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Abstract 1	  

Soil moisture dynamics reflect the complex interactions of meteorological conditions 2	  

with soil, vegetation and terrain properties. In this study, intermediate scale soil moisture 3	  

estimates from the cosmic-ray neutron sensing (CRNS) method are evaluated for two semiarid 4	  

ecosystems in the southwestern United States: a mesquite savanna at the Santa Rita Experimental 5	  

Range (SRER) and a mixed shrubland at the Jornada Experimental Range (JER). Evaluations of 6	  

the CRNS method are performed for small watersheds instrumented with a distributed sensor 7	  

network consisting of soil moisture sensor profiles, an eddy covariance tower and runoff flumes 8	  

used to close the water balance. We found a very good agreement between the CRNS method 9	  

and the distributed sensor network (RMSE of 0.009 and 0.013 m3/m3 at SRER and JER) at the 10	  

hourly time scale over the 19-month study period, primarily due to the inclusion of 5 cm 11	  

observations of shallow soil moisture. Good agreement was also obtained in soil moisture 12	  

changes estimated from the CRNS and watershed water balance methods (RMSE = 0.001 and 13	  

0.082 m3/m3 at SRER and JER), with deviations due to bypassing of the CRNS measurement 14	  

depth during large rainfall events. Once validated, the CRNS soil moisture estimates were used 15	  

to investigate hydrological processes at the footprint scale at each site. Through the computation 16	  

of the water balance, we showed that drier-than-average conditions at SRER promoted plant 17	  

water uptake from deeper soil layers, while the wetter-than-average period at JER resulted in 18	  

percolation towards deeper soils. The CRNS measurements were then used to quantify the link 19	  

between evapotranspiration and soil moisture at a commensurate scale, finding similar predictive 20	  

relations at both sites that are applicable to other semiarid ecosystems in the southwestern U.S.  21	  

 22	  
Keywords: watershed hydrology, soil moisture variability, evapotranspiration, land-atmosphere 23	  
interactions, COSMOS, North American monsoon.  24	  

25	  
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1. Introduction 1	  

Soil moisture is a key land surface variable that governs important processes such as the 2	  

rainfall-runoff transformation, the partitioning of latent and sensible heat fluxes and the spatial 3	  

distribution of vegetation in semiarid regions (e.g., Entekhabi, 1995; Eltahir, 1998; Vivoni, 4	  

2012). Semiarid watersheds with heterogeneous vegetation in the southwestern United States 5	  

(Gibbens and Beck, 1987; Browning et al., 2014) exhibit variations in soil moisture that 6	  

challenge our ability to quantify land-atmosphere interactions and their role in hydrological 7	  

processes (Dugas et al., 1996; Small and Kurc, 2003; Scott et al., 2006; Gutiérrez-Jurado et al., 8	  

2013; Pierini et al., 2014). Moreover, accurate measurements of soil moisture over scales 9	  

relevant to land-atmosphere interactions in watersheds are difficult to obtain. Traditionally, soil 10	  

moisture is measured continuously at single locations using techniques such as time domain 11	  

reflectometry and then aggregated in space using a number of methods (Topp et al., 1980; 12	  

Western et al., 2002; Vivoni et al., 2008b). Soil moisture is also estimated using satellite-based 13	  

techniques, such as passive or active microwave sensors (e.g., Kustas et al., 1998; Moran et al., 14	  

2000; Kerr et al., 2001; Bartalis et al., 2007; Narayan and Lakshmi, 2008; Entekhabi et al., 15	  

2010), but spatial resolutions are typically coarse and overpass times infrequent as compared to 16	  

the spatiotemporal variability of soil moisture occurring within semiarid watersheds.  17	  

One approach to address the scale gap in soil moisture estimation is through the use of 18	  

cosmic-ray neutron sensing (CRNS) measurements (Zreda et al., 2008, 2012) that provide soil 19	  

moisture with a measurement footprint of several hectares (Desilets et al., 2010). Developments 20	  

of the CRNS method have focused on understanding the processes affecting the measurement 21	  

technique, for example, the effects of vegetation growth (Franz et al., 2013a; Coopersmith et al., 22	  

2014), atmospheric water vapor (Rosolem et al., 2013), soil wetting and drying (Franz et al., 23	  
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2012a), and horizontal heterogeneity (Franz et al., 2013b). To date, the validation of the CRNS 1	  

technique has been performed using single site measurements, spatial aggregations of different 2	  

measurement locations, and particle transport models (Desilets et al., 2010; Franz et al., 2013b; 3	  

Zhu et al., 2015). Distributed sensor networks measuring the water balance components of small 4	  

watersheds and the spatial variability of soil moisture within a watershed offer the opportunity to 5	  

test the accuracy of the CRNS method through multiple, independent approaches. For instance, 6	  

the CRNS technique can be validated based upon the application of the watershed water balance, 7	  

as performed for the eddy covariance (EC) technique often used to measure surface turbulent 8	  

fluxes (Scott, 2010; Templeton et al., 2014). Once validated, CRNS soil moisture estimates can 9	  

be used to apply the water balance equation in a continuous fashion with the aim of quantifying 10	  

hydrological fluxes during storm and interstorm periods, including the occurrence of percolation 11	  

to deeper soil layers or the transfer of water from the deeper vadose zone to the atmosphere.  12	  

An important advantage of the CRNS technique is that its measurement scale is 13	  

comparable to the footprint of evapotranspiration (ET) measurements based on the EC technique, 14	  

whose extent depends on wind speed and direction, atmospheric stability, and instrument and 15	  

surface roughness heights (e.g., Hsieh et al., 2000; Kormann and Meixner, 2001; Falge et al., 16	  

2002). Furthermore, the relation between ET and soil moisture is an important parameterization 17	  

in land surface models (e.g., Laio et al., 2001; Rodríguez-Iturbe and Porporato, 2004; Vivoni et 18	  

al., 2008a) and, in most cases, has been investigated using EC measurements of ET and soil 19	  

moisture observations at single sites. A number of studies, however, have shown that accounting 20	  

for the spatial variability of land surface states is important to properly identify the linkage with 21	  

EC measurements (e.g., Detto et al., 2006; Vivoni et al., 2010; Alfieri and Blanken, 2012). In 22	  

other words, aggregated turbulent fluxes should be compared to spatially-averaged surface states 23	  
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obtained at commensurate measurement scales. As a result, CRNS soil moisture estimates could 1	  

be useful to improve the characterization of the relation between evapotranspiration flux and soil 2	  

moisture. To our knowledge, soil moisture estimates from the CRNS technique have not been 3	  

used to study the hydrological processes occurring in small watersheds overlapping with the 4	  

measurement footprint or for improving the parameterization of land surface models. 5	  

In this contribution, we study the soil moisture dynamics of small semiarid watersheds in 6	  

Arizona and New Mexico instrumented with a cosmic-ray neutron sensor, an eddy covariance 7	  

tower, a runoff flume and a network of soil moisture sensor profiles. The watersheds represent 8	  

the heterogeneous vegetation and soil conditions observed in the Sonoran and Chihuahuan 9	  

Deserts of the southwestern U.S. (Templeton et al., 2014; Pierini et al., 2014). We first compare 10	  

the CRNS method with the distributed sensor network and estimates from a novel method based 11	  

on closing the water balance at each site. Given the simultaneous observations during the study 12	  

period (March 2013 to September 2014, 19 months), we quantify the variations in hydrological 13	  

processes (e.g., infiltration, evapotranspiration, percolation) that differentially occur at each site 14	  

in response to varying precipitation. Combining these measurement techniques also affords the 15	  

capacity to construct and compare relationships between the spatially-averaged CRNS estimates 16	  

and the spatially-averaged ET obtained from the EC method. To our knowledge, this is the first 17	  

study where CRNS measurements are validated via two independent methods at the small 18	  

watershed scale and used to make new inferences about watershed hydrological processes. 19	  

 20	  
2. Study Areas and Datasets 21	  

2.1. Study Sites and Their General Characteristics 22	  

The two study sites are long-term experimental watersheds in semiarid ecosystems of the 23	  

southwestern United States. Watershed monitoring began in 1975 at the Santa Rita Experimental 24	  
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Range (SRER), located 45 km south of Tucson, Arizona, in the Sonoran Desert (Fig. 1), as 1	  

described by Polyakov et al. (2010) and Scott (2010). Precipitation at the site varies considerably 2	  

during the year, with 54% of the long-term mean amount (364 mm/yr) occurring during the 3	  

summer months of July to September due to the North American monsoon (Vivoni et al., 2008a; 4	  

Pierini et al., 2014). Soils at the SRER site are a coarse-textured sandy loam (Anderson, 2013) 5	  

derived from Holocene-aged alluvium from the nearby Santa Rita Mountains. The savanna 6	  

ecosystem at the site consists of the velvet mesquite tree (Prosopis velutina Woot.), interspersed 7	  

with grasses (Eragrostis lehmanniana, Bouteloua rothrockii, Muhlenbergia porteri and Aristida 8	  

glabrata) and various cacti species (Opuntia spinosior, Opuntia engelmannii and Ferocactus 9	  

wislizeni). Similarly, watershed monitoring began in 1977 at the Jornada Experimental Range 10	  

(JER), located 30 km north of Las Cruces, New Mexico, in the Chihuahuan Desert (Fig. 1), as 11	  

described by Turnbull et al. (2013). Mean annual precipitation at the JER is considerably lower 12	  

than SRER (251 mm/yr), with a similar proportion (53%) occurring during the summer monsoon 13	  

(Templeton et al., 2014). Soils at the JER site are primarily sandy loam with high gravel contents 14	  

(Anderson, 2013) transported from the San Andreas Mountains. The mixed shrubland ecosystem 15	  

at the site consists of creosote bush (Larrea tridentata), honey mesquite (Prosopis glandulosa 16	  

Torr.), several grass species (Muhlenbergia porteri, Pleuraphis mutica and Sporobolus 17	  

cryptandrus), and other shrubs (Parthenium incanum, Flourensia cernua and Gutierrezia 18	  

sarothrae). Fig. 2 presents a vegetation classification at each site grouped into major categories: 19	  

(1) SRER has velvet mesquite (labeled mesquite), grasses, cacti (Opuntia engelmannii or prickly 20	  

pear) and bare soil, while (2) JER has honey mesquite (labeled mesquite), creosote bush, other 21	  

shrubs, grasses and bare soil. Table 1 presents the vegetation and terrain properties for the site 22	  

watersheds obtained from 1-m digital elevation models (DEMs) and 1-m vegetation maps (Fig. 23	  
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2). Pierini et al. (2014) and Templeton et al. (2014) describe the image acquisition and 1	  

processing methods employed to derive these products at SRER and JER, respectively. 2	  

 3	  
2.2. Distributed Sensor Networks at the Small Watershed Scale 4	  

 Long-term watershed monitoring at the SRER and JER sites consisted of rainfall and 5	  

runoff observations at Watersheds 7 and 8 (SRER, 1.25 ha) and the Tromble Weir (JER, 4.67 6	  

ha). Pierini et al. (2014) and Templeton et al. (2014) describe recent monitoring efforts using a 7	  

network of rainfall, runoff, soil moisture and temperature observations, as well as radiation and 8	  

energy balance measurements at EC towers, commencing in 2011 and 2010 at SRER and JER. 9	  

This brief description of the distributed sensor networks is focused on the spatially-averaged 10	  

measurements used for comparisons to the CRNS method. Precipitation (P) was measured using 11	  

up to 4 tipping-bucket rain gauges (TE525MM, Texas Electronics) to construct a 30-min 12	  

resolution spatial average based on Thiessen polygons within the watershed boundaries. At the 13	  

watershed outlets, streamflow (Q) was estimated at Santa Rita supercritical runoff flumes (Smith 14	  

et al., 1981) using a pressure transducer (CS450, Campbell Scientific Inc.) and an in-situ linear 15	  

calibration to obtain 30-min resolution observations. Evapotranspiration (ET) was obtained at 30-16	  

min resolution using the EC technique that employs a three-dimensional sonic anemometer 17	  

(CSAT3, Campbell Scientific Inc.) and an open path infrared gas analyzer (LI-7500, LI-COR 18	  

Inc.) installed at 7-m height on each tower. Flux corrections for the EC measurements followed 19	  

Scott et al. (2004) and were verified using an energy balance closure approach reported in Table 20	  

2 for the study period. Energy balance closure at both sites is within the reported values across a 21	  

range of other locations where the ratio of Σ(λE +H)/Σ(Rn – G) has an average value of 0.8 22	  

(Wilson et al., 2002; Scott, 2010). To summarize these observations, Fig. 3 shows the spatially-23	  

averaged P, Q and ET (mm/hr), each aggregated to hourly resolution, at each study site during 24	  
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March 1, 2013 to September 30, 2014, along with seasonal precipitation amounts. While the 1	  

results compare favorably to previous measurements (Turnbull et al., 2013; Pierini et al., 2014; 2	  

Templeton et al., 2014), it should be noted that ET and Q data are assumed to represent the 3	  

spatially-averaged watershed conditions, despite the small mismatch between the watershed 4	  

boundaries and EC footprints (Fig. 2) and the summation of Q in the two watersheds at SRER.  5	  

Distributed soil moisture measurements were obtained using soil dielectric probes (Hydra 6	  

Probe, Stevens Water) organized as profiles (sensors placed at 5, 15 and 30 cm depths) in each 7	  

study site. Profiles were originally installed at multiple locations along transects to investigate 8	  

the different primary controls on soil moisture at each site: (1) at SRER, we installed four 9	  

transects of 5 profiles each located under different vegetation classes (mesquite, grass, prickly 10	  

pear and bare soil), and (2) at JER, we established three transects of 5 profiles each installed 11	  

along different hillslopes (north-, south- and west-facing), as shown in Fig. 1. Individual sensors 12	  

measure the impedance of an electric signal, as described in Campbell (1990), through a 40.3 13	  

cm3 soil volume (5.7 cm in length and 3.0 cm in diameter) to determine the volumetric soil 14	  

moisture (θ) in m3/m3 and soil temperature in ºC as 30-min averaged values. A ‘loam’ calibration 15	  

equation was used in the conversion to θ (Seyfried et al., 2005) and corrected using relations 16	  

established through gravimetric soil sampling at each study site (a power law relation at SRER 17	  

with R2 = 0.99 and a linear relation at JER with R2 = 0.97), following Pierini (2013). Given that 18	  

sensors were originally installed to conduct watershed studies, spatial averaging was performed 19	  

using site-specific weighting schemes accounting for the main controls on the soil moisture 20	  

distribution. Thus: (1) at SRER, we utilized the percentage area of each vegetation class (Table 21	  

1) and the associated sensor locations within each type (Pierini et al., 2014), and (2) at JER, we 22	  
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accounted for the aspect and elevation at the sensor locations and used these to extrapolate to 1	  

other locations with similar characteristics based on the 1-m DEM (Templeton et al., 2014).  2	  

 3	  
2.3. Cosmic-ray Neutron Sensing Method for Soil Moisture Estimation 4	  

The CRNS method relates soil moisture to the density of fast or moderated neutrons 5	  

(Zreda et al., 2008) measured above the soil surface. A cosmic-ray neutron sensor (CRS-1000/B, 6	  

Hydroinnova LLC) was installed in each watershed in January 2013 to record neutron counts at 7	  

hourly intervals. We selected the study period (March 1, 2013 to September 30, 2014) to 8	  

coincide with the availability of data from the distributed sensor networks. While the theory of 9	  

using neutrons for soil moisture measurements has a long history (e.g., Gardner and Kirkham, 10	  

1952), recent developments in the measurement of neutrons generated from cosmic rays has 11	  

increased the horizontal scale, reduced the need for manual sampling, and led to a non-invasive 12	  

approach. Zreda et al. (2008) and Desilets and Zreda (2013) describe the horizontal scale as 13	  

having a radius of ~300 m at sea level and a vertical aggregation scale ranging from 12 to 76 cm 14	  

depending on soil wetness, while the work of Köhli et al. (2015) found a smaller horizontal scale 15	  

with a radius of ~230 m at sea level. Since the travel speed of fast neutrons is >10 km/s, neutron 16	  

mixing occurs almost instantaneously in the air above the soil surface (Glasstone and Edlund, 17	  

1952), providing a well-mixed region that can be sampled with a single detector. 18	  

Using a particle transport model, Desilets et al. (2010) found a theoretical relationship 19	  

between the neutron count rate at a detector and soil moisture for homogeneous SiO2 sand: 20	  

€ 

θ N( ) =
0.0808
N
No

# 

$ 
% 

& 

' 
( − 0.372

− 0.115   ,  (1)  21	  

where θ (m3/m3) is volumetric soil moisture, N is the neutron count rate (counts/hr) normalized 22	  

to the atmospheric pressure and solar activity level, and No (counts/hr) is the count rate over a 23	  
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dry soil under the same reference conditions. The corrections applied to the neutron count rate 1	  

are detailed in Desilets and Zreda (2003) and Zreda et al. (2012) and are applied automatically in 2	  

the COSMOS website (http://cosmos.hwr.arizona.edu/). Additionally, since neutron counts are 3	  

affected by all sources of hydrogen in the support volume, we apply a correction (CWV) for 4	  

atmospheric water vapor that was derived by Rosolem et al. (2013) as: 5	  

€ 

CWV =1+ 0.0054 ρv
o − ρv

ref( )  ,   (2)  6	  

where ρv
o (g/m3) and ρv

ref (g/m3) are absolute water vapors at current and reference conditions. 7	  

To estimate No, we performed a manual soil sampling at 18 locations within the CRNS footprint 8	  

(sampled every 60 degrees at radial distances of 25, 75 and 200 m from the detector) at 6 depths 9	  

(0-5, 5-10, 10-15, 15-20, 20-25, 25-30 cm) for a total of 108 samples per site. Gravimetric soil 10	  

moisture measurements were made following oven drying at 105 ºC for 48 hrs (Dane and Topp, 11	  

2002) and converted to volumetric soil moisture using the soil bulk density (1.54 ± 0.18 g/cm3 at 12	  

SRER and 1.3 ± 0.15 g/cm3 at JER). The spatially-averaged volumetric soil moisture was related 13	  

to the average neutron count obtained for the same time period (6-hr average) resulting in No = 14	  

3973 at SRER and No = 3944 at JER, considered to be in line with the expected amounts given 15	  

the elevations of both sites. Table 3 compares the gravimetric measurements and the CRNS soil 16	  

moisture estimates during the calibration dates and provides further details on the soil properties 17	  

at the two sites. We applied a 12-hr boxcar filter to the measured count rates to remove the 18	  

statistical noise associated with the measurement method (Zreda et al., 2012). On days where soil 19	  

moisture changed by more than 0.06 m3/m3 due to rainfall, the boxcar filter was not applied. We 20	  

note that additional terms to the calibration accounting for variations in lattice water, soil organic 21	  

carbon and vegetation have been proposed (Zreda et al., 2012; Bogena et al., 2013; McJannet et 22	  

al., 2014; Coopersmith et al. 2014). However, given the relatively small amount of biomass (~2.5 23	  
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kg/m2 at SRER, Huang et al., 2007; and ~0.5 kg/m2 at JER, Huenneke et al., 2001), low soil 1	  

organic carbon (4.2 mg C/g soil at SRER; and 2.7 mg C/g soil at JER, Throop et al., 2011), and 2	  

low clay percent (5.2% at SRER; and 4.9% at JER, Anderson, 2013), and thus low lattice water 3	  

amounts (Greacen, 1981), we have neglected these terms in the analysis. In addition, since a 4	  

local calibration was performed, lattice water, biomass, and soil organic carbon are implicitly 5	  

accounted for in the calculation of volumetric soil moisture from the calibration relation. 6	  

Fig. 2 presents the horizontal aggregation scale of the CRNS method in comparison to the 7	  

watershed boundaries and to the EC footprints obtained for summer 2013 (Anderson, 2013). 8	  

Since both the CRNS and EC footprints have horizontally-decaying contributions, we limited the 9	  

size of the analysis region to the 50% contribution or source area to enhance the overlap with the 10	  

watershed boundaries and sensor networks. The footprints for both the CRNS method and the 11	  

EC method vary considerably (Anderson, 2013; Köhli et al., 2015), with temporal changes 12	  

occurring in the amount of overlap with the watersheds and between each other. Nevertheless, 13	  

the vegetation distributions sampled in the CRNS, EC, and watershed areas (Fig. 2) are nearly 14	  

the same (Vivoni et al., 2014), and the soils have low spatial variability (Anderson, 2013; Table 15	  

3), such that CRNS and EC measurements are considered representative of the watershed 16	  

conditions. In addition to the changing horizontal scale, the CRNS method measures a time-17	  

varying vertical scale that depends on the soil water content. Franz et al. (2012b) used a particle 18	  

transport model to determine that the CRNS measurement depth, z*, varied with soil moisture as: 19	  

 

€ 

z * (θ ) =
5.8

ρbτ +θ + 0.0829
  ,   (3)  20	  

where ρb is bulk density of the soil (Table 3) and τ is the weight fraction of lattice water in the 21	  

mineral grains and bound water. Lattice water must be considered here since a local calibration 22	  

of (3) is not possible. As a result, lattice water content was established at 0.02 g/g at each site 23	  
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given the weathered soils and the measurements from Franz et al. (2012b). To account for the 1	  

temporal variation of z*, the sensor profiles representing different soil layers (0-10 cm, 10-20 2	  

cm, and 20-40 cm in depth) were weighted based on z* at each hourly time step according to: 3	  

€ 

wt(z) = a 1−
z
z*
# 

$ 
% 

& 

' 
( 
b# 

$ 
% 

& 

' 
(   for 0 ≤ wt ≤ z*  , (4) 4	  

where wt(z) is the weight at depth z, a is a constant defined to integrate the profile to unity (a = 5	  

1/(z* - {z*b+1/[z*b(b + 1)]}), and b controls the shape of the weighting function. For simplicity, 6	  

we assumed a value of b = 1 leading to a linear relationship (Franz et al., 2012b).  7	  

 8	  
3. Methods 9	  

3.1. Comparison of CRNS to Distributed Network of Soil Moisture Sensors 10	  

The CRNS method was first validated against the distributed network of soil moisture 11	  

sensors. As done in previous studies, we compared hourly soil moisture observations obtained 12	  

from the CRNS method (θCRNS) to estimates from the distributed sensor network (θSN) that have 13	  

been averaged in space (i.e., based on vegetation type at SRER and elevation/aspect location at 14	  

JER) and depth-weighted according to the time-varying CRNS measurement depth (z*). We used 15	  

several metrics to quantitatively assess the comparisons, including Root Mean Square Error 16	  

(RMSE), Correlation Coefficient (CC), Bias (B) and Standard Error of Estimates (SEE). We 17	  

performed an additional test of the CRNS technique by comparing relations between the mean 18	  

soil moisture (<θ>), obtained from either θCRNS or θSN, and the spatial standard deviation (σ) of 19	  

soil moisture measured in the distributed sensor network. This relation has been studied 20	  

previously with the goal of evaluating the role of heterogeneities related to vegetation, terrain 21	  

position and soil properties (Famiglietti et al., 1999; Lawrence and Hornberger, 2007; Fernández 22	  
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and Ceballos, 2003; Vivoni et al., 2008b; Mascaro et al., 2011; Qu et al., 2015). Based on 1	  

Famiglietti et al. (2008), we fitted an empirical function to the observations at each site: 2	  

€ 

σ = k1 θ e−k2 θ        (5) 3	  

where k1 and k2 are regression parameters, and compared these to prior studies in the region (e.g., 4	  

Vivoni et al., 2008b; Mascaro and Vivoni, 2012; Stillman et al., 2014).  5	  

 6	  
3.2. CRNS Water Balance Analyses Methods  7	  

In small watersheds of comparable size to the CRNS measurement footprint, the water 8	  

balance can be expressed as: 9	  

€ 

z * Δθ
Δt

= P − ET −Q − L   ,    (6) 10	  

where Δθ is the change in volumetric soil moisture over the time interval Δt, P is precipitation, 11	  

ET is evapotranspiration, Q is streamflow, and L is leakage or deep percolation, with all of the 12	  

terms expressed as spatially-averaged quantities and valid over the effective soil measurement 13	  

depth (z*). The water balance was applied to validate the accuracy of the CRNS observations 14	  

using measurements of the spatially-averaged fluxes (P, ET and Q) for a set of storm events. For 15	  

each event, we computed the change in soil moisture measured by the CRNS, ΔθCRNS, and the 16	  

change calculated from the water balance, ΔθWB. In both cases, changes were computed as the 17	  

difference between the pre-storm soil moisture and the peak amount due to a rainfall event. For 18	  

the application of (6), the soil measurement depth z* was calculated as the average value over the 19	  

duration of the soil moisture response to each individual storm. Note that, during a storm, ET is 20	  

very low and the use of z* in (6) instead of the plant rooting depth is justified. In addition, since 21	  

this comparison is performed over a short time interval during the rising limb of the soil moisture 22	  

response, we assumed no leakage (i.e., L = 0). To test the validity of this hypothesis, we analyzed 23	  
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the soil moisture records measured at the EC towers, where sensors were installed to measure the 1	  

profile up to 1 m (i.e., a depth larger than z*). We found that the percolation beyond a depth of 2	  

~40 cm is infrequent at both sites during summer monsoon storms, thus sustaining our 3	  

assumption. However, percolation can occur on a time scale of several days during winter 4	  

precipitation (e.g., Franz et al., 2012b; Templeton et al., 2014; Pierini et al., 2014). Although 5	  

there are large amounts of bare soil in the watersheds, shrub and tree roots have been shown to 6	  

extend laterally for 10 m or more (Heitschmidt et al., 1988), such that most of contributing area 7	  

will be under the influence of both bare soil evaporation and plant transpiration. 8	  

Once validated against the distributed sensors and the application of the water balance, 9	  

the CRNS estimates were subsequently used to determine the daily spatially-averaged fluxes into 10	  

and out from the measurement depth (z*) as proposed by Franz et al. (2012b): 11	  

fCRNS (t) = θCRNS,t −θCRNS,t−1( )min(z*t, z*t−1) /Δt .  (7) 12	  

In (7), fCRNS is the daily flux (mm/day), Δt is the time step (1 day), and min(z*t, z*t-1) represents 13	  

the minimum daily-averaged measurement depth between the two days being compared. Positive 14	  

values of fCRNS indicate an increase in soil moisture and, thus, represent net infiltration (fCRNS = I) 15	  

into the measurement depth, usually occurring after a rainfall event. As a result, assuming 16	  

negligible plant interception, daily P data can be used to estimate Q as P – I, which in turn can be 17	  

compared to the runoff measurements in the watersheds. On the other hand, negative values of 18	  

fCRNS are equal to the net outflow (fCRNS = O), which can occur either as evapotranspiration or 19	  

leakage. Using the EC method to obtain daily ET, L = O – ET can be determined as a measure of 20	  

exchanges between the soil layers above and below z*: L is positive when there is drainage to 21	  

deeper soil layers and negative when deeper water is being drawn to support plant transpiration.  22	  

 23	  
 24	  
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3.3. Relation between Evapotranspiration and Soil Moisture at Commensurate Scale 1	  

Soil moisture at single locations is typically linked to ET in hydrologic models (e.g., 2	  

Chen et al., 1996; Ivanov et al., 2004) and empirical studies (e.g., Small and Kurc, 2003; Vivoni 3	  

et al., 2008a) using relations such as ET = f(θ). For example, a commonly used approach is based 4	  

on a piecewise linear relation between daily ET and θ (Rodríguez-Iturbe and Porporato, 2004): 5	  

€ 

ET θ( ) =

0 0 < θ ≤ θh

Ew
θ −θh

θw −θh

θh < θ ≤ θw

Ew + ETmax − Ew( ) θ −θh

θ * −θh

θw < θ ≤ θ *

ETmax θ* < θ ≤ φ

& 

' 

( 
( 
( 

) 

( 
( 
( 

 ,  (8) 6	  

where Ew is soil evaporation, ETmax is maximum evapotranspiration, θh, θw, and θ* are the 7	  

hygroscopic, wilting and plant stress soil moisture thresholds, and φ is the soil porosity. Vivoni 8	  

et al. (2008a) applied (8) to observations of ET from the EC method and θ at single locations to 9	  

derive the relation parameters using a nonlinear optimization algorithm (Gill et al., 1981). We 10	  

evaluate this approach using the spatially-averaged soil moisture estimates (θCRNS and θSN) whose 11	  

spatial scale is more commensurate with the ET measurements than single measurement sites.  12	  

 13	  
4. Results and Discussion 14	  

4.1. Comparison of CRNS Method to Distributed Sensor Network  15	  

Fig. 4 presents a comparison of the spatially-averaged, hourly soil moisture obtained 16	  

from the CRNS method (θCRNS) and the distributed sensor network (θSN), as well as the time-17	  

varying measurement depth (z*) of CRNS. Relative to the long-term summer precipitation 18	  

(Table 1), the study period had below average (188 and 153 mm in 2013 and 2014) and 19	  

significantly above average (246 and 247 mm) rainfall at SRER and JER, respectively. The fall-20	  

winter period in the record had below average precipitation (99 mm) at SRER and significantly 21	  



16 
	  

below average amounts (21 mm) at JER. Overall, the spring periods were dry, consistent with the 1	  

long-term averages. In response, the temporal variability of soil moisture clearly shows the 2	  

seasonal conditions at the two sites, with relatively wetter conditions during the summer 3	  

monsoons. Seasonally-averaged θCRNS compares favorably with seasonally-averaged θSN (Fig. 4), 4	  

with both estimates showing relatively large differences between wetter summer conditions 5	  

(0.065 and 0.085 m3/m3 at SRER and JER) and drier spring values (0.028 and 0.021 m3/m3 at 6	  

SRER and JER, respectively). As shown in prior studies (e.g., Zreda et al., 2008; Franz et al., 7	  

2012b), the CRNS method tracks very well the sensor observations. Nevertheless, there is an 8	  

indication that θCRNS has a tendency to dry less quickly during some rainfall events (i.e., 9	  

overestimate soil moisture during recession limbs), possibly due to landscape features such as 10	  

nearby channels (Fig. 1) and their associated zones of soil water convergence that remain wetter 11	  

than areas measured by the distributed sensor network. Overall, however, there is an excellent 12	  

match between θCRNS and θSN in terms of capturing the occurrence and magnitude of soil 13	  

moisture peaks across the different seasons, thus reducing some issues noted by Franz et al. 14	  

(2012b) with respect to a purported oversensitivity of θCRNS for small rainfall events (<5 mm). 15	  

We attribute this improvement to the use of a 5 cm sensor in each profile that tracks important 16	  

soil moisture dynamics occurring in the shallow surface layer within semiarid ecosystems.  17	  

To complement this, Fig. 5 compares θCRNS and θSN as a scatterplot along with the sample 18	  

size (N) and the Standard Error of Estimates (SEE) which quantify the deviations from the 1:1 19	  

line. Table 4 provides the full set of statistical metrics for the comparison of θCRNS versus θSN at 20	  

the two study sites. The correspondence between both methods is very good, with low RMSE 21	  

and SEE, a high CC, and a Bias close to 1. These values are comparable to previous validation 22	  

efforts where the RMSE was found to be 0.011 m3/m3 (Franz et al., 2012b) and less than 0.03 23	  
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m3/m3 (Bogena et al., 2013; Coopersmith et al., 2014; Zhu et al., 2015). The comparison across 1	  

the sites is also illustrative. Despite the more arid climate at JER (Table 1), the study period 2	  

consisted of higher precipitation (247 mm) and higher soil moisture values during the summer 3	  

(0.085 m3/m3), as compared to SRER (170 mm, 0.065 m3/m3), indicating a more active monsoon 4	  

in the Chihuahuan Desert. In contrast, the fall-winter period is generally drier at JER (21 mm, 5	  

0.039 m3/m3), as compared to SRER (99 mm, 0.057 m3/m3), where high P and low ET in the 6	  

winter promoted infiltration below the CRNS measurement depth, as observed at a 1-m sensor 7	  

profile at SRER (not shown). These two effects lead to a larger range of soil moisture at JER as 8	  

compared to SRER in Fig. 5. As a result, the CRNS method is found to be a reliable method for 9	  

measuring soil moisture in the observed range of values at SRER and JER.  10	  

To further test the CRNS method against the distributed sensor network, Fig. 6 depicts 11	  

the relations between the spatial variability of soil moisture (σ) and the spatially-averaged 12	  

conditions (<θ>). For illustration purposes, bin-averages and standard deviations are also 13	  

presented for each relation. Least squares regressions of (5) based on hourly observations were 14	  

applied to estimate k1 and k2 for the relations σ vs. θSN (k1 = 0.75 and k2 = 4.23 at SRER; k1 = 15	  

0.74 and k2 = 2.75 at JER) and these parameters were adopted to interpret the relations of σ vs. 16	  

θCRNS. The RMSE are very low and similar in both cases (RMSE = 0.007 and 0.008 m3/m3 at 17	  

SRER and 0.005 and 0.008 m3/m3 at JER for the relation with θSN and θCRNS, respectively), thus 18	  

confirming the good correspondence between the two methods. As shown in prior efforts in 19	  

semiarid ecosystems using sensor networks or aircraft observations (e.g., Fernández and 20	  

Ceballos, 2003; Vivoni et al., 2008b; Mascaro et al., 2011; Stillman et al., 2014), there is a 21	  

general increase in σ with <θ>, explained by the role played by local heterogeneities (e.g., 22	  

vegetation types, surface soil variations, topography) as well as the bounded nature of the soil 23	  



18 
	  

moisture process at the driest state. The similar relations derived in these different sites might be 1	  

broadly applicable to other semiarid ecosystems in the southwestern U.S.  2	  

 3	  
4.2. Validation of CRNS Method with Water Balance Estimates 4	  

 Fig. 7 presents the comparison of the spatially-averaged ΔθCRNS and ΔθWB as a scatterplot 5	  

for approximately 40 rainfall events with a total depth larger than 10 mm and durations ranging 6	  

from 0.5 to 31 hours (mean of 6 hours). The statistical metrics are presented in Table 4. The 7	  

correspondence between the methods is very good, with low RMSE and SEE, a high CC, and a 8	  

Bias close to 1, with a closer match at SRER. For example, the SEE at SRER (0.024 m3/m3) is 9	  

significantly less than the value at JER (0.095 m3/m3) and close to the SEE of the comparison of 10	  

θCRNS and θSN. This suggests that the three approaches (i.e., CRNS, sensor network, water 11	  

balance) are in agreement at the SRER. For the JER, the lower correspondence between ΔθCRNS 12	  

and ΔθWB is attributed to five large events where ΔθWB is above 0.2 m3/m3. Removing these 13	  

events lowers the SEE at JER to 0.020 m3/m3, in line with SRER and the comparison of θCRNS 14	  

and θSN at JER. A closer inspection of the soil moisture response at JER allows investigating the 15	  

physical reasons causing the different behavior of these five events. Fig. 8 shows the soil 16	  

moisture change (ΔθSN) at different sensor depths averaged for the selected large events and for 17	  

the remaining events, as well as the mean of CRNS measurement depths (z*) for each case. The 18	  

five large events exhibit high soil moisture changes at 30 cm depth (i.e., 0.08 m3/m3) below z* 19	  

(i.e., 17 cm), while other events have soil moisture changes near zero at 30 cm and are captured 20	  

well within z*. This indicates that infiltration fronts during the larger events penetrated beyond 21	  

z* and were not entirely captured by the CRNS method, leading to an underestimate of ΔθWB. For 22	  

these events, the assumption L =0 in equation (6) is not fully supported. In contrast, the better 23	  

correspondence at SRER suggests that infiltration fronts were contained within z*. This is 24	  
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plausible given the less rocky soil and flatter terrain at SRER as compared to JER (Anderson, 1	  

2013). At JER, soil water movement to deeper layers can be promoted by higher gravel contents 2	  

and the presence of calcium carbonate and undulated terrain which facilitate lateral water 3	  

transfer to channels with sandy bottoms (Templeton et al., 2014).  4	  

 5	  
4.3. Utility of CRNS for Investigating Hydrological Processes 6	  

Given the confidence gained with respect to the CRNS estimates, we utilized these 7	  

observations to quantify the water balance fluxes during storm and interstorm periods at the two 8	  

sites. Fig. 9 shows the cumulative fCRNS and the cumulative, spatially-averaged P and ET 9	  

measured by the distributed sensor network. An overall drying trend is present at SRER during 10	  

the study period (i.e., cumulative fCRNS becomes more negative), while JER exhibits a relatively 11	  

small change in cumulative fCRNS, both in response to the below average (SRER) and above 12	  

average (JER) precipitation. An important contrast at the sites is the overall water balance (Table 13	  

5), where higher P, lower ET, and lower Q at JER (measured ET/P = 0.54, Q/P = 0.01) implies 14	  

that more soil water is available for leakage to deeper soil layers. This is reflected in a large 15	  

positive difference between cumulative outflow (O = ET + L) and ET at JER (i.e., L > 0 from z*, 16	  

soil water movement to lower layers, as depicted in the soil water balance diagram). In contrast, 17	  

SRER exhibits a higher ET/P = 0.96 and Q/P = 0.14, such that negative differences occur 18	  

between O and ET (i.e., L < 0 into z*, movement from lower layers, as depicted in the soil water 19	  

balance diagram). This is particularly important during the summers when vegetation is active 20	  

and produces more ET than the outflow from the CRNS measurement depth, indicating that soil 21	  

water is obtained from deeper soil layers that are readily accessed by velvet mesquite roots (e.g., 22	  

Snyder and Williams, 2003; Scott et al., 2008; Potts et al., 2010). This is consistent with the 23	  
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sustained ET during interstorm periods in the summer season at SRER despite the low θCRNS, 1	  

while JER exhibits sharp declines in ET when θCRNS is reduced between storms.   2	  

Overall, the soil water balance from the CRNS method shows stark ecosystem 3	  

differences at the two sites during the study period. The mesquite savanna at SRER extracted 4	  

substantial amounts of water from deeper soil layers during the summer season such that losses 5	  

to runoff and the atmosphere are in excess of seasonal precipitation. Deeper soil water is 6	  

recharged beyond the CRNS measurement depth during winter periods, as observed by Scott et 7	  

al., 2000, and subsequently accessed by deep-rooted trees during the summer (Scott et al., 2008). 8	  

In contrast, the mixed shrubland at JER lost a substantial amount of precipitation to deeper soil 9	  

layers throughout the year, due to the low values of runoff and evapotranspiration, and the soil, 10	  

terrain and channel conditions promoting recharge (Templeton et al., 2014). Winter recharge is 11	  

fostered by the lack of ET from drought-deciduous plants that lose their leaves in the wintertime. 12	  

We hypothesize that deep percolation is likely occurring in the channels, since: (i) soil moisture 13	  

observations in the hillslopes (i.e., far from the channel) show a lack of deep percolation, (ii) the 14	  

runoff ratio decreases with the basin contributing area, indicating transmission losses along the 15	  

channel (Templeton et al., 2014), and (iii) one sensor profile installed in a channel at SRER 16	  

shows that the wetting front frequently reaches at least 30 cm depth. Furthermore, the fCRNS 17	  

approach provided estimates that can be compared to the watershed water balance since these are 18	  

at a similar spatial scale (Table 5). Estimates of outflow (O) from the measurement depth and 19	  

leakage (L) are higher when calculated with θSN, consistent with more rapid drying as compared 20	  

to the CRNS method. On the other hand, the CRNS method results in higher values of the runoff 21	  

ratio (Q/P) than observed in the distributed sensor network, in particular for JER. This is likely 22	  
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due to the daily scale of the CRNS analysis, which limits the suitability of the runoff estimate for 1	  

semiarid watersheds characterized by runoff responses lasting minutes to hours. 2	  

 3	  
4.4. Utility of CRNS for Improving ET Estimates 4	  

 Fig. 10 compares the relationships between the measured daily ET using the EC method 5	  

and the spatially-averaged soil moisture values (θSN and θCRNS) at the SRER and JER sites along 6	  

with the piecewise linear regressions estimated using (8) and a nonlinear optimization approach. 7	  

Following Vivoni et al. (2008a), regression parameters related to soil and vegetation conditions 8	  

are presented in Table 6. For illustration purposes, bin-averages and standard deviations are also 9	  

shown. Clearly, the piecewise linear relation is a suitable approach for capturing the ET-θ 10	  

observations, yielding a relatively low RMSE at the two sites. A lower RMSE for the relation 11	  

using θCRNS as compared to θSN at SRER is attributed to its ability to detect a wider range of dry 12	  

conditions and the improved match in the spatial scales of ET and θCRNS, in an analogous fashion 13	  

to the comparison between a single sensor and the distributed sensor network (Templeton et al., 14	  

2014). In addition, the CRNS method represents soil evaporation (Ew) in a more realistic way as 15	  

it discriminates differences in drier states, illustrated by the realistic gradual increase of bare soil 16	  

evaporation with increasing soil water (Fig. 10). For ET and θSN, the dry portions of the relations 17	  

have too steep of a slope and do not represent well how bare soil evaporation changes with soil 18	  

moisture. When comparing both sites through the ET-θ relation, the SRER has a larger Ew and 19	  

ETmax and lower θ*, as compared to JER, tested to be significantly different at the 95% 20	  

confidence level using a bootstrap approach. Together, these parameters indicate that SRER has 21	  

a higher overall ET, consistent with higher extractions from the CRNS measurement depth due to 22	  

the mesquite trees, extensive grass cover and higher soil evaporation.  23	  

 24	  
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5. Summary and Conclusions 1	  

In this study, we utilized distributed sensor networks to examine the cosmic-ray neutron 2	  

sensing soil moisture method at the small watershed scale in two semiarid ecosystems of the 3	  

southwestern U.S. To our knowledge, this is the first study to compare CRNS measurements to 4	  

two complementary approaches for obtaining spatially-averaged soil moisture at a commensurate 5	  

scale: (1) a distributed set of sensor profiles weighted in the horizontal and vertical scales within 6	  

each watershed, and (2) a watershed-averaged quantity obtained from closing the water balance. 7	  

We highlighted a few novel advantages of the CRNS method revealed through the comparisons, 8	  

including the ability to resolve the shallow soil moisture dynamics and to match the estimates 9	  

obtained from closing the water balance for most rainfall events. In the distributed sensor 10	  

comparisons, we found that the CRNS method overestimated soil moisture during the recession 11	  

limbs of rainfall events, possibly due to landscape features such as nearby channels remaining 12	  

wet. In the water balance comparisons, we identified that our assumption of no leakage beneath 13	  

z* was not met during large rainfall events and the CRNS method was not able to capture all of 14	  

the soil water present. We attribute this to rapid bypassing of the measurement depth due to soil 15	  

and terrain characteristics. Due to this observed bypass flow, we suggest that future studies using 16	  

the CRNS method include a few soil moisture sensor profiles below z* to detect leakage events. 17	  

The CRNS soil moisture estimates were used in combination with the various 18	  

measurement methods to explore the relative magnitudes of the water balance components at 19	  

each site given the different precipitation amounts during the study period. The drier than 20	  

average conditions in the mesquite savanna ecosystem at SRER lead to drier surface soils 21	  

incapable of supporting the measured evapotranspiration unless supplemented by plant water 22	  

uptake from deeper soil layers. In contrast, wetter than average summer periods in the mixed 23	  
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shrubland at JER had wet surface soils that promoted leakage into the deeper vadose zone which 1	  

was subsequently unavailable for runoff and evapotranspiration losses. Comparisons across 2	  

different seasons also suggested that carryover of soil water from winter leakage toward deeper 3	  

soil layers is consumed during the summer season by active plants. These novel inferences 4	  

within the two ecosystems relied heavily on the application of the CRNS method and its limited 5	  

measurement depth to discriminate between shallow and deeper vadose zone processes as well as 6	  

on the direct measurement of the water balance components, in particular evapotranspiration. It 7	  

is important to keep in mind, however, that the ability to resolve watershed-scale hydrological 8	  

processes, such as the interaction between shallow and deep soil layers attributed to plant water 9	  

uptake and leakage, depends to a large degree on the accuracy and representativeness of the 10	  

distributed sensor network measurements and how their horizontal and vertical scales overlap 11	  

with the CRNS measurement footprint. We expect these limitations to be especially critical in 12	  

semiarid ecosystems with high spatial heterogeneity induced by vegetation and bare soil patches.  13	  

The collocation of a distributed sensor network within the CRNS measurement footprint 14	  

also allowed us to examine important process-based relations that are often incorporated into 15	  

hydrologic models or remote sensing analyses (e.g., Famiglietti and Wood, 1994; Famiglietti et 16	  

al., 2008). The spatial variability of soil moisture is linked to the spatially-averaged conditions 17	  

through predictable relations that do not vary significantly across the study sites. For higher 18	  

mean soil moisture, we observed a nearly linear increase in spatial variability followed by an 19	  

asymptotic behavior attributed to the seasonally-wet conditions during the North American 20	  

monsoon. Based on these relations (k1 and k2), the spatial variability within a CRNS 21	  

measurement footprint can be approximated for other semiarid ecosystems in the region. In 22	  

addition, combining fixed and mobile CRNS methods can establish landscape scale (102 to 103 23	  
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km2) soil moisture monitoring networks at grid sizes (~1 km2) comparable to land surface 1	  

modeling (Franz et al., 2015). Similarly, intermediate scale soil moisture sensing can be linked 2	  

effectively to daily evapotranspiration and used to obtain soil and vegetation parameters (Ew, 3	  

ETmax, θh, θw, and θ*) tailored to each ecosystem. In term of the ET-θ relation, the CRNS method 4	  

has the potential to significantly improve land-atmosphere interaction studies through the 5	  

commensurate scale achieved to the EC technique.  6	  
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Figure Captions 1	  

Fig. 1: (a) Location of the study sites in Arizona and New Mexico. Watershed representations 2	  

and sensor locations at (b) SRER and (c) JER, shown at the same scale. 3	  

 4	  
Fig. 2: Vegetation classification for (a) SRER and (b) JER derived from aerial image analyses 5	  

along with sensor locations and the 50% contributing areas of the CRNS and EC footprints. 6	  

 7	  
Fig. 3: Hourly precipitation, streamflow and evapotranspiration at the (a) SRER and (b) JER 8	  

sites during the study period (March 2013 to September 2014). Gaps in ET data indicate periods 9	  

of EC tower malfunction due to equipment failures, data collection problems or vandalism. 10	  

Vertical dashed lines indicate the seasonal definitions and their corresponding total precipitation. 11	  

 12	  
Fig. 4: Comparison of the spatially-averaged, hourly soil moisture (m3/m3) from CRNS method 13	  

(θCRNS, black lines) and distributed sensor network (θSN, gray lines) at (a) SRER and (b) JER, 14	  

along with spatially-averaged, hourly precipitation during March 1, 2013 to September 30, 2014. 15	  

Vertical dashed lines indicate the seasonal definitions and their corresponding seasonally-16	  

averaged θCRNS and θSN in m3/m3. Also shown are the time-varying measurement depths (z*). 17	  

 18	  
Fig. 5: Scatterplots of the spatially-averaged, hourly soil moisture (m3/m3) from CRNS method 19	  

(θCRNS) and distributed sensor network (θSN) at (a) SRER and (b) JER. The SEE and the number 20	  

of hourly samples (N) are shown for each site. Bin averages and ±1 standard deviation are shown 21	  

(circles and error bars) for bin widths of 0.025 m3/m3. 22	  

 23	  
Fig. 6: Soil moisture spatial variability as a function of the spatially-averaged distributed sensor 24	  

network (θSN, top) and the CRNS method (θCRNS, bottom) for (a, c) SRER and (b, d) JER. Bin 25	  

averages and ±1 standard deviation are shown (circles and error bars) for bin widths of 0.015 26	  
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m3/m3 at SRER and 0.025 m3/m3 at JER. Regressions for the relations of σ  with <θ> are valid 1	  

for the entire dataset. 2	  

 3	  
Fig. 7: Scatterplots of the spatially-averaged change in soil moisture (m3/m3) derived from 4	  

CRNS method (ΔθCRNS) and the application of the water balance (ΔθWB) at (a) SRER and (b) 5	  

JER. The SEE and the number of event samples (N) are shown for each site. 6	  

 7	  
Fig. 8: Change in soil moisture (ΔθSN) at depths of 5, 15 and 30 cm at the JER for the five large 8	  

events (‘Selected Events’) and the remaining cases (‘Other Events’). Horizontal lines are the 9	  

time-averaged CRNS measurement depths averaged over Selected Events (black; standard 10	  

deviation of 3.8 cm) and Other Events (gray; standard deviation of 6.5 cm). 11	  

 12	  
Fig. 9: Comparison of cumulative fCRNS and measured water balance fluxes (P and ET) during 13	  

study period. CRNS estimates of infiltration (I), outflow (O) and leakage (L) are either depicted 14	  

as cumulative fluxes (O = ET + L) or as total amounts during the study period (I and L) as arrows 15	  

in the soil water balance box of depth z*. Shaded regions indicate the summer seasons (July-16	  

September). The horizontal line represents fCRNS = 0. 17	  

 18	  
Fig. 10: Evapotranspiration relation with the spatially-averaged distributed sensor network (θSN, 19	  

top) and the CRNS method (θCRNS, bottom) for (a, c) SRER and (b, d) JER. Bin averages and ±1 20	  

standard deviation are shown (circles and error bars) for bin widths of 0.015 m3/m3 at SRER and 21	  

0.025 m3/m3 at JER. Regressions for the relations of ET with <θ> are valid for the entire dataset. 22	  

23	  
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 1	  
 2	  

 3	  
 4	  
 5	  
 6	  
Fig. 1: (a) Location of the study sites in Arizona and New Mexico. Watershed representations 7	  
and sensor locations at (b) SRER and (c) JER, shown at the same scale. 8	  
 9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
(Schreiner-McGraw et al., 2015, Fig. 1) 16	  
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 1	  
 2	  
 3	  
 4	  
 5	  
Fig. 2: Vegetation classification for (a) SRER and (b) JER derived from aerial image analyses 6	  
along with sensor locations and the 50% contributing areas of the CRNS and EC footprints.  7	  
 8	  
 9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  
 17	  
(Schreiner-McGraw et al., 2015, Fig. 2) 18	  

 19	  
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 1	  
 2	  
 3	  
 4	  
Fig. 3: Hourly precipitation, streamflow and evapotranspiration at the (a) SRER and (b) JER 5	  
sites during the study period (March 2013 to September 2014). Gaps in ET data indicate periods 6	  
of EC tower malfunction due to equipment failures, data collection problems or vandalism. 7	  
Vertical dashed lines indicate the seasonal definitions and their corresponding total precipitation. 8	  
 9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  
 17	  
 18	  
 19	  
 20	  
 21	  
 22	  
 23	  
(Schreiner-McGraw et al., 2015, Fig. 3) 24	  
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 1	  
 2	  

 3	  
 4	  
Fig. 4: Comparison of the spatially-averaged, hourly soil moisture (m3/m3) from CRNS method 5	  
(θCRNS, black lines) and distributed sensor network (θSN, gray lines) at (a) SRER and (b) JER, 6	  
along with spatially-averaged, hourly precipitation during March 1, 2013 to September 30, 2014. 7	  
Vertical dashed lines indicate the seasonal definitions and their corresponding seasonally-8	  
averaged θCRNS and θSN in m3/m3. Also shown are the time-varying measurement depths (z*). 9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  
 17	  
 18	  
(Schreiner-McGraw et al., 2015, Fig. 4) 19	  

20	  
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 1	  
 2	  
 3	  
 4	  
 5	  
Fig. 5: Scatterplots of the spatially-averaged, hourly soil moisture (m3/m3) from CRNS method 6	  
(θCRNS) and distributed sensor network (θSN) at (a) SRER and (b) JER. The SEE and the number 7	  
of hourly samples (N) are shown for each site. Bin averages and ±1 standard deviation are shown 8	  
(circles and error bars) for bin widths of 0.025 m3/m3. 9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  

 17	  
 18	  

(Schreiner-McGraw et al., 2015, Fig. 5)  19	  
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 1	  
 2	  
 3	  
 4	  
Fig. 6: Soil moisture spatial variability as a function of the spatially-averaged distributed sensor 5	  
network (θSN, top) and the CRNS method (θCRNS, bottom) for (a, c) SRER and (b, d) JER. Bin 6	  
averages and ±1 standard deviation are shown (circles and error bars) for bin widths of 0.015 7	  
m3/m3 at SRER and 0.025 m3/m3 at JER. Regressions for the relations of σ with <θ> are valid for 8	  
the entire dataset.  9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  
 17	  
 18	  
 19	  
 20	  
 21	  
 22	  
(Schreiner-McGraw et al., 2015, Fig. 6) 23	  

24	  
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 1	  
 2	  
 3	  
 4	  
 5	  
Fig. 7: Scatterplots of the spatially-averaged change in soil moisture (m3/m3) derived from 6	  
CRNS method (ΔθCRNS) and the application of the water balance (ΔθWB) at (a) SRER and (b) 7	  
JER. The SEE and the number of event samples (N) are shown for each site. 8	  
 9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  
 17	  
 18	  
 (Schreiner-McGraw et al., 2015, Fig. 7) 19	  

20	  
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 1	  
 2	  
 3	  
 4	  
 5	  
Fig. 8: Change in soil moisture (ΔθSN) at depths of 5, 15 and 30 cm at the JER for the five large 6	  
events (‘Selected Events’) and the remaining cases (‘Other Events’). Horizontal lines are the 7	  
time-averaged CRNS measurement depths averaged over Selected Events (black, standard 8	  
deviation of 3.8 cm) and Other Events (gray, standard deviation of 6.5 cm). 9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  
 17	  
 18	  
 19	  
 20	  
 21	  
 22	  
 23	  
 24	  
 25	  
 26	  
 27	  
 28	  
 29	  
 30	  
 31	  
 32	  
(Schreiner-McGraw et al., 2015, Fig. 8) 33	  

34	  
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 1	  
 2	  
 3	  
 4	  
 5	  
Fig. 9: Comparison of cumulative fCRNS and measured water balance fluxes (P and ET) during 6	  
study period. CRNS estimates of infiltration (I), outflow (O) and leakage (L) are either depicted 7	  
as cumulative fluxes (O = ET + L) or as total amounts during the study period (I and L) as arrows 8	  
in the soil water balance box of depth z*. Shaded regions indicate the summer seasons (July-9	  
September). The horizontal line represents fCRNS = 0. 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  
 17	  
 18	  
 19	  
 20	  
 21	  
 22	  
 23	  
(Schreiner-McGraw et al., 2015, Fig. 9) 24	  

25	  
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 1	  
 2	  
 3	  
 4	  
 5	  
Fig. 10: Evapotranspiration relation with the spatially-averaged distributed sensor network (θSN, 6	  
top) and the CRNS method (θCRNS, bottom) for (a, c) SRER and (b, d) JER. Bin averages and ±1 7	  
standard deviation are shown (circles and error bars) for bin widths of 0.015 m3/m3 at SRER and 8	  
0.025 m3/m3 at JER. Regressions for the relations of ET with <θ> are valid for the entire dataset. 9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  
 17	  
 18	  
 19	  
 20	  
 21	  
(Schreiner-McGraw et al., 2015, Fig. 10) 22	  
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Table Captions 1	  

Table 1: Watershed and precipitation characteristics at the SRER and JER sites. Precipitation 2	  

values are long-term averages (1923-2014 at SRER and 1915-2006 at JER) for annual and 3	  

seasonal quantities, defined as fall (October-December), winter (January-March), spring (April-4	  

June) and summer (July-September). 5	  

 6	  
Table 2: Energy balance closure at SRER and JER using 30-min net radiation (Rn), ground (G), 7	  

latent (λE) and sensible (H) heat fluxes. The parameters m and b are the slope and intercept in the 8	  

relation λE + H = m(Rn – G) + b, while the ratio of the sum of (λE + H) to the sum of (Rn – G) is 9	  

a measure of how much available energy is accounted for in the turbulent fluxes. 10	  

 11	  
Table 3: Soil properties at SRER and JER. Soil moisture values correspond to conditions during 12	  

the CRNS calibration dates (February 13, 2013 at SRER and February 10, 2013 at JER) for the 13	  

gravimetric sampling at 18 locations with six depths (θG), CRNS (θCRNS) and the sensor network 14	  

(θSN), each expressed as volumetric soil moisture using the soil bulk density (ρb) and soil 15	  

porosity (φ) of the samples. Mean values of θG, ρb and φ are shown along with the ± 1 standard 16	  

deviations. Particle size distributions were obtained from soil auger sampling of the top 45 cm at 17	  

20 locations at each site (Anderson, 2013). Mean values of percent clay, silt, sand and gravel are 18	  

shown along with the ± 1 standard deviations.  19	  

 20	  
Table 4: Statistical comparisons of CRNS method with distributed sensor network and water 21	  

balance estimates based on the Standard Error of Estimates (SEE), Root Mean Square Error 22	  

(RMSE), Bias (B), and Correlation Coefficient (CC), described in Vivoni et al. (2008b). Values 23	  

in parentheses for JER indicate metrics when large rainfall events are excluded. 24	  

 25	  



46 
	  

Table 5: Total water flux estimates from daily CRNS soil water balance method (fCRNS) and daily 1	  

sensor measurements during study period at the SRER and JER sites. P is from rain gauge 2	  

measurements in both cases. L in CRNS is computed as O – ET where ET is from EC method, 3	  

while L in sensor estimates is calculated from solving the water balance. 4	  

 5	  
Table 6: Regression parameters for the relations of evapotranspiration and soil moisture (θSN and 6	  

θCRNS) at the SRER and JER sites along with the RMSE of the regressions. θh = 0 in all cases.7	  
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 1	  
Characteristic (unit) Value SRER JER 
    
Watershed area (m2)   12535 46734 
    

mean 1166.6 1458.3 
max 1171.1 1467.5 Elevation (m) 
min 1160.9 1450.5 

    
mean  3.2 3.9 
max 19.2 45 Slope (degree) 
min 2.1 0 

    
Drainage density (1/m)   0.04 0.03 
    

shrubs 32% 27% 
cacti 6% 1% 

grasses 37% 6% Major vegetation type (%) 

bare soil 25% 66% 
    
 annual 364 251 
 fall 72 54 
Precipitation (mm) winter 69 31 
 spring 26 32 
 summer 197 134 
    

 2	  
 3	  
 4	  
 5	  
Table 1: Watershed and precipitation characteristics at the SRER and JER sites. Precipitation 6	  
values are long-term averages (1923-2014 at SRER and 1915-2006 at JER) for annual and 7	  
seasonal quantities, defined as fall (October-December), winter (January-March), spring (April-8	  
June) and summer (July-September). 9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  
 17	  
 18	  
(Schreiner-McGraw et al., 2015, Table 1) 19	  

20	  
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 1	  
λE + H = m(Rn - G)+ b 

Site m b 
 

    
SRER 0.72 17 0.85 
JER 0.72 9.9 0.82 

    
 2	  
 3	  
 4	  
 5	  
Table 2: Energy balance closure at SRER and JER using 30-min net radiation (Rn), ground (G), 6	  
latent (λE) and sensible (H) heat fluxes. The parameters m and b are the slope and intercept in the 7	  
relation λE + H = m(Rn – G) + b, while the ratio of the sum of (λE + H) to the sum of (Rn – G) is 8	  
a measure of how much available energy is accounted for in the turbulent fluxes.  9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  
 17	  
 18	  
 19	  
 20	  
 21	  
 22	  
 23	  
 24	  
 25	  
 26	  
 27	  
 28	  
 29	  
 30	  
 31	  
 32	  
 33	  
 34	  
 35	  
 36	  
 37	  
 38	  
(Schreiner-McGraw et al., 2015, Table 2) 39	  
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Property (unit) SRER JER 
   
Soil Moisture Calibration   
θG (m3/m3) 0.114 ± 0.023 0.056 ± 0.013 
θCRNS (m3/m3) 0.114 0.056 
θSN (m3/m3) 0.105 0.016 
ρb (g/cm3) 1.54 ± 0.18 1.30 ± 0.15 
φ (m3/m3) 0.42 ± 0.07 0.51 ± 0.06 

           
Particle Size Distribution   

Clay (%) 5.2 ± 1.3 % 4.9 ± 1.1 % 
Silt (%) 13.0 ± 2.2 % 28.5 ± 5.0 % 
Sand (%) 72.5 ± 5.7 % 34.9 ± 8.3 % 
Gravel (%) 9.3 ± 5.1 % 34.7 ±	  11.5 % 

   
 1	  
 2	  
 3	  
 4	  
 5	  
Table 3: Soil properties at SRER and JER. Soil moisture values correspond to conditions during 6	  
the CRNS calibration dates (February 13, 2013 at SRER and February 10, 2013 at JER) for the 7	  
gravimetric sampling at 18 locations with six depths (θG), CRNS (θCRNS) and the sensor network 8	  
(θSN), each expressed as volumetric soil moisture using the soil bulk density (ρb) and soil 9	  
porosity (φ) of the samples. Mean values of θG, ρb and φ are shown along with the ± 1 standard 10	  
deviations. Particle size distributions were obtained from soil auger sampling of the top 45 cm at 11	  
20 locations at each site (Anderson, 2013). Mean values of percent clay, silt, sand and gravel are 12	  
shown along with the ± 1 standard deviations.  13	  
 14	  
 15	  
 16	  
 17	  
 18	  
 19	  
 20	  
 21	  
 22	  
 23	  
 24	  
 25	  
 26	  
 27	  
 28	  
 29	  
(Schreiner-McGraw et al., 2015, Table 3) 30	  
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 1	  
Metric (unit) SRER JER 

   
θCRNS versus θSN   

RMSE (m3/m3) 0.009 0.013 
CC 0.949 0.946 
B  1.117 1.019 
SEE (m3/m3) 0.012 0.013 

   
ΔθCRNS versus ΔθWB   

RMSE (m3/m3) 0.001 0.082 (0.019) 
CC 0.949 0.940 (0.945) 
B  0.936 0.543 (0.903) 
SEE (m3/m3) 0.024 0.095 (0.020) 

   
 2	  
 3	  
 4	  
 5	  
Table 4: Statistical comparisons of CRNS method with distributed sensor network and water 6	  
balance estimates based on the Standard Error of Estimates (SEE), Root Mean Square Error 7	  
(RMSE), Bias (B), and Correlation Coefficient (CC), described in Vivoni et al. (2008b). Values 8	  
in parentheses for JER indicate metrics when large rainfall events are excluded. 9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  
 17	  
 18	  
 19	  
 20	  
 21	  
 22	  
 23	  
 24	  
 25	  
 26	  
 27	  
 28	  
 29	  
 30	  
(Schreiner-McGraw et al., 2015, Table 4)31	  
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 1	  
Water Flux SRER JER 

   
CRNS Estimates   

Precipitation (P, mm) 464 533 
Infiltration (I, mm) 357 477 
Outflow (O, mm)  391 482 
Leakage (L, mm) -56 193 
Outflow ratio (O/P) 0.84 0.90 
Runoff ratio (Q/P) 0.23 0.11 

   
Sensor Measurements   

Precipitation (P, mm) 464 533 
Storage change (Δθ, mm) -13 26 
Outflow (O, mm)  437 506 
Leakage (L, mm) -10 217 
Evapotranspiration (ET, mm)  447 289 
Evaporation ratio (ET/P) 0.96 0.54 
Streamflow (Q, mm) 64 5 
Runoff ratio (Q/P) 0.14 0.01 

   
 2	  
 3	  
 4	  
 5	  
Table 5: Total water flux estimates from daily CRNS soil water balance method (fCRNS) and daily 6	  
sensor measurements during study period at the SRER and JER sites. P is from rain gauge 7	  
measurements in both cases. L in CRNS is computed as O – ET where ET is from EC method, 8	  
while L in sensor estimates is calculated from solving the water balance. 9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  
 17	  
 18	  
 19	  
 20	  
 21	  
 22	  
 23	  
(Schreiner-McGraw et al., 2015, Table 5) 24	  
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Site Relation ETmax 
(mm/day) 

 Ew 
(mm/day) 

θw 
(m3/m3) 

θ* 
(m3/m3) 

RMSE 
(mm/day) 

       

ET - θSN 2.61 0.41 0.03 0.07 1.15 
SRER 

ET - θCRNS 2.40 0.36 0.02 0.08 0.55 
ET - θSN 2.16 0.18 0.03 0.12 0.34 

JER 
ET - θCRNS 2.17 0.21 0.03 0.13 0.34 

       
 1	  
 2	  
 3	  
 4	  
 5	  
Table 6: Regression parameters for the relations of evapotranspiration and soil moisture (θSN and 6	  
θCRNS) at the SRER and JER sites along with the RMSE of the regressions. θh = 0 in all cases.  7	  
 8	  
 9	  
 10	  
 11	  
 12	  
 13	  
 14	  
 15	  
 16	  
 17	  
 18	  
 19	  
 20	  
 21	  
 22	  
 23	  
 24	  
 25	  
 26	  
 27	  
 28	  
 29	  
 30	  
 31	  
 32	  
 33	  
 34	  
 35	  
(Schreiner-McGraw et al., 2015, Table 6) 36	  


