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Abstract 10 

Groundwater drought is a spatially and temporally variable phenomenon. Here we describe 11 

the development of a method to regionally analyse and quantify groundwater drought. The 12 

method uses a cluster analysis technique (non-hierarchical k-means) to classify standardised 13 

groundwater level hydrographs (the Standardised Groundwater level Index, SGI) prior to 14 

analysis of their groundwater drought characteristics, and has been tested using 74 15 

groundwater level time series from Lincolnshire, UK. Using the test data set, six clusters of 16 

hydrographs have been identified. For each cluster a correlation can be established between 17 

the mean SGI and a mean Standardised Precipitation Index (SPI), where each cluster is 18 

associated with a different SPI accumulation period. Based on a comparison of SPI time 19 

series for each cluster and for the study area as a whole, it is inferred that the clusters are 20 

independent of the driving meteorology and are primarily a function of catchment and 21 

hydrogeological factors. This inference is supported by the observation that the majority of 22 

sites in each cluster are associated with one of the principal aquifers in the study region. The 23 

groundwater drought characteristics of the three largest clusters, that constitute ~80% of the 24 

sites, have been analyzed. There are differences in the distributions of drought duration, 25 

magnitude and intensity of groundwater drought events between the three clusters as a 26 

function of autocorrelation of the mean SGI time series for each cluster. In addition, there are 27 

differences between the clusters in their response to three major multi-annual droughts that 28 

occurred during the analysis period. For example, sites in the cluster with the longest SGI 29 

autocorrelation experience the greatest magnitude droughts and are the slowest to recover 30 



from major droughts, with groundwater drought conditions typically persisting at least six 31 

months longer than at sites in the other clusters. Membership of the clusters is shown to be 32 

related to unsaturated zone thickness at individual boreholes. This last observation 33 

emphasises the importance of catchment and aquifer characteristics as (non-trivial) controls 34 

on groundwater drought hydrographs. The method of analysis is flexible and can be adapted 35 

to a wide range of hydrogeological settings while enabling a consistent approach to the 36 

quantification of regional differences in response of groundwater to meteorological drought.    37 

 38 

1. Introduction 39 

Groundwater drought is a type of hydrological drought characterised by sustained low 40 

groundwater levels, reduced base flow and reduced flows to springs and groundwater-fed 41 

rivers and wetlands (Van Lanen and Peters, 2000; Tallaksen and Van Lanen, 2004; Mishra 42 

and Singh, 2010; Van Loon, 2015). Like other hydrological aspects of drought, groundwater 43 

droughts are not a simple function of meteorological drivers. The impact of droughts on 44 

regional groundwater resources can vary in space and time. This is because the response of 45 

groundwater systems to meteorological droughts, through changes in groundwater levels and 46 

baseflow to groundwater supported rivers, is influenced by spatial variations in intrinsic 47 

catchment and aquifer characteristics and processes. These include highly non-linear 48 

unsaturated zone processes, recharge, and saturated groundwater storage, flow and discharge 49 

over a range of space and time scales (Tallaksen et al, 2009; Bloomfield and Marchant, 2013; 50 

Van Lanen et al., 2013; Van Loon and Laaha, 2015). 51 

In order to improve the design and operation of groundwater drought monitoring networks, 52 

the analysis and interpretation of data from such networks, and, more generally, water 53 

resource management at the onset, during and after episodes of groundwater drought, there is 54 

a need for a much better understanding of the heterogeneous spatio-temporal response of 55 

aquifers to major meteorological droughts (Bloomfield and Marchant, 2013). This includes 56 

the need for robust methods to systematically characterise and quantify the heterogeneous 57 

response of groundwater to meteorological droughts at a regional scale prior to investigation 58 

and attribution of the causes of any heterogeneous response. Despite extensive work on the 59 

regional analysis of meteorological and other hydrological droughts, to date there has been no 60 

systematic investigation of heterogeneities in groundwater droughts at the regional scale. This 61 

paper describes the application of one such suite of methods to regionally analyse 62 



groundwater level hydrographs and to assess variations in the spatial response of groundwater 63 

to meteorological droughts using a case study from the UK.  64 

1.1 Controls on spatial heterogeneity in groundwater drought 65 

A few previous studies have presented evidence for the spatially heterogeneous response of 66 

groundwater to meteorological droughts. To help develop an optimal monitoring network for 67 

groundwater resources under drought conditions, Chang and Teoh (1995) described the 68 

heterogeneous response of groundwater levels at 13 observation boreholes to meteorological 69 

droughts across a basin in Ohio, USA, although they did not investigate the hydrogeological 70 

causes of the heterogeneity. Van Lanen (2005) and Van Lanen and Tallaksen (2007) 71 

observed that drought characteristics derived from groundwater levels have ‘spatial effects’, 72 

and noted that these spatial effects on groundwater drought are an important consideration 73 

when monitoring droughts using groundwater levels.  Van Lanen and Tallaksen (2007) 74 

compared modelled groundwater recharge and discharge for a humid continental climate 75 

(Missouri, USA) and a tropical savannah climate (Guinea) for quick- and slow-responding 76 

catchments and showed that both climatology and the responsiveness of the catchment as 77 

defined by the aquifer characteristics have an influence on drought generation. Peters et al. 78 

(2006) investigated the propagation and spatial distribution of aspects of modelled 79 

groundwater drought, including recharge, groundwater level and groundwater discharge in 80 

the Pang catchment in the UK. They found that short droughts in groundwater levels were 81 

most severe near streams and were attenuated with distance from the streams; longer periods 82 

of below average recharge had more effect on suppressing groundwater levels on interfluves 83 

near groundwater divides, and that droughts in groundwater discharge are more attenuated 84 

upstream and less so downstream in the catchment. Tallaksen et al. (2009) also modelled the 85 

spatio-temporal response of the Pang catchment to drought events and found large differences 86 

between the spatio-temporal response of groundwater recharge, level and discharge and the 87 

driving meteorological droughts, where droughts in groundwater recharge and levels were 88 

found to cover relatively small areas, but last longer, than the meteorological droughts. 89 

Mendicino et al. (2008) developed a groundwater resource index for drought monitoring and 90 

forecasting based on a simple distributed runoff/water balance model, and evaluated the use 91 

of the index in three catchments in southern Italy. They found that the groundwater resource 92 

index was highly spatially variable and related it to variations in hydraulic conductivity 93 

across the catchments. Using a newly developed groundwater drought index, the 94 



Standardised Groundwater level Index (SGI), Bloomfield & Marchant (2013) also 95 

investigated hydrogeological controls on groundwater drought. Based on 14 observation 96 

boreholes in different catchments across England, UK, they showed that groundwater drought 97 

duration depended on the autocorrelation structure of SGI time series. This was in turn 98 

inferred to be both a function of spatially varying recharge processes and saturated flow 99 

processes within the local aquifer systems.  100 

1.2 Regional analysis of groundwater drought 101 

There has been significant work on the regional analysis of meteorological and other 102 

hydrological droughts. Cluster Analysis (CA), Principal Component Analysis (PCA) or some 103 

combination of both techniques have been used extensively by meteorologists and 104 

hydrologists to investigate the spatio-temporal distribution of hydrological variables, 105 

including drought indices (e.g. Klugman ,1978; Karl and Koscienly, 1982; Eder et al., 1987; 106 

Stahl and Demuth, 1999; 2001, Lana et al., 2001; Bonaccorso et al., 2003; Vincente-Serrano, 107 

2006; Vicente-Serrano and Cuadrat-Prats, 2007; Raziel et al., 2008; Santos et al., 2010; Fleig 108 

et al., 2011; Hannaford et al., 2011; Lorenzo-Lacruz et al., 2013). 109 

Although not previously applied to groundwater drought, CA and/or PCA techniques have 110 

been used to classify groundwater level hydrographs for a range of purposes. Winter et al. 111 

(2000) classified groundwater hydrographs from three small lake-dominated catchments to 112 

investigate groundwater recharge and differences in the hydrographs as a function of the 113 

geology of the catchments. Similarly, Moon et al. (2004) applied PCA to 66 groundwater 114 

level hydrographs from South Korea to characterise the spatial variability in groundwater 115 

recharge. Upton and Jackson (2011) used CA and PCA (following a methodology developed 116 

by Hannah et al., 2000) with 52 groundwater level hydrographs from the Pang and Lambourn 117 

catchments in the UK to produce regional or ‘master’ hydrographs for modelling the spatial 118 

distribution of groundwater flooding.     119 

Here we present the first systematic regional analysis of groundwater droughts using a case 120 

study from Lincolnshire, UK. The case study consists of 74 groundwater hydrographs from 121 

an area of approximately 8,000 km2 that includes three regionally important aquifers, the 122 

Lincolnshire Limestone, the Chalk and the Spilsby Sandstone aquifers, each with contrasting 123 

aquifer characteristics (section 2). The groundwater hydrographs have been normalised using 124 

the Standardised Groundwater level Index (SGI) technique of Bloomfield & Marchant (2013) 125 

and groups or clusters of similar groundwater hydrographs have been identified using CA, 126 



where hydrogeologically meaningful clusters are identified by explicitly searching for groups 127 

of hydrographs that can be explained by a posteriori knowledge of the groundwater system 128 

(section 4.2). The drought characteristics of the clusters have been quantified in terms of 129 

drought event duration, magnitude and intensity and the impact of the three major, multi-130 

annual droughts on the SGI time series has been investigated (section 4.4). Controls on the 131 

groundwater drought response in each of the clusters have been explored and the results 132 

briefly discussed in terms of the implications for monitoring and managing groundwater 133 

droughts (section 5). 134 

 135 

2. The case study  136 

The case study area of Lincolnshire is situated in the east of England, UK. It is bounded by 137 

the North Sea to the east, the Wash estuary to the south and the Humber Estuary to the north 138 

(Fig. 1).  The area is predominantly rural with highly productive agricultural and horticultural 139 

land, fens and estuarine wetlands. Lincoln, Boston and Scunthorpe are the principal small 140 

conurbations in the study area.  The land is generally flat and low-lying, typically less than 30 141 

m above sea level (m asl), apart from the Chalk of the Lincolnshire Wolds and the 142 

Lincolnshire Limestone outcrop which form northwest-southeast trending escarpments that 143 

reach elevations of approximately 150 m asl and 70 m asl respectively.   144 

2.1 Hydrometeorology and drought history 145 

As a first-order approximation, it is assumed that the broad meteorological drought history of 146 

the study area is spatially homogeneous. This assumption means that any relative differences 147 

in drought histories between sites or clusters need to be explained in terms of catchment or 148 

hydrogeological factors, rather than differences in the drought climatology. This assumption 149 

is tested as part of the analysis of correlations between precipitation and regional 150 

groundwater levels (see section 4.2). It is also supported by the observations that the whole 151 

study area is governed by the same broad climatic patterns, i.e. rain-bearing low pressure 152 

systems from the Atlantic and high pressure systems leading to a lack of rainfall, with only 153 

small variation in annual precipitation across the region (Marsh and Hannaford, 2008). The 154 

assumption is also consistent with the previously documented spatial coherence of major 155 

hydrological (surface water) droughts in the UK (Hannaford et al., 2011; Fleig et al., 2011; 156 

Folland et al., 2015) where the current study area falls within a homogeneous drought region 157 

(“region 4” of Hannaford et al., 2011, “region GB4” of Fleig et al., 2012; Kingston et al., 158 



2013, and the “English Lowlands” of Folland et al., 2015) although it is noted that the effects 159 

of landscape processes can cause heterogeneous meteorological signals to become attenuated 160 

(Van Loon, 2015). 161 

Mean annual rainfall varies across the study area from about 600 to 700 mm (Marsh and 162 

Hannaford, 2008). The groundwater hydrographs used in the study have been analysed from 163 

1983 to 2012. During this period, three multi-annual episodes of drought have previously 164 

been documented by Marsh et al. (2007; 2013), Kendon (2013), Parry and Marsh (2013) and 165 

Folland et al. (2015) as follows: 1988 to 1992, 1995 to 1997 and 2010 to 2012. All are known 166 

to have been major drought events causing reduced surface flows and suppressed 167 

groundwater levels throughout large areas of central, eastern and southern UK as well as over 168 

parts of North West Europe (Lloyd-Hughes and Saunders, 2002; Lloyd-Hughes et al., 2010; 169 

Hannaford et al., 2011; Fleig et al., 2012 and Kingston et al., 2013).   170 

2.2 Geology and hydrogeology 171 

The study area consists of a sequence of Jurassic and Cretaceous aquifers separated by low 172 

permeability clay and shale units. The whole sequence generally dips gently eastwards and 173 

where each of the aquifer units passes under an overlying low permeability formation they 174 

typically become confined. The whole sequence is unconformably overlain by Quaternary 175 

superficial deposits.  Figure 1 shows the distribution of the three main aquifers in the region: 176 

the Jurassic Lincolnshire Limestone; the Lower Cretaceous/Upper Jurassic Spilsby 177 

Sandstone, and the Upper Cretaceous Chalk, and includes a schematic cross-section of the 178 

hydrostratigraphy of the study area. These aquifers are hydrogeologically distinct from each 179 

other, and two of them, the Lincolnshire Limestone and the Chalk have previously 180 

documented spatially variability. Below we summarise these features as they inform the 181 

heuristic rules used in section 4.2 to guide the selection of clusters as part of the CA.  182 

The Lincolnshire Limestone Formation is an oolitic limestone with fine-grained, micritic and 183 

peloidal units (Allen et al., 1997), and is up to 40 m thick at outcrop in the west. It dips and 184 

thins to the east where it becomes confined and eventually pinches out down-dip. Maximum 185 

unsaturated zone thickness is up to about 45m towards the southwest of the outcrop. 186 

Groundwater movement is almost entirely by fracture flow along well-developed bedding 187 

plane fractures and joints. Abstraction takes place mainly from the region immediately to the 188 

east of the outcrop. It has highly variable transmissivities and storage coefficients typical of a 189 

fractured limestone. Allen et al. (1997) have reported a wide range of transmissivity values 190 



for the Lincolnshire Limestone with an interquartile range of 260 to 2260 m2 d-1 and a 191 

geometric mean of 660 m2 d-1, with slightly higher transmissivities being reported from the 192 

south of the region, and a very wide range of storage coefficients from 2x10-7 to 0.58. 193 

The Spilsby Sandstone aquifer is up to about 30 m thick consisting of a variably, but often 194 

poorly cemented pebbly quartz sandstone with alternating thin clays and marls (Whitehead 195 

and Lawrence, 2006). It outcrops along the foot of the Wolds escarpment (Fig. 1) where it is 196 

associated with springs and maximum unsaturated zone thickness is about 30m. It dips to the 197 

east and away from outcrop and it is generally confined by clays above and below (Fig. 1). 198 

Jones et al., (2000) reported transmissivity values in the range 130 to 170 m2 d-1, and a 199 

geometric mean of 140 m2 d-1 with storage coefficients ranging from 1x10-4 to 1x10-3 and 200 

with a geometric mean of 4x10-4.  201 

The Chalk is a microporous fractured limestone (Bloomfield et al, 1995). Storage and 202 

transmissivity are controlled by local sub-karstic development of the fracture network 203 

(Bloomfield, 1996; Maurice et al., 2006). The Chalk Group reaches a thickness of over 204 

250 m. Groundwater flows from the recharge areas in the west eastward down dip towards 205 

and into the confined Chalk to the east. The Chalk bedrock surface was significantly altered 206 

during the Ipswichian interglacial of the Quaternary. As a result of glacial activity a cliff line 207 

and wavecut platform were eroded into the Chalk (Fig. 1). The Chalk to the east of the 208 

palaeo-cliff line is now buried beneath a covering of till, sand and gravel superficial deposits 209 

(Whitehead and Lawrence, 2006). Maximum unsaturated zone thickness occurs towards the 210 

northwest of the Chalk outcrop and is about 60m contrasting with the relatively thin 211 

unsaturated zone to the east of the palaeo-cliff line. Allen et al. (1997) and Whitehead and 212 

Lawrence (2006) have reported that transmissivity values differ between the northern and 213 

southern Chalk in Lincolnshire. In the northern part of the region transmissivity has an 214 

interquartile range of 1020 m2 d-1 to 6070 m2 d-1 with a geometric mean of 2350 m2 d-1, 215 

whereas in the southern area, in the region of the eroded Chalk, transmissivity is slightly 216 

reduced and has an interquartile range of 850 m2 d-1 to 3010 m2 d-1 with a geometric mean of 217 

1380 m2 d-1. Similarly, Allen et al. (1997) report storage coefficients with an interquartile 218 

range of 3.5x10-5 to 1.5x10-3 and with a geometric mean of 2x10-4 for the northern Chalk and 219 

6.1x10-5 to 2.7x10-3 and with a geometric mean of 1.5x10-3 for the southern Chalk.   220 

The Quaternary superficial deposits in the study area comprise: glaciofluvial sand and gravels 221 

and tills; peat; tidal flat deposits; river terrace sands and gravels, and overlying alluvium.  222 



The Lincolnshire Limestone Formation and the western part of the Chalk outcrop are largely 223 

absent of superficial cover. 224 

 225 

3. Data and Methods 226 

3.1 Data 227 

Groundwater level data for the 74 observation boreholes (Fig. 1) has been provided by the 228 

Environment Agency from their groundwater level monitoring network database 229 

(Environment Agency, 2014). Prior to the study none of the sites were believed to be 230 

significantly impacted by abstraction although all three regional aquifers are used for public 231 

water supply, abstractions for agricultural irrigation and industrial use (Allen et al., 1997; 232 

Whitehead and Lawrence, 2006). Where observation boreholes penetrate both the Chalk and 233 

underlying Spilsby Sandstone aquifer, the boreholes are completed with screens so that they 234 

monitor water levels in only one of the two aquifers. Groundwater levels have been recorded 235 

over a range of frequencies, but typically at weekly to monthly time steps. Based on the raw 236 

groundwater level data, mean monthly groundwater levels have been estimated. If no 237 

observations were available for a given month then a linear interpolation was used to estimate 238 

the monthly groundwater levels following the method described by Bloomfield and Marchant 239 

(2013). 240 

Precipitation data has been taken from the Centre for Ecology and Hydrology’s Continuous 241 

Estimation of River Flows (CERF) 1km gridded precipitation dataset (Keller et al., 2005; 242 

Dore et al., 2012; Bloomfield and Marchant, 2013). CERF daily gridded precipitation data is 243 

generated from rain gauge data held in the UK Met Office national precipitation monitoring 244 

network. A triangular planes methodology is used to produce a daily 1km2 grid based on a 245 

weighted average (inverse distance) of the three nearest rain gauges. Daily rainfall is then 246 

summed to give total monthly gridded rainfall. The precipitation data that is used with each 247 

groundwater level observation site is the monthly total for the CERF 1km2 grid square that 248 

contains the given groundwater observation borehole. 249 

3.2 Methods 250 

3.2.1 Hydrograph normalisation using the SGI method 251 

The groundwater level hydrographs have been normalised to the Standardised Groundwater 252 

level Index (SGI) of Bloomfield and Marchant (2013). This is a non-parametric 253 



normalization of data that assigns a value to the monthly groundwater levels based on their 254 

rank within groundwater levels for a given month from a given hydrograph. The normal 255 

scores transform is undertaken by applying the inverse normal cumulative distribution 256 

function to 𝑛 equally spaced 𝑝𝑖 values ranging from 1/(2n) to 1 - 1/(2n). The values that result 257 

are the SGI values. They are then re-ordered such that the largest SGI value is assigned to the 258 

i for which pi is largest, the second largest SGI value is assigned to the i for which pi is 259 

second largest and so on. In summary, for each of the 74 study sites, normalized indices are 260 

estimated from the groundwater level data for each calendar month using the normal scores 261 

transform. These normalized indices are then merged to form a continuous SGI. Precipitation 262 

records for each site have also been normalised. At each site a version of the Standardised 263 

Precipitation Index (SPI) after McKee et al. (1993) has been estimated for precipitation 264 

accumulation periods of 1, 2, ..., 36 months. For consistency between groundwater and 265 

precipitation indices, SPIs are estimated using the normal scores transform applied to 266 

accumulated precipitation data for each calendar month. 267 

3.2.2 Cluster analysis 268 

Cluster Analysis (CA) attempts to identify clusters of similar individuals amongst a 269 

multivariate dataset. In the context of this paper CA is used to form clusters of groundwater 270 

level hydrographs which exhibit similar fluctuations in their SGI time series. A wide range of 271 

CA algorithms exist. They are most coarsely distinguished according to whether or not they 272 

assume that the resultant clusters are hierarchical. Given the wide variety of algorithms it is 273 

difficult to decide upon the best approach to cluster a particular dataset. Webster and Oliver 274 

(1990) stress that this decision is rather subjective, although previous studies that have used 275 

CA to cluster hydrographs have typically justified their choice of algorithm by claiming that 276 

some produce more physically interpretable groupings. For example, Hannah et al. (2000) 277 

used the agglomerative hierarchical average linkage algorithm as they thought it was more 278 

interpretable than alternatives such as the centroid and Ward’s clustering procedures. Webster 279 

and Oliver (1990) recommend that multiple clustering algorithms should be applied and 280 

expert knowledge of the system being investigated used to decide which set of clusters is 281 

most relevant. In this paper we adapt this approach by applying one hierarchical and one non-282 

hierarchical method.  283 

Hierarchical classifiers require a measure of the similarity (or dissimilarity) between each 284 

pair of individuals. Common examples include the Euclidean distance or the correlation 285 

between the measurements of the individuals. The pairwise similarities between 𝑠 individuals 286 



are expressed in a 𝑠 × 𝑠 matrix B. A mathematical criterion is then used to allocate the 287 

individuals to different clusters in a manner that maximizes the similarity between the 288 

individuals within the groups whilst minimizing the similarity between individuals in 289 

different clusters. For our hierarchical clusters we measure the similarity between 290 

groundwater level hydrographs by the correlation matrix of their SGI time series and then 291 

apply the agglomerative hierarchical complete-linkage strategy (Webster and Oliver, 1990) to 292 

merge the boreholes into clusters. 293 

We also apply the commonly used non-hierarchical k-means clustering algorithm. It is widely 294 

used in spatial analysis studies, for example, Santos et al. (2010), Raziei et al. (2012) and 295 

Sadri et al. (2014) have all used the k-means clustering algorithm to investigate the regional 296 

characteristics of droughts. The approach partitions the individuals into a specified number of 297 

clusters. A numerical optimization routine is used to select the partitioning which maximizes 298 

the similarity between each individual and the centroid of the cluster in which it is contained. 299 

Again there is flexibility in the choice of similarity measure and the manner in which the 300 

centroid of a cluster is calculated. We use the squared Euclidean distance between the vectors 301 

of time series observations from each site to assess similarity and define the centroid of a 302 

cluster as the multi-dimensional mean of the time series within the cluster.  303 

Clustering methods do not produce a unique partitioning of a given data set on their own, and 304 

for both the hierarchical and non-hierarchical approaches there remains the issue of deciding 305 

upon the optimal number of clusters. This can be achieved by asking an expert on the system 306 

in question to compare the attributes of clusterings consisting of a different number of 307 

groups. Here we use a rule-based approach to help identify the number of clusters based on 308 

knowledge of the general hydrogeology of the study area. Bloomfield and Marchant (2013) 309 

have previously shown that groundwater drought characteristics are a function of unsaturated 310 

zone thickness in fractured aquifers such as the Lincolnshire Limestone and Chalk aquifers, 311 

and that when a broader range of aquifer types are considered groundwater drought 312 

characteristics are also a function of the hydraulic diffusivity of aquifers. Here we use these 313 

observations and knowledge of the spatial variation in these features across the three aquifers 314 

in the study area (section 2.2) to design rules to aid in the selection of clusters. The rules 315 

adopted for the current study are to identify  the smallest number of clusters that: i.) broadly 316 

resolve the spatial distribution of the three aquifers across the study region, ii.) given the 317 

previously documented N-S variation in aquifer properties and unsaturated zone thickness 318 

across the Lincolnshire Limestone aquifer (Allen et al., 1997), that distinguish more than one 319 



region of the Lincolnshire Limestone, and iii.) given variations in aquifer properties and 320 

unsaturated zone thickness across the Chalk aquifer both N-S and across the buried cliff line 321 

(Allen et al., 1997), that distinguish more than one region of the Chalk. Note that this set of 322 

rules is specific to the current study, however, for any given study area the target number of 323 

classes and hence the rules used can be adapted to reflect the regional hydrogeology and in 324 

particular any knowledge of heterogeneity in the aquifer systems under investigation. 325 

However, mathematical criteria can also be used as a guide to clustering. We also calculate 326 

the RMSSD, the square root of sum of the squared Euclidean distance between each 327 

individual and the centroid of the group to which it is allocated. In combination with expert 328 

judgement related to the system under consideration, it is common practice to inform the 329 

choice of the number of clusters using plots of RMSSD versus cluster number. Since RMSSD 330 

decreases non-linearly as the number of clusters increases, a cluster number is selected 331 

associated with a decrease in the rate of RMSSD decline. 332 

3.2.4 Autocorrelation structure of the SGI time series 333 

Bloomfield and Marchant (2013) demonstrated the importance of the autocorrelation 334 

structure of SGI time series for groundwater drought studies by establishing a relationship 335 

between the range of significant autocorrelation in the SGI series, mmax, and corresponding 336 

SPI. They showed that mmax scales linearly with qmax, where qmax is the SPI accumulation 337 

period which leads to the strongest correlation between SGI and SPI. Both mmax and qmax are 338 

also used here to characterise and quantify groundwater droughts within each of the clusters 339 

of groundwater hydrographs and have been estimated as follows. 340 

If the mean SGI for a borehole is denoted by SGI����� then the 𝑘th sample autocovariance 341 

coefficient is defined to be         342 

𝑔𝑘 = 1
𝑛
∑ {SGI(𝑖) − SGI�����}{SGI(𝑖 − 𝑘) − SGI�����}𝑛
𝑖=𝑘+1                                            (1) 343 

and the kth sample autocorrelation coefficient is 344 

𝑟𝑘 = 𝑔𝑘
𝑔0

                                                                                                             (2) 345 

where 𝑔0 reduces to the population variance function (see Eqn. 1 when 𝑘 = 0).  The 346 

correlogram is a plot of 𝑟𝑘 against 𝑘. If there is no correlation between the SGI(𝑖) observed 𝑘 347 

months apart and if the SGI values are normally distributed then 𝑟𝑘is approximately normally 348 

distributed with mean zero and variance 1/𝑛. Therefore values of 𝑟𝑘with magnitude greater 349 



than 2/√𝑛 indicate significant correlation at approximately the 5 % level. We define the 350 

range of significant temporal correlation of a SGI time series to be the largest m, mmax, for 351 

which 𝑟𝑘 > 2/√𝑛 for all 𝑘 ≤ 𝑚. Since all of our groundwater records are of 𝑛 = 355 months 352 

the threshold on  𝑟𝑘 is equal to 0.11.To estimate qmax, Pearson correlation coefficients are 353 

calculated between SGI and SPI with accumulation periods of 𝑞 =  1, 2, … , 36 months and 354 

the accumulation period associated with the maximum correlation gives qmax. 355 

 356 

4. Results 357 

4. 1 Identification of regional droughts from average SPI and SGI time series 358 

Before undertaking the regional drought analysis, the correlation between mean SPI and SGI 359 

for the entire region, based on all 74 sites, has been investigated and the large-scale drought 360 

history of the study area has been defined. 361 

Figure 2a is a heatmap showing the correlation coefficient between SPI for precipitation 362 

accumulation periods q = 1 to 36 months and SGI for lags between SPI and SGI of 0 to 5 363 

months based on average values of SPI and SGI for all 74 sites. Dark blue denotes zero 364 

correlation and dark red a perfect correlation.   Figure 2a shows that there is a good 365 

correlation between SPI and SGI. The strongest correlation (0.84, denoted by the closed black 366 

circle in Fig. 2a) is for a precipitation accumulation period (qmax) of 12 months (SPI12) with 367 

no lag between the SGI and SPI time series. This is consistent with the observations of 368 

Bloomfield and Marchant (2013) who previously reported qmax for a variety of groundwater 369 

hydrographs from the UK with an average of 13 months and Folland et al. (2015) who 370 

reported a qmax of 12 months for aggregated time series representing the English Lowlands. 371 

Figures 2b and 2c, the average SPI12 and SGI time series respectively, have similar features. 372 

For example, episodes of high groundwater levels in 1983, 1994, 2002, and 2008 correspond 373 

with high values of SPI12. Three episodes of regionally significant groundwater drought 374 

associated with prolonged low groundwater levels from October 1988 to November 1993, 375 

May 1995 to February 1998, and from August 2010 to August 2012 correspond closely with 376 

episodes of meteorological drought in the SPI12 time series and are consistent with those 377 

identified by previous studies (Lloyd-Hughes and Saunders, 2002; Marsh et al., 2007; 2013; 378 

Kendon, 2013; Hannaford et al., 2011; Parry and Marsh, 2013; Folland et al., 2015). It is 379 

inferred from these observations that the large-scale drought history of the study area is 380 

represented well by the average SPI12 and SGI time series.  381 



4.2 Regional analysis of the SGI hydrographs 382 

CA has been used to analyse the heterogeneous response of groundwater to droughts across 383 

the study region. Clustering has been undertaken using both an agglomerative hierarchical 384 

complete-linkage algorithm and a non-hierarchical k-means clustering algorithm and the 385 

resulting clusters searched for those that are hydrogeologically meaningful and that can be 386 

explained by known features of the catchment and groundwater systems. Figure 3a is a 387 

dendrogram that fully illustrates the level of similarity between individuals within the clusters 388 

formed by the hierarchical clustering. The number of clusters is controlled through the 389 

threshold on the distance between groups. For example, a threshold of 0.62 leads to the six 390 

clusters shown in Fig. 3b. Figure 3c is an equivalent map showing the distribution of sites by 391 

clusters formed by k-means clustering for 𝑘 = 6. 392 

Figures 3b and 3c shows that the spatial distribution of sites as a function of the clusters 393 

formed by the hierarchical and non-hierarchical approaches are broadly similar, so the choice 394 

of clustering algorithm is based on a plot of RMSSD against number of clusters. Figure 4 395 

shows that the RMSSD for the k-means clustering is systematically lower than that for the 396 

hierarchical clustering algorithm where there are three clusters or more, so we have chosen to 397 

use the non-hierarchical k-means clustering approach. Note also that both clustering 398 

algorithms are better than a clustering scheme based solely on the three classes of aquifer 399 

(e.g. Lincolnshire Limestone, Chalk and Spilsby Sandstone). However, an optimal number of 400 

k-mean clusters is not clearly evident in Fig. 4. After careful inspection of the clusters formed 401 

by a range of k-means clustering classes and a consideration of the study specific clustering 402 

rules described in section 3.2.2, 𝑘 = 6 was selected. Based on k-means clustering where 403 

𝑘 = 6, Fig. 3c shows the distribution of sites between the six clusters (cluster 1 to cluster 6, 404 

or CL1, ... CL6). 405 

It can be seen from Fig. 3c that the resulting k-means clusters have a degree of spatial 406 

coherency. We have previously assumed that such spatial correlations in the SGI time series 407 

are primarily a function of catchment and hydrogeological factors and not a consequence of 408 

heterogeneity in the driving meteorology. Here we test if this is the case, prior to further 409 

exploration of the features of each cluster, by investigating if precipitation associated with 410 

each cluster is substantially different from regional average precipitation. To do this, we first 411 

need to identify a representative accumulation period, qmax, for precipitation for each cluster. 412 



Figure 5 is a set of heatmaps, similar to Fig. 2a, showing the correlation between SPI for 413 

precipitation accumulation periods, q, 1 to 36 months, and SGI for lags between SPI and SGI 414 

time series of 0 to 5 months for each of the six clusters. Dark blue denotes zero correlation 415 

and dark red a perfect correlation with the strongest correlation for each cluster marked by 416 

the closed black circle. Table 1 gives qmax for each cluster and also gives the maximum 417 

associated correlation coefficient.  In all cases, except CL2, the maximum correlation 418 

between SPI and SGI is found where there is no lag between the two time series. For CL2 it 419 

is found at a lag of one month. The highest correlations are for CL2, CL4 and CL1 at 0.86, 420 

0.82 and 0.74 respectively. The correlations for CL3 and CL5 are moderate (0.36 and 0.53) 421 

and for CL6 there is effectively no correlation (0.09). This is consistent with the observations 422 

made in section 4.3 below that linear trends in CL3 and CL5 appear to affect the SGI time 423 

series and that the SGI hydrograph for CL6 appears to be anomalous, departing from the 424 

mean regional SGI and SPI signals. Values of qmax for CL1 to CL5 from Fig. 5 are 4, 16, 15, 425 

9, and 17 months respectively. Based on these, Fig. 6 shows SPI time series for each cluster, 426 

where black lines are the mean SPI for the cluster and the red lines are average SPI across the 427 

study area based on the same cluster-specific qmax. Since Fig. 6 illustrates that the two SPI 428 

time series for each cluster are similar, we infer that heterogeneity in the driving meteorology 429 

across the study region, or at least between the clusters as defined here, does not play an 430 

important role in the clustering process and that membership of clusters is dominated by 431 

catchment or hydrogeological factors. 432 

4.3 Characteristic features of the SGI hydrograph clusters 433 

Figure 7 shows the mean SGI time series for each cluster. Two main qualitative observations 434 

can be made regarding the SGI hydrographs. Five of the six clusters have a similar overall 435 

form to the mean SGI hydrograph for the region (Fig. 2c) showing common patterns of low 436 

(and high) groundwater level stand. Whereas, CL6 appears to be an exception with a different 437 

overall form to the SGI hydrograph – it also exhibits an anomalous step change in SGI from 438 

drought to high groundwater level stand over an eight month period from May 1990 to 439 

December 1990. Secondly, two of the clusters, CL3 and CL5, appear to show declining linear 440 

trends in SGI making direct comparison of drought histories between these and other clusters 441 

problematic. 442 

Bloomfield & Marchant (2013) have previously shown that mmax, a measure of the significant 443 

autocorrelation length of SGI time series, relates to features of groundwater drought. A 444 



similar analysis of autocorrelation structure of SGI time series for each cluster is presented 445 

here. Figure 8 shows autocorrelation plots for SGI hydrographs for each of the six clusters. In 446 

each figure the pale grey lines are autocorrelation plots for individual sites and the solid black 447 

line is the autocorrelation plot for the mean SGI time series for the cluster with the horizontal 448 

dashed line indicating the significant level of autocorrelation based on the record length. 449 

Based on these plots, values of mmax for the mean SGI time series for each cluster are given in 450 

Table 1.  Values of mmax for CL3, CL5 and CL6 are anomalously large, consistent with the 451 

anomalous features of these SGI hydrographs described above. For the remaining clusters, 452 

Figure 8 and Table 1 show that CL1 has the shortest autocorrelation of 15 months. In 453 

comparison, CL2 has an autocorrelation of 23 months and CL4 is intermediate at 18 months.     454 

These contrasting characteristics between the clusters can be seen clearly in Fig. 9a which 455 

illustrates SGI time series for all sites within each cluster, grouped in their respective clusters, 456 

and presented in the form of a heatmap where low values of SGI (associated with drought 457 

conditions) are in shades of green to red (increasing drought intensity) and episodes of high 458 

groundwater level stand are in shades of green to blue (increasing high groundwater levels). 459 

The three major episodes of drought can be seen clearly in the heatmaps for CL1, CL2 and 460 

CL4, but are obscured by the trends in CL3 and CL5 and absent in CL6. The degree of 461 

coherency of individual SGI time series within each cluster also appears to be consistent with 462 

differences in autocorrelation between the clusters. Figure 9b is a heatmap of the cross-463 

correlation coefficients for all the individual SGI time series ordered as a function of the six 464 

clusters, where dark red denotes high correlations and dark blue denotes low correlations. 465 

Sites within CL1 and CL4, clusters with moderate or short autocorrelation, show relatively 466 

low levels of internal coherency compared with sites in CL2 with relatively long 467 

autocorrelation that are highly correlated.  468 

Based on the above, the following is a summary of the features of each cluster: 469 

• CL1 is dominated by sites from the northern parts of the Lincolnshire Limestone. The 470 

mean SGI time series of CL1has a relatively short autocorrelation (mmax of 15 months) 471 

and within the cluster SGI hydrographs are relatively variable.  472 

• CL2 is dominated by sites from the northern part of the Chalk. The cluster has the longest 473 

mean SGI autocorrelation (mmax of 23 months) and hydrographs within CL2 are highly 474 

correlated indicating a high degree of coherency in groundwater levels across the northern 475 

part of the Chalk in the study area.  476 



• CL3 is a relatively small cluster of six sites, four of which are from the confined Spilsby 477 

Sandstone and two from the Lincolnshire Limestone. The main feature of the cluster is a 478 

trend in decreasing SGI across the observational record. This trend is consistent with a 479 

previous water balance assessment for the Spilsby Sandstone (Whitehead and Lawrence, 480 

2006) where annual groundwater deficits have been reported. The sites in this cluster are 481 

inferred to be possibly variably impacted by long-term abstraction. Given this inference 482 

and the small size of the cluster of sites, CL3 is not included in the subsequent analysis of 483 

groundwater droughts.  484 

• CL4 is dominated by sites from the southern Lincolnshire Limestone and also includes 485 

five unconfined sites on the southern Chalk and one site located in the northern 486 

Lincolnshire Limestone. It has a moderate autocorrelation, mmax of 18 months. Individual 487 

SGI hydrographs within the cluster show a moderate degree of coherency.   488 

• CL5 is a small cluster of five sites all from the southeastern Chalk to the east of the 489 

palaeo-wave cut platform and are the five sites closest to the coast. It has a moderately 490 

long autocorrelation, mmax of 28 months that may be affected by an apparent weak trend 491 

in declining SGI - there is only a weak correlation between SPI and SGI. Given the small 492 

size of the cluster and the apparent trend in mean SGI, CL5 is not included in the 493 

subsequent analysis of groundwater droughts. 494 

• CL6 consists of three SGI hydrographs from the confined Spilsby Sandstone aquifer. The 495 

hydrographs are characterised by an anomalous step change in SGI from drought to high 496 

groundwater level stand over an eight month period from May 1990 to December 1990. 497 

The mean SGI hydrograph shows no correlation with the other five clusters and there is 498 

no correlation between SPI and SGI within the cluster. All three sites are within a radius 499 

of about 3 km of a public water supply borehole and it is inferred that groundwater levels 500 

may be influenced by abstraction. So, as with CL3 and CL5, this very small cluster is not 501 

included in the subsequent analysis of groundwater droughts. 502 

4.4 Analysis of droughts using the hydrographs from CL1, 2 and 4 503 

Clusters CL1, CL2 and CL4 consist of 61 of the 74 hydrographs analysed. Here the 504 

characteristics of groundwater droughts in these clusters are quantified and the response of 505 

the clusters to three major drought episodes is investigated.  506 

The duration, magnitude and mean intensity of groundwater drought events have been 507 

investigated based on an analysis of the SGI hydrographs where, following the convention of 508 



McKee et al. (1993), negative values of SGI denote drought conditions (note, however, that 509 

the current convention of the World Meteorological Organisation for SPI refers to drought 510 

conditions where SPI is continuously negative and reaches and intensity of -1.0 or less and 511 

that negative values between 0 and -1 are classified as near normal and simply indicate less 512 

than a median precipitation, World Meteorological Organisation, 2012). Groundwater 513 

drought duration, D, is taken to be the total number of consecutive months where SGI is 514 

negative. Groundwater drought magnitude, M, is taken to be the total cumulative value of 515 

monthly SGI for a given drought event, and mean drought intensity, I, is given by M/D. 516 

Summary drought statistics for CL1, CL2 and CL4 are given in Table 2. 517 

Table 2 shows that there are differences in the character of the groundwater drought events in 518 

the SGI hydrographs for clusters CL1, CL2 and CL3. For example, CL1 has more than twice 519 

the number of drought episodes (39 episodes) than CL2 (15 episodes) and the average and 520 

maximum duration of droughts in CL1 (4.6 and 27 months respectively) are less than half 521 

those of CL2 (11.3 and 61 months). The mean drought event magnitude in CL1 (-2.9) is less 522 

than half that in CL2 (-7.9) and the mean drought event intensity in CL1 (-0.43) is almost 523 

twice that of CL2 (-0.28). In all cases, the drought event statistics for CL4 fall between those 524 

for CL1 and CL2. In summary, CL1 exhibits shorter, but generally more intense drought 525 

episodes compared with CL2, with CL4 drought events being of intermediate character. 526 

These relative drought phenomena are a consequence of the degree of autocorrelation in the 527 

respective SGI time series, where CL1 has a relatively short autocorrelation compared with 528 

relatively long autocorrelation for CL2. This observation is consistent with previous site 529 

specific and modelling studies that noted a similar relationship between the ‘flashiness’ or 530 

responsiveness of the groundwater system to meteorological divers and the number of 531 

droughts, where quickly responding groundwater systems typically experience more droughts 532 

than more slowly responding catchments (Peters et al. 2003; Van Loon and Van Lanen, 2012; 533 

Van Lanen et al. 2013). 534 

There is a strong relationship between drought duration and magnitude for all three clusters, 535 

Fig. 10, where longer episodes of groundwater drought are associated with droughts of 536 

greater magnitude. However, there is no such regular or simple relationship between drought 537 

duration and intensity. Maximum drought intensity is similar for all three clusters, for CL1, 538 

CL2 and CL4 it is -1.10, -1.05 and -1.13 respectively (Table 2 and Fig. 11), and is associated 539 

with two of the major drought events, i.e. with the latter part of the 1988 to 1993 drought for 540 

CL2, and the 2010 to 2012 drought for CL1 and CL4. Figure 11 shows frequency plots of D, 541 



M and I for clusters CL1, CL2 and CL4. A cumulative frequency plot of drought duration 542 

(Fig. 11) shows that the distribution in all three clusters is highly positively skewed with 543 

many short drought events and relatively few long drought events. As previously noted, the 544 

longest duration droughts are associated with CL2, the cluster with the longest 545 

autocorrelation in the SGI time series. These observations are consistent with those of Hisdal 546 

and Tallaksen (2003), Tallaksen et. al. (2009) and Fleig et al. (2011) who have also described 547 

strongly skewed distributions of hydrological drought durations. 548 

Three major, multi-annual droughts have already been described from the regional (Fig. 2) 549 

and the cluster-specific (Figs. 7 and 9a) SGI time series. Table 3 summarises differences in 550 

the relationships between the driving meteorology and the drought characteristics of each 551 

cluster for the three major droughts. Each of the major drought episodes have been quantified 552 

using drought characteristics as applied to SPI12 and SGI for each of the clusters. 553 

The 1988-1993 event was the longest of the three major droughts and consequently had the 554 

greatest drought magnitude. The groundwater and meteorological droughts start 555 

approximately contemporaneously in the winter of 1988. In CL2 the drought was continuous 556 

with negative SGI from November 1988 to November 1993, whereas in CL4 there were two 557 

short breaks in the drought and numerous breaks in the drought in CL1. In CL2 there was a 558 

gradual intensification in the drought magnitude across the event, peaking in June 1992 at an 559 

SGI of -1.85 (four months after the peak SPI12 meteorological drought). In contrast, not only 560 

were there short breaks in the drought in CL1 and CL4 but there were approximately annual 561 

cycles of drought intensification and decline over the four year period – these were 562 

particularly pronounced in CL4. This is seen in Fig. 9a where between 1988 and 1993 the 563 

drought status of CL4 is designated by the red tones in the heatmap, but that these tones show 564 

a series of approximately annual variations giving the appearance of vertical stripes during 565 

that period and within that cluster. However, the most pronounced differences in response to 566 

major droughts between clusters CL1, CL2 and CL4 is in the timing of the end of drought. 567 

Groundwater drought conditions ended in CL1 and CL4 in May 1993, seven months after the 568 

end of the meteorological drought, but this was still six months before the groundwater 569 

drought ended in CL2 (Fig. 9a). 570 

The 1995 to 1997 drought, although shorter than the 1988 to 1993 drought, followed a similar 571 

pattern with groundwater drought starting approximately contemporaneously with the 572 

meteorological drought. Although it was a continuous event for all three clusters (there were 573 

no breaks in the drought for CL1 and CL4), CL1 and CL4 again show approximately annual 574 



intensifications and declines in drought status during the episode. Such approximately annual 575 

changes in drought status are not seen in CL2. The 1995 to 1997 drought had the greatest 576 

magnitude in CL2 due to the prolonged end to the drought in this cluster, with groundwater 577 

drought in CL1 and CL4 finishing approximately contemporaneously with the meteorological 578 

drought but six months later in CL2. The 2011 to 2012 drought was much shorter than the 579 

other two multi-annual droughts, lasting just over a year starting relatively abruptly in early 580 

2012 and finished abruptly in CL1 and CL4 in May 2012 in response to an unusual episode 581 

of spring recharge Parry et al. (2013). The groundwater drought in CL2 again finished 582 

relatively late, this time about three months later, in August 2012. The relatively short delay 583 

in the breaking of the groundwater drought in CL2 compared with CL1 and CL4 probably 584 

reflects the relatively smaller groundwater drought deficit accumulated due to the shorter 585 

duration and lower magnitude of the drought compared with the 1988 to 1993 and 1995 to 586 

1998 drought episodes. 587 

 588 

5. Discussion 589 

The results of the regional analysis of droughts based on cluster analysis are consistent with 590 

current conceptualisations of the dynamics of drought in hydrological systems. Propagation 591 

of drought through catchments and in particular through the groundwater compartment is 592 

well documented (Peters et al., 2003; 2006; Tallaksen et al., 2006) and four components of 593 

drought propagation are recognised, i.e. pooling, attenuation, lag and lengthening, three of 594 

which (attenuation, lag and lengthening) are associated with modifications of drought signals 595 

in groundwater (Van Loon, 2015). Attenuation results in smoothing of the maximum drought 596 

anomaly, lag describes the delay in the onset of the drought signal as it passes through the 597 

hydrological cycle (for example, see Fig. 3a and Fig. 4 of Van Loon, 2015,), and lengthening 598 

extends the period of drought. Considering Table 3 that summarises the three multi-annual 599 

droughts and comparing event magnitude for SPI12, CL1 CL2 and CL4 respectively, there is, 600 

as would be expected, evidence of a general attenuation of the SPI drought signal in the three 601 

clusters compared with SPI12. Lagging of the multi-annual groundwater droughts behind 602 

meteorological droughts is not so easy to unambiguously quantify. Clearly the nature and 603 

degree of the lag is sensitive to the rainfall accumulation period used to define the 604 

meteorological drought index most closely correlated with SGI. In the present case, 605 

accumulation periods of 4, 16, and 9 months are required for CL1, 2 and 4 respectively to 606 

achieve optimal correlation between the SPI and SGI time series. Finally, the results of the 607 



present study strongly support the concept of lengthening of groundwater drought relative to 608 

meteorological drought (Van Loon, 2015). The results demonstrate that lengthening is most 609 

pronounced following longer and deeper groundwater droughts. They serve to emphasise that 610 

there can be significant differences in the lengthening response between different clusters, 611 

even within with the same aquifer. It also appears that the degree of lengthening may also be 612 

related to SGI autocorrelation (the greatest degree of lengthening is observed in cluster CL2 613 

associated with the largest SGI autocorrelation, mmax).  614 

The results of the regional analysis add to our current understanding of the controls on 615 

groundwater droughts. Bloomfield and Marchant (2013) investigated how unsaturated zone 616 

thickness and the hydraulic diffusivity of aquifers may relate to mmax. Using 14 SGI time 617 

series from four different aquifers around the UK (including one site from the Lincolnshire 618 

Limestone and nine sites on the Chalk, although none from the present study) they found that 619 

mmax was broadly an inverse function of log hydraulic diffusivity, logDdiff (where Ddiff is 620 

given by T/S and where T is aquifer transmissivity and S is specific storage of the aquifer). 621 

Although they also noted that when fractured aquifers, such as the Lincolnshire Limestone 622 

and the Chalk that have similarly high hydraulic diffusivities, were specifically considered 623 

there is no clear relationship between mmax and logDdiff. However, they did find a positive 624 

relationship between unsaturated zone thickness and mmax for fractured aquifers such as the 625 

Chalk and Lincolnshire Limestone. Based on this observation, they proposed that unsaturated 626 

zone drainage and recharge processes were an important contributory factor in determining 627 

autocorrelation or ‘memory’ in groundwater level hydrographs and by inference an 628 

influential factor on groundwater drought characteristics, particularly in fracture aquifer 629 

systems. Here we investigate if a similar relationship between mmax and unsaturated zone 630 

thickness holds for CL1, CL2 and CL4, clusters dominated by fractured aquifers.   631 

Figure 12 shows box plots of unsaturated zone thickness for CL1, CL2 and CL4 as a function 632 

of mmax for each cluster (where unsaturated zone thickness is taken as the mean depth to 633 

groundwater recorded for sites in each cluster over the study period). In addition, 634 

corresponding observations for ten boreholes in fractured aquifers from Bloomfield and 635 

Marchant (2013) are also shown for reference. The results of the present study are consistent 636 

with those of Bloomfield and Marchant (2013, Fig. 13a) and show: increasing mean 637 

unsaturated zone thickness with increasing cluster mmax; increasing variability in unsaturated 638 

zone thickness with increasing cluster mmax; and increasing maximum unsaturated zone 639 

thickness with increasing cluster mmax. Bloomfield and Marchant (2013) previously noted that 640 



such observations are consistent with the findings of Peters et al. (2005), since unsaturated 641 

zone thickness is a function of distance to streams. However, in the present study area (Fig. 642 

1) surface drainage is virtually absent from the northern Lincolnshire Limestone that 643 

dominates CL1 and is limited over both the Chalk (CL2) and the southern Lincolnshire 644 

Limestone (CL4). Instead we postulate that unsaturated zone thickness, and hence mmax, is 645 

affected by more general catchment characteristics such as extent of outcrop, topography, 646 

intrinsic aquifer characteristics and aquifer thickness that all influence, through unsaturated 647 

zone drainage and saturated flow processes, the overall shape of the piezometric surface in 648 

the aquifers. For example, of the three aquifers in the study region the Chalk has the most 649 

extensive outcrop; it is the thickest aquifer, up to five times thicker than the Lincolnshire 650 

Limestone; and forms hills up to ~150 m asl compared to hills about 70 m asl across the 651 

southern Lincolnshire Limestone, while it is associated (CL2) with the largest mmax and the 652 

longest and highest magnitude droughts. As such, the relationships between unsaturated zone 653 

thickness, SGI autocorrelation and hence groundwater drought characteristics are not trivial 654 

and appear to reflect a number of fundamental catchment properties and processes that effect 655 

groundwater level dynamics and hence groundwater drought phenomena. 656 

Although clustering of groundwater hydrographs is not novel in itself (Winter, 2000; Moon et 657 

al, 2004; Upton and Jackson, 2011) this is the first time these techniques have been 658 

systematically applied to investigate groundwater droughts. The approach described is 659 

generic and widely applicable and here we briefly highlight some of the methodological 660 

considerations, and implications for monitoring and prediction of groundwater droughts.  The 661 

k-means clustering has been performed on the complete SGI hydrographs, including periods 662 

of relatively high groundwater level stand, even though the aim of the hydrograph 663 

classification has been to investigate regional variations in groundwater droughts. Yet the 664 

resulting clusters have been shown to effectively identify distinct regional groundwater 665 

drought responses across the study area. For example, they reflect the major drought history 666 

across the study region (Fig. 2 and Fig. 7), and identify spatially coherent hydrographs that 667 

are consistent with know hydrogeological differences across the study area (Fig. 3c and Fig. 668 

9a). Eltahir and Yeh (1999) investigated the asymmetry of groundwater hydrographs to high 669 

and low groundwater level stands and noted that ‘droughts leave a significantly more 670 

persistent signature on groundwater hydrology than floods’. They inferred that this 671 

phenomenon was because discharge of groundwater to streams is an efficient dissipation 672 

mechanism for wet anomalies and that this discharge is often strongly nonlinear. This may 673 



explain, at least in part, why the hydrograph classification scheme based on full hydrographs 674 

provides such a good basis for analysis of the heterogeneous response of groundwater to 675 

drought at the regional scale. However, there is potential for future work to investigate if the 676 

hydrograph classification can be improved by focussing on, or giving more weight to 677 

episodes of drought in the SGI time series. 678 

In addition to identifying three clusters of SGI hydrographs, CL1, CL2 and CL4, that exhibit 679 

different characteristic responses to meteorological drivers, the k-means clustering also 680 

identified three relatively small clusters of SGI hydrographs, CL3, CL5 and CL6, where there 681 

were either: trends in the SGI time series; temporal anomalies expressed as anomalous phase 682 

relationships between cluster SGI and the regional SGI time series; or relatively poor 683 

coherency in SGI time series with a given cluster. In these three clusters it has been inferred 684 

that hydrographs may have been variably impacted by anthropogenic factors, such as 685 

groundwater abstraction. Although the CA was not specifically designed to identify 686 

anthropogenically impacted groundwater hydrographs the classification scheme could be 687 

used to that end since it can differentiate between clusters showing trends superimposed on 688 

the regional signals (e.g. CL3 and CL5) and clusters with anomalous phase relationships with 689 

the regional signal (e.g. CL6). The presence of a trend in a cluster of hydrographs may be 690 

indicative of an anthropogenic impact, for example from unsustainable abstraction (declining 691 

trend) or from groundwater rebound (rising trend). Where there is limited prior information 692 

regarding groundwater withdrawals across a region, a not uncommon situation in areas where 693 

abstraction is not highly regulated, cluster analysis could be used, either as it has been in the 694 

present study based on a set of heuristic rules to identify a suitable number of clusters, or in 695 

an exploratory manner. If it is used in a more exploratory manner, either hierarchical or non-696 

hierarchical clustering could be undertaken and then clusters searched to identify spatially 697 

coherent clusters that show significant downward trends in hydrographs (where significance 698 

of trends in a cluster could be tested and quantified using standard tests, such as Mann-699 

Kendall and Sen’s slope estimates). Any spatial coherence in clusters exhibiting downward 700 

trends may be taken as indicating the presence of potentially unsustainable abstraction. For 701 

the purposes of a study where the stationarity of the data is important, if trends in individual 702 

hydrographs are already known then either these hydrographs can be removed from an 703 

analysis or the trends could be identified and removed prior standardisation and clustering of 704 

the hydrographs.  705 



It has been shown that there can be pronounced differences in the characteristics of multi-706 

annual drought episodes between aquifers within a region (Fig. 9a). During multi-annual 707 

droughts some clusters temporarily go out of drought conditions while others will continually 708 

show deepening drought conditions over two or more years, and some clusters stay in 709 

groundwater drought for many months after groundwater (and meteorological) drought has 710 

ceased in other clusters. If observations such as these or similar can be made for a region they 711 

may have important implications for monitoring groundwater droughts and water resource 712 

management in multi-aquifer (cluster) systems. For example, at the end of a drought, sites in 713 

more quickly responding clusters may act as leading indicators of the end of groundwater 714 

drought at sites in more slowly responding clusters. In addition to the implications for 715 

groundwater monitoring particularly during long droughts, if there is sufficient understanding 716 

of regional variations in groundwater responses (i.e. relative differences in the timing and 717 

intensity of groundwater drought between different aquifers in a region or between sub-718 

regions within an aquifer), then this understanding could be used to inform appropriate 719 

groundwater water resource management strategies and so may enable some of the worst 720 

impacts of the groundwater drought to be mitigated. 721 

More generally we see a range of possible benefits to clustering groundwater hydrographs. 722 

For example, ‘sentinel’ boreholes within each cluster, those that are closest to the mean 723 

behaviour of a group, could be identified and used as indicative of the groundwater response 724 

of a wider area. Missing data is a common issue with groundwater hydrographs, and 725 

clustering techniques could potentially be used to identify suitable boreholes from which 726 

groundwater levels could be infilled. However, more importantly, clustering could be used in 727 

combination with groundwater models to aid the prediction of groundwater droughts. A range 728 

of techniques can be used to model groundwater hydrographs at a site, i.e. non-distributed 729 

groundwater models, including statistical models (Ahn 200; Bloomfield et al. 2003), artificial 730 

neural network models (Sreekanth et al. 2009) and ‘black box’ models (Mackay et al, 2014). 731 

The hydrograph cluster analysis could be used in combination with any of these techniques 732 

for groundwater drought prediction. For example, groundwater level prediction 1 to 12 733 

months out is currently undertaken in the UK for selected sites using a black-box, lumped 734 

parameter model (Jackson et al. 2013; Mackay et al. 2014; Hydrological Outlooks, 2015) 735 

driven by probabilistic estimates of future rainfall. Regional inferences of future groundwater 736 

levels are then based on qualitative interpretations of the individual sites. Applying similar 737 

predictive modelling systems to mean cluster hydrographs that are representative of spatially 738 



coherent regions of groundwater drought response instead of individual site specific 739 

hydrographs could enable a more rigorous prediction of the spatial distribution of future 740 

groundwater droughts.          741 

6. Conclusions 742 

Cluster analysis (CA) when applied to SGI time series of consistent length for multiple sites 743 

across a region has been shown to provide a robust approach to the regional analysis of 744 

groundwater droughts. In the present study an agglomerative hierarchical complete-linkage 745 

strategy and a k-means clustering strategy were tested. The k-means clustering was found to 746 

be most suitable. However, for any given case study a range of non-hierarchical algorithms 747 

and hierarchical classification schemes should be explored to see which is most appropriate. 748 

A heuristic, rule-based approach was found useful in guiding the selection of the optimal 749 

number of clusters, where the rules applied prior knowledge of the hydrogeology of the study 750 

area including information related to spatial variations in catchment and aquifer 751 

characteristics. For the present case study, both non-hierarchical algorithms and hierarchical 752 

classification schemes provide better clustering of SGI time series than a simple three-fold 753 

classification simply based on geology alone, with the k-means clustering providing the best 754 

clustering. Membership of the resulting k-means clusters is shown to be dominated by 755 

hydrogeological factors and the effect of heterogeneity in precipitation over the study area on 756 

cluster composition is inferred to be negligible.   757 

The clusters successfully discriminate different responses to groundwater drought both in 758 

terms of drought metrics for the complete time series and with respect to the detailed 759 

response of sites in each cluster during specific major episodes of multi-annual drought. 760 

Groundwater drought characteristics can be linked, through the autocorrelation structure of 761 

cluster hydrographs, to the distribution of unsaturated zone thickness. This reflects the role of 762 

a range of catchment and aquifer properties and processes that influence groundwater level 763 

dynamics, including topography, aquifer thickness and extent of outcrop, unsaturated zone 764 

drainage characteristics and saturated groundwater flow. 765 

This approach to groundwater hydrograph clustering is flexible, can be applied in a wide 766 

range of hydrogeological settings where suitable hydrographs are available, and enables 767 

spatially variable responses of groundwater to drought to be quantified.  768 
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Table 1. Summary of features of the six k-means clusters.  945 

 946 

Cluster Number of sites Statistic 

 Total Lincolnshire 

Limestone 

Spilsby 

Sandstone 

Chalk SPI/SGI 

maximum 

correlation 

Representative 

accumulation 

period, qmax 

(Months) 

Autocorrelation 

range, mmax 

(Months) 

CL1 13 13 0 0 0.74 4 15 

CL2 23 2 0 21 0.86 16 23 

CL3 6 2 4 0 0.36 15 60 

CL4 24 19 0 5 0.82 9 18 

CL5 5 0 0 5 0.53 17 28 

CL6 3 0 3 0 0.09 - - 

Total 74 36 7 31  

 947 

 948 

949 



Table 2. Summary of drought event statistics for clusters C1, C2 and C4. 950 

 951 

 CL1 CL2 CL4 

Number of Drought events 39 15 18 

Mean duration (months) 4.6 11.3 9.1 

Maximum duration (months) 27 61 49 

Mean event magnitude  -2.9 -7.9 -6.6 

Mean event intensity  -0.43 -0.28 -0.4 

Maximum event intensity  -1.1 -1.05 -1.13 

No. events where I < -1 3 2 2 

 952 

 953 

954 



Table 3. Summary of the 1988-93, 1995-98 and 2011-12 drought events for clusters CL1, 955 

CL2 and CL4 (where Devent, Mevent and Ievent denote indices for drought event duration, 956 

magnitude and intensity respectively). 957 

 958 

Drought 

episode 

Drought index Regional 

SPI12 

Mean SGI 

CL1 

Mean SGI 

CL2 

Mean SGI 

CL4 

1988 to 1993 Start date Dec-88 Oct-88 Nov-88 Oct-88 

 End date Oct-92 May-93 Nov-93 May-93 

 Devent 47 56 61 56 

 Mevent -56.8 -37 -63.6 -41.6 

 Ievent -1.2 -0.7 -1.0 -0.7 

1995 to 1998 Start date May-95 May-95 Aug-95 Jul-95 

 End date Oct-97 Jul-97 Feb-98 Aug-97 

 Devent 30 27 31 26 

 Mevent -34.3 -18.7 -32.4 -29.3 

 Ievent -1.1 -0.7 -1.0 -1.1 

2010 to 2012 Start date Jan-11 May-11 Jan-11 Jul-10 

 End date Apr-12 May-12 Aug-12 May-12 

 Devent 16 13 20 23 

 Mevent -16.1 -13.9 -11.7 -21 

 Ievent -1.0 -1.1 -0.6 -0.9 

 959 

 960 
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962 



Figure captions 963 

 964 

Figure 1. Case study area (left) and simplified geology map (right) showing locations of the 965 

observation boreholes. Cross-section (bottom) illustrating the stratigraphic/depth 966 

relationships between the three major aquifers in the study region: the Lincolnshire 967 

Limestone, the Spilsby Sandstone and the Chalk. 968 

 969 

 970 

Figure 2. a. SPI/SGI correlation as a heatmap, b. mean SPI12 time series and c. mean SGI 971 

time series for all 74 hydrographs. 972 

 973 

Figure 3. a. cluster dendrogram for hierarchical classification (k=6) of SGI time series, b. map 974 

showing the distribution of sites by clusters based on hierarchical classification (k=6), and c. 975 

map showing the distribution of sites by clusters formed by k-means clustering (k = 6). 976 

 977 

Figure 4.  RMSSD as a function of the number of clusters for the hierarchical and non-978 

hierarchical k-means clustering algorithms and for a three-fold classification based on 979 

geology alone. 980 

 981 

Figure 5. Heatmaps of Pearson correlation between SGI and SPI for q = 1 to 36 months and 982 

for lags up to 5 months. Maximum correlation is denoted by the closed black circles. 983 

 984 

Figure 6. Mean SPI times series for each of the k-means clusters based on the accumulation 985 

period qmax for each cluster. Where the black line is SPI based on gridded precipitation series 986 

for sites in a given cluster and the red line is SPI for the mean rainfall across the whole study 987 

area based on the different aggregation periods, qmax, for each cluster. 988 

 989 

Figure 7. Mean SGI time series for each of the six k-means clusters. 990 

 991 

Figure 8. Correlograms for each of the mean SGI time series (bold) and individual site time 992 

series (grey) for each of the six k-means clusters showing variation in the autocorrelation 993 

function (ACF) for lags up to 60 months. 994 

 995 



Figure 9. Heatmaps showing a.) SGI varying with time for all 74 sites as function of the six 996 

k-means clusters (left), and b.) correlations between all pairs of sites sorted as a function of 997 

the six k-means clusters (right). 998 

 999 

Figure 10.  Drought magnitude versus drought duration for sites in clusters CL1, CL2 and 1000 

CL4. 1001 

 1002 

Figure 11. Percentile plots of a. drought duration, b. drought magnitude, and c. drought 1003 

intensity for clusters CL1, CL2 and CL4. 1004 

 1005 

Figure 12. SGI autocorrelation (mmax) as a function of unsaturated zone thickness. 1006 
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