihood Function Approximation

The likelihood functions are defined using joint distributions of respective signature errors obtained

from the regionalization model. Errors introduced by the regionalization procedure may come from145

at least five sources. First, errors are introduced by the fact that the regression model is estimated

using a specific sample of catchments rather than the entire population; second, differences may exist

between the observed and the true value of the response signature due, for example, to factors such

as the discharge record length and time period of record used in the computation (Kennard et al.,

2010); third, errors are present due to errors in the catchment properties data; fourth, errors exist150

due to the incomplete set of catchment properties used as explanatory variables in the regression

equations; and, fifth, they exist due to the assumed linear regression structure. It is assumed that the

total error model for the regionalized signature(s) s∗ can be estimated using the following procedure:

1. Considering all available gauged catchments stepwise regression is applied to each signature

independently to determine the predictors to include. The predictors are then fixed for the155

remaining steps.
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2. Considering all available gauged catchments, one catchment is left out and the remaining are

used in the fitting of the regression models for each signature.

3. The regression models obtained in Step 2 are used to estimate the signature values for the

omitted catchment.160

4. The error for each signature is calculated for the omitted catchment by comparing the region-

alized and observed signature values.

5. The process is repeated for all catchments.

6. A parametric joint probability distribution is fitted to all the computed errors. Furthermore, the

errors are tested for independence that allows (approximately) factorizing a joint distribution165

into a product of marginal distributions.

The resultant error distribution defines the likelihood function L in Eq. (2). The main assumption

here is that the potentially complex nature of errors in the set of signature values can be usefully

represented by the fitted error distributions.

2.2.3 Synthetic Case and Likelihood Functions170

To avoid masking the potential value of the regionalized signatures with model structure and ob-

servational errors, a “perfect model” is first employed. This involves using the pre-selected rainfall-

runoff model and the observed forcing data to generate the “observed” catchment signatures. The

Nash-Sutcliffe criteria (NSE) (Nash and Sutcliffe, 1970) optimal parameter set is taken to generate a

“perfect model” streamflow time series for each catchment. To produce regionalized signature ana-175

logues in this case, two types of imposed errors are introduced to these “observed” signatures. The

first error type is characterized by a range of standard deviations (1, 5, 10 and 20 % of the signature

value range observed over all catchments used in this study) and a range of inter-signature error

correlations (Pearson correlation coefficients equal to 0, 0.25, 0.50, 0.75 and 0.90). This allows the

sensitivity of the results to the regionalization quality and the regionalization errors’ correlations to180

be evaluated. The second error type is set to be equal to the observation-based likelihood function

(Sect. 2.2.2). These error structures are the likelihoods used in Eq. (2) for the synthetic case when

flows are generated by a “perfect model”.

2.3 Case Study and Rainfall-Runoff Model

2.3.1 Study Catchments185

A set of 84 medium sized United States catchments (242 to 8657 km2) from the MOPEX database

(Schaake et al., 2006; Duan et al., 2006), for which a variety of regional response signature models

have been determined in Almeida et al. (2012),
::::::
namely

::::::
runoff

::::
ratio,

::::
base

::::
base

::::
flow

:::::
index,

::::::::::
streamflow

6



::::::::
elasticity,

::::
slope

::
of

:::::
slow

:::::::
duration

:::::
curve

:::
and

::::
high

:::::
pulse

:::::
count,

:
are used to test the method proposed in

this paper.
:
It

:::
has

::::::
proven

:::::::
difficult

::
to

:::::
derive

:::::::::::::
regionalization

::::::::
equations

::
of

:::::::::
acceptable

:::::::::
prediction

::::::
quality190

::
for

:::
all

::::::::::
catchments

::
in

:::
the

::::::::
MOPEX

::::::
dataset

:::::::::::::::
(Almeida, 2014).

::::
This

::
is

:::
due

:::
to

:::
the

::::
lack

::
of

::::::::::
descriptive

:::::
power

::
in

::::
the

:::
set

::
of

::::::::
available

:::::::::
catchment

:::::::::
attributes,

:::
e.g.

:::
the

:::::::::
attributes

::
do

::::
not

:::::::
provide

::::::::::
satisfactory

:::::::::
information

::::::
about

:::::::::
catchment

:::::::
geology.

:::
To

::::::
isolate

:::
the

:::::
effect

:::
of

:::::::
variable

:::::::
geology

:::
on

:::
the

:::::::::
regression

::::::::
equations,

:::
the

:::::::
selected

::
84

::::::::::
catchments

:::
are

:::::::
grouped

:::::
based

::
on

:::
the

:::::::::
underlying

::::::::
geology,

::::::
namely,

:::::::
Middle

::::::::
Paleozoic

::::::::::
sedimentary

::::::
rocks. Use of more catchments from the MOPEX database would require195

different regionalization equations due to changing process controls, and would be unnecessary given

that the focus of the study is on signature error correlations given a regionalization model. For more

details on the motivation for choosing these specific 84 catchments the reader is referred to Almeida

et al. (2012) and Almeida (2014).

The 84 catchments are hydrologically varied with a selection of properties summarized in Table 1.200

Daily time series for the period from 1 October 1949 to 30 September 1959 are employed. As

highlighted in Almeida et al. (2012), these 10 years of data, representing only a subset of all the data

available, are assumed to be of sufficient length to capture climatic variability, but short enough to

avoid effects of long-term climatic trends (Sawicz et al., 2011).

2.3.2 Response Signatures205

Five response signatures are considered: runoff ratio (RR), base flow index (BFI), streamflow elas-

ticity (SE), slope of flow duration curve (SFDC) and high pulse count (HPC) (Table 1). This specific

subset of signatures is selected to cover a wide range of different qualities of regionalized informa-

tion, and also to ensure that some signature errors are largely uncorrelated, whilst others are strongly

correlated (see also Sect. 3.1).210

RR reflects the amount of precipitation that becomes streamflow over a certain area and time.

It is determined as the ratio of catchment’s outlet streamflow and catchment average precipitation

over the 10 years used in this study. BFI gives the proportion of streamflow that is considered to be

base flow. A simple one-parameter single-pass digital filter method is used to derive BFI (Arnold

and Allen, 1999). SE provides a measure of the sensitivity of streamflow to changes in precipitation215

(Sankarasubramanian et al., 2001). It is calculated as a median of the inter-annual variation in total

annual streamflow to the inter-annual variation in total annual precipitation ratios normalized by

the long-term runoff ratio (Sawicz et al., 2011; Sankarasubramanian et al., 2001). SFDC gives an

indication of the streamflow variability and is calculated as the slope of the flow duration curve

between the 33 and 66 % flow exceedance values in a semi-log scale (Sawicz et al., 2011). HPC220

reflects aspects of the high flow regime and catchment flashiness, and is calculated as the average

number of events per year that exceed three times the median daily flow (Clausen and Biggs, 2000;

Yadav et al., 2007).
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2.3.3 Rainfall-Runoff Model Choice

The probability distributed moisture (PDM) model (Moore, 2007) together with two parallel lin-225

ear routing stores and a simple snow model (Hock, 2003) is selected with two major motivations

(for a detailed description of the model see Kollat et al., 2012; Almeida, 2014)
:
(a

:::::::
detailed

:::::::::
description

::
of

:::
the

::::::
model

::
is

:::::
given

::
in

:::::::::
Appendix

:::
A). First, this type of model has been shown to have a suit-

able complexity for modelling daily rainfall-runoff over a large sample of the MOPEX catchments

(Wagener and McIntyre, 2012). Second, the model has been successfully applied in other region-230

alization studies across a wide range of climate and physiographic conditions, for example Calver

et al. (1999), Lamb and Kay (2004), McIntyre et al. (2005), Young (2006), and De Vleeschouwer

and Pauwels (2013). Even though other model structures may be better suited for some specific

catchments, it is prohibitively difficult to vary model structure between catchments and no single

model structure will ever be best for all catchments (Lidén and Harlin, 2000; Clark et al., 2008; van235

Werkhoven et al., 2008). Consequently, the selected model structure is believed to be a sufficient

choice for the purposes of this paper. Most importantly, the general framework is independent of the

rainfall-runoff model choice.

2.4 Posterior Distribution and Performance Assessment

Employing Bayes’ law (Eq. (2)), the rainfall-runoff model is conditioned on different combinations240

of signatures: (1) assuming independence between the signature regionalization errors (setting the

correlation values to zero in the joint probability function); and (2) accounting for the inter-signature

error correlations (using the estimated covariance in the joint probability function).

Two metrics are used to assess the effectiveness of the parameter conditioning procedure: (1) the

Bayes factor (Jeffreys, 1961) to assess convergence of the parameter posteriors to known parameter245

values; (2) the probabilistic Nash-Sutcliffe efficiency (Bulygina et al., 2009) to assess convergence

of the flow ensembles to the observed flows.

The Bayes factor BF is defined as the ratio between two marginal distributions of the data y (e.g.

observed streamflow time series) for two competing hypotheses (H1 and H2) (Kass and Raftery,

1995) (more detail is given in Appendix B):250

BF =
p(y|H1)

p(y|H2)
(3)

Thus, to test the impact of representing the error correlations, the hypothesis H1 corresponds to the

inter-signature errors being treated as correlated, while the hypothesis H2 corresponds to the inter-

signature errors assumed to be independent. If the resulting Bayes factor is greater than 1, there is

more support for hypothesis H1, and the inter-signature error correlation is worth considering.255

When using synthetic streamflow data (“perfect model” approach), with the streamflow time series

generated by a pre-selected parameter set, p(y|H) in Eq. (3) can be seen as either the posterior

probability of the known observed streamflow time series under hypothesis H or the probability
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of the known parameter set that generated that particular flow time series under hypothesis H . As

in a “perfect model” approach there is no observational error, p(y|H) is the probability estimated260

for the known value of the parameter set that generated the observed streamflow under each of the

hypotheses H1 and H2. Since there is no known parameter value corresponding to the real data, the

application of the Bayes factor is less useful in this situation. In this case, defining y as an NSE-

optimal parameter set allows an indication of the relative degree of convergence around the chosen

point.265

The probabilistic Nash-Sutcliffe efficiency NSEprob (Bulygina et al., 2009) is a probabilistic ana-

logue of the traditional Nash-Sutcliffe efficiency coefficient (Nash and Sutcliffe, 1970), and allows

both prediction accuracy and precision to be summarized by a single statistic
:::
(Eq.

::::
(4)).

:

NSEprob =

{
1−

∑T
t=1(E[q̂t]− qt)2∑T
t=1(qt−E[q])2

}
−

∑T
t=1Var[q̂t]∑T

t=1(qt−E[q])2
::::::::::::::::::::::::::::::::::::::::::::::::::

(4)

::
qt :::::::

denotes
:
a
:::

set
:::

of
:::::::::
streamflow

:::::::::::
observations

:::
for

:::::
time

:::::::::::
t= 1, . . . ,T ,

::::
E[q]

::
is
:::

the
:::::::

average
::::::

value
:::
for270

::
the

:::
qt::::

time
::::::
series,

::̂
qt::

is
::::

the
::::::::
simulated

::::
time

::::::
series

::
of

::::::::::
streamflow

:::
for

::::
time

:::::::::::
t= 1, . . . ,T ,

:::::::
Var[q̂t] ::

is

::
the

:::::::::
prediction

::::::::
variance

::
at

::::
time

::
t,

:::::
E[q̂t]::

is
:::
the

:::::::::::
mathematical

::::::::::
expectation

:::
of

:::
the

:::::::::
predictions

::
at
:::::

time

:
t,
::::
and

::
T

::
is

:::
the

:::::
total

::::::
number

:::
of

::::
time

:::::
steps

::
in

:::
the

:::::::::
sequence.

::::
The

::::
first

:::
part

:::
of

:::
Eq.

:::
(4)

:::::::::::
corresponds

::
to

:::
the

::::::::
traditional

:::::::::::::
Nash-Sutcliffe

::::::::
efficiency

:::::::::
coefficient

::::::::::::::::::::::::
(Nash and Sutcliffe, 1970) in

:::::
which

::::::::
expected

:::::::::
streamflow

:::::
values

:::
are

:::::::::
considered

::
as

:::::::::
predictors.

::::
The

::::
latter

::::
part

::
of

::
the

::::::::
equation

::::::::
represents

:::
the

::::::::
variance,275

:::::::
whereby

::::::
higher

::::::::
predictor

:::::::
variance

::::::::::
corresponds

:::
to

:::
less

:::::::
precise

:::::::::
predictions

:::::::::::::::::::
(Bulygina et al., 2009).

The incremental improvement in the NSEprob can be used to measure the value of adding signatures

into the conditioning or otherwise changing the likelihood function. An NSEprob of 1 indicates a per-

fect fit, i.e. the results are both accurate and precise.
:::
The

::::::::::
incremental

::::::::::::
improvement

::
in

:::
the

::::::::
NSEprob

:::
can

::
be

::::
used

:::
to

:::::::
measure

:::
the

:::::
value

::
of

::::::
adding

:::::::::
signatures

:::
into

:::
the

:::::::::::
conditioning

::
or

:::::::::
otherwise

::::::::
changing280

::
the

:::::::::
likelihood

::::::::
function.

For model validation, we use a jack-knife approach (or leave-one-out strategy), commonly em-

ployed in regionalization studies (e.g. Merz and Blöschl, 2004; Shu and Ouarda, 2012). One catch-

ment at a time is removed as a test “ungauged” catchment and the remaining gauged catchments are

used to support the regionalization process, including Steps 2–6 listed in Sect. 2.2.2 The procedure285

is repeated for each of the available catchments.

3 Results and Discussion

3.1 Regionalized Signature Errors and Likelihood Functions

The regionalization error probability distributions (that define the likelihoods) are generated follow-

ing Steps 2 to 6 in Sect. 2.2.2 and are shown in Fig. 1. The marginal error distributions, shown on the290

Fig. 1 diagonal, are approximated using histograms, and parameters of normal distributions are fitted
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using the method of moments. The univariate Kolmogorov-Smirnov test shows that the marginal dis-

tribution normality cannot be rejected at the 95 % confidence level for each of the five signatures. The

off-diagonal shows the regionalization errors for different signature pairs (lower off-diagonal), the

corresponding correlation coefficient values and their statistical significance (upper off-diagonal).295

The joint error distributions are approximated using multivariate normal distributions that are fitted

using estimates of the marginal normal distribution parameters and the inter-signature error corre-

lations. These marginal and joint distributions define the likelihood functions in Eq. (2). Note that

Fig. 1 represents the regionalization errors based on all 84 catchments. Meanwhile, the jack-knife

procedure (see Sect. 2.4) utilized in the performance assessment employs only 83 catchments at a300

time.

3.2 The Impact of Inter-Signature Error Correlations (Pairs of Signatures)

This section considers the role of inter-signature error correlation on model parameter estimation

when pairs of signatures are used. First, different imposed error variances and correlations together

with synthetic streamflow data are employed to test the impact of inter-signature error correlation305

without the impact of model structural error. Then, the results obtained using the observation-based

error structure, for both synthetic and observed data streamflow, are analyzed.

3.2.1 Synthetic Streamflow Data (Imposed Likelihoods)

Synthetic streamflow data are generated as described in Sect. 2.2.3, and the imposed likelihood

functions are defined as described in Sect. 2.2.3. The imposed likelihoods are considered to have310

standard deviations equal to 1, 5, 10, 20 % of the signature value range observed over all catchments.

A comparison of the imposed error structures under the different levels of variance and the observed

error structure is given in Table 2. Furthermore, different inter-signature error correlations are also

tested, namely 0 (linear independence), 0.25, 0.50, 0.75 and 0.90.

Ten possible pairs of the five response signatures are used in parameter conditioning, and the315

median Bayes factor, calculated over the 84 MOPEX catchments, is calculated for each pair. The

Bayes factor (Eq. 3) compares the two following hypothesis: H1) the inter-signature error corre-

lation is to be taken into account, and H2) the errors between the different sources of information

can be assumed independent. The Bayes factor is found to be relatively insensitive to the selection

of response signature pairs (Kruskal–Wallis test). Table 3 summarizes the 95 % pooled confidence320

intervals for the median Bayes factor across all catchments and across all 10 signature pairs, for each

choice of the likelihood (i.e. 20 likelihoods). This provides reference values indicative of the error

interdependency importance in model regionalization depending on the signature pair correlations

and marginal distribution variances. As it would be expected, the median Bayes factor is equal to

1 when signatures errors are not correlated (i.e. ρ= 0). However, as correlations between signa-325

tures errors increase the median Bayes factor increases noticeably. This suggests that considering

10



error correlations allocates higher likelihoods to parameter sets that capture a considered signature

pair. Furthermore, the results shown in Table 3 also imply that the median Bayes factor is relatively

insensitive to the precision with which the signatures are regionalized.

3.2.2 Synthetic and Observed Streamflow Data (Observation-Based Likelihoods)330

Figure 2 shows the distribution of the Bayes factor values obtained across the 84 catchments for each

of the 10 possible different pairs of signatures, when the observation-based error structure is used

for each catchment. Figure 2a shows the results for the observed streamflow data with regionalized

signatures calculated from the derived regressions; Fig. 2b shows the results for the synthetic stream-

flow data with regionalized signatures calculated by adding noise to the exact signature values. The335

Tukey boxplots in red correspond to pairs of signatures whose errors are statistically significantly

correlated (see Fig. 1). The upper whisker represents the upper quartile plus one and a half times the

interquartile range, and the lower whisker represents the lower quartile minus one and a half times

the interquartile range. The matrix below Fig. 2b shows the pairs of signatures used.

The signature pair [SFDC, HPC] shows the strongest correlation between errors (ρ= 0.65, Fig. 1).340

A likelihood function with a standard deviation equal to 10 % of the observed signature ranges and

ρ= 0.75 in Table 3 is comparable to the observation-based likelihood of the pair [SFDC, HPC] (Ta-

ble 2), with Table 3 indicating [1.45,1.53] as a 95 % confidence interval for the median Bayes factor.

However, a median Bayes factor of 2.17 is obtained for the observed streamflow data (Fig. 2a). Simi-

lar differences are found for the other pairs of signatures, although the comparison with the reference345

table (Table 3) becomes challenging, as the individual signatures have not been regionalized neces-

sarily with similar quality. On the other hand, Fig. 2b shows that the Bayes factors for the synthetic

study (when there is no model structural error) are consistent with the values provided in the look-up

Table 3. The difference between the median Bayes factor for the two cases is likely to be caused

by the model structure error, or may be related to the location of the NSE-optimal in the parameter350

space.

Nevertheless, it is clear from Fig. 2 that those pairs of signatures whose errors are significantly

correlated (i.e. [SFDC, HPC], [BFI, HPC], [BFI, SFDC] and [BFI, SE]) have wider interquartile

ranges. Furthermore, the pair of signatures with the strongest correlation between errors [SFDC,

HPC] presents the greatest interquartile range. Therefore the inclusion of significant correlations in355

the likelihood function matters, but whether or not it is beneficial to conditioning the parameters

seems to depend on the interplay between model structure error, parameter space and likelihood

function. Only strong correlations (as in the [SFDC, HPC] case) can be expected to result in a

median Bayes factor clearly above 1.
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3.3 The Impact of Inter-Signature Error Correlations (Multiple Signatures)360

Multiple signatures are used for parameter constraining and flow prediction. The information value

of multiple signatures and its dependence on inter-signature error correlations is explored in this

section.

3.3.1 Synthetic Streamflow Data (Observation-Based Likelihood)

Figure 3 shows Bayes factors derived for the synthetic streamflow data (generated using the NSE-365

optimal parameter set) when the observation-based likelihood is used. The Bayes factor considers

p(.|H2) to be the prior parameter distribution, and p(.|H1) to be one of the parameter posteriors

that includes or ignores the inter-signature error correlations. Figure 3 summarizes the variability

in the Bayes factor for the different combinations of signatures for all 84 catchments. Boxplots are

color coded by the total number of signatures combined, when the inter-signatures error correlation370

is considered in the likelihood function definition. The grey dashed boxplots correspond to the re-

sults obtained assuming that the inter-signature errors are independent when defining the likelihood

function. Although the colored boxplots visually seem to have higher values than the grey dashed

boxplots, these differences are not statistically significant at a 95 % confidence level (Kolmogorov–

Smirnov two-sided tests).375

To better evaluate whether the incorporation of additional sources of information improves pa-

rameter identification, one-sided Kolmogorov–Smirnov tests are applied between any combination

of certain signatures (e.g. [SE, SFDC]) and any other combination that contains the same signatures

and a new one (e.g. [SE, SFDC, HPC]). It is found that adding more signatures improves parameter

identification in 82.5 % of the cases (66 out of 80 cases) at a 95 % confidence level).380

Figure 4 summarizes the variability in the analog Nash-Sutcliffe efficiency measure NSEprob

for different combinations of signatures for all 84 catchments. The colored boxplots correspond

to the results obtained when the inter-signature error correlations are considered in the likelihood

definition, and the grey dashed boxplots correspond to the results when the inter-signature errors are

assumed to be independent. There is no visual or statistical (two-sided Kolmogorov–Smirnov tests)385

difference between the colored boxplots and the grey dashed boxplots in Fig. 4. Moreover, visually,

adding more response signatures seems to improve streamflow predictions in terms of accuracy and

precision when no model structure error exists. However, only in 59 % of the cases (47 out of 80

cases) more signatures contribute to improved streamflow predictions at a 95 % confidence level

(one-sided Kolmogorov–Smirnov test). The other 33 cases always involve the inclusion of the most390

poorly regionalized signatures (with the highest variance from the five regionalized signatures) - SE,

SFDC or HPC - as additional sources of information (see Table 2).

:
It
::
is

:::::
worth

:::::
noting

::::
that

::::
very

::::::
similar

:::::
results

::::
(not

:::::
shown

:::::
here)

:::
are

:::::::
obtained

:::::
when

::::::
instead

::
of

::::::::::
regionalized

::::::::
signatures

:::::::::
(calculated

:::
by

::::::
adding

::::
noise

::
to

:::
the

:::::
exact

::::::::
signature

::::::
value),

:::::::::
“observed”

::::::::
signatures

::::
(the

:::::
exact
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:::::::
signature

::::::
value)

::
are

:::::
used.

::::
This

:::::::
suggests

::::
that

::
the

::::::::::
uncertainty

::::::
around

::
the

:::::::::::
regionalized

::::::::
signatures

::::::
values395

::
as

::::
well

::
as

::::::::
signature

::::::::::
information

::::::
content

:::
are

:::
the

:::
key

::::::
factors

::::::
leading

:::
to

::
the

::::::
results

::::::
shown

::
in

::::
Fig.

::
4.

3.3.2 Observed Streamflow Data (Observation-Based Likelihood)

Figure 5 shows the results when the same methodology as in the Sect. 3.3.1 is applied using the

observed streamflow data. As in the synthetic streamflow case, the differences between the Bayes

factor distributions when inter-signature error correlations are considered and when inter-signature400

errors are assumed to be independent are not statistically significant at a 95 % confidence level

(Kolmogorov–Smirnov two-sided tests).

Further, by comparing Fig. 5 with Fig. 3, it becomes clear that the signatures contribute less

information, and there is a smaller increase in performance as more signatures are added. It is found

that adding more signatures tends to improve parameter identification only in half of the cases when405

compared to the synthetic streamflow case at a 95 % confidence level (42.5 % versus 82.5 % in the

synthetic streamflow case). Furthermore, and contrastingly to the case where no structural error

exists, in five situations adding more signatures contributes to a decrease in performance. These

five cases always involve adding either SFDC or HPC as an additional source of information. This

performance deterioration can be attributed to model structure and observational error. Overall, a410

statistically significant drop in performance with regard to the Bayes factor is observed most of the

time when model structural error is present.

Figure 6 presents the results in terms of NSEprob using the observed streamflow data. As in the

synthetic study in Sect. 3.3.1, there is no statistically significant difference at a 95 % confidence dif-

ference between the NSEprob distributions when the inter-signature error correlations are considered415

and when the errors are treated independently (Kolmogorov–Smirnov two-sided tests).

Figure 6 shows that better results in terms of NSEprob are not necessarily achieved when all

five signatures are used simultaneously. It is found that adding more signatures tends to improve

parameter identification only in 36 % of the cases at a 95 % confidence level (compared to 59 %

when there is no model structure error). Furthermore, and contrasting the case where no model420

structure error exists, in two situations, adding more signatures may contribute to a decrease in

performance (when we start with [RR, BFI] and add HPC, and when we start with [RR, BFI] and

add SFDC). This might be due to regionalization biases in SFDC and HPC and/or due to the inability

of the PDM model to maintain a satisfactory overall performance when conditioned on high peak

flow and medium flow information. This negative impact is not observed when synthetic streamflow425

data are used (Fig. 4), indicating that the decrease in performance may be due to model structural

deficiencies. Moreover, a statistically significant drop in performance with regard to NSEprob is

observed most of the time when there is model structural error.

In summary, unless there is no model structural error, an all-round performance improvement

is not guaranteed by adding more signatures. Furthermore, model structure uncertainty seems to430
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have a much bigger effect on the performance than the explicit inclusion of the inter-signature error

correlations.

3.4 Limitations and Applicability

The main feature of the method suggested in this paper lies in the possibility of allowing a large num-

ber of signatures to be added to the conditioning process, without worrying about double-counting of435

information or degree of uncertainty in signature estimates, and avoiding subjective decisions about

removal of possibly nonindependent information. Although the proposed framework can be applied

to any number of signatures, the limited sample size (i.e. number of gauged catchments available)

can have an impact on the definition of the likelihood distribution. For this specific study 83 sam-

ples were available to define that distribution. When a single response signature is used to condition440

the hydrological model this sample size is likely to be sufficient to confidently judge whether the

normal distribution assumption is sufficient. However, when moving to multidimensional problems,

in which various signatures may be used simultaneously to condition the hydrological model, it is

increasingly difficult to judge the adequacy of any multivariate parametric distribution and to judge

which catchments are outliers. This implies that as more signatures are used simultaneously in the445

conditioning of the hydrological model, the more gauged catchments should be used to define the

likelihood function. As stressed by Gupta et al. (2014), large samples are of great importance to

support statistical regionalization of uncertainty estimates, and this is particularly the case if depen-

dencies between information sources are to be specified.

While the work presented in this paper addresses a number of issues associated with model re-450

gionalization, it is important to highlight some additional areas for future research. An important

source of uncertainty comes from model structure error (Gupta et al., 1998; Kuczera et al., 2006).

The conditioning framework suggested here is independent of the selected model, and, in princi-

ple, Figs. 5 and 6 could be created by using the model structure that is considered suitable for each

catchment rather than using a model structure that we consider good for generalizing. Further re-455

search is needed to diagnose the relative importance of different model structures in various climate

regimes and for different catchment characteristics (Clark et al., 2008; Hrachowitz et al., 2013). This

is crucial to both identifying the most appropriate model structure for an ungauged location and

quantifying the uncertainty in the model structure that should be integrated into the likelihood, thus

allowing virtually any model choice. Similarly, other sources of uncertainty, namely observational460

error (e.g. rainfall error), should ideally be evaluated and integrated into the likelihood function. By

accounting for all the important sources of uncertainty, further insight should be achieved into the

information value of sets of signatures and the value of including their dependencies in the likelihood

function.

Some of the results presented may be sensitive to the response signatures used. The relationship465

between value of signatures and catchment type remains ambiguous and an interesting aspect for
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posterior evaluation would be how the value of signatures depends on catchment type. Other aspects

that are worth further research include whether a similar framework could be applied to different

types of information source, e.g. can some discharge measurements be added into the model condi-

tioning process? While Bulygina et al. (2012) suggests a framework capable of combining multiple470

sources of knowledge, namely physically based information, regionalized signatures and spot ob-

servations to identify parameters for models of ungauged catchments, the errors between them were

assumed to be independent in their case study. A combination of the framework suggested by Buly-

gina et al. (2012) and the method proposed in this paper may be the way forward to maximizing the

value of the available information within a framework of uncertainty reduction.475

4 Conclusions

Uncertainty in streamflow estimation in ungauged catchments originates not only from the traditional

sources of error generally identified in rainfall-runoff modelling (i.e. model structural, parameter and

data errors), but also by errors introduced by the transposition of information from data-rich areas

and use of this information to condition model simulations. To identify which and how many types of480

signatures can usefully be included in model conditioning, it is critical to understand the effects of all

these uncertainties. Moreover, when multiple signatures are used simultaneously to condition model

simulations, inter-signature error dependencies may also introduce uncertainty and affect decisions

about the value of information. While error and uncertainty analyses are quite common in regional-

ization studies, the question of how much information can be taken from a set of uncertain signatures485

and determining how many and which signatures should be used given their error dependencies has

not been extensively studied.

The method suggested in this paper allows the specification of a signature error structure. A com-

mon reason for not including large numbers of signatures in regionalization studies is the potential

for under-estimation of uncertainty due to duplication of information. This study helps to justify the490

inclusion of larger sets of signatures in the regionalization procedure if their error correlations are

formally accounted for and thus enables a more complete use of all available information. The re-

sults show that adding response signatures to constrain the hydrological model, while accounting for

inter-signature error correlations, can contribute to a stronger identification of the optimum parame-

ter set when the error correlations between different sources of information are strong. Furthermore,495

the results show that assuming independency of errors does not result in significant deterioration in

model performance, unless the error correlation is very strong. The results also show that the effect

of error correlations is likely to be overwhelmed by model structure and observation errors. The

method suggested here can therefore become more relevant if observational and structural errors

are reduced. In addition, it is illustrated that using more signatures, with and without considering500

their error correlations, may lead to deterioration in performance. In our case, there were particular
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problems when adding the slope of the flow duration curve and/or the high pulse count. As this is

likely to be specific to the rainfall-runoff model used, the selected performance criteria and the set

of catchments, it is recommended that the disinformative information sources are identified as part

of any regionalization study, in a similar manner as has been done here.505

Appendix A:
:::::
Model

:::::::::
Structure

:
A
:::::::::

schematic
::::::::::::

representation
:::

of
:::
the

::::::
model

::::::::
structure

::::
used

:::
in

:::
this

:::::
study

:::
is

::::::
shown

::
in

::::
Fig.

::::
A1.

::::
The

::::::::
snowmelt

::::::
routine

::
is
::::::

based
::
on

::::
the

:::::::::
degree-day

:::::::
method.

:::::::::::
Precipitation

:::::::::::
accumulates

::
as

:::::
snow

:::
or

::::
rain

::::::::
depending

:::::::
whether

:::
the

:::
air

::::::::::
temperature

::
is
::::::
above

::
or

:::::
below

::
a
::::::::
threshold

::::::::::
temperature

:::::
(Tth).

::::::
When

:::
the

::
air

::::::::::
temperature

::
is
::::::

above
:::
the

::::::::::
temperature

::::::::
threshold

:::
for

:::::::::
snowmelt

:::::
(Tm),

::::::::
snowmelt

::::::
occurs

::
at
::

a
::::
rate510

:::
that

::
is

::::::::::
proportional

::
to

:::
the

:::::::::
degree-day

::::::
factor

:::::::
(DDF ).

:::
The

::::
soil

:::::::
moisture

::::::
storage

::::::::::
component

::::::::
describes

::
the

:::::
water

:::::::
balance

::
at

:::
the

:::
soil

:::::
level.

::::
The

:::::
PDM

:::::
model

::::
uses

::
a
:::::::::
probability

::::::
density

::::::::
function

::
to

::::::::
represent

::::::
changes

:::
in

:::
the

::::::::
catchment

:::::::
storage

:::::::
capacity,

:::::::
defined

::
by

:::
the

:::::::::
maximum

:::
soil

::::::::
moisture

::::::
storage

::::::
(cmax)

::
-

::
the

:::::::::
maximum

::::
soil

:::::
water

::::::
storage

:::::::
capacity

::::::
within

:::
the

::::::::
modelled

:::::::
element

:
-
::::
and

:
a
:::::
shape

:::::::::
parameter

:::
(b)

:::
that

:::::::
controls

:::
the

::::::
degree

:::
of

::::::
spatial

::::::::
variability

:::
of

::::::
storage

::::::::
capacity

::::
over

:::
the

:::::::::
catchment.

:::::::::::
Interception515

:
is
:::
not

:::::::::
explicitly

::::::::
modelled.

:::::::::::
Transpiration

::::
and

::::::::::
evaporation

:::
are

::::::
lumped

::::
into

::
a

:::::
single

:::::
term.

:::
The

::::::
actual

:::::::::::::::
evapotranspiration

::::
(AE)

::
is
::::::::::
determined

:::::
based

:::
on

:
a
::::::::::
relationship

:::::::
between

::::::::::::::::
evapotranspiration

:::
and

::::
soil

:::::::
moisture

::::::
deficit

::::::::::::
(Moore, 2007).

:::::
After

::::::::::::::::
evapotranspiration,

:::
the

:::::::::
remaining

::::::::
available

:::::
water

::
is

::::
used

:::
to

::
fill

:::
the

::::
soil

::::::::
moisture

:::::
store.

::::::
When

:::::::
effective

:::::::
rainfall

::
is
::::::::

produced
::::::::

through
:::::::
overflow

:::
of

:::
the

:::::::
storage

::::::::
elements,

:::::
excess

:::::
water

::
is
::::::
passed

::
to

:::
the

:::::::
routing

:::::
stores.

::::
The

::::::
routing

:::::::
module

::::::::
channels

:::
this

:::::
water

::::
into520

:::
two

:::::::::
reservoirs,

::::::::
according

::
to

::
a
::::::
fraction

::::
split

:::::::::
coefficient

::::
(α).

::
A

:::::::::
proportion

::
α

::
of

:::
the

:::::
water

:::::
excess

:::::
goes

::
to

:::
the

:::::
quick

::::
flow

::::::::
reservoir,

:::::::::
controlled

:::
by

:::
the

:::::
quick

:::::
flow

::::::::
residence

::::
time

:::::
(kq),

:::
and

:::::::
(1−α)

::
of
::::

the

::::
water

::::::
excess

:::::
goes

::
to

:::
the

::::
slow

::::
flow

::::::::
reservoir,

:::::::::
controlled

:::
by

:::
the

::::
slow

::::
flow

::::::::
residence

:::::
time

::::
(ks).

::::
The

:::::::::
streamflow

::
at

:::
the

::::::::
catchment

::::::
outlet

:
is
:::
the

::::
sum

::
of

:::
the

:::::::
outputs

::::
from

::::
each

::
of

:::::
these

:::::
quick

:::
and

:::::
slow

::::
flow

::::::::
reservoirs.

:
525

:::
The

::::::::
parameter

::::::
ranges

::::::
(Table

:::
A1)

:::
are

:::::::
selected

::::
after

::::::::::::::::::::
Kollat et al. (2012) based

::::::
largely

:::
on

::
the

:::::::::
maximum

::::
range

::::::::
sampled

::::
from

::::::
several

:::::
recent

:::::::
studies,

::::
such

::::
that

::::
only

:::::::::
sufficiently

:::::::
extreme

::::::
values

:::
are

::::
ruled

::::
out.

Appendix B: The Bayes Factor

When evaluating the impact of inter-signature error correlations on model parameter identification,

results are assessed in terms of Bayes factor (Jeffreys, 1961). This form of assessment is preferred530

to the most commonly used QQ plots (Laio and Tamea, 2007), due to the particular nature of the

problem under analysis. When signature(s) (either regionalized for the case of an ungauged catch-

ment, or derived from actual observations for the case of gauged catchments) is employed to reduce

uncertainty beyond what is possible by defining the priors on model parameters, QQ plots may not

be the most effective form of assessment. Although response signatures are measures of theoretically535
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relevant system process behaviors (Gupta et al., 2008; Wagener et al., 2007), they reflect fragmented

knowledge as different signatures capture different catchment processes. Consequently, the quan-

tiles of observed flows are not conditioned to follow a uniform distribution, as QQ plots assess.

Rather, quantiles of response signatures should follow this condition (for all catchments considered

– Almeida et al., 2013). Therefore, an alternative performance measure that more adequately reflects540

the aim of this particular application (i.e. the reproduction of certain aspects of the hydrograph) is

used. The Bayes factor BF is particularly relevant in the current context as it allows comparison of

predictions based on two competing theories (Jeffreys, 1961). It is defined as the ratio between the

marginal distributions of the data y for the two hypotheses (H1 and H2) being compared (Kass and

Raftery, 1995):545

BF =
p(y|H1)

p(y|H2)
(B1)

When the two hypotheses are equally likely a priori, the Bayes factor is the posterior odds in favor

of H1 (Kass and Raftery, 1995). In other words, a value of BF greater than 1 means that H1 is more

strongly supported by the data than H2. For example, a Bayes factor equal to 2 implies that H1 is

favored over H2 with 2 : 1 odds given the evidence provided by the data.550

For a given hypothesis H , parameterized by model parameter set Θ, the marginal density p(y|H)

represents the likelihood of the data and it is given by

p(y|H) =

∫
p(y|Θ,H)p(Θ|H)dΘ (B2)

where p(y|Θ,H) is the conditional density function given parameters Θ under hypothesis H and

p(Θ|H) is the distribution of parameters under H . Hypothesis H may represent different model and555

parameter distributions. In this paper, the same model structure is considered. However, different

parameter distributions are used in Eq. (B2) to enable prediction comparison based on two theories

about parameter distributions.

The above integral can be numerically approximated as,∫
p(y|Θ,H)p(Θ|H)dΘ≈ 1

N

N∑
i=1

p(y|Θ(i),H)p(Θ(i)|H) (B3)560

where Θ(i) is the ith of N draws from p(.|Θ), and N is the size of the Monte Carlo sample (in this

paper N is equal to 10 000).

In a “perfect model” study, data y are generated by a model with parameter set Θ∗, so that there

is no model structural or observational error. This means that p(y|Θ(i),H) is always equal to zero,

except when Θ(i) = Θ∗. Mathematically this is expressed as p(yΘ(i),H) = δΘ(i)=Θ∗ , where δ is565

the Dirac delta function. Therefore Eq. (B3) is equal to 1/N times p(Θ(i) = Θ∗|H) and the Bayes

factor is given by

BF =
1
N

∑N
i=1 δΘ(i)=Θ∗p(Θ(i)|H1)

1
N

∑N
i=1 δΘ(i)=Θ∗p(Θ(i)|H2)

=
p(Θ(i) = Θ∗|H1)

p(Θ(i) = Θ∗|H2)
(B4)
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While other choices can be made, two cases are considered in this paper. First, the two distri-

butions in Eq. (B4) are posterior distributions, but with different assumptions about the likelihood570

functions. Given that we are particularly interested in evaluating the impact of considering the inter-

signature error correlations versus ignoring them, H1 will correspond to the joint likelihood defined

such that inter-signature error correlations are considered, while H2 corresponds to the likelihood

when inter-signature error correlations are ignored. For the Bayes factor defined in this way, a value

greater than 1 supports the idea that considering inter-signature error correlations contributes to an575

improved specification of the optimum parameter set. In this paper we are also interested in the value

of adding/not adding more signatures in model conditioning, and so the Bayes factor will be also

calculated for p(.|H2) set to be the prior parameter distribution, and p(.|H1) set to one of the derived

parameter posteriors. For the Bayes factor defined in this way, a value greater than 1 supports the

idea that additional sources of information contribute to a stronger identification of the optimum580

parameter set.

Acknowledgements. The authors would like to acknowledge the support of Fundação para a Ciência e a Tec-

nologia (FCT), Portugal, sponsor of the PhD program of S. Almeida at Imperial College London, under the grant

SFRH/BD/65522/2009. This work was also partially supported by the Natural Environment Research Council

[Consortium on Risk in the Environment: Diagnostics, Integration, Benchmarking, Learning and Elicitation585

(CREDIBLE); grant number NE/J017450/1]. The authors would also like to acknowledge
:::
like

::
to

::::
thank

:
Keith

Sawicz for advice and support relating to the data used in this study.
:::
The

::::::
authors

:::
also

:::::
thank

::
the

:::::
editor

::::::
Vazken

:::::::::
Andréassian,

::::
who

::::::
handled

:::
the

:::::::::
manuscript,

:::
and

::
the

::::
three

:::::::::
anonymous

:::::::
reviewers

:::
for

::::
their

:::::
useful

::::::::
comments.

18



References

Almeida, S. M. C. L.: The Value of Regionalised Information for Hydrological Modelling, PhD thesis, Imperial590

College London, London, UK, 2014.

Almeida, S., Bulygina, N., McIntyre, N., Wagener, T., and Buytaert, W.: Predicting flows in ungauged catch-

ments using correlated information sources, in: British Hydrological Society’s Eleventh National Hydrology

Symposium, Hydrology for a Changing World, Dundee, UK, doi:10.7558/bhs.2012.ns02, 2012.

Almeida, S., Bulygina, N., McIntyre, N., Wagener, T., and Buytaert, W.: Improving parameter priors for data-595

scarce estimation problems, Water Resour. Res., 49, 6090–6095, doi:10.1002/wrcr.20437, 2013.

Arnold, J. G. and Allen, P. M.: Automated methods for estimating baseflow and ground water recharge from

streamflow records, J. Am. Water Resour. As., 35, 411–424, doi:10.1111/j.1752-1688.1999.tb03599.x, 1999.

Boorman, D. B., Hollis, J. M., and Lilly, A.: Hydrology of soil types: a hydrologically-based classification of

the soils of the United Kingdom, Tech. rep., Institute of Hydrology, Wallingford, UK, 1995.600

Bulygina, N., McIntyre, N., and Wheater, H.: Conditioning rainfall-runoff model parameters for ungauged

catchments and land management impacts analysis, Hydrol. Earth Syst. Sci., 13, 893–904, doi:10.5194/hess-

13-893-2009, 2009.

Bulygina, N., McIntyre, N., and Wheater, H.: Bayesian conditioning of a rainfall-runoff model for pre-

dicting flows in ungauged catchments and under land use changes, Water Resour. Res., 47, W02503,605

doi:10.1029/2010wr009240, 2011.

Bulygina, N., Ballard, C., McIntyre, N., O’Donnell, G., and Wheater, H.: Integrating different types of informa-

tion into hydrological model parameter estimation: application to ungauged catchments and land use scenario

analysis, Water Resour. Res., 48, W06519, doi:10.1029/2011wr011207, 2012.

Calver, A., Lamb, R., and Morris, S. E.: River flood frequency estimation using continuous runoff modelling,610

P. I. Civil Eng.-Water, 136, 225–234, doi:10.1680/iwtme.1999.31986, 1999.

Castiglioni, S., Lombardi, L., Toth, E., Castellarin, A., and Montanari, A.: Calibration of rainfall-runoff mod-

els in ungauged basins: a regional maximum likelihood approach, Adv. Water Resour., 33, 1235–1242,

doi:10.1016/j.advwatres.2010.04.009, 2010.

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T., and Hay,615

L. E.: Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences

between hydrological models, Water Resour. Res., 44, W00B02, doi:10.1029/2007wr006735, 2008.

Clausen, B. and Biggs, B. J. F.: Flow variables for ecological studies in temperate streams: groupings based on

covariance, J. Hydrol., 237, 184–197, doi:10.1016/S0022-1694(00)00306-1, 2000.

De Vleeschouwer, N. and Pauwels, V. R. N.: Assessment of the indirect calibration of a rainfall-runoff model for620

ungauged catchments in Flanders, Hydrol. Earth Syst. Sci., 17, 2001–2016, doi:10.5194/hess-17-2001-2013,

2013.

Doucet, A., Godsill, S., and Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering,

Stat. Comput., 10, 197–208, , 2000.

Duan, Q., Schaake, J., Andréassian, V., Franks, S., Goteti, G., Gupta, H., Gusev, Y., Habets, F., Hall,625

A., Hay, L., Hogue, T., Huang, M., Leavesley, G., Liang, X., Nasonova, O., Noilhan, J., Oudin, L.,

Sorooshian, S., Wagener, T., and Wood, E.: Model Parameter Estimation Experiment (MOPEX): An

19

http://dx.doi.org/10.7558/bhs.2012.ns02
http://dx.doi.org/10.1002/wrcr.20437
http://dx.doi.org/10.1111/j.1752-1688.1999.tb03599.x
http://dx.doi.org/10.5194/hess-13-893-2009
http://dx.doi.org/10.5194/hess-13-893-2009
http://dx.doi.org/10.5194/hess-13-893-2009
http://dx.doi.org/10.1029/2010wr009240
http://dx.doi.org/10.1029/2011wr011207
http://dx.doi.org/10.1680/iwtme.1999.31986
http://dx.doi.org/10.1016/j.advwatres.2010.04.009
http://dx.doi.org/10.1029/2007wr006735
http://dx.doi.org/10.1016/S0022-1694(00)00306-1
http://dx.doi.org/10.5194/hess-17-2001-2013


overview of science strategy and major results from the second and third workshops, J. Hydrol., 320, 3–

17, doi:10.1016/j.jhydrol.2005.07.031, 2006.

Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Toward improved calibration of hydrologic models: Multiple and630

noncommensurable measures of information, Water Resour. Res., 34, 751–763, doi:10.1029/97WR03495,

1998.

Gupta, H. V., Wagener, T., and Liu, Y.: Reconciling theory with observations: elements of a diagnostic approach

to model evaluation, Hydrol. Process., 22, 3802–3813, doi:10.1002/hyp.6989, 2008.

Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., and Andréassian, V.: Large-sample635

hydrology: a need to balance depth with breadth, Hydrol. Earth Syst. Sci., 18, 463–477, doi:10.5194/hess-

18-463-2014, 2014.

He, Y., Bárdossy, A., and Zehe, E.: A review of regionalisation for continuous streamflow simulation, Hydrol.

Earth Syst. Sci., 15, 3539–3553, doi:10.5194/hess-15-3539-2011, 2011.

Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol., 282, 104–115, doi:10.1016/S0022-640

1694(03)00257-9, 2003.

Hrachowitz, M., Savenije, H., Blöschl, G., McDonnell, J., Sivapalan, M., Pomeroy, J., Arheimer, B., Blume,

T., Clark, M., Ehret, U., Fenicia, F., Freer, J., Gelfan, A., Gupta, H., Hughes, D., Hut, R., Montanari, A.,

Pande, S., Tetzlaff, D., Troch, P., Uhlenbrook, S., Wagener, T., Winsemius, H., Woods, R., Zehe, E., and

Cudennec, C.: A decade of Predictions in Ungauged Basins (PUB) – a review, Hydrol. Sci. J., 58, 1198–645

1255, doi:10.1080/02626667.2013.803183, 2013.

Jeffreys, H.: Theory of Probability, Oxford University Press, Oxford, 1961.

Kass, R. E. and Raftery, A. E.: Bayes Factors, J. Am. Stat. Assoc., 90, 773–795, doi:10.2307/2291091, 1995.

Kennard, M. J., Mackay, S. J., Pusey, B. J., Olden, J. D., and Marsh, N.: Quantifying uncertainty in estimation of

hydrologic metrics for ecohydrological studies, River Res. Appl., 26, 137–156, doi:10.1002/rra.1249, 2010.650

Kollat, J. B., Reed, P. M., and Wagener, T.: When are multiobjective calibration trade-offs in hydrologic models

meaningful?, Water Resour. Res., 48, W03520, doi:10.1029/2011wr011534, 2012.

Kuczera, G., Kavetski, D., Franks, S., and Thyer, M.: Towards a Bayesian total error analysis of conceptual

rainfall-runoff models: Characterising model error using storm-dependent parameters, J. Hydrol., 331, 161–

177, doi:10.1016/j.jhydrol.2006.05.010, 2006.655

Laio, F. and Tamea, S.: Verification tools for probabilistic forecasts of continuous hydrological variables, Hy-

drol. Earth Syst. Sci., 11, 1267–1277, doi:10.5194/hess-11-1267-2007, 2007.

Lamb, R. and Kay, A. L.: Confidence intervals for a spatially generalized, continuous simulation flood frequency

model for Great Britain, Water Resour. Res., 40, W07501, doi:10.1029/2003WR002428, 2004.

Lidén, R. and Harlin, J.: Analysis of conceptual rainfall-runoff modelling performance in different climates, J.660

Hydrol., 238, 231–247, doi:10.1016/S0022-1694(00)00330-9, 2000.

McIntyre, N., Lee, H., Wheater, H., Young, A., and Wagener, T.: Ensemble predictions of runoff in ungauged

catchments, Water Resour. Res., 41, doi:10.1029/2005WR004289, 2005.

Merz, R. and Blöschl, G.: Regionalisation of catchment model parameters, J. Hydrol., 287, 95–123,

doi:10.1016/j.jhydrol.2003.09.028, 2004.665

Mishra, A. K. and Coulibaly, P.: Developments in hydrometric network design: A review, Rev. Geophys., 47,

RG2001, doi:10.1029/2007RG000243, 2009.

20

http://dx.doi.org/10.1016/j.jhydrol.2005.07.031
http://dx.doi.org/10.1029/97WR03495
http://dx.doi.org/10.1002/hyp.6989
http://dx.doi.org/10.5194/hess-18-463-2014
http://dx.doi.org/10.5194/hess-18-463-2014
http://dx.doi.org/10.5194/hess-18-463-2014
http://dx.doi.org/10.5194/hess-15-3539-2011
http://dx.doi.org/10.1016/S0022-1694(03)00257-9
http://dx.doi.org/10.1016/S0022-1694(03)00257-9
http://dx.doi.org/10.1016/S0022-1694(03)00257-9
http://dx.doi.org/10.1080/02626667.2013.803183
http://dx.doi.org/10.2307/2291091
http://dx.doi.org/10.1002/rra.1249
http://dx.doi.org/10.1029/2011wr011534
http://dx.doi.org/10.1016/j.jhydrol.2006.05.010
http://dx.doi.org/10.5194/hess-11-1267-2007
http://dx.doi.org/10.1029/2003WR002428
http://dx.doi.org/10.1016/S0022-1694(00)00330-9
http://dx.doi.org/10.1029/2005WR004289
http://dx.doi.org/10.1016/j.jhydrol.2003.09.028
http://dx.doi.org/10.1029/2007RG000243


Moore, R. J.: The PDM rainfall-runoff model, Hydrol. Earth Syst. Sci., 11, 483–499, doi:10.5194/hess-11-483-

2007, 2007.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models. Part I. A discussion of670

principles, J. Hydrol., 10, 282–290, doi:10.1016/j.bbr.2011.03.031, 1970.

Parajka, J., Andréassian, V., Archfield, S. A., Bárdossy, A., BlÖschl, G., Chiew, F., Duan, Q., Gelfan, A.,

Hlavcova, K., Merz, R., McIntyre, N., Oudin, L., Perrin, C., Rogger, M., Salinas, J. L., Savenije, H. G.,

Skøien, J. O., Wagener, T., Zehe, E., and Zhang, Y.: Prediction of runoff hydrographs in ungauged basins, in:

Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales, edited by: Blöschl, G.,675

Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H., 53–69, Cambridge University Press, Cambridge,

2013.

Peel, M. C. and Blöschl, G.: Hydrological modelling in a changing world, Prog. Phys. Geog., 35, 249–261,

doi:10.1177/0309133311402550, 2011.

Razavi, T. and Coulibaly, P.: Streamflow Prediction in Ungauged Basins: Review of Regionalization Methods,680

J. Hydrol. Eng., 18, 958–975, doi:10.1061/(ASCE)HE.1943-5584.0000690, 2013.

Sankarasubramanian, A., Vogel, R. M., and Limbrunner, J. F.: Climate elasticity of streamflow in the United

States, Water Resour. Res., 37, 1771–1781, doi:10.1029/2000WR900330, 2001.

Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.: Catchment classification: empirical

analysis of hydrologic similarity based on catchment function in the eastern USA, Hydrol. Earth Syst. Sci.,685

15, 2895–2911, doi:10.5194/hess-15-2895-2011, 2011.

Schaake, J., Cong, S., and Duan, Q.: U.S. MOPEX data set, Tech. Rep. UCRL-JRNL-221228, Lawrence Liver-

more National Laboratory, 2006.

Shu, C. and Ouarda, T. B. M. J.: Improved methods for daily streamflow estimates at ungauged sites, Water

Resour. Res., 48, W02523, doi:10.1029/2011WR011501, 2012.690

Singh, R., Wagener, T., van Werkhoven, K., Mann, M. E., and Crane, R.: A trading-space-for-time approach to

probabilistic continuous streamflow predictions in a changing climate – accounting for changing watershed

behavior, Hydrol. Earth Syst. Sci., 15, 3591–3603, doi:10.5194/hess-15-3591-2011, 2011.

Sorooshian, S. and Dracup, J. A.: Stochastic parameter estimation procedures for hydrologie rainfall-

runoff models: Correlated and heteroscedastic error cases, Water Resour. Res., 16, 430–442,695

doi:10.1029/WR016i002p00430, 1980.

:::::
United

:::::
States

:::::::::
Department

::
of

:::::::::
Agriculture

:::::::
(USDA):

:::::
Urban

::::::::
hydrology

:::
for

::::
small

:::::::::
watersheds,

::::::::
Technical

::::::
Release

::
55,

::::::
United

::::
States

:::::::::
Department

::
of

:::::::::
Agriculture,

::::::::::
Washington,

::::
D.C.,

:::::
1986.

van Werkhoven, K., Wagener, T., Reed, P., and Tang, Y.: Characterization of watershed model behavior across

a hydroclimatic gradient, Water Resour. Res., 44, W01429, doi:10.1029/2007WR006271, 2008.700

Wagener, T. and McIntyre, N.: Hydrological catchment classification using a data-based mechanistic strategy,

in: System Identification, Environmental Modelling, and Control System Design, edited by: Wang, L. and

Garnier, H., 483–500, Springer, London, 2012.

Wagener, T. and Montanari, A.: Convergence of approaches toward reducing uncertainty in predictions in un-

gauged basins, Water Resour. Res., 47, W06301, doi:10.1029/2010WR009469, 2011.705

Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment Classification and Hydrologic Similarity,

Geogr. Compass, 1, 901–931, doi:10.1111/j.1749-8198.2007.00039.x, 2007.

21

http://dx.doi.org/10.5194/hess-11-483-2007
http://dx.doi.org/10.5194/hess-11-483-2007
http://dx.doi.org/10.5194/hess-11-483-2007
http://dx.doi.org/10.1016/j.bbr.2011.03.031
http://dx.doi.org/10.1177/0309133311402550
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000690
http://dx.doi.org/10.1029/2000WR900330
http://dx.doi.org/10.5194/hess-15-2895-2011
http://dx.doi.org/10.1029/2011WR011501
http://dx.doi.org/10.5194/hess-15-3591-2011
http://dx.doi.org/10.1029/WR016i002p00430
http://dx.doi.org/10.1029/2007WR006271
http://dx.doi.org/10.1029/2010WR009469
http://dx.doi.org/10.1111/j.1749-8198.2007.00039.x


Winsemius, H. C., Schaefli, B., Montanari, A., and Savenije, H. H. G.: On the calibration of hydrological models

in ungauged basins: A framework for integrating hard and soft hydrological information, Water Resour. Res.,

45, W12422, doi:10.1029/2009WR007706, 2009.710

Yadav, M., Wagener, T., and Gupta, H.: Regionalization of constraints on expected watershed response behavior

for improved predictions in ungauged basins, Adv. Water Resour., 30, 1756–1774, doi:10.5194/hess-15-

3539-2011, 2007.

Young, A. R.: Stream flow simulation within UK ungauged catchments using a daily rainfall-runoff model, J.

Hydrol., 320, 155–172, doi:http://dx.doi.org/10.1016/j.jhydrol.2005.07.017, 2006.715

Zhang, Z., Wagener, T., Reed, P., and Bhushan, R.: Reducing uncertainty in predictions in ungauged basins

by combining hydrologic indices regionalization and multiobjective optimization, Water Resour. Res., 44,

doi:10.1029/2008WR006833, 2008.

22

http://dx.doi.org/10.1029/2009WR007706
http://dx.doi.org/10.5194/hess-15-3539-2011
http://dx.doi.org/10.5194/hess-15-3539-2011
http://dx.doi.org/10.5194/hess-15-3539-2011
http://dx.doi.org/http://dx.doi.org/10.1016/j.jhydrol.2005.07.017
http://dx.doi.org/10.1029/2008WR006833


Table 1. Summary of general catchment properties and response signatures of the 84 MOPEX catchments.

Catchment property Units Range

Average annual streamflow (mm yr−1) 208–896

Average annual precipitation (mm yr−1) 758–1495

Average annual maximum temperature (◦C) 12–23

Average annual minimum temperature (◦C) 0–10

Average annual potential evaporation (mm yr−1) 679–1112

Aridity index* (-) 0.5–1.2

Average elevation (m) 176–1056

Runoff ratio (-) 0.16–0.76

Base flow index (-) 0.36–0.90

Streamflow elasticity (-) 0.02–4.34

Slope of flow duration curve (-) 0.01–0.08

High pulse count (yr−1) 2.10–120.80

* Long-term ratio of potential evaporation over precipitation.

Table 2. Tested variance values for the data-based and imposed error structures.

1 % observed 5 % observed 10 % observed 20 % observed

Observed error signature signature signature signature

structure ranges ranges ranges ranges

RR residuals 0.0542 0.0052 0.0272 0.0552 0.1092

BFI residuals 0.0442 0.0062 0.0302 0.0602 0.1212

SE residuals 0.6352 0.0232 0.1162 0.2322 0.4642

SFDC residuals 0.0062 0.00052 0.0022 0.0052 0.0102

HPC residuals 10.6872 0.9772 4.8832 9.7672 19.5332

Table 3. Reference table showing the 95% confidence interval for the median Bayes factor. The correlation

coefficient ρ and the standard deviation of the marginal distributions σ are shown.

σ

1 % 5 % 10 % 20 %

0 1 1 1 1

0.25 1.01–1.03 1.03–1.04 1.02–1.04 1.04–1.05

ρ 0.50 1.09–1.15 1.16–1.19 1.14–1.17 1.14–1.18

0.75 1.41–1.51 1.50–1.57 1.45–1.53 1.40–1.49

0.90 1.94–2.11 2.11–2.32 2.12–2.26 2.20–2.34

23



Table A1.
::::::::
Conceptual

:::::
model

::::
prior

::::::::
parameter

:::::
ranges.

:::::::
Parameter

: :::::::::
Description

::::
Units

: :::::
Range

:

:::::
DDF

:::::
Degree

:::
day

:::::
factor

:::::::::::::
(mm day−1 ◦C−1)

: ::::
0–20

:

:::
Tm ::::

Base
:::::::::
temperature

::
for

::::::
melting

: :
(◦

:
C)

: :::
0–5

:::
Tth :::::::

Threshold
::::::::::

temperature
::
for

::::
snow

::::::::
formation

:
(◦

:
C)

: ::::
-5–5

::::
cmax: ::::::::

Maximum
:::::
storage

:::::::
capacity

:::::
within

::
the

::::::::
catchment

: ::::
(mm)

: ::::::
0–2000

:
b

:::::
Shape

:::::
Pareto

::::::::
distribution

: ::
(-)

:::
0–4

::
be :::::::::

Evaporation
:::::::
reduction

::::::::
parameter

::
(-)

:::
0–4

::
kq ::::

Time
::::::
constant

:::
for

:::
fast

::::::
routing

::::
store

:::::
(days)

:::
0–7

::
ks ::::

Time
::::::
constant

:::
for

::::
slow

:::::
routing

::::
store

: :::::
(days)

:::::::
7–20000

:
α
: ::::::

Fraction
::
of

::::
slow

::::::
through

:::
fast

::::::
routing

::::
store

::
(-)

:::
0–1

24



−0.5 0 0.5
−0.2

0

0.2

B
F

I 
re

s

−0.5 0 0.5
−5

0

5

S
E

 r
es

−0.2 0 0.2
−5

0

5

−0.5 0 0.5
−0.05

0

0.05

S
F

D
C

 r
es

−0.2 0 0.2
−0.05

0

0.05

−5 0 5
−0.05

0

0.05

−0.5 0 0.5
−50

0

50

H
P

C
 r

es

RR res
−0.2 0 0.2

−50

0

50

BFI res
−5 0 5

−50

0

50

SE res
−0.05 0 0.05

−50

0

50

SFDC res

−0.5 0 0.5
0

20

40

R
R

 r
es

−0.2 0 0.2
0

20

40

−2 0 2
0

20

40

−0.05 0 0.05
0

20

40

−50 0 50
0

20

40

HPC res

ρ=−0.13

p−val=0.24

ρ=0.01

p−val=0.95
ρ=−0.10

p−val=0.36

ρ=0.40

p−val=0.00

ρ=−0.25

p−val=0.02

ρ=−0.26

p−val=0.02

ρ=−0.18 

p−val=0.09

ρ=0.65

p−val=0.00

ρ=0.08

p−val=0.48

ρ=−0.08

p−val=0.48

Figure 1. Distribution of individual signature residuals (res) are approximated as histograms and normal distri-

butions. The scatterplots and correlation coefficients (ρ) show correlation between the signature residuals.
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Figure 2. The Bayes factor for the 10 pairs of signatures over the 84 catchments when the observation-based

error structure is used with (a) observed streamflow data, (b) synthetic streamflow data. The upper whisker

represents the upper quartile plus one and a half times the interquartile range, and the lower whisker represents

the lower quartile minus one and a half times the interquartile range. The dashed line represents BF = 1.
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Figure 3. Boxplots representing the distribution of the Bayes factor for each combination of signatures for

synthetic streamflow data. The colored boxplots correspond to the results obtained when inter-signature error

correlations are considered in the likelihood function, whereas the grey dashed boxplots correspond to the

results obtained assuming that the inter-signature errors are independent.
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Figure 4. Boxplots representing the distribution of NSEprob values for each combination of signatures for

synthetic streamflow data. The colored boxplots correspond to the results obtained when inter-signature error

correlations are considered in the likelihood function, whereas the grey dashed boxplots correspond to the

results obtained assuming that the inter-signature errors are independent.
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Figure 5. Boxplots representing the distribution of the Bayes factor for each combination of signatures for

observed streamflow data. The colored boxplots correspond to the results obtained when inter-signature error

correlations are considered in the likelihood function, whereas the grey dashed boxplots correspond to the

results obtained assuming that the inter-signature errors are independent.

29



Figure 6. Boxplots representing the distribution of NSEprob values for each combination of signatures for

observed streamflow data. The colored boxplots correspond to the results obtained when inter-signature error

correlations are considered in the likelihood function, whereas the grey dashed boxplots correspond to the

results obtained assuming that the inter-signature errors are independent.
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used.
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